JP2019029595A - Magnetic domain wall moving element and magnetic memory - Google Patents

Magnetic domain wall moving element and magnetic memory Download PDF

Info

Publication number
JP2019029595A
JP2019029595A JP2017150297A JP2017150297A JP2019029595A JP 2019029595 A JP2019029595 A JP 2019029595A JP 2017150297 A JP2017150297 A JP 2017150297A JP 2017150297 A JP2017150297 A JP 2017150297A JP 2019029595 A JP2019029595 A JP 2019029595A
Authority
JP
Japan
Prior art keywords
magnetic
domain wall
wire
magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017150297A
Other languages
Japanese (ja)
Other versions
JP6886888B2 (en
Inventor
真弓 川那
Mayumi Kawana
真弓 川那
河村 紀一
Kiichi Kawamura
紀一 河村
泰敬 宮本
Yasuyoshi Miyamoto
泰敬 宮本
光伸 奥田
Mitsunobu Okuda
光伸 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2017150297A priority Critical patent/JP6886888B2/en
Publication of JP2019029595A publication Critical patent/JP2019029595A/en
Application granted granted Critical
Publication of JP6886888B2 publication Critical patent/JP6886888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

To provide a magnetic domain wall moving element capable of high speed writing without increasing the current density and writing by moving a magnetic domain wall of a magnetic thin wire by current supply.SOLUTION: In a magnet-equipped magnetic domain wall moving element 10, a magnetic domain wall moving element 1 includes a magnet that generates magnetic fields that oppose each other so as to sandwich a magnetic wire 11 therebetween from above and below and repel each other in. The magnetic field -Hin the -x direction is applied a magnetic domain wall that is stationary at the magnetic domain wall rest position p1 of a magnetic thin wire 11 by magnets 61f and 62f with the N poles facing each other and magnets 61b and 62b with the S poles facing each other, and when electrons eare injected in the + x direction by supplying a current Ito the magnetic thin line 11, the domain wall DW moves at a high speed in the + x direction.SELECTED DRAWING: Figure 11

Description

本発明は、磁壁移動素子およびこれをメモリセルに備える磁気メモリに関する。   The present invention relates to a domain wall motion element and a magnetic memory including the same in a memory cell.

不揮発性、高速アクセス性、高集積性のすべてを満足するランダムアクセスメモリ(RAM)として、メモリセルにおける磁気抵抗効果素子の抵抗の高低を2値のデータとする磁気抵抗ランダムアクセスメモリ(Magnetoresistive Random Access Memory:MRAM)が開発されている。磁気抵抗効果素子の抵抗の高低は磁性膜(自由層)の磁化方向によるものであり、データの書込みとはすなわち自由層の磁化反転である。書込み方式として、配線(導線)からの磁界印加による初期のMRAMから、高速化およびセルの微細化のため、磁気抵抗効果素子に電流を垂直方向に供給するSTT(Spin Transfer Torque)−MRAM(以下、単にMRAMという)、そしてさらなる高速化を可能とする、自由層を両側に延伸した細線状として、自由層に電流を長手方向に供給する磁壁移動方式のMRAMが開発されている(例えば特許文献1、非特許文献1)。   As a random access memory (RAM) that satisfies all of nonvolatile, high-speed accessibility, and high integration, a magnetoresistive random access memory (Magnetoresistive Random Access) that uses binary data on the level of resistance of a magnetoresistive element in a memory cell Memory: MRAM) has been developed. The level of resistance of the magnetoresistive effect element depends on the magnetization direction of the magnetic film (free layer), and the data writing is the magnetization reversal of the free layer. As a writing method, an STT (Spin Transfer Torque) -MRAM (hereinafter referred to as an STT) that supplies current to a magnetoresistive effect element in a vertical direction from the initial MRAM by applying a magnetic field from a wiring (conductive wire) for speeding up and miniaturization of a cell. And a domain wall motion type MRAM that supplies a current to the free layer in the longitudinal direction as a thin wire with the free layer extending on both sides has been developed (for example, patent document). 1, Non-Patent Document 1).

厚さおよび幅に対して十分に長い細線状に形成された磁性体(以下、磁性細線)は、その長さ方向(細線方向)に2以上の磁区が生成し易く、さらに当該長さ方向に電流を供給されると磁区同士を区切るように生成している磁壁がすべて電流の逆方向に(+側へ)等距離移動するというシフト移動を行う。磁壁移動方式のMRAMにおいては、磁性細線の1つの磁壁が細線方向における所定の2点間を移動することによる、2点間の磁化方向の変化を利用する。また、磁壁移動方式は、磁界印加や垂直方向の電流供給による磁化反転よりも自由層の厚膜化が容易であることから、磁気光学材料で自由層を形成した、空間光変調器の光変調素子に好適である(例えば特許文献2)。   A magnetic body (hereinafter referred to as a magnetic wire) formed in a thin wire sufficiently long with respect to the thickness and width easily generates two or more magnetic domains in the length direction (thin wire direction), and further in the length direction. When a current is supplied, a shift movement is performed in which all the domain walls generated so as to separate the magnetic domains are moved equidistantly in the opposite direction of the current (to the + side). In a domain wall motion type MRAM, a change in the magnetization direction between two points due to one magnetic wall of a magnetic wire moving between two predetermined points in the direction of the wire is used. In addition, the domain wall motion method makes it easier to thicken the free layer than the reversal of magnetization by applying a magnetic field or supplying a current in the vertical direction. Therefore, the optical modulation of a spatial light modulator in which the free layer is formed of a magneto-optic material. It is suitable for an element (for example, Patent Document 2).

特許第5598697号公報Japanese Patent No. 5598697 特許第4939489号公報Japanese Patent No. 4939489

S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R. Nebashi, N. Sakimura, H. Honjo, K. Mori, C. Igarashi, S. Miura, N. Ishiwata, T. Sugibayashi, "Low-Current Perpendicular Domain Wall Motion Cell for Scalable High-Speed MRAM", 2009 Symposium on VLSI Technology Digest of Technical Papers, 12A-2S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R. Nebashi, N. Sakimura, H. Honjo, K. Mori, C. Igarashi, S. Miura, N. Ishiwata, T. Sugibayashi, "Low-Current Perpendicular Domain Wall Motion Cell for Scalable High-Speed MRAM", 2009 Symposium on VLSI Technology Digest of Technical Papers, 12A-2

磁性細線における磁壁の移動は、供給する電流の電流密度が高いほど高速になる。しかしながら、このような電流密度の高い電流の供給を繰り返され続けると磁性細線が劣化する虞があり、MRAMの寿命が短くなる。   The movement of the domain wall in the magnetic wire becomes faster as the current density of the supplied current is higher. However, if such a current supply with a high current density is continuously repeated, the magnetic wire may be deteriorated, and the life of the MRAM is shortened.

本発明は前記問題点に鑑み創案されたもので、供給する電流の電流密度を高くすることなく、高速な書込みを可能とする磁気メモリおよびその磁壁移動素子を提供することが課題である。   The present invention has been devised in view of the above problems, and it is an object of the present invention to provide a magnetic memory and its domain wall motion element that enable high-speed writing without increasing the current density of the supplied current.

すなわち、本発明に係る磁壁移動素子は、垂直磁気異方性材料を細線状に形成してなる磁性細線を備え、前記磁性細線に電流を細線方向に供給されると、前記磁性細線に生成している磁壁が前記電流と逆向きに移動するものであって、前記磁性細線またはその細線方向延長線を上下から挟むように対向して互いに反発し合う磁界を発生させる2つ1組の磁界印加手段をさらに備え、前記磁界印加手段の組が前記磁界を発生させることによって、前記磁性細線に細線方向の磁界を印加する構造とする。   That is, the domain wall motion element according to the present invention includes a magnetic wire formed by forming a perpendicular magnetic anisotropy material into a thin wire shape, and when current is supplied to the magnetic wire in a thin wire direction, the magnetic wall wire is generated in the magnetic wire. A pair of magnetic field applications that generate magnetic fields that oppose each other so as to sandwich the magnetic wire or its extension in the vertical direction from above and below. Means for applying a magnetic field in the direction of a fine wire to the magnetic fine wire by causing the set of magnetic field applying means to generate the magnetic field.

かかる構成により、磁壁移動素子は、供給する電流の電流密度に対して高速で書込みをすることができる。   With this configuration, the domain wall motion element can write at a high speed with respect to the current density of the supplied current.

本発明に係る磁気メモリは、前記磁壁移動素子をメモリセルに備える。かかる構成により、磁気メモリは、供給する電流の電流密度に対して高速で書込みをすることができる。   The magnetic memory according to the present invention includes the domain wall motion element in a memory cell. With this configuration, the magnetic memory can perform writing at a high speed with respect to the current density of the supplied current.

本発明に係る磁壁移動素子および磁気メモリによれば、供給する電流の電流密度を高くすることなく高速の書込みが可能となって磁性細線が劣化し難い。   According to the domain wall motion element and the magnetic memory according to the present invention, high-speed writing can be performed without increasing the current density of the supplied current, and the magnetic wire is hardly deteriorated.

本発明の第1実施形態に係る磁石付き磁壁移動素子の構造を説明する模式図である。It is a schematic diagram explaining the structure of the domain wall motion element with a magnet which concerns on 1st Embodiment of this invention. 図1に示す磁石付き磁壁移動素子の磁壁移動素子の読出しの方法を説明する模式図である。It is a schematic diagram explaining the reading method of the domain wall motion element of the domain wall motion device with a magnet shown in FIG. 図1に示す磁石付き磁壁移動素子の磁石による磁界の印加を説明する模式図である。It is a schematic diagram explaining application of the magnetic field by the magnet of the domain wall motion element with a magnet shown in FIG. シミュレーションにおける磁性細線と磁石の配置を説明する模式図である。It is a schematic diagram explaining the arrangement | positioning of the magnetic fine wire and magnet in simulation. 本発明の第1実施形態に係る磁石付き磁壁移動素子を模擬したサンプルの飽和磁束密度1Tの磁石による、x,y,zの成分別の磁界分布図であり、(a)は磁石のN極同士をz方向に2つ対向させたもの、(b)はS極同士をz方向に2つ対向させた組とN極同士をz方向に2つ対向させた組を+x方向に80nmピッチで配列したもの、(c)は(b)のx方向の配列を反転させたものである。It is a magnetic field distribution map according to the component of x, y, z by the magnet of saturation magnetic flux density 1T of the sample which simulated the domain wall motion element with a magnet concerning a 1st embodiment of the present invention, and (a) is the N pole of a magnet (B) shows a pair in which two S poles are opposed in the z direction and a pair in which two N poles are opposed in the z direction at a pitch of 80 nm in the + x direction. An arrangement, (c) is an inversion of the arrangement in the x direction of (b). 磁性細線における電流供給による磁壁の移動を説明する概念図である。It is a conceptual diagram explaining the movement of the domain wall by the electric current supply in a magnetic fine wire. シミュレーションにおける磁性細線と磁石の配置を説明する模式図である。It is a schematic diagram explaining the arrangement | positioning of the magnetic fine wire and magnet in simulation. シミュレーションによる、図7(a)に示す磁石を配置した磁性細線における電流供給時間推移による磁壁の移動距離を表すグラフである。It is a graph showing the moving distance of the domain wall by current supply time transition in the magnetic fine wire which has arrange | positioned the magnet shown to Fig.7 (a) by simulation. シミュレーションによる、図7(b)に示す磁石を配置した磁性細線における電流供給時間推移による磁壁の移動距離を表すグラフである。It is a graph showing the moving distance of the domain wall by the current supply time transition in the magnetic fine wire which has arrange | positioned the magnet shown in FIG.7 (b) by simulation. シミュレーションによる、図7(a)に示す磁石を配置した磁性細線における電流供給による磁壁移動速度の、磁石の飽和磁束密度依存性を表すグラフである。It is a graph showing the saturation magnetic flux density dependence of the magnetic domain wall moving speed by the electric current supply in the magnetic fine wire which has arrange | positioned the magnet shown to Fig.7 (a) by simulation. (a)、(b)は、図1に示す磁石付き磁壁移動素子の磁壁移動素子の書込みの方法を説明する模式図である。(A), (b) is a schematic diagram explaining the writing method of the domain wall motion element of the domain wall motion device with a magnet shown in FIG. (a)、(b)は、本発明の第1実施形態に係る磁石付き磁壁移動素子をメモリセルに備えた磁気メモリの等価回路図である。(A), (b) is an equivalent circuit diagram of the magnetic memory which equipped the memory cell with the domain wall motion element with a magnet which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る磁石付き磁壁移動素子の構造と書込みの方法を説明する模式図である。It is a schematic diagram explaining the structure and writing method of the domain wall motion element with a magnet concerning 2nd Embodiment of this invention. シミュレーションによる、磁界を印加した磁性細線における電流供給時間推移による磁壁の移動距離を表すグラフである。It is a graph showing the movement distance of the domain wall by the current supply time transition in the magnetic fine wire which applied the magnetic field by simulation. シミュレーションによる、磁界を印加した磁性細線における電流供給時間推移による磁壁の移動距離を表すグラフである。It is a graph showing the movement distance of the domain wall by the current supply time transition in the magnetic fine wire which applied the magnetic field by simulation.

以下、本発明に係る磁壁移動素子および磁気メモリを実現するための形態について、図面を参照して説明する。図面に示す磁壁移動素子および磁気メモリ、ならびにそれらの要素は、明確に説明するために、大きさや位置関係等を誇張していることがあり、また、形状や構造を単純化していることがある。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for realizing a domain wall motion element and a magnetic memory according to the present invention will be described with reference to the drawings. The domain wall motion element and magnetic memory shown in the drawings, and their elements may be exaggerated in size, positional relationship, etc., and may be simplified in shape and structure for the sake of clarity. .

〔第1実施形態〕
本発明の第1実施形態に係る磁石付き磁壁移動素子(磁壁移動素子)10は、磁気抵抗ランダムアクセスメモリ(MRAM)のメモリセルの記憶素子であり、図1に示すように、磁壁移動素子1および8つの磁石(磁界印加手段)61f,61b,62f,62b,63f,63b,64f,64bを備える。磁壁移動素子1は、x方向(図の横方向)に長い細線状の磁性細線11と、磁性細線11のx方向両端における下面に接続する第1磁化固定層21および第2磁化固定層22と、磁性細線11のx方向中央における上面に順に積層した障壁層3および副磁化固定層23と、を備える。また、磁壁移動素子1は、第1磁化固定層21に第1電極51が、第2磁化固定層22に第2電極52が、副磁化固定層23に第3電極53が、それぞれ接続されている。また、磁壁移動素子1の磁性細線11に沿って+x方向に順に、磁性細線11の上側に磁石61b,61f,63f,63bが、下側に磁石62b,62f,64f,64bが、それぞれ配置され、上下各1つの2つずつが磁性細線11を間に挟んで互いに対向する。
[First Embodiment]
A domain wall motion element with magnet (domain wall motion element) 10 according to the first embodiment of the present invention is a memory element of a memory cell of a magnetoresistive random access memory (MRAM), and as shown in FIG. And eight magnets (magnetic field applying means) 61f, 61b, 62f, 62b, 63f, 63b, 64f, 64b. The domain wall motion element 1 includes a thin magnetic wire 11 that is long in the x direction (lateral direction in the figure), a first magnetization fixed layer 21 and a second magnetization fixed layer 22 that are connected to the lower surfaces of both ends of the magnetic thin wire 11 in the x direction. The barrier layer 3 and the submagnetization fixed layer 23 are sequentially stacked on the upper surface of the magnetic wire 11 at the center in the x direction. The domain wall motion element 1 includes a first electrode 51 connected to the first magnetization fixed layer 21, a second electrode 52 connected to the second magnetization fixed layer 22, and a third electrode 53 connected to the submagnetization fixed layer 23. Yes. Further, magnets 61b, 61f, 63f, and 63b are arranged on the upper side of the magnetic wire 11 and magnets 62b, 62f, 64f, and 64b are arranged on the lower side in order in the + x direction along the magnetic wire 11 of the domain wall motion element 1. The upper and lower ones are opposed to each other with the magnetic wire 11 in between.

(磁壁移動素子)
磁性細線11、第1磁化固定層21、第2磁化固定層22、および副磁化固定層23は、垂直磁気異方性材料からなり、MRAMの磁気抵抗効果素子であるCPP−GMR素子やTMR素子に用いられる公知の磁性材料を適用することができる。垂直磁気異方性材料は、具体的には、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを繰り返し積層したCo/Pd多層膜等の多層膜、Tb−Fe−Co,Gd−Fe等の希土類金属と遷移金属との合金(RE−TM合金)、L10系の規則合金としたFePt, FePd,CrPt3等が挙げられる。
(Domain wall moving element)
The magnetic wire 11, the first magnetization fixed layer 21, the second magnetization fixed layer 22, and the submagnetization fixed layer 23 are made of a perpendicular magnetic anisotropic material, and are a CPP-GMR element or a TMR element that is a magnetoresistive effect element of MRAM. The well-known magnetic material used for can be applied. Specifically, the perpendicular magnetic anisotropy material is a multilayer film such as a Co / Pd multilayer film in which transition metals such as Fe, Co, and Ni are repeatedly laminated with noble metals such as Pd and Pt, and Tb-Fe-Co. alloy (RE-TM alloy) of a rare earth metal and a transition metal such as Gd-Fe, FePt was L1 0 type ordered alloys, FePd, CrPt 3, and the like.

磁性細線11は、磁壁移動素子1の主要部材であり、前記したようにx方向に長い細線状に形成され、図2に示すように、細線方向に2つの磁区D1,D2に分割されている。磁性細線11は、磁壁移動素子1の書込みにおいて、後記するように電気的手段によって、磁区D1,D2を区切る磁壁DWが細線方向に移動させられ、磁壁DWの移動の始点−終点間における磁化方向が移動の前後で変化する。そのために、磁性細線11は、前記の磁性材料から、保磁力が比較的大きくないものを適用されることが好ましい。磁性細線11は、細線方向にのみ磁区が分割され易いように、厚さ70nm以下、幅(細線幅、y方向長)300nm以下であることが好ましく、厚さおよび幅に対して十分に長い細線状に形成される。また、磁性細線11は、厚さと幅の積である断面積が小さいほど磁壁DWを移動させるための電流を小さくすることができる。一方、磁化の保持のために、磁性細線11はある程度の厚さおよび幅にすることが好ましく、具体的には、厚さが5nm以上、幅が10nm以上であることが好ましい。   The magnetic fine wire 11 is a main member of the domain wall motion element 1 and is formed in a thin fine wire shape in the x direction as described above, and is divided into two magnetic domains D1 and D2 in the fine wire direction as shown in FIG. . In the writing of the magnetic domain wall moving element 1, the magnetic thin line 11 is moved in the direction of the fine line by the electrical means as will be described later, and the magnetization direction between the start point and the end point of the movement of the domain wall DW. Changes before and after movement. Therefore, it is preferable that the magnetic wire 11 is made of the above-described magnetic material and has a relatively low coercive force. The magnetic thin wire 11 is preferably 70 nm or less in thickness and 300 nm or less in width (thin wire width, length in the y direction) so that the magnetic domains are easily divided only in the direction of the thin wire, and is sufficiently long with respect to the thickness and width. It is formed in a shape. In addition, the magnetic wire 11 can reduce the current for moving the domain wall DW as the cross-sectional area, which is the product of the thickness and the width, is smaller. On the other hand, in order to maintain the magnetization, it is preferable that the magnetic wire 11 has a certain thickness and width. Specifically, it is preferable that the thickness is 5 nm or more and the width is 10 nm or more.

障壁層3および副磁化固定層23は、磁性細線11と合わせた3層の積層構造からなるTMR素子を構成して、磁壁移動素子1の読出しとして、磁性細線11の磁化方向を検出するために設けられる。すなわち、磁性細線11の、障壁層3および副磁化固定層23の直下における領域(TMR素子部)が、前記TMR素子の磁化自由層となる。障壁層3は、公知のTMR素子の障壁層の絶縁膜であり、MgOが好ましく、厚さ3nm未満であることが好ましい。副磁化固定層23は、磁化方向を一方向に(図2では上向きに)設定、固定される。そのために、副磁化固定層23は、磁性細線11よりも保磁力が大きくなるように、前記の磁性材料から保磁力の大きいものを適用されることが好ましく、さらに十分な体積(厚さ、面積)に形成されていることが好ましく、y方向に磁性細線11の外側へ張り出して大きく形成されていてもよい。このような副磁化固定層23は、外部磁界を予め印加されることによって、磁化方向を設定される。副磁化固定層23の磁化方向に対して、磁性細線11のTMR素子部における磁化方向が同じ(平行、図2(a)参照)か逆向き(反平行、図2(b)参照)かで、第1電極51または第2電極52と第3電極53との間の抵抗の高さが変化する。したがって、磁壁移動素子1において、磁性細線11は、少なくともTMR素子領域全体が磁化反転するように、その両外側に磁壁DWの移動の始点、終点となる磁壁静止位置p1,p2を設定する。   The barrier layer 3 and the sub-magnetization fixed layer 23 constitute a TMR element having a three-layer laminated structure combined with the magnetic thin wire 11, in order to detect the magnetization direction of the magnetic thin wire 11 as readout of the domain wall motion element 1. Provided. That is, the region (TMR element portion) of the magnetic wire 11 immediately below the barrier layer 3 and the submagnetization fixed layer 23 becomes the magnetization free layer of the TMR element. The barrier layer 3 is an insulating film of a barrier layer of a known TMR element, MgO is preferable, and the thickness is preferably less than 3 nm. The submagnetization fixed layer 23 is set and pinned in one direction (upward in FIG. 2). Therefore, it is preferable to apply a material having a large coercive force from the above-described magnetic material so that the coercive force is larger than that of the magnetic wire 11, and a sufficient volume (thickness, area). ), And may be formed so as to protrude to the outside of the magnetic wire 11 in the y direction. Such a secondary magnetization fixed layer 23 has a magnetization direction set by applying an external magnetic field in advance. Whether the magnetization direction in the TMR element portion of the magnetic wire 11 is the same (parallel, see FIG. 2A) or opposite (antiparallel, see FIG. 2B) with respect to the magnetization direction of the submagnetization fixed layer 23 The height of resistance between the first electrode 51 or the second electrode 52 and the third electrode 53 changes. Therefore, in the domain wall motion element 1, the magnetic wire 11 sets the domain wall stationary positions p1 and p2 that are the start and end points of the domain wall DW movement on both outer sides so that at least the entire TMR element region is magnetized.

第1磁化固定層21および第2磁化固定層22は、互いに異なる磁化方向に設定、固定されていて、磁性細線11の、当該磁化固定層21,22上に接続した領域に磁気的に結合して同じ磁化方向に固定するために設けられる。そのために、第1磁化固定層21および第2磁化固定層22は、磁性細線11よりも保磁力が大きくなるように、前記の磁性材料から保磁力の大きいものを適用されることが好ましく、さらに十分な体積(厚さ、面積)に形成されていることが好ましく、x方向やy方向に磁性細線11の外側へ張り出して大きく形成されていてもよい。図2においては、第1磁化固定層21が下向きの、第2磁化固定層22が上向きの磁化方向に、それぞれ設定されている。したがって、磁性細線11は、磁化方向が、第1磁化固定層21の直上の領域においては下向きに、第2磁化固定層22の直上の領域においては上向きに、それぞれ固定され、これら2つの領域に挟まれた領域(磁化反転可能領域1SW)においてのみ磁化方向を電気的手段で変化させられることができる。このような構成により、磁壁移動素子1は、その書込みの際に、磁性細線11において、磁壁DWが、目標とする静止位置である磁壁静止位置p1または磁壁静止位置p2を通過してさらに過剰に移動しようとしても、磁化反転可能領域1SW外に到達することがない。したがって、磁性細線11は、磁壁DWが消失して磁区D1のみまたは磁区D2のみの単磁区になることが防止される。なお、図2においては、磁壁静止位置p1,p2が、磁化反転可能領域1SWの内側に設定されているが、磁壁DWの移動限界位置である磁化反転可能領域1SWの両端に設定されてもよい。第1磁化固定層21および第2磁化固定層22は、副磁化固定層23と同様、外部磁界を予め印加されることによって、磁化方向を設定され、その際に互いに異なる磁化方向にするために、保磁力に差を設ける等、異なる構造とすることが好ましい。 The first magnetization fixed layer 21 and the second magnetization fixed layer 22 are set and fixed in different magnetization directions, and are magnetically coupled to a region of the magnetic wire 11 connected to the magnetization fixed layers 21 and 22. Provided to fix the same magnetization direction. Therefore, it is preferable that the first magnetization pinned layer 21 and the second magnetization pinned layer 22 are made of the above-described magnetic material having a larger coercive force so that the coercive force is larger than that of the magnetic wire 11, and It is preferable that it is formed in a sufficient volume (thickness, area), and it may be formed large by projecting to the outside of the magnetic wire 11 in the x direction or y direction. In FIG. 2, the first magnetization fixed layer 21 is set downward and the second magnetization fixed layer 22 is set upward. Therefore, the magnetic wire 11 is fixed such that the magnetization direction is downward in the region immediately above the first magnetization fixed layer 21 and upward in the region immediately above the second magnetization fixed layer 22. Only in the sandwiched region (magnetization reversible region 1 SW ) can the magnetization direction be changed by electrical means. With such a configuration, the domain wall motion element 1 causes the domain wall DW to pass through the domain wall stationary position p1 or domain wall stationary position p2, which is the target stationary position, in the magnetic wire 11 further during the writing. Even if it tries to move, it does not reach outside the magnetization reversible region 1 SW . Therefore, the magnetic wire 11 is prevented from disappearing the domain wall DW and becoming a single magnetic domain having only the magnetic domain D1 or only the magnetic domain D2. In FIG. 2, the domain wall rest position p1, p2 is the magnetization reversal region 1 SW is the is set to the inside, is set to both ends of a movement limit position is the magnetization reversal region 1 SW of the domain wall DW Also good. The first magnetization fixed layer 21 and the second magnetization fixed layer 22 are set in the magnetization direction by applying an external magnetic field in advance, as in the case of the submagnetization fixed layer 23, so that the magnetization directions are different from each other. It is preferable to have different structures such as providing a difference in coercive force.

第1電極51、第2電極52、および第3電極53は、Cu,Al,Au,Ag,Ta,Cr,Pt,Ru等の金属やその合金のような一般的な金属電極材料で形成される。電極51,52,53は、図1等では簡略化して線で表されるが、磁性細線11に供給する電流の大きさに対応した厚さや幅で、さらに磁化固定層21,22の下面や副磁化固定層23の上面に十分な面積で接続するように形成される。   The first electrode 51, the second electrode 52, and the third electrode 53 are formed of a general metal electrode material such as a metal such as Cu, Al, Au, Ag, Ta, Cr, Pt, Ru, or an alloy thereof. The The electrodes 51, 52, and 53 are simply represented by lines in FIG. 1 and the like, but have thicknesses and widths corresponding to the magnitude of the current supplied to the magnetic thin wires 11, and the bottom surfaces of the magnetization fixed layers 21 and 22. It is formed so as to be connected to the upper surface of the secondary magnetization fixed layer 23 with a sufficient area.

(磁石)
磁石61fと磁石62f、磁石61bと磁石62b、磁石63fと磁石64f、磁石63bと磁石64bは、それぞれ2つで1組として、磁性細線11を間に挟んで上と下に配置され、磁壁移動素子1の書込み時に、磁性細線11に細線方向の磁界を印加する磁界印加手段である。そのために、同組の2つの磁石が互いに反発し合う同じ大きさの磁界を発生させる。詳しくは、磁石61f,61b,62f,62b,63f,63b,64f,64bは、それぞれが上向きまたは下向き(+z方向、−z方向)の所定の一方向の磁界をON/OFF自在に発生させるものであり、同じ構造とすることができるので、特定しない場合には磁石6と総称する。このような磁石6は、例えば、磁気記録ヘッドに適用される薄膜コイルや積層コイルを備える電磁石である(図示省略)。磁石6は、磁性細線11に対面させた磁極(コア)のy方向長が磁性細線11の細線幅以上であることが好ましい。なお、本明細書において磁石6の配置とは、磁性細線11に対面させた磁極の配置を指し、また、図面においては簡略化して磁極のみを表す。さらに、x方向に隣り合う磁石61fと磁石61bは、互いに逆向きの磁界を同時に発生させ、一方がN極を、他方がS極を、それぞれ磁性細線11に対面させている。したがって、磁石61f,61bをまとめて、適宜、磁石対61と称する。磁石62f,62b、磁石63f,63b、および磁石64f,64bもそれぞれ同様に、磁石対62、磁石対63、磁石対64と称する。
(magnet)
A magnet 61f and a magnet 62f, a magnet 61b and a magnet 62b, a magnet 63f and a magnet 64f, and a magnet 63b and a magnet 64b, each set as a pair, are arranged above and below with the magnetic wire 11 therebetween, and the domain wall motion element 1 Is a magnetic field applying means for applying a magnetic field in the direction of the fine wire to the magnetic fine wire 11 at the time of writing. For this purpose, two magnets in the same set generate a magnetic field of the same magnitude that repels each other. Specifically, the magnets 61f, 61b, 62f, 62b, 63f, 63b, 64f, and 64b each generate a magnetic field in a predetermined one direction that is upward or downward (+ z direction, −z direction) so as to be turned ON / OFF freely. Since they can have the same structure, they are collectively referred to as a magnet 6 when not specified. Such a magnet 6 is, for example, an electromagnet including a thin film coil or a laminated coil applied to a magnetic recording head (not shown). In the magnet 6, the length in the y direction of the magnetic pole (core) facing the magnetic thin wire 11 is preferably equal to or larger than the thin wire width of the magnetic thin wire 11. In the present specification, the arrangement of the magnets 6 refers to the arrangement of the magnetic poles facing the magnetic thin wires 11, and in the drawings, only the magnetic poles are simplified. Further, the magnet 61f and the magnet 61b adjacent in the x direction simultaneously generate magnetic fields opposite to each other, one facing the N pole and the other facing the magnetic pole 11 respectively. Therefore, the magnets 61f and 61b are collectively referred to as a magnet pair 61 as appropriate. Similarly, the magnets 62f and 62b, the magnets 63f and 63b, and the magnets 64f and 64b are referred to as a magnet pair 62, a magnet pair 63, and a magnet pair 64, respectively.

ここで、磁石61f,62f,61b,62bが磁界を発生させている状態について、図3、図4、および図5を参照して説明する。上下(z方向)に対向する磁石61f,62f同士、磁石61b,62b同士が、互いに反発し合う磁界+Hz,−Hzを発生させると、図3に磁力線として表すように、前記対向する磁石同士の中間点を含むxy面(z=0面と称する)に、前記中間点から放射状に広がる磁界が発生する。詳しくは、図4に示すように配置した磁石61f,62fについて実行したシミュレーションによれば、このz=0面においては、図5(a)に示すように、z成分の磁界が0となり、一方、前記中間点の近傍に、±x,±y各成分の磁界が生成される。なお、図5に表示する数値は磁界(単位:A/m)である。さらに、S極同士を対向させた磁石61b,62bとN極同士を対向させた磁石61f,62fとがx方向に狭い間隙を空けて並んで配置されていることにより、z=0面における前記間隙に、磁石61f,62f、磁石61b,62bの各1組のみによって生成される±x成分の磁界(図5(a)参照)に対して格段に大きな−x方向の磁界−Heffが発生する。この磁界−Heffは、図5(b)に示すように、特に、前記間隙の中心で最大となる。なお、シミュレーションにおける磁石6(61f,62f,61b,62b)は、x方向長LMが20nm、y方向長が60nm、飽和磁束密度が1Tの永久磁石である。そして、磁石61f−61b、磁石62f−62bの間隙Lgが60nm、対向する磁石61f,62f、磁石61b,62bの間隙dが50nmである。磁石63f,64f,63b,64bについても、図5(c)に示すように、同様に大きい+x方向の磁界+Heffがz=0面に発生する。したがって、磁石61f,62f,61b,62bおよび磁石63f,64f,63b,64bのそれぞれ2組は、その磁力に対して格段に大きな−x方向または+x方向の磁界を、z=0面に配置された磁壁移動素子1の磁性細線11に印加する。このように細線方向の磁界を印加することにより、後記するように電流供給による磁性細線11における磁壁DWの移動が高速になるので、磁壁移動素子1の書込み速度が高速になる。 Here, the state in which the magnets 61f, 62f, 61b, and 62b generate a magnetic field will be described with reference to FIGS. 3, 4, and 5. FIG. When the magnets 61f and 62f facing vertically (z direction) and the magnets 61b and 62b generate magnetic fields + H z and −H z repelling each other, the facing magnets are represented as lines of magnetic force in FIG. A magnetic field that spreads radially from the intermediate point is generated on the xy plane (referred to as z = 0 plane) including the intermediate point between them. Specifically, according to the simulation executed for the magnets 61f and 62f arranged as shown in FIG. 4, the z-component magnetic field becomes 0 on the z = 0 plane, as shown in FIG. In the vicinity of the intermediate point, magnetic fields of ± x and ± y components are generated. The numerical value displayed in FIG. 5 is a magnetic field (unit: A / m). Furthermore, the magnets 61b and 62b with the south poles facing each other and the magnets 61f and 62f with the north poles facing each other are arranged side by side with a small gap in the x direction, so that In the gap, a magnetic field −H eff in the −x direction is generated that is much larger than the magnetic field of the ± x component (see FIG. 5A) generated by only one set of each of the magnets 61f and 62f and the magnets 61b and 62b. To do. As shown in FIG. 5B, this magnetic field -H eff is particularly maximum at the center of the gap. The magnet 6 (61f, 62f, 61b, 62b) in the simulation is a permanent magnet having an x-direction length L M of 20 nm, a y-direction length of 60 nm, and a saturation magnetic flux density of 1T. The magnet 61f-61b, the gap L g is 60nm magnet 62f-62b, opposing the magnet 61f, 62f, the magnet 61b, a gap d of 62b is 50nm. As for the magnets 63f, 64f, 63b, and 64b, as shown in FIG. 5C, a large + x-direction magnetic field + H eff is similarly generated on the z = 0 plane. Therefore, each of the magnets 61f, 62f, 61b, 62b and the magnets 63f, 64f, 63b, 64b has a magnetic field in the −x direction or + x direction that is remarkably large with respect to the magnetic force, arranged on the z = 0 plane. The magnetic domain wire moving element 1 is applied to the magnetic wire 11. By applying the magnetic field in the direction of the thin line in this way, the movement of the domain wall DW in the magnetic thin line 11 due to current supply becomes faster as will be described later, so that the writing speed of the domain wall moving element 1 becomes faster.

磁石6のそれぞれが発生させる磁界+Hz,−Hz(適宜、まとめて磁界Hzと表す)が大きい、すなわち磁石6の磁力が強いほど、x方向の磁界−Heff,+Heff(適宜、まとめて磁界Heffと表す)が大きい。また、磁石対61の磁石61f−61b(適宜、2極と称する)間の距離(=間隙Lg)は、は、0超であれば特に最小値は規定されないが、磁壁DWの厚み(x方向長)以上であることが好ましい。また、x方向の大きな磁界Heffは、間隙Lgが過剰に長いと得られず、間隙Lgが短いほどより大きくなるが、一方で、この磁界Heffが発生する領域の長さ(=間隙Lg)が短いので、磁性細線11で磁壁DWが移動している時に磁界Heffを印加される期間が短くなって、その分、効果が低くなる。したがって、間隙Lgは、磁石6の磁力と併せて、磁壁移動素子1の寸法に応じて設計されることが好ましい。磁石対62,63,64の2極間も同様である。磁界−Heff,+Heffが大きいほど、磁性細線11における磁壁DWの移動が高速になるが、一方で逆向きの磁界も大きくなるので、後記するように、磁壁静止位置p1−p2間の距離を長くする必要があり、書込みにおける磁壁DWの移動距離が増大して、その分書込時間が長くなる。さらに、磁界−Heff,+Heffが過剰に大きいと、磁壁DWの電流供給による移動を阻害する。 Magnetic fields generated by each of the magnets 6 + H z and −H z (appropriately collectively referred to as a magnetic field H z ), that is, as the magnetic force of the magnet 6 increases, the magnetic field in the x direction −H eff and + H eff ( ( Collectively expressed as magnetic field H eff ). Further, the distance (= gap L g ) between the magnets 61f-61b (referred to as two poles as appropriate) of the magnet pair 61 is not particularly limited as long as it is greater than 0, but the thickness of the domain wall DW (x Direction length) or more. Further, the large magnetic field H eff in the x direction cannot be obtained when the gap L g is excessively long, and becomes larger as the gap L g is shorter. On the other hand, the length of the region where the magnetic field H eff is generated (= Since the gap L g ) is short, the period during which the magnetic field H eff is applied when the domain wall DW is moving in the magnetic wire 11 is shortened, and the effect is reduced accordingly. Therefore, the gap L g is preferably designed according to the size of the domain wall motion element 1 together with the magnetic force of the magnet 6. The same applies to the two poles of the magnet pair 62, 63, 64. As the magnetic fields −H eff and + H eff are increased, the movement of the domain wall DW in the magnetic wire 11 becomes faster. On the other hand, the magnetic field in the opposite direction also increases, so that the distance between the domain wall stationary positions p1 and p2 as described later. , And the moving distance of the domain wall DW in writing increases, and the writing time increases accordingly. Furthermore, if the magnetic fields −H eff and + H eff are excessively large, the movement of the domain wall DW due to current supply is hindered.

細線方向の磁界−Heff,+Heffは、磁壁移動素子1の書込み時すなわち磁性細線11において磁壁DWを移動させている時に磁壁DWに印加され、少なくとも磁壁DWが移動を開始した時に印加されていることが好ましい。詳しくは、磁界−Heff,+Heffは、少なくとも、磁性細線11に磁壁DWを移動させるための電流の供給を開始した時から、この電流によって磁壁DWが電流と逆方向の移動を開始した時までの期間に印加されていることが好ましく、さらにその後、継続して印加されることがより好ましい。そのため、磁石61f,61b、磁石62f,62bはそれぞれ、x方向において、その2極間の距離Lg(図11(a)に示す領域F1)に、磁性細線11における磁壁DWの一方の静止位置を内包するように配置されることが好ましい。具体的には、磁石対61,62はその2極の間隙に、少なくとも目標とする静止位置である磁壁静止位置p1を内包することが好ましく、さらに静止位置の誤差を含めた範囲を内包することがより好ましい。本実施形態においては、磁界−Heffが最大となる2極の中間が磁壁静止位置p1となるように、磁石対61,62が配置されている。また、磁石61f,62fが磁壁DWの移動先である磁壁静止位置p2から適度に距離を空けるように配置されることが好ましい。磁石61f,62fが磁壁静止位置p2に近過ぎると、磁石61f,62fから外側に向けたすなわち+x方向の磁界が電流供給による移動終了後の磁壁DWに作用して、磁壁DWを磁壁静止位置p2から不要に移動させる場合がある。一方で、磁石61f,62fと磁壁静止位置p2の距離を過剰に空けると、磁壁静止位置p1−p2間の距離が長くなるので、その分書込時間が長くなる。磁石対61,62と同様に、磁石対63,64は、x方向において、その2極の中間が磁壁静止位置p2となるように配置され、また、磁石63f,64fが磁壁静止位置p1から適度に距離を空けるように配置されることが好ましい。 The magnetic field −H eff and + H eff in the direction of the fine line is applied to the domain wall DW when the domain wall motion element 1 is written, that is, when the domain wall DW is moved in the magnetic line 11, and at least when the domain wall DW starts to move. Preferably it is. Specifically, the magnetic fields −H eff and + H eff are at least when the magnetic wall DW starts moving in the direction opposite to the current from the time when the supply of the current for moving the magnetic wall DW to the magnetic wire 11 is started. It is preferable that it is applied during the period until, and more preferably, it is applied continuously thereafter. Therefore, each of the magnets 61f and 61b and the magnets 62f and 62b has one stationary position of the domain wall DW in the magnetic wire 11 at a distance L g (region F1 shown in FIG. 11A) between the two poles in the x direction. It is preferable to arrange so as to contain the Specifically, the magnet pairs 61 and 62 preferably include at least the domain wall stationary position p1 which is the target stationary position in the gap between the two poles, and further include a range including an error of the stationary position. Is more preferable. In the present embodiment, the magnet pairs 61 and 62 are arranged so that the middle of the two poles where the magnetic field −H eff is the maximum is the domain wall stationary position p1. In addition, it is preferable that the magnets 61f and 62f are arranged so as to be appropriately spaced from the domain wall stationary position p2 that is the destination of the domain wall DW. When the magnets 61f and 62f are too close to the domain wall stationary position p2, a magnetic field directed outward from the magnets 61f and 62f, that is, the magnetic field in the + x direction acts on the domain wall DW after the movement due to current supply, and the domain wall DW is moved to the domain wall stationary position p2. May be moved unnecessarily. On the other hand, if the distance between the magnets 61f and 62f and the domain wall stationary position p2 is excessively increased, the distance between the domain wall stationary positions p1 and p2 becomes longer, and accordingly the writing time becomes longer. Similar to the magnet pairs 61 and 62, the magnet pairs 63 and 64 are arranged so that the middle of the two poles is the domain wall stationary position p2 in the x direction, and the magnets 63f and 64f are moderately positioned from the domain wall stationary position p1. It is preferable that they are arranged so as to be spaced apart from each other.

(磁性細線における電流供給による磁壁移動)
磁性細線における電流供給による磁壁移動について、図6を参照して説明する。図6では、磁性細線11(磁化反転可能領域1SW(図2参照))の磁壁DWを含む部分を細線方向(x方向)に拡大して表す。強磁性体からなる磁性細線11の磁区D1,D2間では、磁化方向が下向きから上向きに急激に切り換わらず、隣り合う磁気モーメントm,mを同じ向きに揃えようとする交換相互作用が働くため、磁壁DWに配列した磁気モーメントmが磁区D1側から磁区D2側へ少しずつ傾斜している。通常、垂直磁気異方性材料からなる厚さや幅の小さい磁性細線11は、図6(a)、(b)に示すように、磁壁DWにおける磁気モーメントmが、磁区D1における下向きから、磁壁面(yz面)に垂直な細線方向(x方向)に向けて傾斜して磁区D2において上向きとなるように、xz面内で180°回転する。さらにその際、磁気モーメントmが磁区D2側(右)に向く回転(図6(a)参照)と磁区D1側(左)に向く逆回りの回転(図6(b)参照)とが存在する。
(Domain wall motion by current supply in fine magnetic wire)
The domain wall motion by current supply in the magnetic wire will be described with reference to FIG. In FIG. 6, a portion including the domain wall DW of the magnetic thin wire 11 (magnetization reversible region 1 SW (see FIG. 2)) is shown enlarged in the thin wire direction (x direction). Between the magnetic domains D1 and D2 of the magnetic thin wire 11 made of a ferromagnetic material, the magnetization direction does not change suddenly from the downward direction to the upward direction, and exchange interaction that tries to align the adjacent magnetic moments m and m in the same direction works. The magnetic moment m arranged on the domain wall DW is gradually inclined from the magnetic domain D1 side to the magnetic domain D2 side. Normally, the magnetic thin wire 11 made of a perpendicular magnetic anisotropic material and having a small thickness and width has a magnetic wall m from the downward direction in the magnetic domain D1, as shown in FIGS. 6 (a) and 6 (b). It is rotated 180 ° in the xz plane so as to incline toward the fine line direction (x direction) perpendicular to the (yz plane) and to face upward in the magnetic domain D2. Further, at that time, there is a rotation in which the magnetic moment m is directed to the magnetic domain D2 side (right) (see FIG. 6A) and a reverse rotation is directed to the magnetic domain D1 side (left) (see FIG. 6B). .

このような磁壁DWが生成している磁性細線11に、磁区D2の側から−x方向に電流を供給すると、磁区D1の側から、磁区D1の下向きの磁気モーメントmにより同じ下向きのスピンを持つ電子e-が弁別されて偏って注入される。電子e-は、白抜き矢印で示すように電流の向きとは逆の+x方向に、磁区D1から磁壁DWを経由して磁区D2へ移動する。すると、電子e-は、磁壁DWにおいて、磁気モーメントmによって同じ向きに回転させられ、また、その際に角運動量が変化する。すなわち、図6(a)においては、電子e-は、磁壁DWを磁区D1側から磁区D2側へ、xz面内で反時計回りに180°回転しながら移動する。そして、磁気モーメントmに、角運動量保存則により電子e-から角運動量を受け渡されて、電子e-の回転と逆向きに回転する力が働き(スピントルクトランスファー効果)、磁性細線11に供給された電流の電流密度が閾値以上である場合には、磁気モーメントmが時計回りに回転する。その結果、見かけ上、磁壁DWが電子e-と同じ+x方向に移動して、後側の磁区D1が伸長し、前側の磁区D2が短縮する。図6(b)に示す磁壁DWにおいては、電子e-がxz面内で時計回りに回転しながら+x方向に移動し、その際に、磁気モーメントmが反時計回りに回転するので、同様に、見かけ上、磁壁DWが+x方向に移動する。また、注入される電子e-の数が多いほど、磁気モーメントmの回転角が大きくなるので、磁壁DWの移動距離が大きくなる。したがって、供給される電流の電流密度が高いほど、磁壁DWの移動が高速になる。そして、磁性細線11への電流供給のみによって磁壁DWを移動させる場合、電流の電流密度と供給時間によって、磁壁DWの移動距離が決定される。 When a current is supplied in the −x direction from the magnetic domain D2 side to the magnetic wire 11 generated by such a domain wall DW, the same downward spin is caused by the downward magnetic moment m of the magnetic domain D1 from the magnetic domain D1 side. Electrons e are discriminated and injected unevenly. The electron e moves from the magnetic domain D1 to the magnetic domain D2 via the domain wall DW in the + x direction opposite to the direction of the current as indicated by the white arrow. Then, the electron e is rotated in the same direction by the magnetic moment m at the domain wall DW, and the angular momentum changes at that time. That is, in FIG. 6A, the electron e moves while rotating the domain wall DW from the magnetic domain D1 side to the magnetic domain D2 side by 180 ° counterclockwise in the xz plane. Then, the angular momentum is transferred from the electron e to the magnetic moment m according to the law of conservation of angular momentum, and the force rotating in the direction opposite to the rotation of the electron e works (spin torque transfer effect), and is supplied to the magnetic wire 11. When the current density of the generated current is greater than or equal to the threshold value, the magnetic moment m rotates clockwise. As a result, the domain wall DW apparently moves in the same + x direction as the electron e , the rear magnetic domain D1 expands, and the front magnetic domain D2 shortens. In the domain wall DW shown in FIG. 6B, the electron e moves in the + x direction while rotating clockwise in the xz plane, and at that time, the magnetic moment m rotates counterclockwise. Apparently, the domain wall DW moves in the + x direction. Further, as the number of injected electrons e increases, the rotation angle of the magnetic moment m increases, so that the moving distance of the domain wall DW increases. Therefore, the higher the current density of the supplied current, the faster the domain wall DW moves. When the domain wall DW is moved only by supplying current to the magnetic wire 11, the moving distance of the domain wall DW is determined by the current density of current and the supply time.

さらに、磁性細線11に、細線方向(+x方向、−x方向)の磁界を印加しながら、電流を−x方向に供給したときの磁壁DWの移動を、スピントランスファートルク項を有するLLG(Landau-Lifshitz-Gilbert)方程式を用いたシミュレーションにより観察する。磁性細線11はここでは、厚さ20nm、幅60nm、長さ(x方向長)1500nmとし、磁気特性を、飽和磁化:0.25T、一軸異方性Hk:7.06×105A/m、交換スティフネス:1.2×10-11J/m、ギルバート減衰定数:0.02に設定した。シミュレーションのセルサイズは4×4×4nm3とした。また、磁界の影響をわかり易くするために、16すなわち8組の磁石6を、図7に示すように、x方向に等間隔に並べて配置し、1組ずつ交互に極性を入れ替えた。なお、図7では、図中左(磁壁DWの進行方向後方)から1、2組目の磁石6は省略する。磁石6のそれぞれは、図4および図5に示したシミュレーションと同様、x方向長LMが20nm、y方向長が60nmの永久磁石である。そして、x方向に並んだ磁石6−6の間隙Lgが60nm、対向する磁石6,6の間隙dが50nmである。磁性細線11には1つの磁壁DWがx方向略中心に生成し、サンプルAとして、図7(a)に示すように、磁壁DWが初期状態で、S極同士、N極同士が対向した2組の磁石6が後ろから前へ順に並んだ間隙の中心に配置されるように設定した。また、サンプルBとして、図7(b)に示すように、磁壁DWが、N極同士、S極同士が対向した2組の磁石6が後ろから前へ順に並んだ間隙におけるS極同士が対向した組の磁石6の後端に配置されるように設定した。サンプルAについては、磁石6の飽和磁束密度を、0.5T,1T,2Tの3通りに、サンプルBについては、磁石6の飽和磁束密度を1Tに、それぞれ設定した。また、比較例として、磁性細線11のみで磁石のない(飽和磁束密度0Tの)サンプル(ref.)を設定した。 Furthermore, the movement of the domain wall DW when a current is supplied in the −x direction while applying a magnetic field in the thin wire direction (+ x direction, −x direction) to the magnetic thin wire 11 is represented by an LLG (Landau−) having a spin transfer torque term. Observe by simulation using Lifshitz-Gilbert equation. Here, the magnetic thin wire 11 has a thickness of 20 nm, a width of 60 nm, a length (length in the x direction) of 1500 nm, and magnetic properties of saturation magnetization: 0.25 T, uniaxial anisotropy H k : 7.06 × 10 5 A / m, exchange stiffness: 1.2 × 10 −11 J / m, Gilbert damping constant: 0.02. The simulation cell size was 4 × 4 × 4 nm 3 . Further, in order to make the influence of the magnetic field easy to understand, 16 or 8 sets of magnets 6 are arranged at equal intervals in the x direction as shown in FIG. 7, and the polarities are alternately switched one by one. In FIG. 7, the first and second sets of magnets 6 are omitted from the left (rear in the direction of travel of the domain wall DW). Each of the magnets 6 is a permanent magnet having an x-direction length L M of 20 nm and a y-direction length of 60 nm, as in the simulations shown in FIGS. 4 and 5. The gap L g between the magnets 6-6 aligned in the x direction is 60 nm, and the gap d between the opposing magnets 6 and 6 is 50 nm. In the magnetic thin wire 11, one domain wall DW is generated at substantially the center in the x direction. As shown in FIG. 7A, as the sample A, the domain wall DW is in the initial state, and the S poles and the N poles are opposed to each other. The set of magnets 6 was set so as to be arranged at the center of the gap arranged in order from the back to the front. Further, as sample B, as shown in FIG. 7B, the domain walls DW are opposed to each other in the gap where two sets of magnets 6 in which the N poles and the S poles face each other are arranged in order from the back to the front. It was set to be arranged at the rear end of the magnet 6 of the set. For sample A, the saturation magnetic flux density of magnet 6 was set to three types of 0.5T, 1T, and 2T, and for sample B, the saturation magnetic flux density of magnet 6 was set to 1T. Further, as a comparative example, a sample (ref.) Having only a magnetic thin wire 11 and no magnet (with a saturation magnetic flux density of 0 T) was set.

各サンプルの磁性細線11に、その一端から−x方向に9.1×107A/cm2の電流を、パルス幅0.8nsのパルス電流として1パルス供給して停止し、すなわち0.8ns供給した。シミュレーションにより、磁性細線11全体の磁化の平均値を0.01ns毎に算出し、電流の供給開始時を0とした時間の経過に伴う磁性細線11の磁化の変化を表すグラフを図8(サンプルA)、図9(サンプルB)に示す。また、磁壁DWの+x方向の移動に伴い、下向きの磁化方向の磁区D1がx方向に拡張することから、磁性細線11の平均磁化から磁壁DWの移動距離を算出して、図8、図9にそれぞれ併記する。 The magnetic thin wire 11 of each sample is stopped by supplying one pulse of 9.1 × 10 7 A / cm 2 in the −x direction from one end as a pulse current having a pulse width of 0.8 ns, that is, 0.8 ns. Supplied. An average value of magnetization of the entire magnetic wire 11 is calculated every 0.01 ns by simulation, and a graph showing a change in magnetization of the magnetic wire 11 with the lapse of time when the current supply start time is 0 is shown in FIG. A) and shown in FIG. 9 (sample B). Further, as the domain wall DW moves in the + x direction, the magnetic domain D1 in the downward magnetization direction expands in the x direction. Therefore, the moving distance of the domain wall DW is calculated from the average magnetization of the magnetic thin wires 11, and FIGS. It is written together in each.

図8に示すように、磁石6を設けない(飽和磁束密度0Tの)サンプルref.は、電流を供給されている0.8nsの間、磁壁DWが、+x方向に一定の速度(電流供給時移動速度)で移動した。これに対して、飽和磁束密度0.5T,1Tの磁石6により、電流の供給開始時に磁壁DWに−x方向の磁界が印加されるサンプルAは、電流の供給を開始されると、磁壁DWが、初めに、電流供給時移動速度よりも高速で移動し、その後、電流供給時移動速度よりも低速での移動に切り替わり、さらに再び高速での移動、と電流を供給されている間、移動速度を交互に切り替えながら+x方向に移動した。詳しくは、磁壁DWが、−x方向の磁界が印加されている期間は高速で、+x方向の特に大きな磁界が印加されている期間は低速で、それぞれ移動した。高速の移動速度が電流供給時移動速度に対して大幅に高速であるため、0.8ns経過時点の移動距離は、サンプルref.よりも長かった。また、これらのサンプルAは、電流の供給を停止した後も磁壁DWが移動し、電流の供給停止時の位置近傍で前進と後退を交互に繰り返しながらその移動距離(振幅)が漸減し、最終的には、高速で移動した領域における中心辺りに静止した。これは、磁壁DWが、磁気モーメントm(図6参照)に振動が残存した状態で、その近傍の磁石6から磁界を印加されたことで、磁気モーメントmが回転したことによると推測される。一方、飽和磁束密度2Tの磁石6を設けたサンプルAは、磁壁DWが、開始位置からその近傍で前進と後退を交互に繰り返しながらその移動距離(振幅)が漸減し、最終的に開始位置から移動しなかった。   As shown in FIG. 8, the sample ref. The magnetic domain wall DW moved at a constant speed (moving speed at the time of current supply) in the + x direction during 0.8 ns while the current was supplied. On the other hand, the sample A in which the magnetic field in the −x direction is applied to the domain wall DW at the start of current supply by the magnet 6 having the saturation magnetic flux densities of 0.5T and 1T, when the current supply is started, the domain wall DW However, it first moves at a speed higher than the moving speed at the time of current supply, and then switches to a movement at a lower speed than the moving speed at the time of current supply, and then moves again at a higher speed and moves while being supplied with current. Moving in the + x direction while switching the speed alternately. Specifically, the domain wall DW moved at a high speed during a period in which a magnetic field in the −x direction was applied, and at a low speed during a period in which a particularly large magnetic field in the + x direction was applied. Since the high-speed movement speed is significantly higher than the movement speed at the time of current supply, the movement distance at the time when 0.8 ns has elapsed is the sample ref. It was longer than. Further, in these samples A, the domain wall DW moves even after the current supply is stopped, and the moving distance (amplitude) gradually decreases while repeating forward and backward alternately in the vicinity of the position when the current supply is stopped. Specifically, it stopped around the center of the area moved at high speed. It is presumed that this is because the magnetic wall m is rotated by applying a magnetic field from the magnet 6 in the vicinity of the domain wall DW with vibration remaining in the magnetic moment m (see FIG. 6). On the other hand, in the sample A provided with the magnet 6 having the saturation magnetic flux density 2T, the moving distance (amplitude) of the domain wall DW gradually decreases from the start position while repeating forward and backward alternately in the vicinity thereof, and finally from the start position. Did not move.

図8に示すグラフから、磁壁DWの移動速度を近似的に求め、電流供給時移動速度を1とした、磁石の飽和磁束密度依存性のグラフを図10に示す。磁石の飽和磁束密度0.5T,1TのサンプルAについては、磁性細線平均磁化が約−0.03〜−0.04の範囲から高速の移動速度vHを、約−0.047近傍から低速の移動速度vLを得た。また、磁性細線平均磁化が−0.017(0ns)〜−0.057の範囲を移動するのに要した時間から、平均移動速度vAVEを算出した。磁石の飽和磁束密度2TのサンプルAについては、時間0〜0.02nsの範囲から高速の移動速度vHを得た。図10に示すように、磁石の飽和磁束密度が高い、すなわち印加磁界が大きいほど、磁壁DWの高速での移動速度がより高速になった。一方、印加磁界が大きいほど、磁壁DWの低速での移動速度がわずかに低速になる傾向が観察されたが、高速での移動速度の差に対して極めて小さかった。したがって、電流を供給した0.8nsの期間における磁壁DWの移動距離は、磁石の飽和磁束密度1T以下において、磁界が大きいほど長く、効果が高かった。 FIG. 10 shows a graph of the saturation magnetic flux density dependency of the magnet, in which the moving speed of the domain wall DW is approximately obtained from the graph shown in FIG. Saturation magnetic flux density 0.5T magnet, for a sample A of 1T, fast moving velocity v H magnetic wire average magnetization in the range of about -0.03~-0.04, low speed of about -0.047 vicinity The moving speed v L of was obtained. Further, the average moving speed v AVE was calculated from the time required for the magnetic fine wire average magnetization to move in the range of −0.017 (0 ns) to −0.057. For Sample A saturation magnetic flux density 2T magnet, to obtain a moving velocity v H of the high speed from a range of time 0~0.02Ns. As shown in FIG. 10, the higher the saturation magnetic flux density of the magnet, that is, the larger the applied magnetic field, the higher the moving speed of the domain wall DW at a higher speed. On the other hand, as the applied magnetic field is larger, the tendency of the domain wall DW to move at a low speed is observed to be slightly low, but the difference in the movement speed at a high speed is extremely small. Therefore, the moving distance of the domain wall DW in the period of 0.8 ns in which the current was supplied was longer as the magnetic field was larger at a saturation magnetic flux density of 1 T or less, and the effect was high.

一方、図9に示すように、電流の供給開始時に磁壁DWに+x方向の磁界が印加されるサンプルBは、磁壁DWが、電流の供給開始直後に−x方向へ後退し、その後、+x方向に高速で移動し、以降は、サンプルAと同様に、電流を供給されている間、移動速度を交互に切り替えながら+x方向に移動した。詳しくは、磁壁DWが、+x方向の磁界が印加されている期間は高速で、−x方向の特に大きな磁界が印加されている期間は低速で、それぞれ移動した。   On the other hand, as shown in FIG. 9, in the sample B in which a magnetic field in the + x direction is applied to the domain wall DW at the start of current supply, the domain wall DW recedes in the −x direction immediately after the start of current supply, and then the + x direction. Thereafter, as in the case of Sample A, while the current was supplied, the sample moved in the + x direction while alternately switching the moving speed. Specifically, the domain wall DW moved at a high speed during a period in which a magnetic field in the + x direction was applied, and at a low speed during a period in which a particularly large magnetic field in the -x direction was applied.

図8および図9から、磁性細線11に生成している磁壁DWは、磁性細線11の磁化容易軸(z方向)に直交する、細線方向の磁界を印加されることにより、電流の供給による移動速度が高速になって、移動距離を長くすることができる。さらに、電流の供給開始時に磁壁DWに印加されている方向と同じ方向の磁界によって、移動速度が高速になり、この磁界は、細線方向であれば、+x方向、−x方向のいずれでも効果がある。ただし、図9に示すように、電流の供給開始時に、磁壁DWを移動させようとする方向、すなわち電子e-の移動方向と同じ方向の磁界を印加されると、供給開始直後に磁壁DWが後退してから前進を開始する。したがって、磁壁DWを移動させる方向と逆向きの磁界を移動開始時の磁壁DWに印加するように、磁石6を配置することが好ましい。 From FIG. 8 and FIG. 9, the domain wall DW generated in the magnetic thin wire 11 is moved by supplying a current by applying a magnetic field in the thin wire direction perpendicular to the easy magnetization axis (z direction) of the magnetic thin wire 11. The speed can be increased and the moving distance can be increased. Furthermore, the moving speed is increased by a magnetic field in the same direction as the direction applied to the domain wall DW at the start of current supply, and this magnetic field is effective in both the + x direction and the -x direction as long as it is a thin line direction. is there. However, as shown in FIG. 9, when a magnetic field in the same direction as the direction of movement of the domain wall DW, that is, the movement direction of the electron e is applied at the start of current supply, the domain wall DW Start moving forward after moving backwards. Therefore, it is preferable to arrange the magnet 6 so that a magnetic field opposite to the direction in which the domain wall DW is moved is applied to the domain wall DW at the start of movement.

(磁石付き磁壁移動素子の書込方法)
本実施形態に係る磁石付き磁壁移動素子の書込方法について、図11、および適宜図2を参照して説明する。なお、図11においては、磁壁移動素子1の障壁層3および副磁化固定層23を省略する。まず、図2(a)に示す、磁壁DWが磁性細線11の磁壁静止位置p1に静止している状態から、図2(b)に示すように磁壁静止位置p2に静止した状態に遷移させる。磁石61f,61b,62f,62bのコイルに所定の大きさの電流を供給して磁界を発生させて、図11(a)に示すように、−x方向の磁界−Heffを磁性細線11の磁壁静止位置p1近傍領域に印加する。なお、このとき、磁石63f,63b,64f,64bは、コイルに電流を供給されておらず、磁界を発生させていないことから破線で表す。そして、第1電極51を「−」、第2電極52を「+」として、磁化固定層21,22を経由して磁性細線11に電流Iwを−x方向に供給する。これにより、下向きのスピンを持つ電子e-が磁性細線11の磁区D1に注入されて+x方向に移動する。図6を参照して説明したように、磁性細線11における電子e-の移動に伴い磁壁DWが+x方向に移動するが、磁界−Heffが印加されている領域F1を移動する期間は、電流Iwの供給のみによる磁壁DWの移動速度(以下、電流供給時移動速度と称する)よりも高速で移動する。
(Writing method of domain wall motion element with magnet)
A writing method of the domain wall motion element with magnet according to the present embodiment will be described with reference to FIG. 11 and FIG. 2 as appropriate. In FIG. 11, the barrier layer 3 and the submagnetization fixed layer 23 of the domain wall motion element 1 are omitted. First, the state in which the domain wall DW shown in FIG. 2A is stationary at the domain wall stationary position p1 of the magnetic wire 11 is changed to the state stationary at the domain wall stationary position p2 as shown in FIG. A current of a predetermined magnitude is supplied to the coils of the magnets 61f, 61b, 62f, and 62b to generate a magnetic field, and a magnetic field −H eff in the −x direction is changed to that of the magnetic wire 11 as shown in FIG. Applied to the region near the domain wall stationary position p1. At this time, the magnets 63f, 63b, 64f, and 64b are represented by broken lines because no current is supplied to the coils and no magnetic field is generated. Then, the first electrode 51 "-", the second electrode 52 as "+", and supplies a current I w in the -x direction to the magnetic wire 11 by way of the magnetization fixed layer 21. As a result, electrons e having a downward spin are injected into the magnetic domain D1 of the magnetic wire 11 and move in the + x direction. As described with reference to FIG. 6, the domain wall DW moves in the + x direction with the movement of the electron e in the magnetic wire 11, but the period of moving the region F <b> 1 to which the magnetic field −H eff is applied is the current. movement speed of the domain wall DW only by the supply of I w (hereinafter, referred to as time current supply moving speed) to move faster than.

磁壁DWは、領域F1を通過して、さらに磁石61f,62f間を通過すると、磁石61f,62fにより+x方向の磁界+Heff´を印加されることにより、電流供給時移動速度よりも低速に移動速度が変化する。磁壁DWは、この磁界+Heff´を印加される領域F2を通過すると、電流供給時移動速度で、または電流供給時移動速度よりも高速で移動する。このとき、磁壁DWは、磁界が+x方向、−x方向共に印加されていないが、領域F1を移動した時に印加された磁界−Heffが十分に大きい場合、磁気モーメントの残存している振動が電子e-のスピントルクによる回転を回復させて、領域F1を移動していた時の状態にある程度近付くと推測される。その後は、磁壁DWの移動と共に時間が経過して磁気モーメントの回転の振動が減衰して、次第に減速して電流供給時移動速度に近付き、最終的には電流供給時移動速度で移動する。そして、磁壁DWが磁壁静止位置p2に到達する時点に合わせて電流Iwの供給を停止すると、磁壁DWが、移動を停止して磁壁静止位置p2で静止する。さらに、磁石6のコイルへの電流の供給を停止して、磁界の印加を停止する。 When the domain wall DW passes through the region F1 and further passes between the magnets 61f and 62f, a magnetic field + H eff ′ in the + x direction is applied by the magnets 61f and 62f, so that the domain wall DW moves at a speed lower than the moving speed at the time of current supply. The speed changes. When the domain wall DW passes through the region F2 to which the magnetic field + H eff ′ is applied, the domain wall DW moves at a current supply moving speed or at a higher speed than the current supply moving speed. At this time, no magnetic field is applied to the domain wall DW in both the + x direction and the −x direction. However, if the magnetic field −H eff applied when moving in the region F1 is sufficiently large, the vibration with the remaining magnetic moment is generated. It is presumed that the rotation due to the spin torque of the electron e is restored to approach the state when moving in the region F1 to some extent. After that, with the movement of the domain wall DW, time passes and the vibration of the rotation of the magnetic moment is attenuated, gradually decelerates and approaches the moving speed at the time of current supply, and finally moves at the moving speed at the time of current supply. When the domain wall DW may stop the supply of the current I w in accordance with the time it reaches the domain wall resting position p2, the domain wall DW is, to stop the movement stops at the domain wall resting position p2. Further, the supply of current to the coil of the magnet 6 is stopped, and the application of the magnetic field is stopped.

本実施形態に係る磁石付き磁壁移動素子10においては、磁壁DWの移動が一時的に減速するが、その原因である+x方向の磁界+Heff´が磁界−Heffよりも小さいため、磁壁静止位置p1−p2間全体の移動は電流供給時移動速度での移動よりも短時間で完了する。なお、電流Iwの供給を停止した時点で磁壁DWが領域F2から退出していないと、電流Iwの供給を停止した瞬間に、磁気モーメントが、電子e-のスピントルクを受けなくなったことで、残留する振動と磁界+Heff´によって逆向きに回転して−x方向に後退する等、振動が消失するまで静止しない場合がある。その結果、磁壁DWの静止位置を電流Iwの供給時間で正確に制御することが困難になる。 In the domain wall motion element with magnet 10 according to the present embodiment, the movement of the domain wall DW temporarily decelerates, but the magnetic field in the + x direction + H eff ′, which is the cause, is smaller than the magnetic field −H eff , so the domain wall stationary position The entire movement between p1 and p2 is completed in a shorter time than the movement at the movement speed at the time of current supply. Incidentally, when the domain wall DW at the time of stopping the supply of the current I w has not left the area F2, at the moment of stopping the supply of the current I w, magnetic moment, electrons e - that it is no longer subjected to the spin torque In some cases, the vibration does not stop until the vibration disappears, such as rotating in the opposite direction by the remaining vibration and the magnetic field + H eff ′ and moving backward in the −x direction. As a result, it becomes difficult to accurately control the rest position of the domain wall DW with the supply time of the current I w.

図2(b)に示す、磁壁DWが磁性細線11の磁壁静止位置p2に静止している状態から、図2(a)に示すように磁壁静止位置p1に静止した状態に遷移させるためには、磁石63f,63b,64f,64bのコイルに電流を供給して、図11(b)に示すように、+x方向の磁界+Heffを磁性細線11の磁壁静止位置p2近傍領域に印加する。このとき、磁石61f,61b,62f,62bは、磁界を発生させていないことから破線で表す。そして、第1電極51を「+」、第2電極52を「−」として、磁化固定層21,22を経由して磁性細線11に電流Iwを+x方向に供給する。これにより、上向きのスピンを持つ電子e-が磁性細線11の磁区D2に注入されて−x方向に移動する。すると、磁壁DWが図11(a)に示す+x方向の移動とは、移動方向が−x方向に反転する以外は同様の挙動で移動する。すなわち、磁壁DWに磁界+Heffが印加されている領域F3を移動する期間は、電流供給時移動速度よりも高速で移動し、−x方向の磁界−Heff´が印加されている領域F4を移動する期間は、電流供給時移動速度よりも低速で移動し、さらに領域F4を通過した後は再び高速で移動して、その後次第に減速して電流供給時移動速度に近付く。そして、磁壁DWが磁壁静止位置p1に到達する時点に合わせて電流Iwの供給を停止すると、磁壁DWが磁壁静止位置p1で静止し、さらに磁石6のコイルへの電流の供給を停止する。 In order to change from the state where the domain wall DW shown in FIG. 2B is stationary at the domain wall stationary position p2 of the magnetic wire 11 to the state where it is stationary at the domain wall stationary position p1 as shown in FIG. Then, a current is supplied to the coils of the magnets 63f, 63b, 64f, and 64b, and a magnetic field + Heff in the + x direction is applied to a region near the domain wall stationary position p2 of the magnetic wire 11 as shown in FIG. At this time, the magnets 61f, 61b, 62f, and 62b are represented by broken lines because they do not generate a magnetic field. Then, the first electrode 51 is set to “+” and the second electrode 52 is set to “−”, and the current I w is supplied to the magnetic wire 11 through the magnetization fixed layers 21 and 22 in the + x direction. Thereby, an electron e having an upward spin is injected into the magnetic domain D2 of the magnetic wire 11 and moves in the −x direction. Then, the domain wall DW moves in the same manner as the movement in the + x direction shown in FIG. 11A except that the movement direction is reversed in the −x direction. That is, during the period in which the region F3 where the magnetic field + H eff is applied to the domain wall DW is moved, the region F4 moves at a higher speed than the moving speed at the time of current supply, and the region F4 where the magnetic field −H eff ′ in the −x direction is applied During the movement period, the movement speed is lower than the movement speed at the time of current supply, and after passing through the region F4, the movement speed is again high, and then gradually decelerates to approach the movement speed at the time of current supply. When the domain wall DW may stop the supply of the current I w in accordance with the time it reaches the domain walls rest position p1, the domain wall DW is frozen domain wall rest position p1, further stops the supply of current to the coil of the magnet 6.

このように、磁性細線11に供給する電流Iwの向きに合わせて、磁石61f,61b,62f,62bまたは磁石63f,63b,64f,64bに磁界を発生させることにより、磁壁DWを高速で移動させて書込時間を短縮することができる。なお、磁性細線11は、電流Iwを供給されている時には常に磁界−Heff,+Heffの所定の一方を印加されているようにする。すなわち、所定の4つの磁石6は、電流Iwの供給開始と同時にまたはその前にコイルへの電流の供給を開始され、電流Iwの供給終了と同時にまたはその後にコイルへの電流の供給を停止される。また、書込みにおける磁壁DWの移動距離(磁壁静止位置p1−p2間距離)が数十nm〜1μm程度であれば、電流密度等にもよるが、電流Iwの供給時間は0.1ns〜100ns程度であり、このような極めて短時間の直流電流を供給するために、パルス電流が好ましい。 Thus, in accordance with the direction of current supplied I w to the magnetic wire 11, moving magnet 61f, 61b, 62f, 62b or a magnet 63f, 63 b, 64f, by generating a magnetic field 64b, the domain wall DW fast Thus, the writing time can be shortened. The magnetic thin wire 11 is always applied with a predetermined one of the magnetic fields -H eff and + H eff when the current I w is supplied. That is, given four magnets 6 is started the supply of current to simultaneously or coils before the supply start and the current I w, the supply of current to the simultaneous or subsequent to the coil supply end and the current I w Stopped. Further, if the moving distance of the domain wall DW in writing (distance between the domain wall stationary positions p1 and p2) is about several tens of nm to 1 μm, the supply time of the current I w is 0.1 ns to 100 ns, although it depends on the current density. In order to supply such an extremely short time direct current, a pulse current is preferable.

(磁気メモリ)
磁石付き磁壁移動素子10は、図12(a)に示す磁気メモリ90に配列されたメモリセル9の磁気抵抗効果素子として搭載される。なお、図12(a)および図12(b)においては、簡潔に説明するために、2列×2行の4つのメモリセル9(9A)を示し
、また、磁壁移動素子1を、抵抗器と可変抵抗器の図記号を組み合わせて表す。また、磁石対61,62,63,64をそれぞれ1つの電磁石の図記号で表す。メモリセル9は、磁石付き磁壁移動素子10と共に、磁壁移動素子1の第1電極51に接続するトランジスタ71と、第2電極52に接続するトランジスタ72と、を備える。磁気メモリ90においては、トランジスタ71を経由して第1電極51に接続するビット線BLTと、トランジスタ72を経由して第2電極52に接続するビット線BLBと、を行方向に延設し、同じメモリセル9のトランジスタ71,72の各ゲートに共通して入力するワード線WLを列方向に延設する。また、第3電極53は、GND(0V)に接続される。さらに磁気メモリ90は、磁石対61,62に共通して接続する配線ML1P,ML1N、磁石対63,64に共通して接続する配線ML2P,ML2Nを備える。なお、磁気メモリ90におけるメモリセル9の配列方向(行方向、列方向)と磁石付き磁壁移動素子10のx,y方向とは一致していなくてよく、例えば、x方向(磁性細線11の細線方向)がメモリセル9の配列方向に対して45°傾斜していてもよい。また、磁石付き磁壁移動素子10は、磁壁移動素子1(磁性細線11)に電流が供給されていなければ磁壁DWが移動せず書込みがされないので、非選択のメモリセル9で磁石対61,62や磁石対63,64がON状態であっても誤書込み等がない。したがって、磁気メモリ90は、配線ML1P,ML1N,ML2P,ML2Nを列方向(または行方向)に延設して、書込みを選択したメモリセル9と同列の磁石対61,62または磁石対63,64を同時にON状態とする。あるいは磁気メモリ90は、選択したメモリセル9に限定して所定の4つの磁石6をON状態とするように、配線ML1P,ML1N,ML2P,ML2Nとの接続/切断を切り換えるためのトランジスタまたはダイオードをメモリセル9に備えてもよい(図示せず)。
(Magnetic memory)
The magnetic domain wall motion element 10 with a magnet is mounted as a magnetoresistive effect element of the memory cells 9 arranged in the magnetic memory 90 shown in FIG. In FIG. 12A and FIG. 12B, for the sake of brevity, four memory cells 9 (9A) of 2 columns × 2 rows are shown, and the domain wall motion element 1 is connected to a resistor. And the variable resistor graphic symbol. The magnet pairs 61, 62, 63, and 64 are each represented by a graphic symbol of one electromagnet. The memory cell 9 includes a transistor 71 connected to the first electrode 51 of the domain wall motion element 1 and a transistor 72 connected to the second electrode 52 together with the domain wall motion element 10 with magnet. In the magnetic memory 90, a bit line BLT connected to the first electrode 51 via the transistor 71 and a bit line BLB connected to the second electrode 52 via the transistor 72 are extended in the row direction, A word line WL that is commonly input to the gates of the transistors 71 and 72 of the same memory cell 9 is extended in the column direction. The third electrode 53 is connected to GND (0 V). Furthermore, the magnetic memory 90 includes wirings ML1P and ML1N that are commonly connected to the magnet pairs 61 and 62, and wirings ML2P and ML2N that are commonly connected to the magnet pairs 63 and 64. Note that the arrangement direction (row direction, column direction) of the memory cells 9 in the magnetic memory 90 and the x and y directions of the magnetic domain wall motion element 10 may not coincide with each other. For example, the x direction (the fine line of the magnetic thin line 11) Direction) may be inclined by 45 ° with respect to the arrangement direction of the memory cells 9. Further, in the domain wall motion element 10 with a magnet, if the current is not supplied to the domain wall motion element 1 (magnetic thin wire 11), the domain wall DW does not move and writing is not performed. Even if the magnet pairs 63 and 64 are in the ON state, there is no erroneous writing or the like. Therefore, in the magnetic memory 90, the wirings ML1P, ML1N, ML2P, and ML2N are extended in the column direction (or row direction), and the magnet pair 61, 62 or the magnet pairs 63, 64 in the same column as the memory cell 9 selected for writing. At the same time. Alternatively, the magnetic memory 90 includes transistors or diodes for switching connection / disconnection to / from the wirings ML1P, ML1N, ML2P, and ML2N so that the predetermined four magnets 6 are turned on only in the selected memory cell 9. The memory cell 9 may be provided (not shown).

トランジスタ71,72は、例えばMOSFET(金属酸化膜半導体電界効果トランジスタ)であり、Si基板の表層に形成される。したがって、Si基板を土台として、メモリセル9を配列することができる。ビット線BLT,BLB、ワード線WL、および配線ML1P,ML1N,ML2P,ML2Nは、電極51,52,53と同様に金属電極材料で形成される。また、これらの配線間や隣り合うメモリセル9,9のそれぞれの磁性細線11同士等の間隙には、SiO2やAl23等の、半導体素子に設けられる公知の無機絶縁材料が充填される。 The transistors 71 and 72 are, for example, MOSFETs (metal oxide semiconductor field effect transistors) and are formed on the surface layer of the Si substrate. Therefore, the memory cells 9 can be arranged on the basis of the Si substrate. The bit lines BLT and BLB, the word line WL, and the wirings ML1P, ML1N, ML2P, and ML2N are formed of a metal electrode material in the same manner as the electrodes 51, 52, and 53. Also, a known inorganic insulating material provided in a semiconductor element such as SiO 2 or Al 2 O 3 is filled in the gaps between these wires or between the magnetic thin wires 11 of the adjacent memory cells 9 and 9. The

磁気メモリ90の書込みは、ビット線BLT,BLBで直流パルス電流を供給し、前記パルス電流の向きに応じて、配線ML1P,ML1Nまたは配線ML2P,ML2Nで、磁石対61,62または磁石対63,64のコイルに所定の大きさの磁界Hzを発生させる電流を供給し、さらにワード線WLでゲート電圧を印加する。なお、ビット線BLT,BLBでは連続電流を供給し、ワード線WLでゲート電圧をパルス入力してもよい。また、磁気メモリ90の読出しは、書込みと同様にワード線WLでゲート電圧を印加する一方、負極をGNDに接続した定電流源の正極にビット線BLT,BLBを共に接続することで、磁壁移動素子1の電極51,52から第3電極53へ定電流を供給する。 For writing to the magnetic memory 90, a direct current pulse current is supplied through the bit lines BLT and BLB, and the magnet pairs 61 and 62 or the magnet pair 63 are connected via the wiring ML1P and ML1N or the wiring ML2P and ML2N according to the direction of the pulse current. A current for generating a magnetic field H z having a predetermined magnitude is supplied to 64 coils, and a gate voltage is applied to the word line WL. Note that a continuous current may be supplied to the bit lines BLT and BLB, and a gate voltage may be pulsed to the word line WL. In addition, the magnetic memory 90 is read by applying a gate voltage on the word line WL in the same manner as writing, while connecting the bit lines BLT and BLB together to the positive electrode of a constant current source with the negative electrode connected to GND, thereby moving the domain wall. A constant current is supplied from the electrodes 51 and 52 of the element 1 to the third electrode 53.

あるいは、磁石付き磁壁移動素子10は、図12(b)に示す磁気メモリ90Aのメモリセル9Aに搭載されてもよい。メモリセル9Aは、磁石付き磁壁移動素子10と共に、磁壁移動素子1の第1電極51に接続するトランジスタ71と、第3電極53に接続するダイオード73と、を備える。磁気メモリ90Aにおいては、第2電極52が直接にビット線BLBに接続し、ダイオード73を経由して第3電極53に接続する読出ビット線RBLを列方向に延設する。このような構造の磁気メモリ90Aは、磁気メモリ90と同様に書込みをすることができる。一方、磁気メモリ90Aの読出しは、ゲート電圧を印加せず、ビット線BLBと読出ビット線RBLに定電流源(図示省略)を接続して、磁壁移動素子1の第2電極52から第3電極53へ定電流を供給する。   Or the domain wall motion element 10 with a magnet may be mounted in the memory cell 9A of the magnetic memory 90A shown in FIG.12 (b). The memory cell 9 </ b> A includes a transistor 71 connected to the first electrode 51 of the domain wall motion element 1 and a diode 73 connected to the third electrode 53 together with the domain wall motion element 10 with magnet. In the magnetic memory 90A, the second electrode 52 is directly connected to the bit line BLB, and the read bit line RBL connected to the third electrode 53 via the diode 73 is extended in the column direction. The magnetic memory 90A having such a structure can be written in the same manner as the magnetic memory 90. On the other hand, in reading data from the magnetic memory 90A, a gate voltage is not applied, a constant current source (not shown) is connected to the bit line BLB and the read bit line RBL, and the second electrode 52 to the third electrode of the domain wall motion element 1 are connected. A constant current is supplied to 53.

(変形例)
磁石付き磁壁移動素子10の磁壁移動素子1は、磁化固定層21,22の下面や副磁化固定層23の上面等の、最下面および最上面に、必要に応じて、非磁性金属からなる厚さ1〜10nm程度の下地膜や保護膜を備えてもよい。また、磁壁移動素子1は、磁性細線11と磁化固定層21,22との界面に、Ru,Ta等の非磁性金属からなる厚さ1〜10nm程度の磁気結合膜を設けてもよい。また、磁壁移動素子1は、障壁層3および副磁化固定層23が、磁化固定層21,22と同じく磁性細線11の下側に積層されていてもよく、また、第1磁化固定層21と第2磁化固定層22が磁性細線11の上面と下面に接続されていてもよい。また、磁壁移動素子1は、磁性細線11が磁壁静止位置p1,p2からそれぞれの端まで十分な長さを有する等、書込みにおいて磁壁DWが過剰に移動して消失する虞がなければ、磁化固定層21,22を設けなくてよく、この場合、磁性細線11がその両端近傍に第1電極51と第2電極52を直接に接続される。また、磁性細線11の細線の形状は、直線に限られず、磁壁DWの移動を妨げないような緩やかな曲線を含む形状であってもよい。この場合には、磁壁静止位置p1,p2において細線方向の磁界−Heff,+Heffが印加されるように、磁石61f,61b,62f,62b、および磁石63f,63b,64f,64bをそれぞれ配置する(以上、図示せず)。
(Modification)
The domain wall motion element 1 of the magnetic domain wall motion element 10 with magnet has a thickness made of a nonmagnetic metal on the bottom and top surfaces, such as the bottom surfaces of the magnetization fixed layers 21 and 22 and the top surface of the submagnetization fixed layer 23, as necessary. A base film or a protective film with a thickness of about 1 to 10 nm may be provided. The domain wall motion element 1 may be provided with a magnetic coupling film having a thickness of about 1 to 10 nm made of a nonmagnetic metal such as Ru or Ta at the interface between the magnetic wire 11 and the magnetization fixed layers 21 and 22. Further, in the domain wall motion element 1, the barrier layer 3 and the submagnetization fixed layer 23 may be laminated below the magnetic thin wire 11 like the magnetization pinned layers 21 and 22. The second magnetization fixed layer 22 may be connected to the upper and lower surfaces of the magnetic wire 11. Further, the domain wall moving element 1 is fixed in magnetization if there is no possibility that the domain wall DW moves and disappears excessively in writing, such as the magnetic wire 11 has a sufficient length from the domain wall stationary positions p1 and p2 to the respective ends. The layers 21 and 22 need not be provided. In this case, the magnetic thin wire 11 is directly connected to the first electrode 51 and the second electrode 52 in the vicinity of both ends thereof. Further, the shape of the thin magnetic wire 11 is not limited to a straight line, and may be a shape including a gentle curve that does not hinder the movement of the domain wall DW. In this case, the magnets 61f, 61b, 62f, and 62b and the magnets 63f, 63b, 64f, and 64b are arranged so that the magnetic fields −H eff and + H eff in the thin line direction are applied at the domain wall stationary positions p1 and p2, respectively. (Not shown).

上下に対向して組をなす磁石6,6同士は、磁性細線11から等距離に離間していなくてもよく、距離の離れている方が大きい磁界を発生させて、磁性細線11においてz成分の磁界が0になって、xy面内方向の磁界が生成されるように設計されればよい。また、磁界−Heff,+Heffが磁壁静止位置p1,p2に印加されればよいので、例えば、磁壁移動素子1の寸法が磁石6に対して小さい場合、両端の磁石61b,62bおよび磁石63b,64bは、磁性細線11に対面せず、磁性細線11の細線方向延長線沿いに配置されていてもよい。さらに、磁気メモリ90(90A)がx,y方向にメモリセル9(9A)を配列している場合に、x方向に隣り合う2つのメモリセル9,9の磁石付き磁壁移動素子10,10の一方の端の磁石61b,62bと他方の端の磁石63b,64bとが共有されていてもよい。また、磁石6が、それぞれの磁極をy方向に長く(幅広に)形成して、y方向に隣り合う2以上のメモリセル9のそれぞれの磁石付き磁壁移動素子10で共有されていてもよい。 The magnets 6 and 6 that form a pair facing each other in the vertical direction do not have to be equidistant from the magnetic thin wire 11, and a magnetic field that is larger when the distance is far away generates a z component in the magnetic thin wire 11. It is only necessary to design so that the magnetic field becomes zero and a magnetic field in the xy in-plane direction is generated. Further, since the magnetic fields −H eff and + H eff may be applied to the domain wall stationary positions p 1 and p 2, for example, when the dimension of the domain wall moving element 1 is smaller than the magnet 6, the magnets 61 b and 62 b at both ends and the magnet 63 b are provided. , 64b may not be opposed to the magnetic wire 11 and may be disposed along the extension of the magnetic wire 11 in the thin wire direction. Further, when the memory cell 9 (9A) is arranged in the x and y directions in the magnetic memory 90 (90A), the magnetic domain wall motion elements 10 and 10 of the two memory cells 9 and 9 adjacent in the x direction are arranged. The magnets 61b and 62b at one end and the magnets 63b and 64b at the other end may be shared. Further, the magnet 6 may be shared by the domain wall motion elements 10 with magnets of two or more memory cells 9 adjacent to each other in the y direction by forming each magnetic pole long (wide) in the y direction.

また、磁石付き磁壁移動素子10は、8つの磁石6のそれぞれの一方の極のみを磁性細線11に対面させる構成としているが、4つの磁石を備えて、それぞれの2極を共に磁性細線11に対面させる構成としてもよい。すなわち、磁石付き磁壁移動素子10は、磁石対61,62,63,64がそれぞれ1つの電磁石で構成され、それぞれの2極が共に磁性細線11に等距離を空けて対面するように、両端を前記2極とするコアをU字型等に形成される。このような構造の電磁石によれば、内部で閉磁路を形成するので、2極間の外側へは磁界が漏れ難い。したがって、磁界−Heff,+Heffがいっそう大きくなり、さらに逆向きの磁界(+Heff´,−Heff´)が抑制される。 In addition, the domain wall motion element 10 with magnet is configured such that only one pole of each of the eight magnets 6 faces the magnetic thin wire 11, but includes four magnets, and both of the two poles are connected to the magnetic thin wire 11. It is good also as a structure made to face. That is, in the magnetic domain wall motion element 10 with magnets, the magnet pairs 61, 62, 63, 64 are each composed of one electromagnet, and both ends are opposed so that both the two poles face the magnetic thin wire 11 at an equal distance. The core having the two poles is formed in a U-shape or the like. According to the electromagnet having such a structure, since a closed magnetic circuit is formed inside, the magnetic field hardly leaks to the outside between the two poles. Therefore, the magnetic fields −H eff and + H eff are further increased, and the reverse magnetic fields (+ H eff ′ and −H eff ′) are further suppressed.

また、磁石付き磁壁移動素子10は、磁石61f,61b,62f,62bまたは磁石63f,63b,64f,64bのいずれかのみの4つを備えてもよい。このような磁石付き磁壁移動素子10は、磁壁DWの高速移動が一方向のみとなる一方、簡易な構造となる。例えば、磁気メモリ90(90A)において、すべてのメモリセル9における磁壁移動素子1を同時に同じ方向に磁壁DWを電流供給時移動速度で移動させて、その後、メモリセル9を1列ずつ書き換える際に、磁壁DWを高速で移動させる。このような書込方法によれば、磁石付き磁壁移動素子10が8つの磁石6を備える場合に対して、磁気メモリ90全体の書込時間はほとんど変化しない。   Moreover, the domain wall motion element 10 with a magnet may be provided with only four of the magnets 61f, 61b, 62f, 62b or the magnets 63f, 63b, 64f, 64b. Such a domain wall motion element 10 with a magnet has a simple structure while the domain wall DW moves in only one direction. For example, in the magnetic memory 90 (90A), when the domain wall motion elements 1 in all the memory cells 9 are simultaneously moved in the same direction at the current domain moving speed at the current supply time, and then the memory cells 9 are rewritten one column at a time. The domain wall DW is moved at high speed. According to such a writing method, the writing time of the entire magnetic memory 90 hardly changes as compared with the case where the magnetic domain wall motion element 10 includes eight magnets 6.

〔光変調素子、空間光変調器〕
磁石付き磁壁移動素子10は、磁壁移動素子1の磁性細線11にGd−Fe等の磁気光学材料を適用して、光変調素子とすることができる。この場合には、磁壁移動素子1の障壁層3および副磁化固定層23は不要である。あるいは、障壁層3および副磁化固定層23が、磁化固定層21,22と同じ磁性細線11の下側に積層されて、磁性細線11の磁壁静止位置p1−p2間に光が入射するようにする。さらに、磁石61f,62fと磁石63f,64fとの間を十分に空けて開口領域とする。また、磁性細線11の幅および開口領域のx方向長は、入射光の波長にもよるが、200〜300nm程度以上であることが好ましい。さらに、磁性細線11の厚さが大きいほど光変調度が高くなる。このような磁石付き磁壁移動素子10を配列して空間光変調器を構成する場合には、図12(b)に示す磁気メモリ90Aからダイオード73と読出ビット線RBLを削除すればよい。
[Light modulation element, spatial light modulator]
The magnetic domain wall motion element 10 with a magnet can be a light modulation device by applying a magneto-optical material such as Gd-Fe to the magnetic wire 11 of the domain wall motion device 1. In this case, the barrier layer 3 and the submagnetization fixed layer 23 of the domain wall motion element 1 are unnecessary. Alternatively, the barrier layer 3 and the submagnetization fixed layer 23 are stacked below the same magnetic wire 11 as the magnetization pinned layers 21 and 22 so that light is incident between the domain wall stationary positions p1 and p2 of the magnetic wire 11. To do. Furthermore, a sufficient space is provided between the magnets 61f and 62f and the magnets 63f and 64f to form an opening region. The width of the magnetic wire 11 and the length of the opening region in the x direction are preferably about 200 to 300 nm or more, although depending on the wavelength of incident light. Furthermore, the greater the thickness of the magnetic wire 11, the higher the light modulation degree. When such a domain wall motion element 10 with magnets is arranged to constitute a spatial light modulator, the diode 73 and the read bit line RBL may be deleted from the magnetic memory 90A shown in FIG.

以上のように、本発明の第1実施形態に係る磁石付き磁壁移動素子によれば、電流を大きくせずに書込みが高速化されるので、磁性細線が劣化し難く長期の使用が可能となる。さらに、磁性細線の1つの磁壁静止位置を細線方向に挟んだ2箇所のそれぞれに上下1組の磁石を配置した構造として、大きな磁界を発生させるため、磁石の磁力を大きく設計しなくてよい。   As described above, according to the domain wall motion element with a magnet according to the first embodiment of the present invention, the writing speed is increased without increasing the current, so that the magnetic wire is hardly deteriorated and can be used for a long time. . Furthermore, since a large magnetic field is generated as a structure in which one pair of upper and lower magnets are arranged at two locations sandwiching one domain wall stationary position of the magnetic thin wire in the thin wire direction, the magnetic force of the magnet need not be designed to be large.

〔第2実施形態〕
磁石付き磁壁移動素子の、磁性細線を挟んで対向する上下1組の磁石は、この1組でxy面内に放射状の磁界を発生させ、すなわち+x方向、−x方向の磁界が含まれる。以下、磁壁静止位置毎に1組の電磁石を設けた本発明の第2実施形態に係る磁石付き磁壁移動素子について、図13を参照して説明する。第1実施形態(図1〜12参照)と同一の要素については同じ符号を付し、説明を省略する。
[Second Embodiment]
The pair of upper and lower magnets of the domain wall motion element with magnets facing each other across the fine magnetic wire generates a radial magnetic field in the xy plane, that is, includes magnetic fields in the + x direction and the −x direction. Hereinafter, a domain wall motion element with a magnet according to a second embodiment of the present invention in which one set of electromagnets is provided for each domain wall stationary position will be described with reference to FIG. The same elements as those in the first embodiment (see FIGS. 1 to 12) are denoted by the same reference numerals, and description thereof is omitted.

図13に示すように、本発明の第2実施形態に係る磁石付き磁壁移動素子10Aは、磁壁移動素子1および4つの磁石(磁界印加手段)61A,62A,63A,64Aを備える。磁壁移動素子1は、第1実施形態にて図2を参照して説明した通りであり、図13においては、磁壁移動素子1の障壁層3および副磁化固定層23を省略する。   As shown in FIG. 13, the domain wall motion element with magnet 10A according to the second embodiment of the present invention includes the domain wall motion element 1 and four magnets (magnetic field applying means) 61A, 62A, 63A, 64A. The domain wall motion element 1 is as described with reference to FIG. 2 in the first embodiment. In FIG. 13, the barrier layer 3 and the secondary magnetization fixed layer 23 of the domain wall motion element 1 are omitted.

磁石61Aと磁石62A、磁石63Aと磁石64Aの組はそれぞれ、磁性細線11を間に挟んで上と下に配置され、磁壁移動素子1の書込み時にいずれか一組が同時に磁界を発生させる。磁石61A,62A,63A,64Aは、いずれもS極を磁性細線11に対面させ、したがって、それぞれ第1実施形態に係る磁石付き磁壁移動素子10の磁石61b,62b,63b,64bに相当する。このような構成により、図3に示す磁石61b,62bのように、対向する磁石61A,62A(63A,64A)同士の中間点を含むxy面(z=0面)に、前記中間点に放射状に集中する磁界が発生する。この磁界は、前記中間点から遠ざかるにしたがい小さくなり、平面(xy面)視で磁石61A,62AのS極の外縁において最大となる。したがって、磁石付き磁壁移動素子10Aは、平面視で、磁石61A,62Aを、磁性細線11の磁壁静止位置p1の外側(−x方向側)の磁化反転可能領域1SW(図2参照)外に、かつ磁石61A,62Aの外縁が磁壁静止位置p1近傍となる位置に配置することが好ましい。このように配置された磁石61A,62Aによって、磁壁静止位置p1に静止している磁壁DWに−x方向の比較的大きな磁界−Heffが印加される。同様に、磁石63A,64Aを、磁壁移動素子1の磁壁静止位置p2の外側(+x方向側)の磁化反転可能領域1SW外に配置することが好ましい。なお、本実施形態において、磁石61A,62A,63A,64Aは、発生させる磁界Hzの大きさ(磁力)に対して、磁性細線11に印加される磁界−Heff,+Heffが第1実施形態と比較して大きくないので、十分に強い磁力を発生させるように設計される。 The pair of magnet 61A and magnet 62A, and pair of magnet 63A and magnet 64A are disposed above and below with the magnetic wire 11 in between, and either set simultaneously generates a magnetic field when the domain wall motion element 1 is written. The magnets 61A, 62A, 63A, and 64A each have the south pole facing the magnetic fine wire 11, and thus correspond to the magnets 61b, 62b, 63b, and 64b of the magnetic wall motion element 10 with magnet according to the first embodiment, respectively. With such a configuration, like the magnets 61b and 62b shown in FIG. 3, the xy plane (z = 0 plane) including the midpoint between the opposing magnets 61A and 62A (63A and 64A) is radial to the midpoint. A magnetic field concentrated on This magnetic field becomes smaller as the distance from the intermediate point increases, and becomes maximum at the outer edges of the south poles of the magnets 61A and 62A in plan view (xy plane). Therefore, the magnetic domain wall motion element 10A with a magnet puts the magnets 61A and 62A outside the magnetization reversible region 1 SW (see FIG. 2) outside the domain wall stationary position p1 of the magnetic wire 11 (on the −x direction side) in plan view. In addition, it is preferable that the outer edges of the magnets 61A and 62A are arranged at positions near the domain wall stationary position p1. By the magnets 61A and 62A arranged in this way, a relatively large magnetic field −H eff in the −x direction is applied to the domain wall DW stationary at the domain wall stationary position p1. Similarly, the magnets 63A and 64A are preferably arranged outside the magnetization reversible region 1 SW outside the domain wall stationary position p2 of the domain wall motion element 1 (on the + x direction side). In the present embodiment, the magnets 61A, 62A, 63A, and 64A are configured so that the magnetic fields −H eff and + H eff applied to the magnetic wire 11 are the first to the magnitude (magnetic force) of the generated magnetic field H z. Since it is not large compared with the form, it is designed to generate a sufficiently strong magnetic force.

(磁石付き磁壁移動素子の書込方法)
本実施形態に係る磁石付き磁壁移動素子の書込方法について、図13、および適宜図2を参照して説明する。まず、図2(a)に示す、磁壁DWが磁性細線11の磁壁静止位置p1に静止している状態から、図2(b)に示すように磁壁静止位置p2に静止した状態に遷移させる。磁石61Aと磁石62Aのコイルに電流を供給して磁界を発生させて、図13(a)に示すように、−x方向の磁界−Heffを磁性細線11の磁壁静止位置p1近傍領域に印加する。このとき、磁石63A,64Aは、磁界を発生させていないことから破線で表す。そして、第1実施形態(図11(a)参照)と同様に、第1電極51を「−」、第2電極52を「+」として、磁性細線11に電流Iwを−x方向に供給することにより、電子e-を磁性細線11の磁区D1に注入して+x方向に移動させると、磁壁DWが+x方向に移動する。磁壁DWは、磁界−Heffが印加されている領域を移動する期間は、電流供給時移動速度よりも高速で移動し、この領域を通過した後は、次第に減速して電流供給時移動速度に近付く。そして、磁壁DWが磁壁静止位置p2に到達する時点に合わせて電流Iwの供給を停止すると、磁壁DWが、移動を停止して磁壁静止位置p2で静止する。さらに、磁石61A,62Aのコイルへの電流の供給を停止して、磁界の印加を停止する。
(Writing method of domain wall motion element with magnet)
A writing method of the domain wall motion element with magnet according to the present embodiment will be described with reference to FIG. 13 and FIG. 2 as appropriate. First, the state in which the domain wall DW shown in FIG. 2A is stationary at the domain wall stationary position p1 of the magnetic wire 11 is changed to the state stationary at the domain wall stationary position p2 as shown in FIG. A current is supplied to the coils of the magnets 61A and 62A to generate a magnetic field, and as shown in FIG. 13A, a magnetic field -H eff in the -x direction is applied to a region near the domain wall stationary position p1 of the magnetic wire 11. To do. At this time, since the magnets 63A and 64A do not generate a magnetic field, they are represented by broken lines. Then, as in the first embodiment (see FIG. 11 (a)), the first electrode 51 "-", supplying the second electrode 52 as "+", the current I w in the -x direction to the magnetic wire 11 Thus, when electrons e are injected into the magnetic domain D1 of the magnetic wire 11 and moved in the + x direction, the domain wall DW moves in the + x direction. The domain wall DW moves at a higher speed than the current supply moving speed during the period in which the magnetic field −H eff is applied. After passing through this area, the domain wall DW gradually decelerates to the current supply moving speed. Get closer. When the domain wall DW may stop the supply of the current I w in accordance with the time it reaches the domain wall resting position p2, the domain wall DW is, to stop the movement stops at the domain wall resting position p2. Further, the current supply to the coils of the magnets 61A and 62A is stopped, and the application of the magnetic field is stopped.

本実施形態に係る磁石付き磁壁移動素子10Aにおいては、磁壁DWは、+x方向への移動中に移動を阻害する+x方向の磁界を印加されることがないため、磁石61A,62Aと磁壁静止位置p2との距離を大きく空けなくても、第1実施形態のように、電流Iwの供給停止直後に磁壁DWが後退する虞がない。ただし、磁界−Heffが印加されている領域を磁壁DWが移動している時に電流Iwの供給を停止すると、停止後にさらに+x方向へ前進する場合がある。したがって、磁壁静止位置p1−p2間距離が短い場合には、磁性細線11の磁壁静止位置p1,p2から端までにおける磁化方向を固定するために、磁壁移動素子1が第1磁化固定層21および第2磁化固定層22を備えることが好ましい。 In the domain wall motion element 10A with a magnet according to the present embodiment, the domain wall DW is not applied with a magnetic field in the + x direction that inhibits the movement during the movement in the + x direction, so the magnets 61A and 62A and the domain wall stationary position without leaving large distance between p2, as in the first embodiment, the domain wall DW immediately after stopping supply of the current I w has no possibility to retract. However, when stopping the supply of the current I w when the region where the magnetic field -H eff is applied domain wall DW is moving, sometimes advancing to further the + x direction after the stop. Therefore, when the distance between the domain wall stationary positions p1 and p2 is short, the domain wall moving element 1 has the first magnetization fixed layer 21 and the magnetic domain wire 11 to fix the magnetization direction from the domain wall stationary positions p1 and p2 to the end of the magnetic wire 11. It is preferable to include the second magnetization fixed layer 22.

図2(b)に示す、磁壁DWが磁性細線11の磁壁静止位置p2に静止している状態から、図2(a)に示すように磁壁静止位置p1に静止した状態に遷移させるためには、磁石63Aと磁石64Aのコイルに電流を供給して、図13(b)に示すように、+x方向の磁界+Heffを磁性細線11の磁壁静止位置p2近傍領域に印加する。このとき、磁石61A,62Aは、磁界を発生させていないことから破線で表す。そして、第1実施形態(図11(b)参照)と同様に、第1電極51を「+」、第2電極52を「−」として、磁性細線11に電流Iwを+x方向に供給することにより、電子e-を磁性細線11の磁区D2に注入して−x方向に移動させる。すると、磁壁DWが図13(a)に示す+x方向の移動とは、移動方向が−x方向に反転する以外は同様の挙動で移動する。すなわち、磁壁DWに磁界+Heffが印加されている領域を移動する期間は、電流供給時移動速度よりも高速で移動し、この領域を通過した後は、次第に減速して電流供給時移動速度に近付く。そして、磁壁DWが磁壁静止位置p1に到達する時点に合わせて電流Iwの供給を停止すると、磁壁DWが磁壁静止位置p1で静止し、さらに磁石63A,64Aのコイルへの電流の供給を停止する。このように、第1実施形態と同様に、磁性細線11に供給する電流Iwの向きに合わせて、磁石61A,62Aまたは磁石63A,64Aに磁界を発生させることにより、磁壁DWを高速で移動させて書込時間を短縮することができる。 In order to change from the state where the domain wall DW shown in FIG. 2B is stationary at the domain wall stationary position p2 of the magnetic wire 11 to the state where it is stationary at the domain wall stationary position p1 as shown in FIG. Then, a current is supplied to the coils of the magnets 63A and 64A, and a magnetic field + H eff in the + x direction is applied to a region near the domain wall stationary position p2 of the magnetic wire 11 as shown in FIG. At this time, the magnets 61A and 62A do not generate a magnetic field, and are represented by broken lines. Then, as in the first embodiment (see FIG. 11B), the first electrode 51 is set to “+”, the second electrode 52 is set to “−”, and the current I w is supplied to the magnetic wire 11 in the + x direction. As a result, electrons e are injected into the magnetic domain D2 of the magnetic wire 11 and moved in the −x direction. Then, the domain wall DW moves in the same manner as the movement in the + x direction shown in FIG. 13A except that the moving direction is reversed in the −x direction. In other words, the period of movement in the region where the magnetic field + H eff is applied to the domain wall DW moves at a speed higher than the moving speed at the time of current supply, and after passing through this area, gradually decelerates to the moving speed at the time of current supply. Get closer. Then, stop the magnetic domain wall DW may stop the supply of the current I w in accordance with the time it reaches the domain walls rest position p1, the domain wall DW is frozen domain wall rest position p1, further magnet 63A, the current supply to 64A of the coil To do. Thus, as in the first embodiment, in accordance with the direction of the current I w to be supplied to the magnetic wire 11, the magnets 61A, 62A, or the magnet 63A, by generating a magnetic field 64A, moving the domain wall DW fast Thus, the writing time can be shortened.

(磁気メモリ、光変調素子および空間光変調器)
磁石付き磁壁移動素子10Aは、磁石付き磁壁移動素子10と同様に、図12(a)、(b)に示す磁気メモリ90,90Aに配列されたメモリセル9,9Aの磁気抵抗効果素子として搭載される。また、磁石付き磁壁移動素子10Aは、光変調素子として、配列して空間光変調器を構成することができる。なお、磁気メモリ90(90A)がx,y方向にメモリセル9(9A)を配列している場合に、x方向に隣り合う2つのメモリセル9,9の磁石付き磁壁移動素子10A,10Aの一方の磁石61A,62Aと他方の端の磁石63A,64Aとが共有されていてもよい。また、第1実施形態と同様、61A,62A,63A,64Aが、それぞれの磁極をy方向に長く(幅広に)形成して、y方向に隣り合う2以上のメモリセル9のそれぞれの磁石付き磁壁移動素子10Aで共有されていてもよい。
(Magnetic memory, light modulator and spatial light modulator)
Similarly to the domain wall motion element 10 with magnet, the domain wall motion element 10A with magnet is mounted as a magnetoresistive effect element of the memory cells 9 and 9A arranged in the magnetic memories 90 and 90A shown in FIGS. 12 (a) and 12 (b). Is done. Moreover, the domain wall motion element 10A with a magnet can be arranged as a light modulation element, and can comprise a spatial light modulator. When the magnetic memory 90 (90A) has memory cells 9 (9A) arranged in the x and y directions, the magnetic domain wall motion elements 10A and 10A of the two memory cells 9 and 9 adjacent in the x direction are arranged. One magnet 61A, 62A and the other end magnet 63A, 64A may be shared. Similarly to the first embodiment, 61A, 62A, 63A, and 64A are provided with respective magnets of two or more memory cells 9 adjacent to each other in the y direction by forming each magnetic pole long in the y direction (wide). The domain wall motion element 10A may be shared.

以上のように、本発明の第2実施形態に係る磁石付き磁壁移動素子によれば、第1実施形態と同様に書込みが高速化され、かつ長期間の使用が可能となり、さらにサイズを縮小し易い。   As described above, according to the domain wall motion element with a magnet according to the second embodiment of the present invention, writing can be performed at a high speed and can be used for a long period of time as in the first embodiment, and the size can be further reduced. easy.

本発明の効果を確認するために、本発明の第1実施形態に係る磁石付き磁壁移動素子を模擬したサンプルによる、スピントランスファートルク項を有するLLG(Landau-Lifshitz-Gilbert)方程式を用いたシミュレーションを実行した。磁壁移動素子に代えて、厚さ20nm、幅60nm、長さ(x方向長)1500nmの磁性細線のみのサンプルとし、磁性細線の磁気特性は、飽和磁化:0.25T、一軸異方性Hk:7.06×105A/m、交換スティフネス:1.2×10-11J/m、ギルバート減衰定数:0.02に設定した。また、シミュレーションのセルサイズは4×4×4nm3とした。そして、図4に示すように、磁性細線11を間に挟んでz方向に2つの永久磁石(磁石6)のS極同士を対向させた組(61b,62b)を磁壁DWの−x方向側に、N極同士を対向させた組(61f,62f)を磁壁DWの+x方向側に、計2組4つ配置した。磁石は、y方向長が磁性細線11と同じ60nm、x方向長LMが20nmであり、対向する磁石同士(N極同士、S極同士)の間隙dが50nm、2組の磁石の間隙Lgが60nmである。また、磁性細線11に生成された1つの磁壁DWが、初期状態で2組の磁石の間隙の中心に配置されているように設定した。磁石の飽和磁束密度が0.5T,1T,2Tの3通りのサンプル(No.1〜3)を設定し、また、比較例として、磁石のない(飽和磁束密度0Tの)サンプル(No.5)を設定した。 In order to confirm the effect of the present invention, a simulation using an LLG (Landau-Lifshitz-Gilbert) equation having a spin transfer torque term is performed on a sample simulating the domain wall motion element with magnet according to the first embodiment of the present invention. Executed. Instead of the domain wall motion element, a sample of only a magnetic wire having a thickness of 20 nm, a width of 60 nm, and a length (length in the x direction) of 1500 nm is used, and the magnetic properties of the magnetic wire are saturation magnetization: 0.25 T, uniaxial anisotropy H k : 7.06 × 10 5 A / m, exchange stiffness: 1.2 × 10 −11 J / m, Gilbert damping constant: 0.02. The simulation cell size was 4 × 4 × 4 nm 3 . Then, as shown in FIG. 4, a set (61b, 62b) in which the S poles of two permanent magnets (magnets 6) are opposed to each other in the z direction with the magnetic thin wire 11 therebetween is the -x direction side of the domain wall DW. In addition, a total of four sets (61f, 62f) in which the N poles are opposed to each other are arranged on the + x direction side of the domain wall DW. Magnets are the same 60 nm, x-direction length L M is 20 nm y-direction length and the magnetic wire 11, the magnet with each other (N poles, S poles) facing the gap of the gap d is 50 nm, 2 pairs of magnets L g is 60 nm. In addition, one domain wall DW generated on the magnetic wire 11 was set to be arranged at the center of the gap between the two sets of magnets in the initial state. Three types of samples (Nos. 1 to 3) with a saturation magnetic flux density of 0.5T, 1T, and 2T are set, and as a comparative example, a sample without a magnet (with a saturation magnetic flux density of 0T) (No. 5) )It was set.

各サンプルの磁性細線に、その一端から−x方向に9.1×107A/cm2の電流を、パルス幅0.8nsのパルス電流として1パルス供給して停止し、すなわち0.8ns供給した。また、磁石の飽和磁束密度1Tのサンプルで電流を供給しない場合(No.4)についてもシミュレーションを実行した。シミュレーションにより、磁性細線全体の磁化の平均値を0.01ns毎に算出し、電流の供給開始時を0とした時間の経過に伴う磁性細線の磁化の変化を表すグラフを図14に示す。また、磁壁の+x方向の移動に伴い、下向きの磁化方向の磁区がx方向に拡張することから、磁性細線の磁化から磁壁の移動距離を算出して、図14に併記する。 The magnetic thin wire of each sample is stopped by supplying one pulse of a current of 9.1 × 10 7 A / cm 2 in the −x direction from one end as a pulse current having a pulse width of 0.8 ns, that is, supplying 0.8 ns. did. Moreover, the simulation was performed also about the case (No. 4) when not supplying an electric current with the sample of saturation magnetic flux density 1T of a magnet. FIG. 14 shows a graph representing the change in magnetization of the magnetic wire with the passage of time when the average value of the magnetization of the entire magnetic wire is calculated every 0.01 ns by simulation and the current supply start time is zero. Further, since the magnetic domain in the downward magnetization direction expands in the x direction as the domain wall moves in the + x direction, the movement distance of the domain wall is calculated from the magnetization of the magnetic wire and is also shown in FIG.

また、飽和磁束密度1Tの磁石の間隙Lgを20nm、80nmに変化させたサンプル(No.6,7)についても、同様にパルス電流を供給したシミュレーションを実行した。これらのサンプルも、磁壁DWが、初期状態で2組の磁石の間隙の中心に配置されているように設定した。間隙Lgが60nmのサンプル(No.2)、および磁石のないサンプル(No.5)と共に、磁性細線の磁化の変化を表すグラフを図15に示す。 Similarly, a simulation in which a pulse current was supplied was also performed on the samples (Nos. 6 and 7) in which the gap L g of the magnet having a saturation magnetic flux density of 1T was changed to 20 nm and 80 nm. These samples were also set so that the domain wall DW was arranged at the center of the gap between the two sets of magnets in the initial state. Gap L g is 60nm of the sample (No.2), and with the sample (No.5) without magnets, shown in Figure 15 a graph showing changes in magnetization of the magnetic wire.

図14に示すように、飽和磁束密度0.5T,1Tの磁石を設けて電流を供給すると、磁壁DWが、移動開始位置(2組の磁石の間隙の中心)から+x方向側の1組の磁石の近傍まで、磁石のない比較例(No.5)よりも高速で移動し、一旦、低速になってから再び高速で移動して、その後、次第に減速して比較例の移動速度に近付き、電流を供給している間、+x方向に移動することが観察された。また、高速での移動速度は、磁石の飽和磁束密度が高いほど、すなわち磁界が大きいほど高速であった。ただし、飽和磁束密度2Tの磁石を設けたサンプル(No.3)は、磁壁DWが、開始位置からその近傍で前進と後退を交互に繰り返しながらその移動距離(振幅)が漸減し、最終的に開始位置から移動しなかった。なお、磁石の飽和磁束密度0.5Tのサンプル(No.1)は、電流の供給停止後に磁壁DWが後退して、再び前進した。これは、電流の供給を停止した時点で、磁壁DWが+x方向側の1組の磁石に近いために磁界の影響を受けたことに起因すると推測される。また、磁石を設けても電流を供給しなければ(No.4)磁壁DWが移動しないことが観察され、磁石による外部磁界自体は磁壁DWを移動させるものではない。このように、磁性細線11の磁壁DWが生成している領域に局所的に細線方向の磁界を印加することにより、電流供給による磁壁DWの移動速度が高速になり、また、磁壁DWが磁界を印加される領域から退出した後もある程度の期間、その効果が持続することが確認された。   As shown in FIG. 14, when a magnet having saturation magnetic flux densities of 0.5T and 1T is provided and a current is supplied, the domain wall DW is moved to one set on the + x direction side from the movement start position (the center of the gap between the two sets of magnets). Move to the vicinity of the magnet at a higher speed than the comparative example without magnet (No. 5), once at a low speed, then move again at a high speed, and then gradually decelerate to approach the moving speed of the comparative example, While supplying current, it was observed to move in the + x direction. Moreover, the moving speed at high speed was higher as the saturation magnetic flux density of the magnet was higher, that is, as the magnetic field was larger. However, in the sample (No. 3) provided with a magnet having a saturation magnetic flux density of 2T, the moving distance (amplitude) of the domain wall DW gradually decreases while alternately moving forward and backward in the vicinity from the start position. It did not move from the start position. In addition, the sample (No. 1) in which the saturation magnetic flux density of the magnet was 0.5 T was advanced again after the domain wall DW was retracted after the supply of current was stopped. This is presumed to be caused by the influence of the magnetic field because the domain wall DW is close to one set of magnets on the + x direction side when the supply of current is stopped. Further, even if a magnet is provided, if no current is supplied (No. 4), it is observed that the domain wall DW does not move, and the external magnetic field itself by the magnet does not move the domain wall DW. Thus, by locally applying a magnetic field in the direction of the fine line to the region where the magnetic domain wall DW of the magnetic fine line 11 is generated, the moving speed of the domain wall DW due to current supply becomes high, and the domain wall DW generates a magnetic field. It was confirmed that the effect persisted for a certain period after leaving the applied area.

また、図15に示すように、2組の磁石の間隙Lgが20〜80nmの範囲においては間隙が長いほど、磁壁DWが高速で移動する領域が長くなるので、電流を供給していた0.8nsで移動した距離が長くなる。ただし、2組の磁石の間隙Lgが80nm(No.7)の場合には、電流の供給停止後に磁壁DWが後退して、開始位置近傍で前進と後退を交互に繰り返した。これは、電流の供給を停止した時点で、磁壁DWが+x方向側の1組の磁石に近いために磁界の影響を受けたことに起因すると推測され、電流の供給時間を2.0nsに延長して(No.8)磁壁DWの電流による移動距離を長くすると、磁壁DWが電流の供給停止時からほぼ移動しないことが観察された。 Further, as shown in FIG. 15, the gap L g of 2 pairs of magnets as the gap is long in the range of 20 to 80 nm, since the region where the magnetic domain wall DW moves at high speed is increased, has been supplying current 0 The distance traveled in .8ns becomes longer. However, if the gap L g of the two sets of magnets is 80nm of (No.7) is retracted domain wall DW after outage current, repeated alternately forward and backward in the vicinity of the starting position. This is presumed to be caused by the influence of the magnetic field because the domain wall DW is close to a pair of magnets on the + x direction side when the current supply is stopped, and the current supply time is extended to 2.0 ns. (No. 8) When the moving distance of the domain wall DW by the current was increased, it was observed that the domain wall DW hardly moved from the time when the supply of current was stopped.

以上、本発明に係る磁壁移動素子および磁気メモリを実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although each embodiment for implementing the domain wall motion element and the magnetic memory according to the present invention has been described, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the claims. It can be changed.

10,10A 磁石付き磁壁移動素子(磁壁移動素子)
1 磁壁移動素子
11 磁性細線
61f,61b,61A 磁石(磁界印加手段)
62f,62b,62A 磁石(磁界印加手段)
63f,63b,63A 磁石(磁界印加手段)
64f,64b,64A 磁石(磁界印加手段)
90,90A 磁気メモリ
9,9A メモリセル
10, 10A Magnetic domain wall motion element with magnet (magnetic domain wall motion element)
DESCRIPTION OF SYMBOLS 1 Domain wall moving element 11 Magnetic thin wire 61f, 61b, 61A Magnet (magnetic field application means)
62f, 62b, 62A Magnet (magnetic field applying means)
63f, 63b, 63A Magnet (magnetic field applying means)
64f, 64b, 64A magnet (magnetic field applying means)
90,90A magnetic memory 9,9A memory cell

Claims (5)

垂直磁気異方性材料を細線状に形成してなる磁性細線を備え、前記磁性細線に電流を細線方向に供給されると、前記磁性細線に生成している磁壁が前記電流と逆向きに移動する磁壁移動素子であって、
前記磁性細線またはその細線方向延長線を上下から挟むように対向して互いに反発し合う磁界を発生させる2つ1組の磁界印加手段をさらに備え、前記磁界印加手段の組が前記磁界を発生させることによって、前記磁性細線に細線方向の磁界を印加することを特徴とする磁壁移動素子。
Provided with a magnetic wire formed by forming a perpendicular magnetic anisotropic material into a thin wire shape, when a current is supplied to the magnetic wire in the thin wire direction, the domain wall generated in the magnetic wire moves in a direction opposite to the current A domain wall motion element that
A pair of magnetic field applying means for generating magnetic fields that oppose each other so as to sandwich the magnetic fine wire or its extension in the fine line direction from above and below are further provided, and the set of magnetic field applying means generates the magnetic field. Thus, a magnetic wall moving element is characterized in that a magnetic field in a thin line direction is applied to the magnetic thin line.
前記磁界印加手段の組を、前記磁性細線の細線方向に2以上備え、
前記磁界印加手段の2つの組は、同時に互いに逆向きの磁界を発生させることを特徴とする請求項1に記載の磁壁移動素子。
Two or more sets of the magnetic field applying means are provided in the direction of the thin magnetic wires,
2. The domain wall motion element according to claim 1, wherein the two sets of the magnetic field applying units simultaneously generate magnetic fields in opposite directions.
前記磁界印加手段の組は、前記細線方向の磁界を、少なくとも、前記磁性細線に予め設定された磁壁の静止位置に印加することを特徴とする請求項1または請求項2に記載の磁壁移動素子。   3. The domain wall motion element according to claim 1, wherein the set of magnetic field applying units applies the magnetic field in the fine line direction to at least a stationary position of a domain wall preset in the magnetic thin line. . 前記垂直磁気異方性材料が磁気光学材料であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の磁壁移動素子。   4. The domain wall motion element according to claim 1, wherein the perpendicular magnetic anisotropic material is a magneto-optical material. 請求項1ないし請求項4のいずれか一項に記載の磁壁移動素子をメモリセルに備える磁気メモリ。   A magnetic memory comprising a memory cell comprising the domain wall motion element according to any one of claims 1 to 4.
JP2017150297A 2017-08-02 2017-08-02 Domain wall moving element and magnetic memory Active JP6886888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150297A JP6886888B2 (en) 2017-08-02 2017-08-02 Domain wall moving element and magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150297A JP6886888B2 (en) 2017-08-02 2017-08-02 Domain wall moving element and magnetic memory

Publications (2)

Publication Number Publication Date
JP2019029595A true JP2019029595A (en) 2019-02-21
JP6886888B2 JP6886888B2 (en) 2021-06-16

Family

ID=65476807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150297A Active JP6886888B2 (en) 2017-08-02 2017-08-02 Domain wall moving element and magnetic memory

Country Status (1)

Country Link
JP (1) JP6886888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174569A1 (en) * 2019-02-26 2020-09-03 Tdk株式会社 Magnetic recording array, product-sum calculation device, and neuromorphic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080748A (en) * 2011-09-30 2013-05-02 Toshiba Corp Magnetic memory and method for manufacturing the same
JP2016018574A (en) * 2014-07-07 2016-02-01 日本放送協会 Magnetic recording medium device and magnetic recording reproduction method, and spatial optical modulator and pixel driving method thereof
US20160056368A1 (en) * 2014-08-22 2016-02-25 International Business Machines Corporation Domain wall injector device using fringing fields aided by spin transfer torque
US20170162274A1 (en) * 2014-07-15 2017-06-08 Korea Research Institute Of Standards And Science Method for controlling magnetic domain wall of magnetic structure and magnetic memory device using same
JP2017130245A (en) * 2016-01-18 2017-07-27 日本放送協会 Nonvolatile memory and driving method thereof, and storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080748A (en) * 2011-09-30 2013-05-02 Toshiba Corp Magnetic memory and method for manufacturing the same
JP2016018574A (en) * 2014-07-07 2016-02-01 日本放送協会 Magnetic recording medium device and magnetic recording reproduction method, and spatial optical modulator and pixel driving method thereof
US20170162274A1 (en) * 2014-07-15 2017-06-08 Korea Research Institute Of Standards And Science Method for controlling magnetic domain wall of magnetic structure and magnetic memory device using same
US20160056368A1 (en) * 2014-08-22 2016-02-25 International Business Machines Corporation Domain wall injector device using fringing fields aided by spin transfer torque
JP2017130245A (en) * 2016-01-18 2017-07-27 日本放送協会 Nonvolatile memory and driving method thereof, and storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174569A1 (en) * 2019-02-26 2020-09-03 Tdk株式会社 Magnetic recording array, product-sum calculation device, and neuromorphic device

Also Published As

Publication number Publication date
JP6886888B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US10020039B2 (en) Three terminal magnetoresistive devices, magnetoresistive random access memory and magnetic recording method
US10205088B2 (en) Magnetic memory
JP5441005B2 (en) Domain wall moving element and magnetic random access memory
US8837209B2 (en) Magnetic memory cell and magnetic random access memory
JP2006128579A (en) Storage element and memory
US9129692B1 (en) High density magnetic random access memory
US20120281465A1 (en) High Density Magnetic Random Access Memory
JP2005191032A (en) Magnetic storage device and method of writing magnetic information
US10037789B2 (en) Magnetic memory and method for writing data into magnetic memory element
US9478309B2 (en) Magnetic-domain-wall-displacement memory cell and initializing method therefor
KR20110136707A (en) Memory device
JP5092464B2 (en) Domain wall displacement type magnetic recording element having domain wall displacement detection terminal
KR101231288B1 (en) Magnetic memory cell and magnetic random access memory
JP5201538B2 (en) Magnetic random access memory
JP6886888B2 (en) Domain wall moving element and magnetic memory
KR20210052141A (en) Magentic Memory Device
US7352613B2 (en) Magnetic memory device and methods for making a magnetic memory device
US11309006B2 (en) Magnetic memory devices including magnetic structure with magnetic domains
US20160336053A1 (en) Memory apparatus and memory device
JP2004296858A (en) Magnetic memory element and magnetic memory device
JP2022083931A (en) Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory
JP2023055588A (en) Method for initializing domain wall motion element and magnetic device
US20230189663A1 (en) Magnetic memory
JP2018018904A (en) Thin film structure, magnetic storage element, magnetic storage device, and method for manufacturing thin film structure

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210517

R150 Certificate of patent or registration of utility model

Ref document number: 6886888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250