JP2022083931A - Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory - Google Patents

Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory Download PDF

Info

Publication number
JP2022083931A
JP2022083931A JP2020195579A JP2020195579A JP2022083931A JP 2022083931 A JP2022083931 A JP 2022083931A JP 2020195579 A JP2020195579 A JP 2020195579A JP 2020195579 A JP2020195579 A JP 2020195579A JP 2022083931 A JP2022083931 A JP 2022083931A
Authority
JP
Japan
Prior art keywords
magnetic
domain wall
layer
wire
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020195579A
Other languages
Japanese (ja)
Inventor
賢一 青島
Kenichi Aoshima
信彦 船橋
Nobuhiko Funabashi
諒 東田
Ryo Higashida
賢司 町田
Kenji Machida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2020195579A priority Critical patent/JP2022083931A/en
Publication of JP2022083931A publication Critical patent/JP2022083931A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

To provide a domain wall moving element capable of high-speed writing without increasing the current density for the domain wall moving element for writing by moving the domain wall of a magnetic fine wire by current supply.SOLUTION: A domain wall moving element 10 includes a magnetic thin wire 1 formed by laminating a magnetic layer 11 having a vertical magnetic anisotropy and a channel layer 12 having a spin Hall effect to form a fine line along the x direction, and a bar magnet-shaped nanomagnet 51 along the magnetic thin wire 1 arranged under the magnetic thin wire 1. Due to application of the leakage magnetic field Hass of the nanomagnet 51 in the -x direction, a domain wall DW generated in the magnetic layer 11 is stabilized by a right-turning nail-shaped magnetic structure. When a current is supplied to the magnetic wire 1 in the +x direction, electrons having a spin in the -y direction accumulate near the interface of the channel layer 12 with the magnetic layer 11, and the magnetic moment in the magnetic wall DW rotates counterclockwise in the xz plane, and the magnetic wall DW moves in the +x direction.SELECTED DRAWING: Figure 2A

Description

特許法第30条第2項適用申請有り 2020年1月23日にAmerican Institute of Physicsによってオンライン発行されたAIP Advancesのウェブサイト:https://aip.scitation.org/doi/full/10.1063/1.5130488において発表Application for application of Article 30, Paragraph 2 of the Patent Act The website of AIP Advances published online by American Institute of Physics on January 23, 2020: https: // aip. scitation. Presented at org / doi / full / 10.1063 / 1.5130488

本発明は、磁壁移動素子、ならびに、磁壁移動素子を備える磁気記憶素子、磁気メモリおよび空間光変調器に関する。 The present invention relates to a domain wall moving element, a magnetic storage element including the domain wall moving element, a magnetic memory, and a spatial light modulator.

メモリセルにおける磁気抵抗効果素子の抵抗の高低を2値のデータとする磁気抵抗ランダムアクセスメモリ(Magnetoresistive Random Access Memory:MRAM)においては、書込み、すなわち磁気抵抗効果素子の一部の磁性膜(自由層)の磁化反転方式として、初期の磁界印加方式に対して、高速化およびセルの微細化のために、電流を膜面垂直に供給する方式のSTT(Spin Transfer Torque:スピン注入トルク)-MRAMが開発されている。そしてさらなる高速化のために、磁壁移動方式のMRAM(例えば、特許文献1、非特許文献1)や、SOT(Spin Orbit Torque:スピン軌道トルク)-MRAM(例えば、特許文献2,3)が開発されている。 In a magnetic resistance random access memory (MRAM) in which the high and low resistance of a magnetic resistance effect element in a memory cell is used as binary data, writing, that is, a part of the magnetic film (free layer) of the magnetic resistance effect element is written. ), The STT (Spin Transfer Torque) -MRAM, which supplies current vertically to the membrane surface in order to increase the speed and reduce the size of the cell, compared to the initial magnetic field application method. Has been developed. And for further speeding up, magnetic wall movement type MRAM (for example, Patent Document 1 and Non-Patent Document 1) and SOT (Spin Orbit Torque: spin orbit torque) -MRAM (for example, Patent Documents 2 and 3) have been developed. Has been done.

磁壁移動方式は、磁気抵抗効果素子の自由層を両側に延伸した細線状に形成して、その長手方向に電流を供給することにより、長手方向の所定の2点間における磁化方向を変化させる。詳しくは、幅が数nm~数百nmの細線状に形成された磁性体(以下、磁性細線)は、その長手方向に2以上の磁区が生成し易く、さらに当該長手方向(細線方向)に電流を所定の電流密度以上で供給されると、磁区同士を区切るように生成している磁壁がSTT効果によって電流の逆方向に(正極側へ)移動する。また、このような磁性細線の所定領域における磁化反転を利用して、磁性細線を磁気光学材料で形成して光変調素子とした磁気光学式の空間光変調器が開発されている(例えば、特許文献4,5)。また、磁性細線に、電流の供給方向と同じ方向に磁界を印加することにより、磁壁の移動を高速化した磁気メモリが開発されている(例えば、特許文献6)。 In the domain wall moving method, the free layer of the magnetoresistive effect element is formed in a thin wire shape extended on both sides, and a current is supplied in the longitudinal direction thereof to change the magnetization direction between two predetermined points in the longitudinal direction. Specifically, a magnetic body (hereinafter referred to as a magnetic domain) formed in a thin line having a width of several nm to several hundred nm tends to generate two or more magnetic domains in the longitudinal direction thereof, and further in the longitudinal direction (thin wire direction). When a current is supplied at a predetermined current density or higher, the magnetic domain wall generated so as to separate the magnetic domains moves in the opposite direction (toward the positive electrode side) of the current due to the STT effect. Further, a magnetic optical spatial light modulator has been developed in which a magnetic wire is formed of a magnetic optical material to form a light modulation element by utilizing the magnetization reversal in a predetermined region of the magnetic wire (for example, a patent). Documents 4 and 5). Further, a magnetic memory has been developed in which the movement of the domain wall is speeded up by applying a magnetic field to the magnetic wire in the same direction as the current supply direction (for example, Patent Document 6).

SOT-MRAMは、磁気抵抗効果素子の自由層に、Ta(タンタル)等のスピンホール効果(Spin Hall Effect:SHE)を有するスピンホール層を積層して備える。スピンホール層は、膜面(xy面)内における一方向(x方向)に電流を供給されると、y方向の互いに逆向きのスピンを有する電子が上下の各表層に分かれて蓄積し、自由層との界面近傍の電子が自由層の磁化方向を反転させる。SOT効果は、磁性細線における磁壁移動にも作用することが知られ(例えば、非特許文献2~6)、さらに非特許文献4では、磁壁の磁気構造によって磁壁を移動させるスピンの向きが異なることが報告されている。 The SOT-MRAM is provided by laminating a spin Hall layer having a Spin Hall effect (SHE) such as Ta (tantal) on a free layer of a magnetoresistive effect element. In the spin Hall layer, when a current is supplied in one direction (x direction) in the film surface (xy surface), electrons having spins in opposite directions in the y direction are separately accumulated in the upper and lower surface layers and are free. Electrons near the interface with the layer reverse the magnetization direction of the free layer. It is known that the SOT effect also acts on the domain wall movement in the magnetic fine wire (for example, Non-Patent Documents 2 to 6), and in Non-Patent Document 4, the direction of the spin that moves the domain wall differs depending on the magnetic structure of the magnetic wall. Has been reported.

特許第5598697号公報Japanese Patent No. 5598697 国際公開第2017/090730号International Publication No. 2017/090730 国際公開第2019/054484号International Publication No. 2019/054484 特許第4939489号公報Japanese Patent No. 4939489 特開2018-073871号公報Japanese Unexamined Patent Publication No. 2018-073871 特開2019-029595号公報Japanese Unexamined Patent Publication No. 2019-029595

S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R. Nebashi, N. Sakimura, H. Honjo, K. Mori, C. Igarashi, S. Miura, N. Ishiwata, T. Sugibayashi, "Low-Current Perpendicular Domain Wall Motion Cell for Scalable High-Speed MRAM", 2009 Symposium on VLSI Technology Digest of Technical Papers, 12A-2S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R. Nebashi, N. Sakimura, H. Honjo, K. Mori, C. Igarashi, S. Miura, N. Ishiwata, T. Sugibayashi, "Low-Current Perpendicular Domain Wall Motion Cell for scalable High-Speed MRAM", 2009 Symposium on VLSI Technology Digest of Technical Papers, 12A-2 Luqiao Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, R. A. Buhrman, "Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect", Physical Review Letters, Volume 109, 096602, 2012Luqiao Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, R. A. Buhrman, "Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect", Physical Review Letters, Volume 109, 096602, 2012 Soo-Man Seo, Kyoung-Whan Kim, Jisu Ryu, Hyun-Woo Lee, Kyung-Jin Lee, "Current-induced motion of a transverse magnetic domain wall in the presence of spin Hall effect", Applied Physics Letters, Volume 101, 022405 (2012)Soo-Man Seo, Kyoung-Whan Kim, Jisu Ryu, Hyun-Woo Lee, Kyung-Jin Lee, "Current-induced motion of a transverse magnetic domain wall in the presence of spin Hall effect", Applied Physics Letters, Volume 101, 022405 (2012) A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. Grollier, A. Fert, "Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion", Physical Review B87, 020402(R), 2013A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. Grollier, A. Fert, "Matching domain-wall configuration and spin-orbit torques for efficient domain-wall" motion ", Physical Review B87, 020402 (R), 2013 Kab-Jin Kim, et al., "Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets", Nature Materials volume 16, pp. 1187-1192, 2017Kab-Jin Kim, et al., "Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets", Nature Materials volume 16, pp. 1187-1192, 2017 黒川雄一郎,粟野博之,“Pt/[Tb/Co]n多層配線の電流誘起磁壁移動におけるPt層の効果”,第40回 日本磁気学会学術講演概要集,5pE-3,2016年Yuichiro Kurokawa, Hiroyuki Awano, "Pt / [Tb / Co] n Effect of Pt layer on current-induced domain wall movement of multi-layer wiring", 40th Annual Meeting of the Magnetic Society of Japan, 5pE-3, 2016

磁性細線において磁壁を移動させるために電流密度の高い電流の供給を繰り返され続けると、磁性細線が劣化してMRAM等の寿命が短くなる虞がある。また、省電力化の観点からもより低い電流密度での動作が、特にある程度の幅および厚さの磁性細線を光変調素子に用いる空間光変調器においては望ましい。また、SOT効果による磁化反転や磁壁移動は、磁性膜が厚くなると効果が低下する傾向があり、記憶素子としては磁化の熱擾乱耐性が不十分であり、光変調素子としては磁気光学効果が小さい。特許文献6に記載されたような磁界アシストによる磁壁移動は、電流の供給方向と逆方向に磁界が印加されると移動が阻害されるので、磁壁を往復移動可能とするためには磁界の印加のON/OFFの切替または磁界の向きの反転の可能な磁界印加手段を備える必要があり、改良の余地がある。 If the supply of a current having a high current density is repeated in order to move the magnetic domain wall in the magnetic thin wire, the magnetic fine wire may deteriorate and the life of the MRAM or the like may be shortened. Further, from the viewpoint of power saving, operation at a lower current density is particularly desirable in a spatial light modulator in which a magnetic thin wire having a certain width and thickness is used as an optical modulation element. In addition, the effect of magnetization reversal and domain wall movement due to the SOT effect tends to decrease as the magnetic film becomes thicker, the thermal disturbance resistance of magnetization is insufficient for a storage element, and the magneto-optical effect is small for a light modulation element. .. In the domain wall movement by magnetic field assist as described in Patent Document 6, the movement is hindered when the magnetic field is applied in the direction opposite to the current supply direction. Therefore, in order to enable the reciprocating movement of the magnetic field, the magnetic field is applied. It is necessary to provide a magnetic field applying means capable of switching ON / OFF or reversing the direction of the magnetic field, and there is room for improvement.

本発明は前記問題点に鑑み創案されたもので、供給する電流の電流密度を高くすることなく、高速な書込みを可能とする磁気メモリおよび空間光変調器、ならびにその磁気記憶素子および磁壁移動素子を提供することが課題である。 The present invention was devised in view of the above problems, and is a magnetic memory and a spatial optical modulator capable of high-speed writing without increasing the current density of the supplied current, and a magnetic storage element and a domain wall moving element thereof. Is the challenge.

本発明者らは、SOT効果による磁性細線における磁壁移動が磁壁の磁気構造によって異なることから、外部磁界によって磁壁の磁気構造を安定させる構成に想到した。 Since the movement of the domain wall in the magnetic domain wall due to the SOT effect differs depending on the magnetic structure of the magnetic wall, the present inventors have come up with a configuration in which the magnetic structure of the domain wall is stabilized by an external magnetic field.

すなわち、本発明に係る磁壁移動素子は、垂直磁気異方性材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の下側に配置された面内磁気異方性の硬磁性材料からなる磁界印加部材と、を備え、前記磁界印加部材は、磁化方向が前記磁性細線の細線方向における所定の一方向に固定され、発する磁界が前記磁性細線に印加され、前記磁性細線に電流を細線方向に供給されると、前記磁性層に生成している磁壁が、細線方向における前記電流の供給方向に対応した方向に移動することを特徴とする。かかる構成により、磁壁移動素子は、供給する電流の電流密度に対して高速で、磁壁の移動範囲内における磁化を反転させることができる。 That is, the magnetic wall moving element according to the present invention has a magnetic thin wire formed by laminating a magnetic layer made of a vertically magnetic anisotropic material and a channel layer having a spin hole effect to form a fine wire, and a magnetic thin wire under the magnetic fine wire. A magnetic field applying member made of a hard magnetic material having in-plane magnetic anisotropy arranged on the side is provided, and the magnetic field applying member is fixed in a predetermined direction in the thin wire direction of the magnetic wire and emits. When a magnetic field is applied to the magnetic thin wire and a current is supplied to the magnetic thin wire in the thin wire direction, the magnetic wall generated in the magnetic layer moves in a direction corresponding to the current supply direction in the thin wire direction. It is characterized by. With such a configuration, the domain wall moving element can reverse the magnetization within the domain wall moving range at a high speed with respect to the current density of the supplied current.

本発明に係る磁気記憶素子は、前記磁壁移動素子の前記磁性細線において、前記チャネル層が前記磁性層の下に積層され、前記磁性層の磁壁の移動範囲内における上面に、非磁性金属膜または絶縁膜を挟んで、垂直磁気異方性材料からなる参照層を積層して備える。かかる構成により、磁気記憶素子は、供給する電流の電流密度に対して高速で書込みをすることができる。 In the magnetic storage element according to the present invention, in the magnetic fine wire of the domain wall moving element, the channel layer is laminated under the magnetic layer, and a non-magnetic metal film or a non-magnetic metal film or a non-magnetic metal film is formed on the upper surface of the magnetic layer within the moving range of the magnetic wall. A reference layer made of a vertically magnetic anisotropy material is laminated and provided with an insulating film interposed therebetween. With such a configuration, the magnetic storage element can write at a high speed with respect to the current density of the supplied current.

本発明に係る空間光変調器は、前記磁壁移動素子を画素に備え、光を上方から入射して反射させる。また、本発明に係る磁気メモリは、前記磁気記憶素子をメモリセルに備える。かかる構成により、空間光変調器および磁気メモリは、供給する電流の電流密度に対して高速で書込みをすることができる。 The spatial light modulator according to the present invention is provided with the domain wall moving element in a pixel, and light is incident from above and reflected. Further, the magnetic memory according to the present invention includes the magnetic storage element in the memory cell. With such a configuration, the spatial light modulator and the magnetic memory can write at high speed with respect to the current density of the supplied current.

本発明に係る磁壁移動素子および磁気記憶素子によれば、供給する電流の電流密度が低く抑えられて磁性細線が劣化し難い。本発明に係る空間光変調器および磁気メモリによれば、高速の書込みが可能で、かつ、長寿命化および省電力化される。 According to the domain wall moving element and the magnetic storage element according to the present invention, the current density of the supplied current is suppressed to a low level, and the magnetic fine wire is unlikely to deteriorate. According to the spatial light modulator and the magnetic memory according to the present invention, high-speed writing is possible, and the life is extended and the power is saved.

本発明の第1実施形態に係る磁壁移動素子の構造を模式的に説明する断面図である。It is sectional drawing which schematically explains the structure of the domain wall moving element which concerns on 1st Embodiment of this invention. 図1に示す磁壁移動素子の磁性細線の磁化方向および印加磁界を説明する模式図である。It is a schematic diagram explaining the magnetization direction of the magnetic thin wire of the domain wall moving element shown in FIG. 1 and the applied magnetic field. 図1に示す磁壁移動素子の磁性細線の磁化方向および印加磁界を説明する模式図である。It is a schematic diagram explaining the magnetization direction of the magnetic thin wire of the domain wall moving element shown in FIG. 1 and the applied magnetic field. 磁性細線における右旋回のネール型磁壁の磁気構造、およびスピン軌道トルク効果による磁壁の移動を説明する概念図である。It is a conceptual diagram explaining the magnetic structure of the right-turning nail-type domain wall in a magnetic thin wire, and the movement of the domain wall due to the spin-orbit torque effect. 磁性細線における右旋回のネール型磁壁の磁気構造、およびスピン軌道トルク効果による磁壁の移動を説明する概念図である。It is a conceptual diagram explaining the magnetic structure of the right-turning nail-type domain wall in a magnetic thin wire, and the movement of the domain wall due to the spin-orbit torque effect. 磁性細線における左旋回のネール型磁壁の磁気構造、およびスピン軌道トルク効果による磁壁の移動を説明する概念図である。It is a conceptual diagram explaining the magnetic structure of a left-turning domain wall in a magnetic thin wire, and the movement of the domain wall due to the spin-orbit torque effect. 磁性細線における左旋回のネール型磁壁の磁気構造、およびスピン軌道トルク効果による磁壁の移動を説明する概念図である。It is a conceptual diagram explaining the magnetic structure of a left-turning domain wall in a magnetic thin wire, and the movement of the domain wall due to the spin-orbit torque effect. 本発明の実施形態に係る空間光変調器の等価回路図である。It is an equivalent circuit diagram of the spatial light modulator which concerns on embodiment of this invention. 本発明の第2実施形態に係る磁壁移動素子を備える磁気記憶素子の構造を模式的に説明する断面図である。It is sectional drawing schematically explaining the structure of the magnetic memory element provided with the domain wall moving element which concerns on 2nd Embodiment of this invention. 図6に示す磁気記憶素子の磁化方向および印加磁界を説明する模式図である。It is a schematic diagram explaining the magnetization direction and the applied magnetic field of the magnetic memory element shown in FIG. 図6に示す磁気記憶素子の磁化方向および印加磁界を説明する模式図である。It is a schematic diagram explaining the magnetization direction and the applied magnetic field of the magnetic memory element shown in FIG. 本発明の実施形態に係る磁気メモリの等価回路図である。It is an equivalent circuit diagram of the magnetic memory which concerns on embodiment of this invention. 磁気メモリにおける、図6に示す磁気記憶素子の構造を説明する模式図である。It is a schematic diagram explaining the structure of the magnetic storage element shown in FIG. 6 in a magnetic memory. 磁気メモリにおける、本発明の第2実施形態の変形例に係る磁壁移動素子を備える磁気記憶素子の構造を模式的に説明する断面図である。It is sectional drawing which schematically explains the structure of the magnetic memory element provided with the domain wall moving element which concerns on the modification of 2nd Embodiment of this invention in a magnetic memory. 磁気メモリにおける、本発明の第2実施形態の変形例に係る磁壁移動素子を備える磁気記憶素子の構造を模式的に説明する断面図である。It is sectional drawing which schematically explains the structure of the magnetic memory element provided with the domain wall moving element which concerns on the modification of 2nd Embodiment of this invention in a magnetic memory. 本発明の第3実施形態に係る磁壁移動素子を備える磁気記憶素子の磁化方向および印加磁界を説明する模式図である。It is a schematic diagram explaining the magnetization direction and the applied magnetic field of the magnetic memory element provided with the domain wall moving element which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る磁壁移動素子を備える磁気記憶素子の磁化方向および印加磁界を説明する模式図である。It is a schematic diagram explaining the magnetization direction and the applied magnetic field of the magnetic memory element provided with the domain wall moving element which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る磁壁移動素子の構造を模式的に説明する断面図である。It is sectional drawing which schematically explains the structure of the domain wall moving element which concerns on 4th Embodiment of this invention. 本発明に係る磁壁移動素子を模擬した実施例のサンプルの顕微鏡写真である。It is a micrograph of the sample of the example which simulated the domain wall moving element which concerns on this invention. 本発明に係る磁壁移動素子を模擬した実施例のサンプルの磁性細線の、カー回転角の磁場依存性で表した磁化曲線である。It is a magnetization curve represented by the magnetic field dependence of the car rotation angle of the magnetic fine wire of the sample of the example which simulated the domain wall moving element which concerns on this invention. 従来の磁壁移動素子を模擬した比較例のサンプルの磁性細線の、カー回転角の磁場依存性で表した磁化曲線である。It is a magnetization curve represented by the magnetic field dependence of the car rotation angle of the magnetic thin wire of the sample of the comparative example simulating the conventional domain wall moving element. 本発明に係る磁壁移動素子を模擬した実施例のサンプルにおける、up-down磁壁の移動速度の電流密度依存性のグラフである。It is a graph of the current density dependence of the moving speed of the up-down domain wall in the sample of the Example which simulated the domain wall moving element which concerns on this invention. 本発明に係る磁壁移動素子を模擬した実施例のサンプルにおける、down-up磁壁の移動速度の電流密度依存性のグラフである。It is a graph of the current density dependence of the moving speed of the down-up domain wall in the sample of the Example which simulated the domain wall moving element which concerns on this invention. 本発明に係る磁壁移動素子を模擬した実施例のサンプルにおける、up-down磁壁の移動速度の磁界依存性のグラフである。It is a graph of the magnetic field dependence of the moving speed of the up-down domain wall in the sample of the Example which simulated the domain wall moving element which concerns on this invention. 本発明に係る磁壁移動素子を模擬した実施例のサンプルにおける、down-up磁壁の移動速度の磁界依存性のグラフである。It is a graph of the magnetic field dependence of the moving speed of the down-up domain wall in the sample of the Example which simulated the domain wall moving element which concerns on this invention. 従来の磁壁移動素子を模擬した比較例のサンプルの磁壁移動速度の電流密度依存性のグラフである。It is a graph of the current density dependence of the domain wall moving speed of the sample of the comparative example simulating the conventional domain wall moving element.

以下、本発明に係る磁壁移動素子、ならびに、磁気記憶素子、磁気メモリおよび空間光変調器を実現するための形態について、図面を参照して説明する。図面に示す磁壁移動素子、磁気記憶素子、磁気メモリ、および空間光変調器、ならびにそれらの要素は、明確に説明するために、大きさや位置関係等を誇張していることがあり、また、形状や構造を単純化していることがある。 Hereinafter, a mode for realizing a magnetic domain wall moving element, a magnetic storage element, a magnetic memory, and a spatial light modulator according to the present invention will be described with reference to the drawings. Domain wall moving elements, magnetic storage elements, magnetic memories, and spatial light modulators shown in the drawings, and their elements may be exaggerated in size, positional relationship, etc. for the sake of clarity, and the shape. And the structure may be simplified.

〔第1実施形態〕
(光変調素子)
本発明の第1実施形態に係る光変調素子(磁壁移動素子)10は、図1に示すように、垂直磁気異方性材料からなる磁性層11とスピンホール効果を有するチャネル層12とを上から順に積層して細線状に形成してなる磁性細線1と、磁性細線1の下側にチャネル層12と離間して配置された、磁化方向が磁性細線1の細線方向の一方向のナノ磁石(磁界印加部材)51と、を備え、さらに、磁性細線1の両端のそれぞれにおける下面(チャネル層12)に接続する電極61,62を備える。また、光変調素子10においては、磁性細線1の周囲等の空白部に絶縁体が設けられる。本明細書では適宜、磁性細線1の細線方向をx方向、細線幅方向をy方向、厚さ方向をz方向と称する。光変調素子10は、空間光変調器の画素に使用され、上方から入射した光を反射して偏光方向を2値の角度に変化させた光を出射する(例えば、特許文献4,5参照)。画素とは、空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。
[First Embodiment]
(Light modulation element)
As shown in FIG. 1, the optical modulation element (magnetic wall moving element) 10 according to the first embodiment of the present invention has a magnetic layer 11 made of a vertically magnetically anisotropic material and a channel layer 12 having a spinhole effect. A magnetic thin wire 1 formed by laminating in order from the beginning to form a fine wire, and a nanomagnet whose magnetization direction is unidirectional in the thin wire direction of the magnetic fine wire 1 arranged below the magnetic fine wire 1 at a distance from the channel layer 12. (Magnetic field application member) 51, and further, electrodes 61 and 62 connected to the lower surfaces (channel layer 12) at both ends of the magnetic wire 1 are provided. Further, in the light modulation element 10, an insulator is provided in a blank portion such as around the magnetic thin wire 1. In the present specification, the thin wire direction of the magnetic thin wire 1 is referred to as an x direction, the thin wire width direction is referred to as a y direction, and the thickness direction is referred to as a z direction. The light modulation element 10 is used as a pixel of a spatial light modulator, and reflects light incident from above to emit light whose polarization direction is changed to a binary angle (see, for example, Patent Documents 4 and 5). .. Pixels refer to means for displaying information (bright / dark) in the smallest unit of display by a spatial light modulator.

磁性層11は、光変調素子10の主要部材であり、一部の領域の磁化方向が上向きまたは下向きの所望の方向を示して、カー効果により、入射した光を反射する際に偏光方向を2値の角度(+θk/-θk)に変化させる。磁性層11は、細線状に形成された垂直磁気異方性材料からなり、図2Aや図2Bに示すように、磁壁DWによって細線方向に区切られ、異なる磁化方向(図中、ハッチングを付した矢印で表す)の2つの磁区、すなわち下向きの磁区と上向きの磁区とに分割されている。磁性層11は、後記するように、この磁壁DWが電気的手段によって細線方向に移動させられ、磁壁DWの移動の始点-終点間における磁化方向が移動の前後で変化する。磁性層11における磁壁DWの移動の始点-終点間の領域を、磁化反転可能領域1SWと称し、画素の開口部とすることができる。光変調素子10は、磁性層11の磁化反転可能領域1SWで反射した光を所望の偏光方向に変化させる。そのために、磁性層11は、垂直磁気異方性材料の、保磁力が比較的大きくないものを適用されることが好ましく、さらに磁気光学効果の高いものが好ましく、MRAMの磁気抵抗効果素子等に適用されるCPP-GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子の磁化自由層に用いられる公知の磁性材料を適用することができる。具体的には、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを膜厚比1:2~4程度に交互に繰り返し積層したCo/Pd多層膜等の多層膜、Tb-Fe-Co,Gd-Fe等の希土類金属と遷移金属との合金(RE-TM合金)、L10系の規則合金としたFePt, FePd,CrPt3等が挙げられる。本実施形態においては、保磁力が小さく、磁気光学効果の高いGd-Fe合金が特に好適である。 The magnetic layer 11 is a main member of the light modulation element 10, and indicates a desired direction in which the magnetization direction of a part of the region is upward or downward, and the polarization direction is set to 2 when the incident light is reflected due to the Kerr effect. Change to the angle of value (+ θ k / −θ k ). The magnetic layer 11 is made of a vertically magnetic anisotropy material formed in a fine line shape, and is separated in the fine line direction by a magnetic domain wall DW as shown in FIGS. 2A and 2B, and has different magnetization directions (hatched in the figure). It is divided into two magnetic domains (represented by arrows), that is, a downward magnetic domain and an upward magnetic domain. As will be described later, in the magnetic layer 11, the domain wall DW is moved in the wire direction by electrical means, and the magnetization direction between the start point and the end point of the domain wall DW movement changes before and after the movement. The region between the start point and the end point of the movement of the domain wall DW in the magnetic layer 11 is referred to as a magnetization reversible region 1 SW , and can be an opening of a pixel. The light modulation element 10 changes the light reflected by the magnetization reversible region 1 SW of the magnetic layer 11 in a desired polarization direction. Therefore, it is preferable that the magnetic layer 11 is made of a vertically magnetic anisotropic material having a relatively small coercive force, and more preferably has a high magneto-optical effect, and is used as a magnetoresistive element of an MRAM or the like. It is possible to apply known magnetic materials used for the magnetized free layer of applicable CPP-GMR (Current Perpendicular to the Plane Giant MagnetoResistance) elements and TMR (Tunnel MagnetoResistance) elements. can. Specifically, a multilayer film such as a Co / Pd multilayer film in which transition metals such as Fe, Co, and Ni and precious metals such as Pd and Pt are alternately and repeatedly laminated at a film thickness ratio of about 1: 2 to 4, Tb. Examples thereof include alloys of rare earth metals such as Fe-Co and Gd-Fe and transition metals (RE-TM alloys), FePt, FePd, CrPt 3 and the like as L10-based ordered alloys. In this embodiment, a Gd—Fe alloy having a small coercive force and a high magneto-optical effect is particularly suitable.

磁性細線1を構成する磁性層11およびチャネル層12のそれぞれは、厚さと幅が一様な直線状であることが好ましい。磁性層11は、厚さおよび幅に対して十分に長い細線状に形成される。さらに、磁性層11は、厚さと幅の積である断面積が小さいほど、磁性細線1に供給する電流を小さくすることができる。一方、磁性層11は、磁化の保持のためにある程度の厚さおよび幅を有することが好ましく、また、厚さが大きいほど光変調度が高く(カー回転角θkが大きく)なり、具体的には、厚さが5nm以上であることが好ましく、10nm以上であることがより好ましい。ただし、磁性層11は、材料にもよるが、厚さが20nm程度を超えると光変調度の上昇が鈍化し、さらに厚膜化すると垂直磁気異方性が保持され難い場合がある。また、磁性層11が厚いと磁壁DWが移動し難くなる。したがって、磁性層11は、厚さが30nm以下であることが好ましく、20nm以下であることがより好ましい。また、画素の開口部である磁性層11の磁化反転可能領域1SWが広いことが好ましく、入射光の波長にもよるが、幅、および磁化反転可能領域1SWの細線方向長が、200~300nm程度以上であることが好ましい。また、磁性層11は、磁化反転可能領域1SWの細線方向両外側に隣接した領域を、磁化方向が固定された領域(磁化固定領域)1FX1,1FX2とし、それぞれ細線方向長が細線幅の1/2以上であることが好ましい。また、磁性層11(磁性細線1)は、磁化固定領域1FX1,1FX2の細線方向両外側に、電極61,62が接続されるためにさらに延伸して形成される。電極61,62との接続領域における磁性層11の磁化方向は、特に規定されない。図2Aおよび図2Bにおいては、電極62上に下向きの磁区が形成され、磁化固定領域1FX2との境界に磁壁DW´が生成している。 It is preferable that each of the magnetic layer 11 and the channel layer 12 constituting the magnetic thin wire 1 is a linear shape having a uniform thickness and width. The magnetic layer 11 is formed in a thin line shape sufficiently long with respect to the thickness and width. Further, the smaller the cross-sectional area, which is the product of the thickness and the width, of the magnetic layer 11, the smaller the current supplied to the magnetic thin wire 1. On the other hand, the magnetic layer 11 preferably has a certain thickness and width in order to maintain the magnetization, and the larger the thickness, the higher the degree of optical modulation (the larger the car rotation angle θ k ), which is specific. The thickness is preferably 5 nm or more, more preferably 10 nm or more. However, although it depends on the material, when the thickness of the magnetic layer 11 exceeds about 20 nm, the increase in the optical modulation degree is slowed down, and when the film is further thickened, it may be difficult to maintain the vertical magnetic anisotropy. Further, if the magnetic layer 11 is thick, the domain wall DW becomes difficult to move. Therefore, the thickness of the magnetic layer 11 is preferably 30 nm or less, more preferably 20 nm or less. Further, it is preferable that the magnetization reversible region 1 SW of the magnetic layer 11 which is the opening of the pixel is wide, and the width and the length of the magnetization reversible region 1 SW in the thin line direction are 200 to 200, although it depends on the wavelength of the incident light. It is preferably about 300 nm or more. Further, in the magnetic layer 11, the regions adjacent to both outer sides of the magnetization reversible region 1 SW in the wire direction are defined as regions in which the magnetization direction is fixed (magnetization fixed region) 1 FX1 and 1 FX2 , and the length in the wire direction is the wire width, respectively. It is preferably ½ or more of. Further, the magnetic layer 11 (magnetic thin wire 1) is further stretched and formed so that the electrodes 61 and 62 are connected to both outer sides in the thin wire direction of the magnetization fixing regions 1 FX1 and 1 FX2 . The magnetization direction of the magnetic layer 11 in the connection region with the electrodes 61 and 62 is not particularly specified. In FIGS. 2A and 2B, a downward magnetic domain is formed on the electrode 62, and a domain wall DW'is formed at the boundary with the magnetization fixed region 1 FX2 .

チャネル層12は、電流を流すパスであり、磁性層11の片面、ここでは下面に積層され、磁性層11と同じ平面視形状に形成される。チャネル層12は、電流が流れるとスピンホール効果(SHE)によってスピン流を発生させる薄膜であり、例えば、常磁性の遷移金属の中でも高比重のTa,Pt,Wが適用される。また、チャネル層12は、BiSb,BiSe等のトポロジカル絶縁体を適用することもできる。チャネル層12は、厚さが1nm以上であることが好ましく、10nm以下であることが好ましい。 The channel layer 12 is a path through which an electric current flows, and is laminated on one side of the magnetic layer 11, here on the lower surface, and is formed in the same plan view shape as the magnetic layer 11. The channel layer 12 is a thin film that generates a spin current by the spin Hall effect (SHE) when a current flows. For example, Ta, Pt, W having a high specific gravity among paramagnetic transition metals are applied. Further, a topological insulator such as BiSb or BiSe can be applied to the channel layer 12. The thickness of the channel layer 12 is preferably 1 nm or more, and preferably 10 nm or less.

ナノ磁石51は、x方向長がy方向長および厚さよりも長い、磁性細線1の細線方向に沿った極小の棒磁石であり、ここでは+x側をN極とする。なお、別途記載のない限り、各図面において、ナノ磁石51および後記のナノ磁石52,53は、極性「N」、「S」を付し、さらに、N極側にハッチングを付して表す。また、図1に、ナノ磁石51からの磁力線を破線で表す。ナノ磁石51は、面内磁気異方性を有する硬磁性体からなり、例えば、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを膜厚比2~4:1程度に交互に繰り返し積層したCo/Pt多層膜等の多層膜が適用される。ナノ磁石51は、漏れ磁界が磁性層11に到達し、磁化反転可能領域1SWに、当該ナノ磁石51の極性と逆向きの-x方向に磁界Hassを印加する。磁界Hassは、後記するように、磁性細線1に所定の大きさの電流Iwを供給されると、磁性層11の磁壁DWが移動することのできる大きさであり、磁性層11の電流Iwを供給されたときの保磁力(一時保磁力)Hcf´(Hcf´≦Hcf、Hcf:磁性層11の電流を供給されていないときの保磁力)未満(Hass<Hcf´)において大きいことが好ましい。ナノ磁石51はさらに、磁性層11の磁化固定領域1FX1,1FX2にそれぞれ、-z方向、+z方向に磁界-Hpin,+Hpinを印加する。磁界-Hpin,+Hpinは、磁性層11の一時保磁力Hcf´よりも大きいこと(Hpin>Hcf´)が好ましく、磁性層11の保磁力Hcfよりも大きいことが理想的である。そのために、ナノ磁石51は、両端(両極)がそれぞれ、磁性層11の磁化固定領域1FX1,1FX2の直下に配置されることが好ましい。したがって、ナノ磁石51は、細線方向長が磁性細線1よりも短くかつ磁化反転可能領域1SW以上で、また、幅が磁性細線1と同程度以上に形成される。また、ナノ磁石51は、磁性層11に磁界Hass,-Hpin,+Hpinを十分な強さで印加するために、磁性層11のより近くに配置されることが好ましい。ここで、ナノ磁石51は、磁性細線1(磁性層11またはチャネル層12)に接触していてもよいが、磁性細線1に供給される電流の一部が流れることになるので電流を大きくする必要が生じる。したがって、ナノ磁石51は、磁性細線1およびこれに電気的に接続する電極61,62に対して、絶縁膜で隔てられて、具体的には3nm以上空けて配置されることが好ましい。 The nanomagnet 51 is a very small bar magnet whose length in the x direction is longer than the length in the y direction and the thickness along the thin wire direction of the magnetic fine wire 1, and here, the + x side is the N pole. Unless otherwise specified, in each drawing, the nanomagnet 51 and the nanomagnets 52 and 53 described later are represented by having polarities “N” and “S” and further having hatching on the N pole side. Further, in FIG. 1, the lines of magnetic force from the nanomagnet 51 are represented by broken lines. The nanomagnet 51 is made of a hard magnetic material having in-plane magnetic anisotropy, and for example, a transition metal such as Fe, Co, Ni and a noble metal such as Pd, Pt have a film thickness ratio of about 2 to 4: 1. A multilayer film such as a Co / Pt multilayer film laminated repeatedly alternately is applied. In the nanomagnet 51, the leakage magnetic field reaches the magnetic layer 11, and the magnetic field Hass is applied to the magnetization reversible region 1 SW in the −x direction opposite to the polarity of the nanomagnet 51. As will be described later, the magnetic field Hass has a size that allows the magnetic wall DW of the magnetic layer 11 to move when a current I w of a predetermined magnitude is supplied to the magnetic thin wire 1, and is a current of the magnetic layer 11. Coercive force when I w is supplied (temporary coercive force) Hc f ´ (Hc f ′ ≦ Hc f , Hc f : Coercive force when the current of the magnetic layer 11 is not supplied) (H ass <Hc Larger is preferable in f ´). Further, the nanomagnet 51 further applies magnetic fields −H pin and + H pin in the −z direction and the + z direction to the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11. The magnetic field −H pin and + H pin are preferably larger than the temporary coercive force Hc f ′ of the magnetic layer 11 (H pin > Hc f ′), and ideally larger than the coercive force Hc f ′ of the magnetic layer 11. be. Therefore, it is preferable that both ends (both poles) of the nanomagnet 51 are arranged directly below the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11, respectively. Therefore, the nanomagnet 51 is formed so that the length in the wire direction is shorter than that of the magnetic wire 1 and the magnetization reversible region 1 SW or more, and the width is equal to or more than that of the magnetic wire 1. Further, the nanomagnet 51 is preferably arranged closer to the magnetic layer 11 in order to apply the magnetic fields Hass , −H pin , and + H pin to the magnetic layer 11 with sufficient strength. Here, the nanomagnet 51 may be in contact with the magnetic thin wire 1 (magnetic layer 11 or channel layer 12), but since a part of the current supplied to the magnetic thin wire 1 flows, the current is increased. Need arises. Therefore, it is preferable that the nanomagnet 51 is separated from the magnetic thin wire 1 and the electrodes 61 and 62 electrically connected to the magnetic thin wire 1 by an insulating film, and specifically arranged with a space of 3 nm or more.

電極61および電極62は、磁性細線1に、外部から電流を細線方向(+x方向、-x方向)に供給するための端子である。そのために、電極61,62は、磁性層11の磁化反転可能領域1SWの両外側で、磁性層11またはチャネル層12に接続する。電極61,62は、Cu,Al,Au,Ag,Ta,Cr,Pt,Ru等の金属やその合金のような一般的な金属電極材料で、磁性細線1に供給する電流の大きさに対応した厚さや幅に形成される。本実施形態においては、電極61,62は、磁性細線1の下側のチャネル層12に接続して設けられる。そのため、ナノ磁石51の両端近傍で磁性層11に印加される磁界-Hpin,+Hpinを遮蔽しないように、電極61,62は、ナノ磁石51の両端から十分に間隙を設けた、平面視で磁性層11の磁化固定領域1FX1,1FX2の外側に配置されることが好ましい。 The electrode 61 and the electrode 62 are terminals for supplying an electric current to the magnetic thin wire 1 from the outside in the thin wire direction (+ x direction, −x direction). Therefore, the electrodes 61 and 62 are connected to the magnetic layer 11 or the channel layer 12 on both outer sides of the magnetization reversible region 1 SW of the magnetic layer 11. The electrodes 61 and 62 are general metal electrode materials such as metals such as Cu, Al, Au, Ag, Ta, Cr, Pt, and Ru and their alloys, and correspond to the magnitude of the current supplied to the magnetic wire 1. It is formed to the thickness and width of the metal. In the present embodiment, the electrodes 61 and 62 are provided by being connected to the channel layer 12 on the lower side of the magnetic wire 1. Therefore, the electrodes 61 and 62 are provided with sufficient gaps from both ends of the nanomagnet 51 so as not to shield the magnetic fields −H pin and + H pin applied to the magnetic layer 11 in the vicinity of both ends of the nanomagnet 51. It is preferable that the magnetic layer 11 is arranged outside the magnetization fixed regions 1 FX1 and 1 FX2 .

光変調素子10において、磁性細線1とナノ磁石51との間等の空白部に設けられる絶縁体は、SiO2,SiN,Al23等の半導体素子に設けられる公知の無機絶縁材料が適用され、部位によって異なる材料を設けてもよい。特に、磁性層11がRE-TM合金等の酸化し易い材料からなる場合には、磁性層11と接触する部位に、SiN等の非酸化物やMgOを適用することが好ましい。また、光変調素子10(空間光変調器90)の製造時においては、このような絶縁材料を厚さ1~10nm程度の保護膜として、チャネル層12、磁性層11をそれぞれ形成する材料と連続して成膜することが好ましい。 In the light modulation element 10, a known inorganic insulating material provided for a semiconductor element such as SiO 2 , SiN, Al 2 O 3 is applied to the insulator provided in a blank portion such as between the magnetic wire 1 and the nanomagnet 51. However, different materials may be provided depending on the site. In particular, when the magnetic layer 11 is made of a material that is easily oxidized such as a RE-TM alloy, it is preferable to apply a non-oxide such as SiN or MgO to the portion in contact with the magnetic layer 11. Further, at the time of manufacturing the light modulation element 10 (spatial light modulator 90), such an insulating material is used as a protective film having a thickness of about 1 to 10 nm, and is continuous with the material forming the channel layer 12 and the magnetic layer 11, respectively. It is preferable to form a film.

(磁性細線における磁壁移動)
本実施形態に係る光変調素子の、電流供給による磁性細線における磁壁移動について、図3A、図3B、図4A、および図4Bを参照して説明する。これらの図面では、磁性細線1の、磁性層11の磁化反転可能領域1SW(図2A、図2B参照)の磁壁DWを含む部分を特に細線方向(x方向)に拡大して表す。まず、磁壁の磁気構造について説明する。強磁性体である磁性層11は、磁化方向が下向きの磁区D1と上向きの磁区D2との境界では、磁化方向が下向きから上向きに急激に切り換わらず、隣り合う磁気モーメントm,mを同じ向きに揃えようとする交換相互作用が働くので、磁壁DWに配列した磁気モーメントmが磁区D1側から磁区D2側へ少しずつ傾斜している。なお、これらの図面の磁壁DWのように、-x側が下向き、+x側が上向きの磁化方向となる磁壁を、down-up磁壁と称する。反対に、-x側が上向き、+x側が下向きの磁化方向となる磁壁を、up-down磁壁と称する。ここで、垂直磁気異方性材料からなる磁性体の磁壁には2種類の磁気構造がある。一つは、図3A、図3B、図4A、および図4Bに示すように、磁壁DWにおける磁気モーメントmが、磁壁面(yz面)に垂直な細線方向(x方向)に向けて傾斜して、xz面内で180°回転するネール(Neel)型磁壁である。もう一つは、磁気モーメントmが、細線幅方向(y方向)に向けて傾斜して、磁壁面(yz面)内で180°回転するブロッホ(Bloch)型磁壁である(図示省略)。さらにそれぞれの磁壁において、磁気モーメントの回転方向が、右旋回(right-handed chirality)と左旋回(left-handed chirality)とを示し得る。図3Aおよび図3Bに示す磁壁DWは右旋回のネール型の磁気構造であり、図4Aおよび図4Bに示す磁壁DWは左旋回のネール型の磁気構造である。
(Domain wall movement in magnetic thin wire)
The domain wall movement of the light modulation element according to the present embodiment in the magnetic fine wire due to the current supply will be described with reference to FIGS. 3A, 3B, 4A, and 4B. In these drawings, the portion of the magnetic thin wire 1 including the domain wall DW in the magnetization reversible region 1 SW (see FIGS. 2A and 2B) of the magnetic layer 11 is shown enlarged in the thin line direction (x direction). First, the magnetic structure of the domain wall will be described. In the magnetic layer 11 which is a ferromagnetic material, the magnetic moments m and m adjacent to each other do not suddenly switch from downward to upward at the boundary between the magnetic domain D1 having a downward magnetization direction and the magnetic domain D2 having an upward magnetization direction, and the adjacent magnetic moments m and m have the same direction. Since the exchange interaction that tries to align with each other works, the magnetic moment m arranged on the magnetic domain DW is gradually inclined from the magnetic domain D1 side to the magnetic domain D2 side. A domain wall having a magnetization direction in which the −x side faces downward and the + x side faces upward, such as the domain wall DW in these drawings, is referred to as a down-up domain wall. On the contrary, a domain wall whose magnetization direction is upward on the −x side and downward on the + x side is referred to as an up-down domain wall. Here, there are two types of magnetic structures in the domain wall of a magnetic material made of a vertically magnetic anisotropy material. One is that, as shown in FIGS. 3A, 3B, 4A, and 4B, the magnetic moment m in the domain wall DW is inclined toward the wire direction (x direction) perpendicular to the domain wall (yz plane). , A Neel-type domain wall that rotates 180 ° in the xz plane. The other is a Bloch-type magnetic wall in which the magnetic moment m is inclined toward the wire width direction (y direction) and rotates 180 ° in the magnetic wall surface (yz plane) (not shown). Further, in each domain wall, the rotation direction of the magnetic moment may indicate right-handed chirality and left-handed chirality. The domain wall DW shown in FIGS. 3A and 3B has a right-turning nail-type magnetic structure, and the domain wall DW shown in FIGS. 4A and 4B has a left-turning nail-type magnetic structure.

通常、細線状に形成された垂直磁気異方性の磁性体において、磁壁は、磁気構造がこれら4通りに交互に変化しながら移動する。ただし、細線幅が十分に細い場合には、ネール型磁壁になり易く、右旋回と左旋回の2通りに変化する。しかし、本実施形態に係る光変調素子(磁壁移動素子)10においては、ナノ磁石51によって、図3Aおよび図3Bに示すように、常時、細線方向における所定の一方向(-x方向)の磁界Hassが磁性層11に印加されているので、磁壁DWは、細線幅にかかわらず、右旋回のネール型の磁気構造で安定する。なお、ナノ磁石51が磁性層11の上側に配置されている場合には、図4Aおよび図4Bに示すように、+x方向の磁界Hassが磁性層11に印加されているので左旋回のネール型の磁壁DWになる。 Normally, in a magnetic material having vertical magnetic anisotropy formed in a fine line shape, the domain wall moves while the magnetic structure changes alternately in these four ways. However, when the fine line width is sufficiently narrow, it tends to become a nail-type domain wall, and it changes in two ways, right turn and left turn. However, in the light modulation element (domain wall moving element) 10 according to the present embodiment, as shown in FIGS. 3A and 3B, the nanomagnet 51 always causes a magnetic field in a predetermined one direction (−x direction) in the thin line direction. Since Hass is applied to the magnetic layer 11, the domain wall DW is stable with a right-turning nail-shaped magnetic structure regardless of the wire width. When the nanomagnet 51 is arranged on the upper side of the magnetic layer 11, as shown in FIGS. 4A and 4B, the magnetic field Hass in the + x direction is applied to the magnetic layer 11, so that the nail turns left. It becomes a type magnetic wall DW.

このような磁性細線1に、電極61,62を介して電流Iwを細線方向の一方向(+x方向)に供給しているとき、図3Aに示すように、チャネル層12にyz面の単位面積当たりの電流Jが+x方向に流れる。すると、チャネル層12においては、スピンホール効果によってスピン流が誘起されて、細線幅方向の互いに逆向き(-y方向、+y方向)のスピンを有する電子e-が、上下の各表層に分かれて蓄積される。したがって、上側の磁性層11との界面近傍に、-y方向のスピンを有する電子e-が偏在する。-y方向のスピンを有する電子e-は、磁性層11の磁壁DWの磁気モーメントmをxz面内で反時計回りに回転させる。なお、図3A、図3B、図4A、および図4Bにおいて、磁壁DWの磁気モーメントmに回転方向を表す矢印を付す。また、同時に、磁性層11にも、チャネル層12との抵抗差に応じた電流密度の電流が流れる。この電流密度が十分に高いと、磁性層11は、ジュール熱が発生して温度が上昇することによって保磁力がHcfからHcf´に低下して磁気異方性が低下し、磁気モーメントmが弱くなって回転し易くなる。その結果、右旋回のネール型の磁壁DWが、見かけ上、電流Iwと同じ+x方向に移動して、後側の磁区D1が伸長し、前側の磁区D2が短縮する。反対に、図3Bに示すように、磁性細線1に電流Iwを-x方向に供給しているときには、チャネル層12における磁性層11との界面近傍に+y方向のスピンを有する電子e-が偏在する。+y方向のスピンを有する電子e-は、磁性層11の磁壁DWの磁気モーメントmをxz面内で時計回りに回転させるので、見かけ上、磁壁DWが-x方向に移動する。すなわち、磁壁が電流の供給方向に移動する。 When a current I w is supplied to such a magnetic thin wire 1 via electrodes 61 and 62 in one direction (+ x direction) in the thin wire direction, as shown in FIG. 3A, a unit of yz plane is supplied to the channel layer 12. The current J per area flows in the + x direction. Then, in the channel layer 12, a spin current is induced by the spin Hall effect, and electrons e - having spins in opposite directions (-y direction, + y direction) in the line width direction are separated into upper and lower surface layers. Accumulate. Therefore, electrons e having a spin in the −y direction are unevenly distributed in the vicinity of the interface with the upper magnetic layer 11. The electron e - having a spin in the -y direction rotates the magnetic moment m of the domain wall DW of the magnetic layer 11 counterclockwise in the xz plane. In FIGS. 3A, 3B, 4A, and 4B, an arrow indicating the rotation direction is attached to the magnetic moment m of the domain wall DW. At the same time, a current having a current density corresponding to the resistance difference from the channel layer 12 also flows through the magnetic layer 11. When this current density is sufficiently high, the coercive force of the magnetic layer 11 decreases from Hc f to Hc f ′ due to the generation of Joule heat and the temperature rises, the magnetic anisotropy decreases, and the magnetic moment m. Becomes weaker and easier to rotate. As a result, the right-turning nail-shaped domain wall DW apparently moves in the same + x direction as the current I w , the rear magnetic domain D1 is extended, and the front magnetic domain D2 is shortened. On the contrary, as shown in FIG. 3B, when the current I w is supplied to the magnetic wire 1 in the −x direction, the electrons e having a spin in the + y direction in the vicinity of the interface with the magnetic layer 11 in the channel layer 12 are generated. Unevenly distributed. Since the electron e - having a spin in the + y direction rotates the magnetic moment m of the domain wall DW of the magnetic layer 11 clockwise in the xz plane, the domain wall DW apparently moves in the −x direction. That is, the domain wall moves in the current supply direction.

図4Aに示す磁性細線1においても、図3Aと同様に、電流Iwを+x方向に供給しているとき、積層したチャネル層12の界面近傍に、-y方向のスピンを有する電子e-が偏在する。-y方向のスピンを有する電子e-は、磁壁DWの磁気モーメントmを反時計回りに回転させるので、左旋回のネール型の磁壁DWは、見かけ上、電流Iwと逆の-x方向に移動する。そして、図4Bに示すように、図3Bと同様に、電流Iwを-x方向に供給されていると、+y方向のスピンを有する電子e-が、磁気モーメントmを時計回りに回転させるので、見かけ上、磁壁DWが+x方向に移動する。すなわち、左旋回のネール型の磁壁は、電流の供給方向と逆方向に移動する。 Also in the magnetic thin wire 1 shown in FIG. 4A, similarly to FIG. 3A, when the current I w is supplied in the + x direction, electrons e having a spin in the −y direction are generated near the interface of the stacked channel layers 12. Unevenly distributed. Since the electron e - having a spin in the -y direction rotates the magnetic moment m of the domain wall DW counterclockwise, the left-turning nail-shaped domain wall DW apparently rotates in the -x direction opposite to the current I w . Moving. Then, as shown in FIG. 4B, as in FIG. 3B, when the current I w is supplied in the −x direction, the electron e having a spin in the + y direction rotates the magnetic moment m clockwise. Apparently, the domain wall DW moves in the + x direction. That is, the left-turning nail-shaped domain wall moves in the direction opposite to the current supply direction.

このように、本実施形態に係る光変調素子10においては、磁壁DWの磁気モーメントの旋回方向によって、電流Iwの供給方向と磁壁DWの移動方向との関係が逆になる。また、ナノ磁石51から印加される磁界Hassは、磁性細線1の積層構造(チャネル層12/磁性層11/絶縁体)に依拠するジャロシンスキー-守谷相互作用(Dzyaloshinskii - Moriya Interaction:DMI)による有効磁界と同じ向きである方が、磁壁が移動し易く、高速になる。有効磁界は、+x方向に磁化方向が上向きから下向きに変化する磁壁(up-down磁壁)においては+x方向、下向きから上向きに変化する磁壁(down-up磁壁)においては-x方向であり、すなわち、磁壁DWが右旋回のネール型の磁気構造である方が好ましい。 As described above, in the light modulation element 10 according to the present embodiment, the relationship between the supply direction of the current I w and the movement direction of the domain wall DW is reversed depending on the turning direction of the magnetic moment of the domain wall DW. Further, the magnetic field Hass applied from the nanomagnet 51 depends on the laminated structure (channel layer 12 / magnetic layer 11 / insulator) of the magnetic fine wire 1 and is based on the Dzyaloshinskii -Moriya Interaction (DMI). The magnetic wall is easier to move and the speed is higher when the direction is the same as the effective magnetic field. The effective magnetic field is in the + x direction in a domain wall (up-down domain wall) in which the magnetization direction changes from upward to downward in the + x direction, and in the -x direction in a domain wall (down-up domain wall) in which the magnetization direction changes from downward to upward. , It is preferable that the domain wall DW has a right-turning nail-shaped magnetic structure.

本実施形態に係る光変調素子10においては、磁性細線1の下側に配置されたナノ磁石51によって、磁壁DWが、右旋回のネール型の磁気構造で安定しているので、常に電流Iwの供給方向に移動する。したがって、磁性層11の磁化反転可能領域1SWにおける磁化方向を、図2Aに示す下向きの状態から図2Bに示す上向きの状態に磁化反転させるときには、磁壁DWを-x方向に移動させるために、電極61を電流源の-極に、電極62を+極に接続して電流Iwを-x方向に供給する。反対に、磁化反転可能領域1SWの磁化方向を図2Bに示す上向きから図2Aに示す下向きに磁化反転させるときには、電極61を+極に、電極62を-極に接続して電流Iwを+x方向に供給する。図2Aおよび図2Bにおいて、電流Iwの供給方向を表す矢印を、チャネル層12に付す。 In the light modulation element 10 according to the present embodiment, the domain wall DW is stabilized by the right-turning nail-shaped magnetic structure by the nanomagnet 51 arranged under the magnetic wire 1, so that the current I is always present. Move in the supply direction of w . Therefore, when the magnetization direction of the magnetic layer 11 in the magnetization reversible region 1 SW is reversed from the downward state shown in FIG. 2A to the upward state shown in FIG. 2B, the domain wall DW is moved in the −x direction. The electrode 61 is connected to the negative electrode of the current source and the electrode 62 is connected to the positive electrode to supply the current I w in the −x direction. On the contrary, when the magnetization direction of the magnetization reversible region 1 SW is reversed from the upward direction shown in FIG. 2B to the downward direction shown in FIG. 2A, the electrode 61 is connected to the positive electrode and the electrode 62 is connected to the negative electrode to generate a current I w . Supply in the + x direction. In FIGS. 2A and 2B, an arrow indicating the supply direction of the current I w is attached to the channel layer 12.

そして、前記したように、磁性層11の磁化反転可能領域1SWで反射した光は、磁化方向によって、偏光方向が入射光に対して角度+θk/-θk回転(旋光)した2値の光のいずれかとなる。したがって、2値の光の一方を明(白)に、他方を暗(黒)に設定することにより、光変調素子10は反射型の空間光変調器の画素に使用することができる。 Then, as described above, the light reflected by the magnetization reversible region 1 SW of the magnetic layer 11 has a binary value whose polarization direction is an angle + θ k / −θ k rotation (optical rotation) with respect to the incident light depending on the magnetization direction. It becomes one of the lights. Therefore, by setting one of the binary lights to light (white) and the other to dark (black), the light modulation element 10 can be used for the pixels of the reflection type spatial light modulator.

磁界Hassが大きいほど、磁壁DWの磁気構造が右旋回のネール型で安定するので、磁壁移動が高速になる。また、電流Iwの電流密度が高いほど、y方向における一方向のスピンを有する電子e-がチャネル層12の磁性層11との界面に多く蓄積するので、そして、磁性層11の一時保磁力Hcf´が小さくなるので、磁壁移動が高速になる。ただし、電流Iwの電流密度が高いと、磁性細線1が劣化し易くなる。磁壁移動速度は、電流Iwの電流密度や磁性層11に印加されている磁界Hassの大きさ等に依存するので、これらに応じて、磁壁DWの移動距離が磁化反転可能領域1SWの細線方向長以上になるように、電流Iwの供給時間を設定する。磁化反転可能領域1SWの細線方向長が1μm程度であれば、磁壁移動速度によるが、電流Iwの供給時間は10ns程度である。このような極めて短時間の直流電流を供給するために、供給時間をピーク期間に設定した直流パルス電流として電流Iwを供給することが好ましい。 The larger the magnetic field Hass , the more stable the magnetic structure of the domain wall DW is in the right-turning nail type, and the faster the domain wall moves. Further, the higher the current density of the current I w , the more electrons e having a spin in one direction in the y direction are accumulated at the interface of the channel layer 12 with the magnetic layer 11, and therefore, the temporary coercive force of the magnetic layer 11 is accumulated. Since Hc f ′ becomes smaller, the movement of the magnetic wall becomes faster. However, if the current density of the current I w is high, the magnetic thin wire 1 tends to deteriorate. The domain wall moving speed depends on the current density of the current I w , the magnitude of the magnetic field Hass applied to the magnetic layer 11, and the like. The supply time of the current I w is set so as to be longer than the length in the wire direction. If the length of the magnetization reversible region 1 SW in the wire direction is about 1 μm, the supply time of the current I w is about 10 ns, depending on the domain wall moving speed. In order to supply such an extremely short DC current, it is preferable to supply the current I w as a DC pulse current whose supply time is set to the peak period.

磁性層11の磁化反転可能領域1SWの外側においては、-x方向の磁界Hassが小さいまたは印加されないので、磁壁DWが磁化反転可能領域1SWの終端を通過すると、磁壁DWの磁気構造が不安定となり、電流Iwの供給が継続されていても磁壁DWが移動不可能となる。また、図2Aや図2Bに示すように、磁化固定領域1FX2の細線方向外側の端の磁壁DW´が生成していても、同様の理由により、電流Iwが流れていてもこの磁壁DW´は移動しない。このように、磁界Hassが印加されていない領域では磁壁DWが移動しないように、電流Iwの大きさを設定することが好ましい。あるいは、磁界Hassが印加されていなくても磁壁DWが低速で移動可能であるとしても、ナノ磁石51の端近傍から印加されるz方向の磁界-Hpin,+Hpinが磁化固定領域1FX1,1FX2を下向き、上向きの磁区に固定しているので、磁化固定領域1FX1,1FX2内までは磁壁DWが移動しない。そのためには、磁性層11の一時保磁力Hcf´がHpinよりも小さくなる(Hcf´<Hpin)ように、電流Iwの大きさを設定することが好ましい。 Since the magnetic field Hass in the −x direction is small or not applied outside the magnetization reversible region 1 SW of the magnetic layer 11, when the domain wall DW passes through the end of the magnetization reversible region 1 SW , the magnetic structure of the domain wall DW is changed. It becomes unstable and the domain wall DW becomes immovable even if the supply of the current I w is continued. Further, as shown in FIGS. 2A and 2B, even if the domain wall DW'at the outer end in the wire direction of the magnetization fixed region 1 FX2 is generated, the domain wall DW is generated even if the current I w is flowing for the same reason. ´ does not move. As described above, it is preferable to set the magnitude of the current I w so that the domain wall DW does not move in the region where the magnetic field Hass is not applied. Alternatively, even if the domain wall DW can move at a low speed even if the magnetic field Hass is not applied, the magnetic field −H pin , + H pin in the z direction applied from the vicinity of the end of the nanomagnet 51 is the magnetization fixed region 1 FX1 . , 1 Since FX2 is fixed in the downward and upward magnetic domains, the domain wall DW does not move into the magnetization fixed regions 1 FX1 and 1 FX2 . For that purpose, it is preferable to set the magnitude of the current I w so that the temporary coercive force Hc f ′ of the magnetic layer 11 becomes smaller than the H pin (Hc f ′ <H pin ).

なお、磁性層11は、厚さが大きくなると、チャネル層12との界面当たりにおいて、体積が増大して磁気モーメントmが強くなり、一方、チャネル層12の界面近傍の電子e-が有する角運動量は一定であるので、SOT効果により磁壁DWを移動させるためには、一般的には、電流Iwの電流密度を高くする必要がある。さらには、磁性層11の断面積の拡大と相まって、電流Iwを大きくすることになる。しかし、本実施形態では、ナノ磁石51によって、磁性層11の磁壁DWが右旋回のネール型の磁気構造に揃えられて安定していることにより、磁性層11がある程度厚くても低い電流密度で磁気モーメントを回転させることができると考えられる。 As the thickness of the magnetic layer 11 increases, the volume increases at the interface with the channel layer 12 and the magnetic moment m becomes stronger, while the angular momentum of the electrons e - in the vicinity of the interface of the channel layer 12 increases. Is constant, so in order to move the domain wall DW by the SOT effect, it is generally necessary to increase the current density of the current I w . Further, the current I w is increased in combination with the expansion of the cross-sectional area of the magnetic layer 11. However, in the present embodiment, the nanomagnet 51 aligns the magnetic domain wall DW of the magnetic layer 11 with the right-turning nail-shaped magnetic structure and is stable, so that the current density is low even if the magnetic layer 11 is thick to some extent. It is considered that the magnetic moment can be rotated by.

(空間光変調器)
光変調素子10は、一例として、図5に示す空間光変調器90に配列された画素9の光変調素子として搭載される。なお、図5においては、簡潔に説明するために、光変調素子10について、磁性細線1(抵抗器の図記号で表す)および電極61,62(線で表す)のみを示し、また、4列×4行の16個の画素9を示す。画素9は、光変調素子10と共に、光変調素子10の電極61に接続するトランジスタ71をさらに備える。空間光変調器90は、1T1R型のメモリセルを備える選択トランジスタ型のMRAMの回路構成に類似し、列方向に延設したワード線84および行方向に延設したビット線81を備える。ビット線81はトランジスタ71を経由して電極61に接続し、ワード線84はトランジスタ71のゲートに入力する。また、電極62は、すべての画素9の共通電位に接続する。
(Spatial light modulator)
As an example, the light modulation element 10 is mounted as a light modulation element of pixels 9 arranged in the spatial light modulator 90 shown in FIG. In FIG. 5, for the sake of brief explanation, only the magnetic thin wire 1 (represented by the graphic symbol of the resistor) and the electrodes 61 and 62 (represented by the line) of the light modulation element 10 are shown, and four rows are shown. X 16 pixels 9 in 4 rows are shown. The pixel 9 further includes a transistor 71 connected to the electrode 61 of the light modulation element 10 together with the light modulation element 10. The spatial light modulator 90 is similar to the circuit configuration of a selective transistor type MRAM including a 1T1R type memory cell, and includes a word line 84 extending in the column direction and a bit line 81 extending in the row direction. The bit wire 81 is connected to the electrode 61 via the transistor 71, and the word wire 84 is input to the gate of the transistor 71. Further, the electrode 62 is connected to the common potential of all the pixels 9.

トランジスタ71は、例えばMOSFET(金属酸化膜半導体電界効果トランジスタ)であり、Si基板の表層に形成される。したがって、Si基板を土台として、画素9を配列することができる。ビット線81およびワード線84は、電極61,62と同様に金属電極材料で形成される。また、これらの配線間や隣り合う画素9,9のそれぞれの磁性細線1同士等の間隙には、SiO2やAl23等の、半導体素子に設けられる公知の無機絶縁材料が充填される。 The transistor 71 is, for example, a MOSFET (metal oxide semiconductor field effect transistor) and is formed on the surface layer of a Si substrate. Therefore, the pixels 9 can be arranged on the Si substrate as a base. The bit wire 81 and the word wire 84 are made of a metal electrode material like the electrodes 61 and 62. Further, a known inorganic insulating material provided for a semiconductor element such as SiO 2 or Al 2 O 3 is filled in the gap between these wirings or between the magnetic fine wires 1 of the adjacent pixels 9 and 9 respectively. ..

空間光変調器90において、画素9の配列方向と光変調素子10の磁性細線1の細線方向(x方向)とは合わせなくてよい。例えば、画素の開口率を高くするために、磁性細線1の細線方向長が長くなるように、配列の対角線方向を細線方向に設計することができる。ただし、細線方向がすべての画素9で揃うように光変調素子10が配列される。これは、後記の初期設定処理で、細線方向に外部磁界を印加してナノ磁石51の極性を揃えて着磁するためである。また、隣の画素9の磁性細線1やナノ磁石51と互いに磁気的な影響を受けることのないように、間隔を空けて画素9のレイアウトを設計する。また、画素9における磁化反転可能領域1SWの配置がすべての画素9で揃うようにレイアウトを設計されていることが好ましい。 In the spatial light modulator 90, the arrangement direction of the pixels 9 and the wire direction (x direction) of the magnetic wire 1 of the light modulation element 10 do not have to be aligned. For example, in order to increase the aperture ratio of the pixel, the diagonal direction of the array can be designed in the thin line direction so that the length of the magnetic thin line 1 in the thin line direction becomes long. However, the light modulation elements 10 are arranged so that the thin line directions are aligned with all the pixels 9. This is because, in the initial setting process described later, an external magnetic field is applied in the wire direction to align the polarities of the nanomagnets 51 and magnetize them. Further, the layout of the pixel 9 is designed with a space so as not to be magnetically affected by the magnetic fine wire 1 and the nanomagnet 51 of the adjacent pixel 9. Further, it is preferable that the layout is designed so that the arrangement of the magnetization reversible region 1 SW in the pixel 9 is aligned in all the pixels 9.

(初期設定処理)
空間光変調器の初期設定処理について説明する。初期設定処理は、光変調素子10のナノ磁石51の極性を所定の方向に着磁し、また、磁性細線1の磁性層11について、細線方向にのみ磁区が分割されて、磁化固定領域1FX1側を下向き、磁化固定領域1FX2側を上向きの磁化方向として、これら2つの磁区の境界にdown-up磁壁DWを生成する。初期設定処理は、空間光変調器90の製造時または使用前に行うことができる。まず、第1工程として、光変調素子10の磁性材料のうち保磁力が最も大きいナノ磁石51を、+x側がN極、-x側がS極の棒磁石とする。そのために、外部から、ナノ磁石51の保磁力よりも大きい磁界を+x方向に印加する。
(Initial setting process)
The initial setting process of the spatial light modulator will be described. In the initial setting process, the polarity of the nanomagnet 51 of the optical modulation element 10 is magnetized in a predetermined direction, and the magnetic domain of the magnetic layer 11 of the magnetic fine wire 1 is divided only in the fine wire direction, so that the magnetization fixed region 1 FX1 A down-up domain wall DW is generated at the boundary between these two magnetic domains with the side facing downward and the magnetization fixed region 1 FX2 side facing upward. The initial setting process can be performed at the time of manufacturing or before using the spatial light modulator 90. First, as a first step, the nanomagnet 51 having the largest coercive force among the magnetic materials of the light modulation element 10 is a bar magnet having an N pole on the + x side and an S pole on the −x side. Therefore, a magnetic field larger than the coercive force of the nanomagnet 51 is applied from the outside in the + x direction.

+x方向の磁界の印加を停止した後、第2工程として、磁性層11に、磁壁DWを挟んだ2つの磁区を生成する。そのために、外部から下向き(-z方向)に、ナノ磁石51の保磁力よりも小さい磁界Hinitを印加しながら、磁性細線1に電極61,62を介して電流を供給する。磁性層11に流れる電流でジュール熱を発生させて温度上昇により磁性層11の保磁力を一時的にHinit未満かつHpin未満に低下させることにより、磁性層11の全体を下向きの磁化方向の単磁区としてから、磁界Hinitの印加を停止し、その後に電流の供給を停止する。外部磁界のない状態では、磁性層11は、その下側に配置されたナノ磁石51によって、N極(+x側の端)近傍上において+z方向の磁界+Hpinが、S極(-x側の端)近傍上において-z方向の磁界-Hpinが、それぞれ印加されている。したがって、磁界Hinitの印加停止後も電流の供給を継続していることにより、磁性層11におけるナノ磁石51のN極側近傍の、少なくとも磁化固定領域1FX2を含む領域が磁化反転して、磁化方向が+z方向の磁区になる。図2Aに示すように、磁化固定領域1FX2が磁化反転すると、磁性層11は、磁化反転可能領域1SWおよびそのS極側が、磁化方向が-z方向の磁区になり、磁化反転可能領域1SWと磁化固定領域1FX2との境界にdown-up磁壁DWが生成する。さらに、電流の供給方向によって、すべての画素9の光変調素子10の磁性細線1において、磁化反転可能領域1SWと磁化固定領域1FX1,1FX2のいずれか一方との境界に磁壁DWの位置が揃えられる。磁性細線1への電流の供給は、後記の書込方法と同様に行うことができる。 After stopping the application of the magnetic field in the + x direction, as a second step, two magnetic domains sandwiching the domain wall DW are generated in the magnetic layer 11. Therefore, while applying a magnetic field H init smaller than the coercive force of the nanomagnet 51 downward (-z direction) from the outside, a current is supplied to the magnetic wire 1 via the electrodes 61 and 62. By generating Joule heat with the current flowing through the magnetic layer 11 and temporarily lowering the coercive force of the magnetic layer 11 to less than H init and less than H pin due to the temperature rise, the entire magnetic layer 11 is oriented in the downward magnetization direction. After the single magnetic domain, the application of the magnetic field H init is stopped, and then the current supply is stopped. In the absence of an external magnetic field, the magnetic layer 11 has a magnetic field in the + z direction + H pin on the vicinity of the N pole (end on the + x side) due to the nanomagnet 51 arranged below the magnetic layer 11 on the S pole (−x side). A magnetic field in the −z direction −H pin is applied in the vicinity of the edge). Therefore, by continuing to supply the current even after the application of the magnetic field H init is stopped, the region including at least the magnetization fixed region 1 FX2 in the vicinity of the N pole side of the nanomagnet 51 in the magnetic layer 11 is magnetized and inverted. The magnetization direction becomes a magnetic domain in the + z direction. As shown in FIG. 2A, when the magnetization fixed region 1 FX2 is magnetized inverted, the magnetic layer 11 becomes a magnetic domain in which the magnetization direction is −z direction in the magnetization reversible region 1 SW and its S pole side, and the magnetization reversible region 1 A down-up domain wall DW is generated at the boundary between the SW and the magnetization fixed region 1 FX2 . Further, depending on the current supply direction, the position of the domain wall DW at the boundary between the magnetization reversible region 1 SW and the magnetization fixed region 1 FX1 or 1 FX2 in the magnetic wire 1 of the light modulation element 10 of all the pixels 9. Are aligned. The current can be supplied to the magnetic thin wire 1 in the same manner as the writing method described later.

ナノ磁石51から印加されるz方向の磁界-Hpin,+Hpinが磁性層11の保磁力Hcfよりも大きい場合には、第2工程において、磁界Hinit(>Hcf)を印加し、電流供給はなくてもよい。なお、光変調素子10においては、磁性細線1が、電極61,62との接続領域として、ナノ磁石51よりもある程度長く形成されているので、N極側の電極62上すなわち磁化固定領域1FX2の細線方向外側に、-z方向の磁区が残存する場合があるが、前記したように光変調素子10の動作に影響はない。また、初期設定処理の第2工程において、上向き(+z方向)に磁界を印加してもよい。この場合、磁性層11は、図2Bに示すように、磁化反転可能領域1SWおよびそのN極側の磁化固定領域1FX2が+z方向の磁区となり、磁化固定領域1FX1が-z方向の磁区となって、磁化反転可能領域1SWと磁化固定領域1FX1との境界にdown-up磁壁DWが生成する。 When the magnetic field −H pin and + H pin in the z direction applied from the nanomagnet 51 are larger than the coercive force Hc f of the magnetic layer 11, the magnetic field H init (> Hc f ) is applied in the second step. There is no need to supply current. In the light modulation element 10, the magnetic wire 1 is formed to be longer than the nanomagnet 51 as a connection region with the electrodes 61 and 62, so that it is on the electrode 62 on the N pole side, that is, the magnetization fixed region 1 FX2 . The magnetic domain in the −z direction may remain on the outside in the thin line direction, but it does not affect the operation of the light modulation element 10 as described above. Further, in the second step of the initial setting process, a magnetic field may be applied upward (+ z direction). In this case, as shown in FIG. 2B, in the magnetic layer 11, the magnetization reversable region 1 SW and the magnetization fixed region 1 FX2 on the N pole side thereof are magnetic domains in the + z direction, and the magnetization fixed region 1 FX1 is a magnetic domain in the −z direction. Therefore, a down-up domain wall DW is generated at the boundary between the magnetization reversible region 1 SW and the magnetization fixed region 1 FX1 .

(書込方法)
空間光変調器90の書込み、すなわち、所望の明暗のパターンに応じて、画素9毎に磁性層11の磁化反転可能領域1SWにおける磁化方向を上向きまたは下向きにする方法の一例は、以下の通りである。磁性細線1に電流Iwを供給するためのビット線81(トランジスタ71のソース)と電極62との電位差をVwとすると、パルス電流源の一方の端子を電位+Vwに接続し、この端子にすべての画素9の電極62を接続する。そして、磁化反転可能領域1SWを下向きの磁化方向にする(図2A参照)ためには、電流Iwを+x方向に供給するように、パルス電流源の他方の端子を電位+2Vwと選択した行のビット線81とに接続し、書き込む対象の画素9の列のワード線84をゲート電源に接続する。反対に、磁化反転可能領域1SWを上向きの磁化方向にする(図2B参照)ためには、電流Iwを-x方向に供給するように、パルス電流源の他方の端子を0Vに接続する。
(Writing method)
An example of a method of writing the spatial light modulator 90, that is, setting the magnetization direction in the magnetization reversible region 1 SW of the magnetic layer 11 upward or downward for each pixel 9 according to a desired light / dark pattern is as follows. Is. Assuming that the potential difference between the bit wire 81 (source of the transistor 71) for supplying the current I w to the magnetic thin wire 1 and the electrode 62 is V w , one terminal of the pulse current source is connected to the potential + V w , and this terminal is connected. The electrodes 62 of all the pixels 9 are connected to. Then, in order to make the magnetization reversible region 1 SW in the downward magnetization direction (see FIG. 2A), the other terminal of the pulse current source was selected as the potential + 2V w so as to supply the current I w in the + x direction. It is connected to the bit line 81 of the row, and the word line 84 of the column of the pixel 9 to be written is connected to the gate power supply. On the contrary, in order to make the magnetization reversible region 1 SW in the upward magnetization direction (see FIG. 2B), the other terminal of the pulse current source is connected to 0V so as to supply the current I w in the −x direction. ..

(変形例)
光変調素子10は、チャネル層12が磁性層11の上面に積層されていてもよい。この場合、チャネル層12は、磁性層11に入出射する光を十分に透過するように、光の透過率が比較的高い材料を選択したり、厚さを抑えることが好ましい。このような光変調素子10は、電流Iwの供給方向と磁壁DWの移動方向との関係が逆になる。また、空間光変調器90は、すべての画素9のトランジスタ71のソースを共通電位に接続し、電極62をビット線81に接続してもよい。また、磁性層11の磁化反転可能領域1SWに入出射する光を妨げない配置であれば、電極62を磁性細線1の上面に接続して、これに接続する配線を光変調素子10(磁性細線1)の上側に配置してもよい。あるいは、空間光変調器90の全面にわたる一体の透明電極を光変調素子10の上側に設けて、これに電極62を接続する構成とすることもできる。透明電極は、ITO,IZO等の公知の透明電極材料で形成することができる。電極62が磁性細線1の上面に接続する、すなわちナノ磁石51の磁性細線1を挟んだ反対側に配置されることで、磁性層11の磁化固定領域1FX2の直上に配置されてもナノ磁石51のN極から磁性層11へ印加される磁界+Hpinを遮蔽しない。したがって、磁性細線1が、磁化固定領域1FX2の外側へ延伸していなくてよく、細線長を短縮することができる。なお、電極62は、磁性層11の磁化固定領域1FX2における磁化反転可能領域1SWとの境界よりも外側に接続する。また、磁性層11が上に積層された磁性細線1の上面に電極62を接続する場合、磁性層11の保護膜として、Ru,Cu,Au等の非磁性金属材料で厚さ1~10nm程度の膜を備えてもよい。
(Modification example)
In the light modulation element 10, the channel layer 12 may be laminated on the upper surface of the magnetic layer 11. In this case, it is preferable to select a material having a relatively high light transmittance or to reduce the thickness of the channel layer 12 so as to sufficiently transmit the light entering and exiting the magnetic layer 11. In such a light modulation element 10, the relationship between the supply direction of the current I w and the movement direction of the domain wall DW is reversed. Further, the spatial light modulator 90 may connect the source of the transistor 71 of all the pixels 9 to a common potential and connect the electrode 62 to the bit line 81. Further, if the arrangement does not obstruct the light entering and exiting the magnetization reversible region 1 SW of the magnetic layer 11, the electrode 62 is connected to the upper surface of the magnetic thin wire 1, and the wiring connected to this is connected to the light modulation element 10 (magnetic). It may be arranged above the thin line 1). Alternatively, an integrated transparent electrode covering the entire surface of the spatial light modulator 90 may be provided on the upper side of the light modulation element 10 and the electrode 62 may be connected to the transparent electrode. The transparent electrode can be formed of a known transparent electrode material such as ITO and IZO. By connecting the electrode 62 to the upper surface of the magnetic thin wire 1, that is, by arranging the electrode 62 on the opposite side of the magnetic thin wire 1 of the nanomagnet 51, the nanomagnet is arranged even if it is placed directly above the magnetization fixed region 1 FX2 of the magnetic layer 11. It does not shield the magnetic field + H pin applied from the N pole of 51 to the magnetic layer 11. Therefore, the magnetic wire 1 does not have to extend to the outside of the magnetization fixed region 1 FX2 , and the wire length can be shortened. The electrode 62 is connected to the outside of the boundary with the magnetization reversible region 1 SW in the magnetization fixed region 1 FX2 of the magnetic layer 11. Further, when the electrode 62 is connected to the upper surface of the magnetic wire 1 on which the magnetic layer 11 is laminated, a non-magnetic metal material such as Ru, Cu, Au, etc. is used as a protective film for the magnetic layer 11 and the thickness is about 1 to 10 nm. It may be provided with a film of.

光変調素子10は、ナノ磁石51のz方向の漏れ磁界が、磁性層11の磁化固定領域1FX1,1FX2の一方にのみ印加されるように構成してもよい。例えば、ナノ磁石51のS極側を電極61に短絡しない程度に近接して配置することにより、-z方向の磁界が磁性層11にほとんど到達しない。しかし、+z方向の磁界+Hpinが磁化固定領域1FX2に印加されるので、初期設定処理の第2工程で下向きの磁界Hinitの印加の停止後に、磁性層11の磁化固定領域1FX2を上向きに磁化反転させて磁壁DWを生成することができる。一方、磁化固定領域1FX1については、-x方向の磁界Hassが印加されなければよい。 The light modulation element 10 may be configured such that the leakage magnetic field in the z direction of the nanomagnet 51 is applied to only one of the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11. For example, by arranging the S pole side of the nanomagnet 51 close to the electrode 61 so as not to short-circuit it, the magnetic field in the −z direction hardly reaches the magnetic layer 11. However, since the magnetic field + H pin in the + z direction is applied to the magnetization fixed region 1 FX2 , the magnetization fixed region 1 FX2 of the magnetic layer 11 is directed upward after the application of the downward magnetic field H init is stopped in the second step of the initial setting process. It is possible to generate a domain wall DW by reversing the magnetization. On the other hand, for the magnetization fixed region 1 FX1 , the magnetic field Hass in the −x direction may not be applied.

(磁気抵抗効果素子)
本発明の第1実施形態に係る磁壁移動素子は、磁性細線の磁性層の磁化反転可能領域上に絶縁膜および垂直磁気異方性の磁性膜を積層することで、磁気抵抗効果素子(磁気記憶素子)を構成することができる。磁気抵抗効果素子の構成については、後記の第2実施形態で説明する。
(Magnet Resistive Sensor)
The domain wall moving element according to the first embodiment of the present invention is a magnetoresistive effect element (magnetic storage) by laminating an insulating film and a magnetic anisotropy magnetic film on a magnetization reversible region of a magnetic layer of a magnetic thin wire. Element) can be configured. The configuration of the magnetoresistive sensor will be described in the second embodiment described later.

〔第2実施形態〕
第1実施形態に係る磁壁移動素子は、磁性細線の磁性層に細線方向の磁界を印加するための1個の磁界印加部材で、両端近傍上の磁性層の磁化固定領域における磁化方向の固定もしているが、磁界印加部材(副磁界印加部材)を追加して、合成磁界を生成することにより垂直方向の磁界を強くすることもできる。以下、本発明の第2実施形態に係る磁壁移動素子およびこれを備える磁気記憶素子について、図6、図7Aおよび図7Bを参照して説明する。第1実施形態(図1~5参照)と同一の要素については同じ符号を付し、説明を省略する。
[Second Embodiment]
The magnetic wall moving element according to the first embodiment is one magnetic field applying member for applying a magnetic field in the thin wire direction to the magnetic layer of the magnetic thin wire, and the magnetization direction is fixed in the magnetization fixing region of the magnetic layer near both ends. However, it is also possible to increase the magnetic field in the vertical direction by adding a magnetic field applying member (secondary magnetic field applying member) to generate a synthetic magnetic field. Hereinafter, the domain wall moving element and the magnetic storage element provided with the domain wall moving element according to the second embodiment of the present invention will be described with reference to FIGS. 6, 7A and 7B. The same elements as those in the first embodiment (see FIGS. 1 to 5) are designated by the same reference numerals, and the description thereof will be omitted.

(磁気抵抗効果素子)
本発明の第2実施形態に係る磁気抵抗効果素子(磁気記憶素子)10Aは、図6に示すように、磁性層11とチャネル層12とを上から順に積層した磁性細線1と、磁性細線1の下側にチャネル層12と離間して配置された、磁化方向が磁性細線1の細線方向の一方向のナノ磁石(磁界印加部材)51と、ナノ磁石51の細線方向両側に離間して配置されて磁性細線1の下面に接続する、磁化方向がナノ磁石51と逆向きの2個のナノ磁石(副磁界印加部材)52,52と、磁性層11の細線方向中央における上面に積層された障壁層(絶縁膜)3および磁化固定層(参照層)43と、を備え、さらに、ナノ磁石52,52のそれぞれの下面に接続する電極61,62、および磁化固定層43の上面に接続する電極63を備える。したがって、磁気抵抗効果素子10Aは、第1実施形態に係る光変調素子10に対して、磁性細線1と電極61,62のそれぞれとの間にナノ磁石52を挿入し、さらに、磁性細線1の磁性層11上に障壁層3、磁化固定層43、および電極63を順に積層した構成である。磁気抵抗効果素子10Aは、MRAMのメモリセルの記憶素子とすることができる。
(Magnet Resistive Sensor)
As shown in FIG. 6, the magnetic resistance effect element (magnetic storage element) 10A according to the second embodiment of the present invention includes a magnetic thin wire 1 in which a magnetic layer 11 and a channel layer 12 are laminated in order from the top, and a magnetic thin wire 1. The nanomagnet (magnetic field applying member) 51, which is arranged on the lower side apart from the channel layer 12 and whose magnetization direction is one direction in the thin wire direction of the magnetic fine wire 1, and the nano magnet 51 are arranged apart from each other in the thin wire direction. Two nanomagnets (secondary magnetic field application members) 52, 52 whose magnetization direction is opposite to that of the nanomagnet 51, which are connected to the lower surface of the magnetic thin wire 1, are laminated on the upper surface of the magnetic layer 11 in the center of the thin wire direction. The barrier layer (insulating film) 3 and the magnetizing fixing layer (reference layer) 43 are provided, and further connected to the electrodes 61 and 62 connected to the lower surfaces of the nanomagnets 52 and 52 and the upper surface of the magnetizing fixing layer 43. The electrode 63 is provided. Therefore, in the magnetoresistive element 10A, the nanomagnet 52 is inserted between the magnetic thin wire 1 and each of the electrodes 61 and 62 with respect to the optical modulation element 10 according to the first embodiment, and further, the magnetic thin wire 1 is further connected. The barrier layer 3, the magnetization fixing layer 43, and the electrode 63 are laminated in this order on the magnetic layer 11. The magnetoresistive element 10A can be a storage element of a memory cell of an MRAM.

磁性細線1の構成は、第1実施形態で説明した通りである。ただし、磁気抵抗効果素子10Aにおいては、磁性層11の上に障壁層3および磁化固定層43が積層されるために、チャネル層12は磁性層11の下に積層される必要がある。また、磁性層11は、磁気光学効果が不要であり、一方、ある程度の大きさの保磁力を有していることが好ましい。また、磁性層11は、厚さおよび幅が、磁化の保持や熱擾乱耐性のために必要な大きさであればよく、具体的には、厚さが5nm以上、幅が10nm以上であることが好ましい。同様に、磁化反転可能領域1SWおよびその両側の磁化固定領域1FX1,1FX2(図7A、図7B参照)の各細線方向長は、10nm以上かつ細線幅の1/2以上であることが好ましい。また、磁性層11は、幅が300nm以下であることが、磁区が幅方向に分割され難く好ましい。 The configuration of the magnetic thin wire 1 is as described in the first embodiment. However, in the magnetoresistive element 10A, since the barrier layer 3 and the magnetization fixing layer 43 are laminated on the magnetic layer 11, the channel layer 12 needs to be laminated under the magnetic layer 11. Further, the magnetic layer 11 does not require a magneto-optical effect, and on the other hand, it is preferable that the magnetic layer 11 has a coercive force having a certain magnitude. Further, the magnetic layer 11 may have a thickness and a width of 5 nm or more and a width of 10 nm or more, as long as it has a thickness and a width necessary for maintaining magnetization and resistance to thermal disturbance. Is preferable. Similarly, the magnetization reversible region 1 SW and the magnetization fixed regions 1 FX1 and 1 FX2 on both sides thereof (see FIGS. 7A and 7B) must have a length of 10 nm or more and 1/2 or more of the wire width. preferable. Further, it is preferable that the width of the magnetic layer 11 is 300 nm or less because the magnetic domain is not easily divided in the width direction.

障壁層3および磁化固定層43は、磁性層11と合わせた3層の積層構造からなるTMR素子を構成して、磁気抵抗効果素子10Aの読出しとして、磁性層11の磁化反転可能領域1SWにおける磁化方向を検出するために設けられる。すなわち、磁性層11の、磁化固定層43の直下における領域が、前記TMR素子の磁化自由層となり、したがって、この領域が磁化反転可能領域1SWに内包されるように磁化固定層43が配置される。そのために、磁化固定層43は、細線方向(x方向)において、磁化反転可能領域1SW内に配置され、細線方向長が磁化反転可能領域1SWよりも短い。障壁層3および磁化固定層43は、その直下の磁性層11と合わせて、TMR素子として好適な材料および形状であればよい。なお、磁化固定層43は、細線幅方向(y方向)においては、磁性細線1以下の長さ(幅)でもよいし、磁性細線1の外側へ張り出して大きく形成されていてもよい。磁化固定層43は、磁化方向が上向きまたは下向きに固定され、ここでは上向きとする。したがって、磁化固定層43は、保磁力が磁性層11の保磁力Hcf以上であり、保磁力Hcfよりも大きいことが好ましい。また、磁化固定層43は、当該磁化固定層43が発する磁界がナノ磁石51からの磁界Hassを相殺して弱めないように、磁力がナノ磁石51よりも十分に弱い構成とする。そのために、磁化固定層43は、磁性層11と同様に公知の垂直磁気異方性材料を適用することができ、特に、CPP-GMR素子やTMR素子の磁化固定層(参照層)に用いられる材料が好適である。また、磁化固定層43は、厚さが磁性層11の厚さ以上であることが好ましい。障壁層3は、公知のTMR素子の障壁層の絶縁膜であり、MgOを適用することが好ましく、厚さ3nm未満であることが好ましい。障壁層3は、少なくとも磁性層11と磁化固定層43との間に設けられ、保護膜を兼ねて磁性層11の上面全体に設けられていてもよい。電極63は、電極61,62と同様に金属電極材料で形成される。 The barrier layer 3 and the magnetization fixing layer 43 constitute a TMR element having a laminated structure of three layers combined with the magnetic layer 11, and the magnetization inversion region 1 SW of the magnetic layer 11 is read as a readout of the magnetoresistive effect element 10A. It is provided to detect the magnetization direction. That is, the region of the magnetic layer 11 immediately below the magnetization fixing layer 43 becomes the magnetization free layer of the TMR element, and therefore the magnetization fixing layer 43 is arranged so that this region is included in the magnetization reversible region 1 SW . Ru. Therefore, the magnetization fixed layer 43 is arranged in the magnetization reversible region 1 SW in the wire direction (x direction), and the length in the wire direction is shorter than that of the magnetization reversible region 1 SW . The barrier layer 3 and the magnetization fixing layer 43 may have a material and shape suitable for a TMR element together with the magnetic layer 11 immediately below the barrier layer 3 and the magnetization fixing layer 43. In the wire width direction (y direction), the magnetization fixing layer 43 may have a length (width) of 1 or less of the magnetic wire 1 or may be formed large by projecting to the outside of the magnetic wire 1. The magnetization fixing layer 43 is fixed in the magnetization direction upward or downward, and is referred to as upward here. Therefore, it is preferable that the coercive force of the magnetized fixed layer 43 is equal to or higher than the coercive force Hc f of the magnetic layer 11 and larger than the coercive force Hc f . Further, the magnetization fixing layer 43 has a structure in which the magnetic force is sufficiently weaker than that of the nano magnet 51 so that the magnetic field generated by the magnetization fixing layer 43 cancels out and weakens the magnetic field Hass from the nano magnet 51. Therefore, a known perpendicular magnetic anisotropy material can be applied to the magnetization fixing layer 43 as in the magnetic layer 11, and it is particularly used as a magnetization fixing layer (reference layer) of a CPP-GMR element or a TMR element. The material is suitable. Further, it is preferable that the thickness of the magnetization fixing layer 43 is equal to or larger than the thickness of the magnetic layer 11. The barrier layer 3 is an insulating film of a known barrier layer of a TMR element, and it is preferable to apply MgO, and the thickness is preferably less than 3 nm. The barrier layer 3 may be provided at least between the magnetic layer 11 and the magnetization fixing layer 43, and may be provided on the entire upper surface of the magnetic layer 11 also as a protective film. The electrode 63 is made of a metal electrode material like the electrodes 61 and 62.

ナノ磁石52は、ナノ磁石51と同様に磁性細線1の細線方向に沿った極小の棒磁石であり、極性がナノ磁石51と逆向きで、-x側をN極とする。ナノ磁石52は、ナノ磁石51との合成磁界を-z方向、+z方向の磁界-Hpin,+Hpinとして、磁性層11の磁化固定領域1FX1,1FX2にそれぞれ印加する。なお、図6に、ナノ磁石51,52からの磁力線を破線で表す。そのために、ナノ磁石52は、ナノ磁石51のx方向両外側それぞれに離間かつ近接して配置され、磁性層11の磁化固定領域1FX1,1FX2の直下でS極同士、N極同士が対向する。ただし、ナノ磁石52は、磁性細線1の下面(チャネル層12)に接続して設けられ、ナノ磁石52の下面に電極61,62が接続する。したがって、ナノ磁石52は、電極61,62と共に、磁性細線1への電流Iwの供給経路を構成する。そのために、ナノ磁石52は、ナノ磁石51と磁性細線1との間隙の分、ナノ磁石51よりも上にずれて配置されるが、ナノ磁石51とナノ磁石52とが、少なくともナノ磁石51,52の一方の厚さの1/2以上で対向するように配置されることが好ましい。ナノ磁石52は、面内磁気異方性を有する硬磁性体からなり、ナノ磁石51と同じ材料を選択することができる。ナノ磁石52は、磁力がナノ磁石51と同程度であることが好ましいが、x方向の漏れ磁界を磁性細線1に印加する必要がないので、ナノ磁石51よりも弱くてもよい。一方で、ナノ磁石51とナノ磁石52とは、極性を互いに逆向きに着磁することができるように、保磁力が異なる。そのために、ナノ磁石51とナノ磁石52は、例えば、それぞれを構成するCo/Pt多層膜の、Co,Ptの膜厚比を異なるものとしたり、幅(y方向長)を同じかつx方向長を異なるものとすることにより平面視形状のアスペクト比を異なるものとしたりする。なお、2つのナノ磁石52,52は、x方向長等の形状や保磁力が同一でなくてもよく、保磁力が共にナノ磁石51よりも大きいまたは小さければよい。 Like the nano magnet 51, the nano magnet 52 is a very small bar magnet along the wire direction of the magnetic thin wire 1, and has a polarity opposite to that of the nano magnet 51, with the −x side having an N pole. The nanomagnet 52 applies the combined magnetic field with the nanomagnet 51 to the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11 as magnetic fields −H pin and + H pin in the −z direction and + z direction, respectively. In FIG. 6, the lines of magnetic force from the nano magnets 51 and 52 are represented by broken lines. Therefore, the nanomagnets 52 are arranged apart and close to each other on both outer sides of the nanomagnets 51 in the x direction, and the S poles and the N poles face each other directly under the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11. do. However, the nanomagnet 52 is provided by being connected to the lower surface (channel layer 12) of the magnetic thin wire 1, and the electrodes 61 and 62 are connected to the lower surface of the nanomagnet 52. Therefore, the nanomagnet 52, together with the electrodes 61 and 62, constitutes a supply path of the current I w to the magnetic wire 1. Therefore, the nano-magnet 52 is arranged so as to be offset above the nano-magnet 51 by the gap between the nano-magnet 51 and the magnetic wire 1, but the nano-magnet 51 and the nano-magnet 52 are at least the nano-magnet 51, It is preferable that the thickness of one of 52 is ½ or more and is arranged so as to face each other. The nanomagnet 52 is made of a hard magnetic material having in-plane magnetic anisotropy, and the same material as the nanomagnet 51 can be selected. The nanomagnet 52 preferably has a magnetic force similar to that of the nanomagnet 51, but may be weaker than the nanomagnet 51 because it is not necessary to apply a leakage magnetic field in the x direction to the magnetic thin wire 1. On the other hand, the nanomagnet 51 and the nanomagnet 52 have different coercive forces so that the polarities can be magnetized in opposite directions. Therefore, for example, the nanomagnet 51 and the nanomagnet 52 have different Co / Pt film thickness ratios of the Co / Pt multilayer films constituting each of them, or have the same width (length in the y direction) and a length in the x direction. The aspect ratio of the plan view shape may be different by making the above different. The two nanomagnets 52, 52 do not have to have the same shape such as the length in the x direction and the coercive force, and both of them may be larger or smaller than the nano magnet 51.

本実施形態に係る磁気抵抗効果素子10Aの、電流供給による磁性細線における磁壁移動は、図3Aおよび図3Bに示す前記実施形態と同様である。そして、磁気抵抗効果素子10Aは、磁化固定層43とその直下の領域における磁性層11とで磁化方向が平行であるときよりも反平行であるときの方が、磁化固定層43-磁性層11間の膜面垂直方向の抵抗が高い。すなわち、磁気抵抗効果素子10Aは、磁性層11の磁化反転可能領域1SWにおける磁化方向が下向きのとき(図7A参照)には、電極61-63間や電極62-63間の抵抗が高く、磁化反転可能領域1SWの磁化方向が上向きのとき(図7B参照)には抵抗が低い。したがって、磁気抵抗効果素子10Aは、例えば、低抵抗の状態をデータ“0”、高抵抗の状態をデータ“1”と設定して、MRAMのメモリセルの記憶素子に使用することができる。 The movement of the magnetic domain wall of the magnetoresistive element 10A according to the present embodiment in the magnetic thin wire due to the current supply is the same as that of the above-described embodiment shown in FIGS. 3A and 3B. The magnetoresistive effect element 10A has a magnetization-fixed layer 43-magnetic layer 11 when the magnetization directions are antiparallel to the magnetization-fixed layer 43 and the magnetic layer 11 in the region immediately below the magnetization-fixed layer 43. High resistance in the direction perpendicular to the membrane surface between them. That is, in the magnetoresistive effect element 10A, when the magnetization direction in the magnetization reversible region 1 SW of the magnetic layer 11 is downward (see FIG. 7A), the resistance between the electrodes 61 and 63 and between the electrodes 62 and 63 is high. Magnetization reversible region 1 When the magnetization direction of SW is upward (see FIG. 7B), the resistance is low. Therefore, the magnetoresistive effect element 10A can be used as a storage element of a memory cell of an MRAM by setting, for example, a low resistance state as data “0” and a high resistance state as data “1”.

本実施形態に係る磁気抵抗効果素子10Aは、このような構成により、磁性層11の磁化固定領域1FX1,1FX2に印加されるz方向の磁界-Hpin,+Hpinが強いので、保磁力Hcfの大きい磁性材料を磁性層11に適用することができる。また、ナノ磁石52が磁性細線1に接続し、電極61,62がナノ磁石52の下に配置されることにより、ナノ磁石51,52から磁性層11へ印加される合成磁界-Hpin,+Hpinが、電極61,62によって遮蔽されない。 The magnetoresistive sensor 10A according to the present embodiment has a strong magnetic field −H pin , + H pin in the z direction applied to the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11 due to such a configuration, so that the coercive force is coercive. A magnetic material having a large Hc f can be applied to the magnetic layer 11. Further, the nanomagnet 52 is connected to the magnetic wire 1 and the electrodes 61 and 62 are arranged under the nanomagnet 52, so that the synthetic magnetic field −H pin , + H applied from the nanomagnets 51 and 52 to the magnetic layer 11 The pin is not shielded by the electrodes 61, 62.

(磁気メモリ)
磁気抵抗効果素子10Aは、一例として、図8に示す磁気メモリ90Aに配列されたメモリセル9Aの磁気抵抗効果素子として搭載される。なお、図8においては、簡潔に説明するために、4列×4行の16個のメモリセル9Aを示し、また、磁気抵抗効果素子10Aについて、磁性細線1、障壁層3、および磁化固定層43(符号1Aを付す)を抵抗器と可変抵抗器の図記号を組み合わせて表し、電極61,62,63を線で表す。メモリセル9Aは、磁気抵抗効果素子10Aと共に、磁気抵抗効果素子10Aの電極61に接続するトランジスタ71、および電極63にアノードが接続するダイオード72を備える。磁気メモリ90Aは、1T1R型のメモリセルを備える選択トランジスタ型のMRAMの回路構成に類似して、列方向に延設したビット線82およびワード線84、ならびに行方向に延設したソース線81Aを備え、さらに、ビット線82に直交して行方向に延設した読出ワード線83を備える。ビット線82は電極62に接続し、ソース線81Aはトランジスタ71を経由して電極61に接続し、ワード線84はトランジスタ71のゲートに入力し、読出ワード線83はダイオード72を経由して電極63に接続する。
(Magnetic memory)
As an example, the magnetoresistive effect element 10A is mounted as a magnetoresistive effect element of the memory cells 9A arranged in the magnetic memory 90A shown in FIG. In FIG. 8, 16 memory cells 9A having 4 columns × 4 rows are shown for brief explanation, and for the magnetoresistive effect element 10A, the magnetic wire 1, the barrier layer 3, and the magnetization fixing layer are shown. 43 (with reference numeral 1A) is represented by a combination of the graphic symbols of the resistor and the variable resistor, and the electrodes 61, 62, 63 are represented by lines. The memory cell 9A includes a magnetoresistive effect element 10A, a transistor 71 connected to the electrode 61 of the magnetoresistive effect element 10A, and a diode 72 to which an anode is connected to the electrode 63. The magnetic memory 90A includes a bit line 82 and a word line 84 extending in the column direction, and a source line 81A extending in the row direction, similar to the circuit configuration of a selection transistor type MRAM including a 1T1R type memory cell. Further, a read word line 83 extending in the row direction orthogonal to the bit line 82 is provided. The bit wire 82 is connected to the electrode 62, the source wire 81A is connected to the electrode 61 via the transistor 71, the word wire 84 is input to the gate of the transistor 71, and the read word wire 83 is connected to the electrode via the diode 72. Connect to 63.

空間光変調器90と同様に、トランジスタ71はSi基板の表層に形成されて、このSi基板を土台として、メモリセル9Aを配列することができる。一方、ダイオード72は、磁性細線1や磁化固定層43の上側に設けられるために、これらの材料にもよるが、150℃程度の低温で成膜可能な多結晶シリコン(poly-Si)で形成されることが好ましい。 Similar to the spatial light modulator 90, the transistor 71 is formed on the surface layer of the Si substrate, and the memory cells 9A can be arranged on the Si substrate as a base. On the other hand, since the diode 72 is provided on the upper side of the magnetic thin wire 1 and the magnetization fixing layer 43, it is formed of polycrystalline silicon (poly-Si) that can be formed at a low temperature of about 150 ° C., although it depends on these materials. It is preferable to be

空間光変調器90と同様、磁気メモリ90Aにおいて、メモリセル9Aの配列方向と磁気抵抗効果素子10Aの磁性細線1の細線方向(x方向)とは合わせなくてよいが、細線方向がすべてのメモリセル9Aで揃うように磁気抵抗効果素子10Aが配列される。また、磁気メモリ90Aは、すべてのメモリセル9Aで、ナノ磁石51の極性に対する電極61,62の配置が揃っていなくてもよい。例えば、隣り合う2つのメモリセル9Aのそれぞれの磁気抵抗効果素子10Aにおいて、一方の磁気抵抗効果素子10Aの磁性細線1は、図7Aおよび図7Bに示すように磁性細線1の磁化固定領域1FX2側が電極62に接続し、他方の磁気抵抗効果素子10Aの磁性細線1は、磁化固定領域1FX1側が電極62に接続していてもよい。ここでは、一例として、図9に示すように、磁気抵抗効果素子10Aにおけるx方向を磁気メモリ90Aにおける列方向としてメモリセル9Aが配列されている。このような配列により、x方向に隣り合う2つのメモリセル9A,9Aのそれぞれの磁気抵抗効果素子10Aは、電極62が共通のビット線82に接続されるので、対向する側に電極62を配置して、電極62およびこれに接続するナノ磁石52を共有して一体とすることができる。なお、図9においては、電極63、磁化固定層43、および障壁層3を省略し、ナノ磁石51,52の極性を白抜き矢印で表し、また、磁性層11に上向きおよび下方向の磁化方向を付す。 Similar to the spatial optical modulator 90, in the magnetic memory 90A, the arrangement direction of the memory cell 9A and the thin wire direction (x direction) of the magnetic thin wire 1 of the magnetoresistive sensor 10A do not have to be matched, but the thin wire direction is all the memory. The magnetoresistive effect elements 10A are arranged so as to be aligned in the cell 9A. Further, in the magnetic memory 90A, all the memory cells 9A do not have to have the electrodes 61 and 62 aligned with respect to the polarity of the nanomagnet 51. For example, in each of the magnetic resistance effect elements 10A of two adjacent memory cells 9A, the magnetic thin wire 1 of one of the magnetic resistance effect elements 10A is the magnetization fixed region 1 FX2 of the magnetic thin wire 1 as shown in FIGS. 7A and 7B. The side may be connected to the electrode 62, and the magnetic wire 1 of the other magnetoresistive sensor 10A may be connected to the electrode 62 on the magnetization fixed region 1 FX1 side. Here, as an example, as shown in FIG. 9, the memory cells 9A are arranged with the x direction in the magnetoresistive effect element 10A as the column direction in the magnetic memory 90A. Due to such an arrangement, in the magnetoresistive effect elements 10A of the two memory cells 9A and 9A adjacent to each other in the x direction, the electrodes 62 are connected to the common bit wire 82, so that the electrodes 62 are arranged on opposite sides. Then, the electrode 62 and the nanomagnet 52 connected to the electrode 62 can be shared and integrated. In FIG. 9, the electrode 63, the magnetization fixing layer 43, and the barrier layer 3 are omitted, the polarities of the nanomagnets 51 and 52 are indicated by white arrows, and the magnetization directions of the magnetic layer 11 are upward and downward. Is attached.

(初期設定処理)
本実施形態に係る磁気メモリ90Aの初期設定処理は、空間光変調器90と同様に、その製造時または使用前に行うことができる。本実施形態では、第1工程で、磁気抵抗効果素子10Aのナノ磁石51とナノ磁石52を互いに逆向きの極性に着磁する。ここでは、ナノ磁石52の方がナノ磁石51よりも保磁力が大きいものとする。まず、外部から、ナノ磁石52の保磁力よりも大きい磁界を-x方向に印加して、ナノ磁石51,52を-x方向の磁化方向として印加を停止する。次に、ナノ磁石51の保磁力よりも大きくかつナノ磁石52の保磁力よりも小さい磁界を+x方向に印加して、ナノ磁石51のみを+x方向に磁化反転させて印加を停止する。第2工程は、磁性細線1の磁性層11に磁壁DWを生成すると共に、磁化固定層43の磁化方向を上向きに固定する。そのために、磁化固定層43の保磁力よりも大きい磁界Hinitを上向き(+z方向)に印加して、磁化固定層43および磁性層11の磁化方向を上向きとする。このとき、ナノ磁石51,52の合成磁界Hpinが磁性層11の保磁力Hcf以下(Hpin≦Hcf)の場合には、前記実施形態と同様に、磁界Hinitを印加すると共に磁性細線1に電流を供給して、磁性層11の保磁力をHpin未満かつHinit未満に低下させる。磁界Hinitの印加停止後、ナノ磁石51,52からの磁界-Hpinによって、図7Bに示すように、磁性層11の磁化固定領域1FX1が下向きに磁化反転して、磁化反転可能領域1SWとの境界にdown-up磁壁DWが生成する。
(Initial setting process)
The initial setting process of the magnetic memory 90A according to the present embodiment can be performed at the time of manufacture or before use, similarly to the spatial light modulator 90. In the present embodiment, in the first step, the nanomagnet 51 and the nanomagnet 52 of the magnetoresistive element 10A are magnetized in opposite polarities. Here, it is assumed that the nanomagnet 52 has a larger coercive force than the nanomagnet 51. First, a magnetic field larger than the coercive force of the nanomagnet 52 is applied from the outside in the −x direction, and the application is stopped with the nanomagnets 51 and 52 as the magnetization direction in the −x direction. Next, a magnetic field larger than the coercive force of the nanomagnet 51 and smaller than the coercive force of the nanomagnet 52 is applied in the + x direction, and only the nanomagnet 51 is magnetized and inverted in the + x direction to stop the application. In the second step, a domain wall DW is generated on the magnetic layer 11 of the magnetic thin wire 1, and the magnetization direction of the magnetization fixing layer 43 is fixed upward. Therefore, a magnetic field Hinit larger than the coercive force of the magnetization fixing layer 43 is applied upward (+ z direction) to make the magnetization direction of the magnetization fixing layer 43 and the magnetic layer 11 upward. At this time, when the combined magnetic field H pin of the nanomagnets 51 and 52 is equal to or less than the coercive force Hc f of the magnetic layer 11 (H pin ≤ Hc f ), the magnetic field H init is applied and the magnetism is magnetic as in the above embodiment. A current is supplied to the thin wire 1 to reduce the coercive force of the magnetic layer 11 to less than H pin and less than H init . After the application of the magnetic field H init is stopped, the magnetic field −H pin from the nanomagnets 51 and 52 causes the magnetization fixed region 1 FX1 of the magnetic layer 11 to be magnetization-reversed downward as shown in FIG. 7B, and the magnetization reversible region 1 A down-up domain wall DW is generated at the boundary with the SW .

磁気メモリ90Aの書込みは、第1実施形態に係る光変調素子10を備える空間光変調器90の書込みと同様に行うことができる。選択した(書き込む対象の)行のソース線81Aをパルス電流源の+(電位+Vw)の端子に接続し、選択したメモリセル9Aの列のビット線82をパルス電流源の-(電位0V)の端子に接続すると共に、同列のワード線84をゲート電源に接続する。図7Aに示すように、磁性細線1の磁化固定領域1FX1側に電極61が接続した磁気抵抗効果素子10Aを備えるメモリセル9A(奇数列とする)においては、データ“1”が書き込まれる。一方、このメモリセル9Aのx方向に隣り合うメモリセル9A(偶数列とする)においては、データ“0”が書き込まれる。データ“1”、“0”を入れ替えて書き込む場合には、パルス電流源の+/-の端子を入れ替えて接続する。また、書込みにおいては、磁気抵抗効果素子10Aの磁化固定層43に電流が流れないように、すべての読出ワード線83を電位+Vw以上に接続することが好ましい。 The writing of the magnetic memory 90A can be performed in the same manner as the writing of the spatial light modulator 90 including the light modulation element 10 according to the first embodiment. Connect the source wire 81A of the selected (to be written) row to the + (potential + V w ) terminal of the pulse current source, and connect the bit wire 82 of the column of the selected memory cell 9A to the- (potential 0V) of the pulse current source. In addition to connecting to the terminal of, the word wire 84 in the same row is connected to the gate power supply. As shown in FIG. 7A, data “1” is written in the memory cell 9A (which is an odd number row) including the magnetoresistive effect element 10A to which the electrode 61 is connected to the magnetization fixed region 1 FX1 side of the magnetic wire 1. On the other hand, data "0" is written in the memory cells 9A (which are even columns) adjacent to each other in the x direction of the memory cells 9A. When writing data by exchanging "1" and "0", the +/- terminals of the pulse current source are exchanged and connected. Further, in writing, it is preferable to connect all the read word lines 83 to the potential + V w or more so that no current flows through the magnetization fixing layer 43 of the magnetoresistive element 10A.

磁気メモリ90Aの読出しは、すべてのワード線84を0Vに接続して、すべてのメモリセル9Aのトランジスタ71をOFFにする。そして、選択したメモリセル9Aのビット線82に定電流源の+極を、読出ワード線83に-極を、それぞれ接続して、定電流Irを供給しながら、定電流源と並列に接続した電圧計により、抵抗値を測定する。なお、定電流Irは、磁気抵抗効果素子10Aの磁性層11の磁壁DWが移動しない程度の大きさに設定する。また、読出しにおいては、非選択の列のビット線82を定電流源の-極以下の電位に接続し、非選択の行の読出ワード線83を+極以上の電位に接続することが好ましい。 To read the magnetic memory 90A, all the word lines 84 are connected to 0V, and the transistors 71 of all the memory cells 9A are turned off. Then, the positive pole of the constant current source is connected to the bit wire 82 of the selected memory cell 9A, and the negative pole is connected to the read word wire 83, respectively, and connected in parallel with the constant current source while supplying the constant current Ir. Measure the resistance value with the voltmeter. The constant current Ir is set to such a size that the magnetic domain wall DW of the magnetic layer 11 of the magnetoresistive element 10A does not move. Further, in reading, it is preferable to connect the bit wire 82 in the non-selected column to a potential below the − pole of the constant current source and connect the read word wire 83 in the non-selected row to a potential above the + pole.

本実施形態に係る磁気抵抗効果素子10Aは、障壁層3に代えて、Cu,Ag,Alのような非磁性金属からなる厚さ1~10nmの中間層を備えてもよい。この中間層および磁化固定層43ならびに磁性層11を合わせた3層の積層構造からなるCPP-GMR素子を構成することができる。 The magnetoresistive sensor 10A according to the present embodiment may include an intermediate layer having a thickness of 1 to 10 nm made of a non-magnetic metal such as Cu, Ag, and Al, instead of the barrier layer 3. A CPP-GMR element having a three-layer laminated structure in which the intermediate layer, the magnetization fixing layer 43, and the magnetic layer 11 are combined can be configured.

(光変調素子)
第2実施形態に係る磁壁移動素子は、第1実施形態と同様に、光変調素子に適用することができる。言い換えると、第1実施形態に係る光変調素子10は、ナノ磁石52を設けることができる。すなわち、第2実施形態に係る光変調素子は、磁気抵抗効果素子10Aから、障壁層3、磁化固定層43、および電極63を除去した構成とする。また、第2実施形態に係る光変調素子においては、第1実施形態と同様、チャネル層12が磁性層11の上に積層されてもよい。
(Light modulation element)
The domain wall moving element according to the second embodiment can be applied to the light modulation element as in the first embodiment. In other words, the light modulation element 10 according to the first embodiment can be provided with the nanomagnet 52. That is, the light modulation element according to the second embodiment has a configuration in which the barrier layer 3, the magnetization fixing layer 43, and the electrode 63 are removed from the magnetoresistive effect element 10A. Further, in the light modulation element according to the second embodiment, the channel layer 12 may be laminated on the magnetic layer 11 as in the first embodiment.

(変形例)
本発明の第2実施形態に係る磁気抵抗効果素子(磁気記憶素子)は、電極が磁性細線の上面に直接に接続した構造とすることができる。すなわち、図10に示すように、本発明の第2実施形態の変形例に係る磁気抵抗効果素子10Bは、電極61,62が、ナノ磁石51,52の磁性細線1を挟んだ反対側に配置される。なお、電極61,62は、磁性層11の磁化固定領域1FX1,1FX2における磁化反転可能領域1SWとの境界(図7A、図7B参照)よりも外側に接続する。このような磁気抵抗効果素子10Bにおいては、ナノ磁石52は、磁性細線1に接続している必要がないのでナノ磁石51と同じ高さに形成することができ、したがって、磁気メモリ90Aの製造において、ナノ磁石51とナノ磁石52とを同時に形成することができる。この場合、ナノ磁石51とナノ磁石52は平面視形状のアスペクト比によって保磁力を互いに異なるものとしたり、一方にのみイオンを注入して保磁力を小さくしたりする。さらに、ナノ磁石52が電極61,62と電気的に非接続であるので、磁気メモリ90Aの回路構成にかかわらず、x方向に隣り合う磁気抵抗効果素子10B同士でナノ磁石52を共有することができる。したがって、本変形例においては、メモリセル9Aがx方向に配列されていなくてもよく、例えば、メモリセル9Aの配列の対角線方向をx方向としてもよい。また、磁性細線1に対して、障壁層3、磁化固定層43、および電極63と同じ側に電極61,62が配置されるので、ダイオード72をトランジスタ71と共にSi基板の表層に形成することができる。すなわち、磁気メモリ90Aは、図10における上側にSi基板が設けられる。また、y方向に隣り合う2つのメモリセル9A,9Aにおいて、磁性細線1が互いに近接するように配置して、その下のナノ磁石51,52をそれぞれ一体化して共有することもできる。このような構成によれば、ナノ磁石51,52が、幅をある程度太くして磁力を強くすることができる。
(Modification example)
The magnetoresistive element (magnetic storage element) according to the second embodiment of the present invention may have a structure in which the electrodes are directly connected to the upper surface of the magnetic wire. That is, as shown in FIG. 10, in the magnetoresistive element 10B according to the modified example of the second embodiment of the present invention, the electrodes 61 and 62 are arranged on the opposite sides of the magnetic thin wires 1 of the nanomagnets 51 and 52. Will be done. The electrodes 61 and 62 are connected to the outside of the boundary (see FIGS. 7A and 7B) with the magnetization reversible region 1 SW in the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11. In such a magnetoresistive effect element 10B, the nanomagnet 52 does not need to be connected to the magnetic thin wire 1, so that it can be formed at the same height as the nanomagnet 51, and therefore, in the manufacture of the magnetic memory 90A. , The nanomagnet 51 and the nanomagnet 52 can be formed at the same time. In this case, the nanomagnet 51 and the nanomagnet 52 have different coercive forces depending on the aspect ratio of the plan view shape, or ions are injected into only one of them to reduce the coercive force. Further, since the nanomagnet 52 is not electrically connected to the electrodes 61 and 62, the nanomagnet 52 can be shared by the magnetoresistive effect elements 10B adjacent to each other in the x direction regardless of the circuit configuration of the magnetic memory 90A. can. Therefore, in this modification, the memory cells 9A may not be arranged in the x direction, and for example, the diagonal direction of the arrangement of the memory cells 9A may be the x direction. Further, since the electrodes 61 and 62 are arranged on the same side as the barrier layer 3, the magnetization fixing layer 43, and the electrode 63 with respect to the magnetic thin wire 1, the diode 72 can be formed on the surface layer of the Si substrate together with the transistor 71. can. That is, the magnetic memory 90A is provided with a Si substrate on the upper side in FIG. Further, in two memory cells 9A and 9A adjacent to each other in the y direction, the magnetic thin wires 1 may be arranged so as to be close to each other, and the nanomagnets 51 and 52 under the magnetic thin wires 1 may be integrally shared. According to such a configuration, the nano magnets 51 and 52 can be widened to some extent to increase the magnetic force.

磁気抵抗効果素子10A,10Bは、ナノ磁石52を1個のみ、すなわちナノ磁石51の一端側にのみ備えてもよい。例えば、ナノ磁石51のS極側にのみナノ磁石52を配置することにより、-z方向の強い合成磁界-Hpinが得られ、初期設定処理の第2工程で上向きの磁界Hinitの印加の停止後に、磁性層11の磁化固定領域1FX1を下向きに磁化反転させてdown-up磁壁DWを生成することができる。一方、磁化固定領域1FX2については、-x方向の磁界Hassが印加されなければよい。 The magnetoresistive elements 10A and 10B may be provided with only one nanomagnet 52, that is, only on one end side of the nanomagnet 51. For example, by arranging the nanomagnet 52 only on the S pole side of the nanomagnet 51, a strong synthetic magnetic field −H pin in the −z direction can be obtained, and an upward magnetic field H init is applied in the second step of the initial setting process. After stopping, the magnetization fixed region 1 FX1 of the magnetic layer 11 can be magnetized and inverted downward to generate a down-up domain wall DW. On the other hand, for the magnetization fixed region 1 FX2 , the magnetic field Hass in the −x direction may not be applied.

本発明の第2実施形態の変形例に係る磁気抵抗効果素子(磁気記憶素子)は、これを配列した磁気メモリにおいて、磁界印加部材および副磁界印加部材を構成するナノ磁石を一体とした構造とすることができる。すなわち、図11に示すように、本発明の第2実施形態の別の変形例に係る磁気抵抗効果素子10Cは、1個のナノ磁石51aまたはナノ磁石51bを備えると共に、磁気抵抗効果素子10Cをメモリセル9Aに備える磁気メモリ90Aにおいては、磁気抵抗効果素子10Cが磁性細線1の細線方向に配列され、隣り合う2つの磁気抵抗効果素子10C,10Cのナノ磁石(磁界印加部材)51a,51bが、互いに逆向きの極性に固定されている。 The magnetoresistive effect element (magnetic storage element) according to the modified example of the second embodiment of the present invention has a structure in which a magnetic field applying member and nanomagnets constituting a submagnetic field applying member are integrated in a magnetic memory in which the elements are arranged. can do. That is, as shown in FIG. 11, the magnetic resistance effect element 10C according to another modification of the second embodiment of the present invention includes one nanomagnet 51a or nanomagnet 51b, and also includes the magnetic resistance effect element 10C. In the magnetic memory 90A provided in the memory cell 9A, the magnetic resistance effect elements 10C are arranged in the wire direction of the magnetic thin wire 1, and the nanomagnets (magnetic field application members) 51a and 51b of the two adjacent magnetic resistance effect elements 10C and 10C are arranged. , Are fixed in opposite polarities.

本変形例に係る磁気抵抗効果素子10Cは、これを配列した磁気メモリ90Aにおいて、前記変形例に係る磁気抵抗効果素子10B(図10参照)と同様に、磁性細線1の細線方向(x方向)に配列される。ナノ磁石51aおよびナノ磁石51bは、第1実施形態等のナノ磁石51と同様の構成であるが、極性が互いに逆向きであり、ナノ磁石51aが+x側をN極とし、ナノ磁石51bが-x側をN極とする。したがって、ナノ磁石51bを備えた磁気抵抗効果素子10Cにおいては、磁性層11に磁界Hassが+x方向に印加される。これに伴い、電極61と電極62の配置が入れ替えられている。すなわち、x方向に隣り合う磁気抵抗効果素子10Cは、互いにx方向に反転した構成である。また、ナノ磁石51aとナノ磁石51bは、極性を互いに逆向きに着磁することができるように、第2実施形態のナノ磁石51とナノ磁石52のように、保磁力が異なる。ただし、-x方向と+x方向のそれぞれの磁界Hassが同等の強さであることが好ましく、ナノ磁石51aとナノ磁石51bは、磁力が同程度になるように、材料や形状(幅、厚さ)を選択、設計される。 In the magnetic memory 90A in which the magnetic resistance effect element 10C according to the present modification is arranged, the magnetic resistance effect element 10B (see FIG. 10) according to the modification is the same as the magnetic resistance effect element 10B (see FIG. 10). Arranged in. The nano-magnet 51a and the nano-magnet 51b have the same configuration as the nano-magnet 51 of the first embodiment, but the polarities are opposite to each other, the nano-magnet 51a has the + x side as the N pole, and the nano-magnet 51b is −. Let the x side be the north pole. Therefore, in the magnetoresistive element 10C provided with the nanomagnet 51b, the magnetic field Hass is applied to the magnetic layer 11 in the + x direction. Along with this, the arrangements of the electrodes 61 and 62 have been exchanged. That is, the magnetoresistive effect elements 10C adjacent to each other in the x direction have a configuration in which they are inverted in the x direction. Further, the nanomagnets 51a and the nanomagnets 51b have different coercive forces like the nanomagnets 51 and the nanomagnets 52 of the second embodiment so that the polarities can be magnetized in opposite directions. However, it is preferable that the magnetic fields Hass in the −x direction and the + x direction have the same strength, and the nanomagnets 51a and the nanomagnets 51b are made of materials and shapes (width, thickness) so that the magnetic forces are about the same. S) is selected and designed.

ナノ磁石51aとナノ磁石51bは、磁気抵抗効果素子10A,10Bのナノ磁石51とナノ磁石52と同様に、離間かつ近接して配置されることが好ましく、S極同士、N極同士が対向する。そのために、x方向に隣り合う磁気抵抗効果素子10Cの磁性細線1およびその上面に接続する電極61,62同士が、短絡しない程度に近接して配置される。このような構成により、ナノ磁石51aを備える磁気抵抗効果素子10Cにおいては、その両隣の磁気抵抗効果素子10Cのナノ磁石51bとの合成磁界が-z方向、+z方向の磁界-Hpin,+Hpinとして、磁性層11の磁化固定領域1FX1,1FX2にそれぞれ印加される。ナノ磁石51bを備える磁気抵抗効果素子10Cにおいても同様である。また、メモリセル9Aがx方向に配列されている場合には、隣り合う2つの磁気抵抗効果素子10C,10Cの電極62を共有して一体とすることができる。 The nanomagnets 51a and the nanomagnets 51b are preferably arranged apart and close to each other in the same manner as the nanomagnets 51 and the nanomagnets 52 of the magnetoresistive elements 10A and 10B, and the S poles and the N poles face each other. .. Therefore, the magnetic fine wires 1 of the magnetoresistive effect elements 10C adjacent to each other in the x direction and the electrodes 61 and 62 connected to the upper surface thereof are arranged close to each other so as not to cause a short circuit. With such a configuration, in the magnetoresistive effect element 10C provided with the nanomagnet 51a, the combined magnetic field with the nanomagnet 51b of the magnetoresistive effect element 10C on both sides thereof is the magnetic field −H pin , + H pin in the −z direction and the + z direction. As a result, it is applied to the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11, respectively. The same applies to the magnetoresistive element 10C provided with the nanomagnet 51b. Further, when the memory cells 9A are arranged in the x direction, the electrodes 62 of the two adjacent magnetoresistive elements 10C and 10C can be shared and integrated.

第2実施形態およびその変形例に係る磁気抵抗効果素子10A,10B,10Cは、z方向の磁界-Hpin,+Hpinが強いので、保磁力Hcfの大きい磁性材料を磁性層11に適用しつつ、磁化固定領域1FX1,1FX2の磁化方向を容易に下向き、上向きに固定することができる。その結果、初期設定処理で、より確実に、磁性層11のナノ磁石51からの磁界Hassの印加領域(磁化反転可能領域1SW)内の1箇所に、down-up磁壁DWを生成することができる。さらに磁気抵抗効果素子10Cは、これを備えるメモリセル9Aを微細化することができる。 Since the magnetoresistive effect elements 10A, 10B, and 10C according to the second embodiment and its modifications have strong magnetic fields −H pin and + H pin in the z direction, a magnetic material having a large coercive force Hc f is applied to the magnetic layer 11. At the same time, the magnetization directions of the magnetization fixing regions 1 FX1 and 1 FX2 can be easily fixed downward and upward. As a result, in the initial setting process, a down-up domain wall DW is more reliably generated in one place in the application region of the magnetic field Hass from the nanomagnet 51 of the magnetic layer 11 (magnetization reversible region 1 SW ). Can be done. Further, the magnetoresistive effect element 10C can miniaturize the memory cell 9A including the magnetoresistive sensor 10C.

〔第3実施形態〕
磁壁移動素子およびこれを備える磁気記憶素子は、磁性細線1の磁性層11の磁化固定領域1FX1,1FX2における磁化方向の固定を、ナノ磁石51またはナノ磁石51,52の漏れ磁界によらない構成とすることもできる。以下、本発明の第3実施形態に係る磁壁移動素子およびこれを備える磁気記憶素子について、図12Aおよび図12Bを参照して説明する。第1、第2実施形態およびその変形例(図1~11参照)と同一の要素については同じ符号を付し、説明を省略する。
[Third Embodiment]
The domain wall moving element and the magnetic storage element provided with the magnetic wall moving element do not rely on the leakage magnetic field of the nanomagnet 51 or the nanomagnets 51, 52 to fix the magnetization direction in the magnetization fixing regions 1 FX1 and 1 FX2 of the magnetic layer 11 of the magnetic wire 1. It can also be configured. Hereinafter, the domain wall moving element and the magnetic storage element provided with the domain wall moving element according to the third embodiment of the present invention will be described with reference to FIGS. 12A and 12B. The same elements as those of the first and second embodiments and their modifications (see FIGS. 1 to 11) are designated by the same reference numerals, and the description thereof will be omitted.

(磁気抵抗効果素子)
本発明の第3実施形態に係る磁気抵抗効果素子(磁気記憶素子)10Dは、第2実施形態およびその変形例に係る磁気抵抗効果素子10A,10B,10Cと同様に、MRAMのメモリセルの記憶素子である。図12Aおよび図12Bに示すように、磁気抵抗効果素子10Dは、磁性層11とチャネル層12とを上から順に積層した磁性細線1と、磁性細線1の下側にチャネル層12と離間して配置された、磁化方向が磁性細線1の細線方向の一方向のナノ磁石(磁界印加部材)51と、磁性層11の細線方向中央における上面に積層された障壁層(絶縁膜)3および磁化固定層(参照層)43と、を備え、さらに、磁性層11の細線方向両端近傍のそれぞれにおける上面に積層された磁化固定層41,42、および磁化固定層41,42,43のそれぞれの上面に接続する電極61,62,63を備える。したがって、磁気抵抗効果素子10Dは、第1実施形態に係る光変調素子10に対して、磁性細線1の磁性層11の上面の細線方向両端において磁化固定層41,42をそれぞれ積層し、電極61,62の配置を変えて磁性細線1の上面に磁化固定層41,42を介して接続し、さらに、磁性層11の上面の細線方向中央において障壁層3、磁化固定層43、および電極63を順に積層した構成である。
(Magnet Resistive Sensor)
The magnetoresistive effect element (magnetic storage element) 10D according to the third embodiment of the present invention stores the memory cell of the MRAM, similarly to the magnetoresistive effect elements 10A, 10B, 10C according to the second embodiment and its modifications. It is an element. As shown in FIGS. 12A and 12B, the magnetic resistance effect element 10D is separated from the magnetic thin wire 1 in which the magnetic layer 11 and the channel layer 12 are laminated in order from the top, and the channel layer 12 below the magnetic thin wire 1. Arranged nanomagnets (magnetic field application member) 51 in one direction in the thin wire direction of the magnetic thin wire 1 and the barrier layer (insulating film) 3 laminated on the upper surface in the center of the thin wire direction of the magnetic layer 11 and magnetization fixing. A layer (reference layer) 43 is provided, and further, on the upper surfaces of the magnetization fixing layers 41, 42 and the magnetization fixing layers 41, 42, 43 laminated on the upper surfaces of the magnetic layer 11 in the vicinity of both ends in the wire direction. It includes electrodes 61, 62, 63 to be connected. Therefore, in the magnetoresistive effect element 10D, the magnetization fixing layers 41 and 42 are laminated on both ends of the upper surface of the magnetic layer 11 of the magnetic thin wire 1 in the thin wire direction with respect to the optical modulation element 10 according to the first embodiment, respectively, and the electrode 61 is provided. , 62 are rearranged and connected to the upper surface of the magnetic thin wire 1 via the magnetization fixing layers 41 and 42, and further, the barrier layer 3, the magnetization fixing layer 43, and the electrode 63 are connected at the center of the upper surface of the magnetic layer 11 in the thin wire direction. It is a structure in which they are stacked in order.

磁化固定層41,42は、一方が磁化方向を上向きに、他方が下向きに固定されていて、磁性細線1の磁性層11の磁化固定領域1FX1,1FX2に積層されることにより、磁性層11のこの領域に磁気的に結合して、この領域における磁化方向を当該磁化固定層41,42と同じ磁化方向に固定する。したがって、磁化固定層41,42は、磁化固定層43と同様に垂直磁気異方性材料からなり、保磁力が、少なくとも磁性層11の保磁力Hcfよりも大きい。詳しくは、磁性細線1に電流Iwが供給されているときに、磁化固定層41,42は、電極61,62を介して電流Iwが流れることにより保磁力が一時的に低下しても、磁性層11に追随して磁化反転することがないようにする。さらに、磁化固定層41と磁化固定層42とは、互いに逆向きの磁化方向に固定されるために、保磁力が互いに異なることが好ましい。また、ナノ磁石51から磁化固定領域1FX1,1FX2にz方向の磁界-Hpin,+Hpinがそれぞれ印加されるので、これに磁化固定層41,42の磁化方向を一致させることが好ましい。したがって、磁化固定層41は下向きの磁化方向、磁化固定層42は上向きの磁化方向にそれぞれ固定される。そして、磁化固定層41は、磁化固定層43と逆向きの磁化方向に固定されるために磁化固定層43と異なる保磁力とし、一方、磁化固定層42は磁化固定層43と同じ保磁力とすることができる。また、磁気抵抗効果素子10Dは、磁性層11と磁化固定層41,42のそれぞれとの界面に、Ru,Ta等の非磁性金属からなる厚さ1~10nm程度の磁気結合膜を設けてもよい。 One of the magnetization fixing layers 41 and 42 is fixed upward in the magnetization direction and the other downward, and the magnetic layers are laminated on the magnetization fixing regions 1 FX1 and 1 FX2 of the magnetic layer 11 of the magnetic thin wire 1. It is magnetically coupled to this region of 11 to fix the magnetization direction in this region to the same magnetization direction as the magnetization fixing layers 41 and 42. Therefore, the magnetization fixing layers 41 and 42 are made of a vertically magnetic anisotropy material like the magnetization fixing layer 43, and the coercive force is at least larger than the coercive force Hc f of the magnetic layer 11. Specifically, even if the coercive force of the magnetized fixed layers 41 and 42 temporarily decreases due to the current I w flowing through the electrodes 61 and 62 when the current I w is supplied to the magnetic wire 1. , It follows the magnetic layer 11 and prevents the magnetization from being reversed. Further, since the magnetization fixing layer 41 and the magnetization fixing layer 42 are fixed in the magnetization directions opposite to each other, it is preferable that the coercive force is different from each other. Further, since the magnetic fields −H pin and + H pin in the z direction are applied from the nanomagnet 51 to the magnetization fixed regions 1 FX1 and 1 FX2 , respectively, it is preferable to match the magnetization directions of the magnetization fixed layers 41 and 42 with this. Therefore, the magnetization fixing layer 41 is fixed in the downward magnetization direction, and the magnetization fixing layer 42 is fixed in the upward magnetization direction. The magnetization fixing layer 41 has a coercive force different from that of the magnetization fixing layer 43 because it is fixed in the magnetization direction opposite to that of the magnetization fixing layer 43, while the magnetization fixing layer 42 has the same coercive force as the magnetization fixing layer 43. can do. Further, the magnetoresistive element 10D may be provided with a magnetic bonding film having a thickness of about 1 to 10 nm made of a non-magnetic metal such as Ru or Ta at the interface between the magnetic layer 11 and the magnetization fixing layers 41 and 42, respectively. good.

(初期設定処理)
本実施形態に係る磁気抵抗効果素子10Dの初期設定処理は、第1、第2実施形態およびその変形例と同様に、磁気抵抗効果素子10Dをメモリセル9Aに備える磁気メモリ90Aに対して、その製造時または使用前に行われる。本実施形態では、第1工程で+x方向に外部磁界を印加してナノ磁石51について極性を着磁した後、第2工程で、磁性細線1の磁性層11に磁壁DWを生成すると共に、磁化固定層41と磁化固定層42,43を互いに逆向きの磁化方向に固定する。ここでは、磁化固定層41よりも磁化固定層42,43の方が保磁力が大きいものとする。第1工程の後、外部から、磁化固定層41,42,43および磁性層11のすべての保磁力よりも大きい磁界Hinitを上向き(+z方向)に印加して、これらを上向きの磁化方向として印加を停止する。次に、磁化固定層41および磁性層11の保磁力よりも大きくかつ磁化固定層42,43の保磁力よりも小さい磁界Hinit´を下向き(-z方向)に印加して、磁化固定層41、および磁性層11の磁化固定領域1FX2以外の領域を下向きに磁化反転させて印加を停止する。磁性層11の磁化固定領域1FX2は、磁化固定層42に磁気的に結合しているため、図12Aに示すように、磁化方向が同じ上向きに固定されたままであり、磁性層11の磁化反転可能領域1SWと磁化固定領域1FX2との境界に磁壁DWが生成する。あるいは、磁化固定層41,42(および磁化固定層43)の保磁力が同等であってもよい。第2工程で、磁界Hinitを+z方向に印加しながら、電極61,62を介して、磁性細線1および磁化固定層41,42に電流を供給する。磁性層11および磁化固定層41,42,43を上向きの磁化方向としてから磁界Hinitの印加を停止し、その後に電流の供給を停止する。第1実施形態で説明したように、外部磁界のない状態では、ナノ磁石51のS極(-x側の端)近傍上において-z方向の磁界が印加される。磁化固定層41に印加される磁界は磁性層11における磁界-Hpinよりも弱いが、電流を供給されていることにより、磁化固定層41は、磁性層11と同様に温度上昇に伴い保磁力が一時的に低下しているので、磁性層11の磁化固定領域1FX1と共に下向きに磁化反転する(図12B参照)。そのために、第2工程で供給する電流は、磁化固定層41の保磁力を十分に低下させる大きさとし、書込み時の電流Iwよりも大きいことが好ましい。
(Initial setting process)
The initial setting process of the magnetoresistive effect element 10D according to the present embodiment is the same as in the first and second embodiments and the modified examples thereof, with respect to the magnetic memory 90A provided with the magnetoresistive effect element 10D in the memory cell 9A. Performed at the time of manufacture or prior to use. In the present embodiment, after applying an external magnetic field in the + x direction to magnetize the nanomagnet 51 in the first step, a magnetic domain wall DW is generated and magnetized in the magnetic layer 11 of the magnetic fine wire 1 in the second step. The fixed layer 41 and the magnetized fixed layers 42 and 43 are fixed in the magnetization directions opposite to each other. Here, it is assumed that the magnetized fixed layers 42 and 43 have a larger coercive force than the magnetized fixed layer 41. After the first step, a magnetic field Hinit larger than all the coercive forces of the magnetization fixing layers 41, 42, 43 and the magnetic layer 11 is applied upward (+ z direction) from the outside, and these are set as the upward magnetization directions. Stop the application. Next, a magnetic field H init ′, which is larger than the coercive force of the magnetization fixing layer 41 and the magnetic layer 11 and smaller than the coercive force of the magnetization fixing layers 42 and 43, is applied downward (−z direction) to apply the magnetization fixing layer 41. , And the region other than the magnetization fixed region 1 FX2 of the magnetic layer 11 is magnetized inverted downward to stop the application. Since the magnetization-fixed region 1 FX2 of the magnetic layer 11 is magnetically coupled to the magnetization-fixed layer 42, as shown in FIG. 12A, the magnetization directions remain fixed in the same upward direction, and the magnetization of the magnetic layer 11 is reversed. A domain wall DW is generated at the boundary between the possible region 1 SW and the magnetization fixed region 1 FX2 . Alternatively, the coercive force of the magnetization fixing layers 41 and 42 (and the magnetization fixing layer 43) may be the same. In the second step, a current is supplied to the magnetic thin wire 1 and the magnetization fixed layers 41 and 42 via the electrodes 61 and 62 while applying the magnetic field H init in the + z direction. After the magnetic layer 11 and the magnetization fixing layers 41, 42, and 43 are set as the upward magnetization directions, the application of the magnetic field H init is stopped, and then the current supply is stopped. As described in the first embodiment, in the absence of an external magnetic field, a magnetic field in the −z direction is applied near the S pole (end on the −x side) of the nanomagnet 51. The magnetic field applied to the magnetized fixed layer 41 is weaker than the magnetic field −H pin in the magnetic layer 11, but due to the fact that a current is supplied, the magnetized fixed layer 41 has a coercive magnetic force as the temperature rises, similar to the magnetic layer 11. Is temporarily reduced, so that the magnetization is inverted downward together with the magnetization fixed region 1 FX1 of the magnetic layer 11 (see FIG. 12B). Therefore, the current supplied in the second step is preferably large enough to sufficiently reduce the coercive force of the magnetization fixing layer 41, and is larger than the current I w at the time of writing.

本実施形態に係る磁気抵抗効果素子10Dの、電流供給による磁性細線における磁壁移動は、図3Aおよび図3Bに示す第1実施形態と同様である。また、磁気抵抗効果素子10Dをメモリセル9Aに備えた磁気メモリ90Aの書込みおよび読出しは、磁気抵抗効果素子10Aを備えたものと同様に行うことができる。磁気抵抗効果素子10Dは、磁化固定層41,42によって磁性層11の磁化固定領域1FX1,1FX2の磁化方向が固定されているので、磁壁DWが電流Iwの供給のみによって移動し得るとしても、磁化反転可能領域1SW外に移動することがない。 The movement of the magnetic domain wall of the magnetoresistive element 10D according to the present embodiment in the magnetic thin wire by the current supply is the same as that of the first embodiment shown in FIGS. 3A and 3B. Further, writing and reading of the magnetic memory 90A having the magnetoresistive element 10D provided in the memory cell 9A can be performed in the same manner as that provided with the magnetoresistive element 10A. In the magnetoresistive effect element 10D, since the magnetization directions of the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11 are fixed by the magnetization fixing layers 41 and 42, it is assumed that the domain wall DW can move only by supplying the current I w . However, it does not move out of the magnetization reversible region 1 SW .

第3実施形態に係る磁気抵抗効果素子10Dは、このような構成により、硬磁性体からなるナノ磁石51を1個のみ備えて、磁性層11の磁化固定領域1FX1,1FX2の磁化方向を容易にかつ安定して下向き、上向きに固定することができる。また、磁気抵抗効果素子10Dは、磁気抵抗効果素子10B,10Cと同様に、磁性細線1に対して、障壁層3、磁化固定層43、および電極63と同じ側に電極61,62が配置されるので、ダイオード72をトランジスタ71と共にSi基板の表層に形成することができる。 The magnetoresistive sensor 10D according to the third embodiment is provided with only one nanomagnet 51 made of a hard magnetic material by such a configuration, and the magnetization directions of the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11 are set. It can be easily and stably fixed downward and upward. Further, in the magnetoresistive effect element 10D, similarly to the magnetoresistive effect elements 10B and 10C, the barrier layer 3, the magnetization fixing layer 43, and the electrodes 61 and 62 are arranged on the same side as the electrode 63 with respect to the magnetic wire 1. Therefore, the diode 72 can be formed on the surface layer of the Si substrate together with the transistor 71.

磁気抵抗効果素子10Dは、磁化固定層41,42の保磁力を十分に大きくすることにより、磁性層11の磁化固定領域1FX1,1FX2に印加されるナノ磁石51の漏れ磁界の向き(-z方向、+z方向)にかかわらず、磁化固定層41,42のみによって、磁化固定領域1FX1,1FX2を所望の磁化方向に固定することができる。したがって、磁化固定層41,42の磁化方向を入れ替えて、磁壁DWを左旋回のネール型の磁気構造とすることができる。また、磁気抵抗効果素子10Dは、磁化固定層41,42の保磁力を十分に大きくすることにより、ナノ磁石51のx方向長を、磁性細線1の細線長以上に長く形成することができる。このような形状のナノ磁石51から磁性層11の磁化固定領域1FX1,1FX2にまで磁界Hassが印加されていても、これらの領域1FX1,1FX2の磁化方向が磁化固定層41,42によって強く固定され、電流Iwの供給時に磁壁DWが進入してくることがない。したがって、例えばナノ磁石51を磁性細線1と同じ平面視形状として、磁気メモリ90Aの製造において、ナノ磁石51と磁性細線1とを同時に加工することができる。あるいは、ナノ磁石51を、磁性細線1よりも長いx方向長に形成することができ、さらに、x方向に隣り合う2以上のメモリセル9Aの磁気抵抗効果素子10Dにおいて、1個のナノ磁石51を共有することができる。 In the magnetic resistance effect element 10D, the coercive force of the magnetization fixing layers 41 and 42 is sufficiently increased so that the direction of the leakage magnetic field of the nanomagnet 51 applied to the magnetization fixing regions 1 FX1 and 1 FX2 of the magnetic layer 11 (-). Regardless of (z direction, + z direction), the magnetization fixing regions 1 FX1 and 1 FX2 can be fixed in a desired magnetization direction only by the magnetization fixing layers 41 and 42. Therefore, the magnetization directions of the magnetization fixing layers 41 and 42 can be exchanged to form the domain wall DW into a left-turning nail-type magnetic structure. Further, the magnetoresistive element 10D can form the x-direction length of the nanomagnet 51 longer than the fine wire length of the magnetic thin wire 1 by sufficiently increasing the coercive force of the magnetization fixing layers 41 and 42. Even if the magnetic field Hass is applied from the nanomagnet 51 having such a shape to the magnetization fixed regions 1 FX1 and 1 FX2 of the magnetic layer 11, the magnetization directions of these regions 1 FX1 and 1 FX2 are the magnetization fixed regions 41, It is strongly fixed by 42, and the domain wall DW does not enter when the current I w is supplied. Therefore, for example, the nano magnet 51 can be formed into the same plan view shape as the magnetic thin wire 1, and the nano magnet 51 and the magnetic thin wire 1 can be processed at the same time in the production of the magnetic memory 90A. Alternatively, the nanomagnet 51 can be formed to have a length in the x direction longer than that of the magnetic wire 1, and further, one nanomagnet 51 is used in the magnetoresistive effect element 10D of two or more memory cells 9A adjacent to each other in the x direction. Can be shared.

〔第4実施形態〕
本発明の第2実施形態に係る磁壁移動素子およびこれを備える磁気記憶素子は、副磁界印加部材を、垂直磁気異方性の硬磁性材料からなる垂直方向の棒磁石としてもよい。以下、本発明の第4実施形態に係る磁壁移動素子について、図13を参照して説明する。第1、第2実施形態およびその変形例(図1~11参照)と同一の要素については同じ符号を付し、説明を省略する。
[Fourth Embodiment]
In the domain wall moving element and the magnetic storage element provided with the domain wall moving element according to the second embodiment of the present invention, the submagnetic field application member may be a vertical bar magnet made of a hard magnetic material having vertical magnetic anisotropy. Hereinafter, the domain wall moving element according to the fourth embodiment of the present invention will be described with reference to FIG. The same elements as those of the first and second embodiments and their modifications (see FIGS. 1 to 11) are designated by the same reference numerals, and the description thereof will be omitted.

(光変調素子)
本発明の第4実施形態に係る光変調素子(磁壁移動素子)10Eは、第1実施形態に係る光変調素子10と同様に、空間光変調器の画素に使用される。図13に示すように、光変調素子10Eは、磁性層11とチャネル層12とを上から順に積層した磁性細線1と、磁性細線1の下側にチャネル層12と離間して配置された、磁化方向が磁性細線1の細線方向の一方向のナノ磁石(磁界印加部材)51と、ナノ磁石51の細線方向両側に離間して配置されて磁性細線1の下面に接続する、磁化方向が下向き、上向きのナノ磁石(副磁界印加部材)53a,53bと、を備え、さらに、ナノ磁石53a,53bのそれぞれの下面に接続する電極61,62を備える。したがって、光変調素子10Eは、第2実施形態に係る磁壁移動素子(図6参照)のナノ磁石52,52をナノ磁石53a,53bに置き換えた構成である。
(Light modulation element)
The light modulation element (domain wall moving element) 10E according to the fourth embodiment of the present invention is used for the pixels of the spatial light modulator, similarly to the light modulation element 10 according to the first embodiment. As shown in FIG. 13, the optical modulation element 10E is arranged so that the magnetic thin wire 1 in which the magnetic layer 11 and the channel layer 12 are laminated in order from the top and the magnetic thin wire 1 are arranged below the magnetic thin wire 1 so as to be separated from the channel layer 12. The magnetizing direction is one direction of the thin wire direction of the magnetic thin wire 1. The nano magnet (magnetic field application member) 51 and the nano magnet 51 are arranged apart from each other on both sides of the thin wire direction and connected to the lower surface of the magnetic thin wire 1, and the magnetization direction is downward. , And upward nanomagnets (secondary magnetic field applying member) 53a, 53b, and further includes electrodes 61, 62 connected to the lower surfaces of the nano magnets 53a, 53b, respectively. Therefore, the light modulation element 10E has a configuration in which the nanomagnets 52 and 52 of the domain wall moving element (see FIG. 6) according to the second embodiment are replaced with nanomagnets 53a and 53b.

ナノ磁石53aおよびナノ磁石53bは、z方向に沿った極小の棒磁石であり、磁性細線1に対向する側(上側)の極性が、ナノ磁石51の対向する側と同極、すなわち、-x側のナノ磁石53aが上側をS極とし、+x側のナノ磁石53bが上側をN極とする。ナノ磁石53aは、自身の漏れ磁界またはナノ磁石51との合成磁界を、-z方向の磁界-Hpinとして、磁性層11の磁化固定領域1FX1に印加する。ナノ磁石53bは、自身の漏れ磁界またはナノ磁石51との合成磁界を、+z方向の磁界+Hpinとして、磁性層11の磁化固定領域1FX2に印加する。なお、図13に、ナノ磁石51およびナノ磁石53a,53bからの磁力線を破線で表す。そのために、ナノ磁石53a,53bは、ナノ磁石51のx方向両外側それぞれに離間かつ近接して配置され、磁性層11の磁化固定領域1FX1,1FX2の直下でナノ磁石51と対向する。また、ナノ磁石53a,53bは、磁性細線1の下面(チャネル層12)に接続して設けられ、ナノ磁石53a,53bの下面に電極61,62が接続する。したがって、ナノ磁石53a,53bは、電極61,62と共に、磁性細線1への電流Iwの供給経路を構成する。また、ナノ磁石53a,53bは、対向するナノ磁石51と異極である下端が、ナノ磁石51よりも下方となるように配置されることが好ましい。ナノ磁石53a,53bは、単独での漏れ磁界が、またはナノ磁石51との合成磁界が、-Hpin,+Hpinとして十分な大きさ(Hpin>Hcf´)となるような磁力を有する。そのために、ナノ磁石53aおよびナノ磁石53bは、垂直磁気異方性を有する硬磁性体からなり、例えば、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを膜厚比1:2~4程度に交互に繰り返し積層したCo/Pd多層膜等の多層膜が適用される。また、ナノ磁石53aとナノ磁石53bとは、極性を互いに逆向きに着磁することができるように、保磁力が異なり、さらに、保磁力が共にナノ磁石51よりも小さい、または大きいことが好ましい。そのために、ナノ磁石53aとナノ磁石53bは、例えば、平面視形状のアスペクト比を異なるものとする。 The nano magnet 53a and the nano magnet 53b are extremely small bar magnets along the z direction, and the polarity on the side facing the magnetic wire 1 (upper side) is the same as that on the opposite side of the nano magnet 51, that is, −x. The nanomagnet 53a on the side has an S pole on the upper side, and the nanomagnet 53b on the + x side has an N pole on the upper side. The nanomagnet 53a applies its own leakage magnetic field or a combined magnetic field with the nanomagnet 51 to the magnetization fixed region 1 FX1 of the magnetic layer 11 as a magnetic field −H pin in the −z direction. The nanomagnet 53b applies its own leakage magnetic field or a combined magnetic field with the nanomagnet 51 to the magnetization fixed region 1 FX2 of the magnetic layer 11 as a magnetic field in the + z direction + H pin . In FIG. 13, the lines of magnetic force from the nano magnets 51 and the nano magnets 53a and 53b are represented by broken lines. Therefore, the nano-magnets 53a and 53b are arranged apart and close to each other on both outer sides of the nano-magnet 51 in the x-direction, and face the nano-magnet 51 directly under the magnetization fixing regions 1 FX1 and 1 FX2 of the magnetic layer 11. Further, the nano magnets 53a and 53b are provided by being connected to the lower surface (channel layer 12) of the magnetic thin wire 1, and the electrodes 61 and 62 are connected to the lower surfaces of the nano magnets 53a and 53b. Therefore, the nanomagnets 53a and 53b together with the electrodes 61 and 62 form a supply path of the current I w to the magnetic wire 1. Further, it is preferable that the nano-magnets 53a and 53b are arranged so that the lower end, which is different from the opposite nano-magnet 51, is below the nano-magnet 51. The nanomagnets 53a and 53b have a magnetic force such that the leakage magnetic field alone or the combined magnetic field with the nanomagnet 51 is sufficiently large as −H pin and + H pin (H pin > Hc f ′). .. Therefore, the nanomagnet 53a and the nanomagnet 53b are made of a hard magnetic material having vertical magnetic anisotropy, and for example, a transition metal such as Fe, Co, Ni and a noble metal such as Pd, Pt are mixed in a film thickness ratio of 1. : A multilayer film such as a Co / Pd multilayer film laminated alternately and repeatedly at about 2 to 4 is applied. Further, it is preferable that the nanomagnet 53a and the nanomagnet 53b have different coercive forces so that the polarities can be magnetized in opposite directions, and the coercive force is both smaller or larger than that of the nanomagnet 51. .. Therefore, for example, the nanomagnets 53a and the nanomagnets 53b have different aspect ratios in a plan view shape.

(初期設定処理)
本実施形態に係る光変調素子10Eの初期設定処理は、第1、第2実施形態およびその変形例と同様に、光変調素子10Eを画素に備える空間光変調器90に対して、その製造時または使用前に行われる。ここでは、光変調素子10Eは、保磁力が、ナノ磁石53aの方がナノ磁石53bよりも大きく、ナノ磁石53a,53b共にナノ磁石51よりも小さいものとする。そのため、第1実施形態と同様に、まず、第1工程で+x方向に外部磁界を印加してナノ磁石51について極性を着磁する。その後、第2工程で、必要に応じて磁性細線1およびナノ磁石53a,53bに電流を供給しながら、外部から、ナノ磁石53a,53bおよび磁性層11のすべての保磁力よりも大きい磁界Hinitを下向き(-z方向)に印加して、これらを下向きの磁化方向として磁界Hinitの印加を停止する。次に、ナノ磁石53bおよび磁性層11の保磁力よりも大きくかつナノ磁石53aの保磁力よりも小さい磁界Hinit´を上向き(+z方向)に印加して、ナノ磁石53bおよび磁性層11を上向きに磁化反転させて磁界Hinit´の印加を停止し、その後に電流の供給を停止する。外部磁界(磁界Hinit´)の停止後、磁界-Hpinにより磁性層11の磁化固定領域1FX1が下向きに磁化反転する。
(Initial setting process)
Similar to the first and second embodiments and variations thereof, the initial setting process of the light modulation element 10E according to the present embodiment is performed at the time of manufacturing the spatial light modulator 90 having the light modulation element 10E in the pixels. Or done before use. Here, in the light modulation element 10E, the coercive force of the nano magnet 53a is larger than that of the nano magnet 53b, and both the nano magnets 53a and 53b are smaller than the nano magnet 51. Therefore, as in the first embodiment, first, in the first step, an external magnetic field is applied in the + x direction to magnetize the polarity of the nanomagnet 51. Then, in the second step, a magnetic field H init larger than all the coercive forces of the nanomagnets 53a, 53b and the magnetic layer 11 from the outside while supplying a current to the magnetic wire 1 and the nanomagnets 53a, 53b as needed. Is applied downward (−z direction), and the application of the magnetic field H init is stopped with these as the downward magnetization direction. Next, a magnetic field H init ′, which is larger than the coercive force of the nanomagnet 53b and the magnetic layer 11 and smaller than the coercive force of the nanomagnet 53a, is applied upward (+ z direction) to turn the nanomagnet 53b and the magnetic layer 11 upward. The magnetism is reversed to stop the application of the magnetic field H init ′, and then the current supply is stopped. After the external magnetic field (magnetic field H init ′) is stopped, the magnetization fixed region 1 FX1 of the magnetic layer 11 is magnetized and inverted downward by the magnetic field −H pin .

本実施形態に係る光変調素子10Eの、電流供給による磁性細線における磁壁移動は、図3Aおよび図3Bに示す第1実施形態と同様である。また、光変調素子10Eを画素に備えた空間光変調器90の書込みは、光変調素子10を備えたものと同様に行うことができる。 The domain wall movement of the light modulation element 10E according to the present embodiment in the magnetic fine wire due to the current supply is the same as that of the first embodiment shown in FIGS. 3A and 3B. Further, the writing of the spatial light modulator 90 provided with the light modulation element 10E in the pixel can be performed in the same manner as that provided with the light modulation element 10.

第4実施形態に係る光変調素子10Eは、第2実施形態に係る磁気抵抗効果素子10Aと同様に、z方向の磁界-Hpin,+Hpinが強いので、保磁力Hcfの大きい磁性材料を磁性層11に適用しつつ、磁化固定領域1FX1,1FX2の磁化方向を容易に下向き、上向きに固定することができる。なお、光変調素子10Eは、ナノ磁石53a,53bのいずれか1個のみを備える構成でもよい。例えば、ナノ磁石53aのみを備える場合には、初期設定処理は、前記と同様に、-z方向の磁界Hinitを印加した後に、磁性層11の保磁力よりも大きくかつナノ磁石53aの保磁力よりも小さい磁界を+z方向に印加すればよい。 Like the magnetoresistive effect element 10A according to the second embodiment, the optical modulation element 10E according to the fourth embodiment has a strong magnetic field −H pin and + H pin in the z direction, so that a magnetic material having a large coercive force Hc f is used. While being applied to the magnetic layer 11, the magnetization directions of the magnetization fixing regions 1 FX1 and 1 FX2 can be easily fixed downward and upward. The light modulation element 10E may be configured to include only one of the nanomagnets 53a and 53b. For example, when only the nanomagnet 53a is provided, the initial setting process is larger than the coercive force of the magnetic layer 11 and the coercive force of the nanomagnet 53a after applying the magnetic field Hinit in the −z direction as described above. A magnetic field smaller than that may be applied in the + z direction.

(磁気抵抗効果素子)
本発明の第4実施形態に係る磁壁移動素子は、第2実施形態(図6参照)と同様に、磁性細線1の磁性層11の磁化反転可能領域1SW上に障壁層(絶縁膜)3および磁化固定層(参照層)43を積層することで、磁気抵抗効果素子(磁気記憶素子)を構成することができる。また、磁気抵抗効果素子においては、電極61,62が磁性細線1の上面に接続していてもよく、さらにこの場合には、ナノ磁石53a,53bが、ナノ磁石51と同様に磁性細線1と離間していてもよい。
(Magnet Resistive Sensor)
Similar to the second embodiment (see FIG. 6), the domain wall moving element according to the fourth embodiment of the present invention has a barrier layer (insulating film) 3 on the magnetization reversible region 1 SW of the magnetic layer 11 of the magnetic wire 1. By stacking the magnetization fixing layer (reference layer) 43 and the magnetization fixed layer (reference layer) 43, a magnetoresistive effect element (magnetic storage element) can be configured. Further, in the magnetoresistive sensor, the electrodes 61 and 62 may be connected to the upper surface of the magnetic thin wire 1, and in this case, the nanomagnets 53a and 53b are connected to the magnetic thin wire 1 as in the nanomagnet 51. It may be separated.

以上のように、本発明の実施形態およびその変形例に係る磁壁移動素子ならびにこれを備える磁気記憶素子によれば、ナノ磁石を内蔵することにより、電流を大きくせずに書込みが高速化されるので、磁性細線が劣化し難く長期の使用が可能となる。また、回路構成が複雑化しないので、画素やメモリセルが大型化しない。 As described above, according to the domain wall moving element and the magnetic storage element provided with the domain wall moving element according to the embodiment of the present invention and its modified example, the writing speed is increased without increasing the current by incorporating the nanomagnet. Therefore, the magnetic fine wire does not easily deteriorate and can be used for a long period of time. Moreover, since the circuit configuration is not complicated, the pixels and memory cells do not become large.

本発明の効果を確認するために、本発明の実施形態に係る磁壁移動素子を模擬したサンプルを作製して、磁壁の移動速度を測定した。本実施例では、磁壁移動素子のナノ磁石の漏れ磁界に代えて外部から磁界を印加した。したがって、サンプルは、図14に示すように、磁性細線およびその上面に接続した一対の電極のみとし、さらに、細線方向に区切る磁壁を生成するために、磁性細線の一端側に、膜面垂直方向のナノ磁石として、垂直磁気異方性の硬磁性体を設けた。 In order to confirm the effect of the present invention, a sample simulating the domain wall moving element according to the embodiment of the present invention was prepared, and the moving speed of the domain wall was measured. In this embodiment, a magnetic field is applied from the outside instead of the leakage magnetic field of the nanomagnet of the domain wall moving element. Therefore, as shown in FIG. 14, the sample is limited to the magnetic wire and a pair of electrodes connected to the upper surface thereof, and further, in order to generate a domain wall dividing in the wire direction, the sample is placed on one end side of the magnetic wire in the direction perpendicular to the film surface. As the nanomagnet of the above, a hard magnetic material having vertical magnetic anisotropy was provided.

(サンプル作製)
磁性細線は、下地膜:SiN(5nm)/チャネル層:Ta(3nm)/磁性層:GdFe(10nm)/保護膜:SiN(5nm)の積層構造で、0.5μm幅の直線状に形成した。GdFeの組成は、Gd:22.6at%、Fe:77.4at%であった。また、硬磁性体は、Ru(3nm)/Pt(3nm)/[Co(0.3nm)/Pd(0.6nm)]×25/Ru(3nm)の合計厚さ31.5nmの積層構造で、0.5μm(細線方向長)×3μmに形成した。まず、熱酸化SiO2が表面に形成されたSi基板上に、SiN膜を成膜してトレンチを形成し、硬磁性体を構成する積層膜を成膜して埋め込んだ。その上に、磁性細線を構成する積層膜を成膜して直線状に成形し、さらに、磁性細線の周囲にSiNを埋め込んだ。硬磁性体および磁性細線は、それぞれ、マグネトロンスパッタリングで成膜し、電子線描画、イオンミリング、およびリフトオフにより形成された。そして、磁性細線の表面の保護膜の一部(2箇所)を除去して、Agで電極を形成した。電極間距離(細線方向長)は17μmである。また、+x側の電極と硬磁性体との細線方向の距離は1~2μmである。また、比較例として、磁性細線を、下地膜:SiN(5nm)/磁性層:GdFe(15nm)/保護膜:SiN(5nm)の積層構造とした、チャネル層(Ta膜)がないサンプルを作成した(GdFeの組成は、Gd:23.5at%、Fe:76.5at%)。
(Sample preparation)
The magnetic thin wire has a laminated structure of base film: SiN (5 nm) / channel layer: Ta (3 nm) / magnetic layer: GdFe (10 nm) / protective film: SiN (5 nm), and is formed in a linear shape with a width of 0.5 μm. .. The composition of GdFe was Gd: 22.6 at% and Fe: 77.4 at%. The hard magnetic material has a laminated structure of Ru (3 nm) / Pt (3 nm) / [Co (0.3 nm) / Pd (0.6 nm)] × 25 / Ru (3 nm) with a total thickness of 31.5 nm. , 0.5 μm (length in the thin line direction) × 3 μm. First, a SiN film was formed on the Si substrate on which the thermal oxide SiO 2 was formed on the surface to form a trench, and a laminated film constituting a hard magnetic material was formed and embedded. A laminated film constituting the magnetic fine wire was formed on the film and formed into a linear shape, and SiN was further embedded around the magnetic fine wire. The hard magnetic material and the magnetic thin wire were each formed by magnetron sputtering, and formed by electron beam lithography, ion milling, and lift-off. Then, a part (two places) of the protective film on the surface of the magnetic fine wire was removed to form an electrode with Ag. The distance between the electrodes (length in the thin line direction) is 17 μm. Further, the distance between the electrode on the + x side and the hard magnetic material in the wire line direction is 1 to 2 μm. Further, as a comparative example, a sample without a channel layer (Ta film) was prepared in which the magnetic thin wire had a laminated structure of a base film: SiN (5 nm) / a magnetic layer: GdFe (15 nm) / a protective film: SiN (5 nm). (The composition of GdFe is Gd: 23.5 at%, Fe: 76.5 at%).

(保磁力の測定)
実施例および比較例の各サンプルに、下側から上向きに800mT(+800mT)の磁界を印加して、磁性細線の磁性層および硬磁性体を上向きの磁化方向とした。次に、集束レーザー光(波長:658nm、レーザースポットサイズ:2~3μm)を用いてカー回転角を測定し、磁性細線の磁性層および硬磁性体の磁化反転を観察した。サンプルからの反射光の偏光の向き(カー回転角)を、マイクロKerr測定装置で測定しながら、印加磁界をその大きさ(絶対値)を漸増させながら印加して、偏光の向きの変化を観察した。硬磁性体の保磁力は、約400mTであった。また、実施例および比較例の各サンプルの磁性細線における、印加磁界を±200mTまで変化させたときのカー回転角のヒステリシスループを、図15Aおよび図15Bに示す。実施例のサンプルの磁性細線の保磁力は、+,-共に約40mTであった。一方、比較例のサンプルの磁性細線の保磁力は、約+50mTと約-30mTであった。
(Measurement of coercive force)
A magnetic field of 800 mT (+ 800 mT) was applied upward from the lower side to each sample of the example and the comparative example, and the magnetic layer of the magnetic fine wire and the hard magnetic material were set to the upward magnetization direction. Next, the car rotation angle was measured using focused laser light (wavelength: 658 nm, laser spot size: 2 to 3 μm), and the magnetization reversal of the magnetic layer of the magnetic fine wire and the hard magnetic material was observed. While measuring the direction of polarization of the reflected light from the sample (car rotation angle) with a micro Kerr measuring device, apply an applied magnetic field while gradually increasing its magnitude (absolute value), and observe the change in the direction of polarization. did. The coercive force of the hard magnetic material was about 400 mT. Further, FIGS. 15A and 15B show the hysteresis loop of the car rotation angle when the applied magnetic field is changed to ± 200 mT in the magnetic thin wire of each sample of the example and the comparative example. The coercive force of the magnetic thin wire of the sample of the example was about 40 mT for both + and-. On the other hand, the coercive force of the magnetic thin wire of the sample of the comparative example was about +50 mT and about -30 mT.

(初期設定処理)
サンプルに、+800mTの磁界を印加しながら、電極を介して磁性細線にパルス幅50ns、2.2mAの直流パルス電流を供給して、磁性細線の磁性層および硬磁性体を上向きの磁化方向とし、磁界印加停止により、磁性層の硬磁性体上近傍にup-down磁壁を生成し、さらにパルス幅15nsのパルス電流を供給して、磁壁を所定の位置まで移動させた。
(Initial setting process)
While applying a magnetic field of + 800 mT to the sample, a DC pulse current with a pulse width of 50 ns and 2.2 mA was supplied to the magnetic thin wire through the electrode, and the magnetic layer and the hard magnetic material of the magnetic thin wire were set to the upward magnetization direction. By stopping the application of the magnetic field, an up-down magnetic wall was generated in the vicinity of the hard magnetic material of the magnetic layer, and a pulse current having a pulse width of 15 ns was further supplied to move the magnetic wall to a predetermined position.

(磁壁移動速度の測定)
外部から一定の大きさの磁界を細線方向に印加しながら、磁性細線にパルス幅15nsのパルス電流を供給した。電流の供給の前後に、磁性細線の磁壁の位置を観察し、MO差分像から磁壁の移動した距離および方向を計測し、電流の総供給時間(15ns×パルス回数)から単位時間当たりの距離を移動速度として算出した。25mTの磁界を印加しながら、0.4,0.6,0.8,1.0,1.4,1.8,2.2mA(比較例のサンプルは、1.8,2.0,2.2mA)の電流を供給した。また、ナノ磁石のない比較例を模擬して、実施例のサンプルに磁界を印加せずに(0T)電流を供給した。また、実施例のサンプルについて、2.2mAの電流を供給する際に、4,8,12,25mTの磁界を印加した。これらの磁界印加および電流供給はそれぞれ、+x方向、-x方向に向きを変えて行った。さらに、実施例のサンプルについて、初期設定処理で外部磁界を下向きに印加してdown-up磁壁を生成し、同様の測定を行った。
(Measurement of domain wall moving speed)
A pulse current having a pulse width of 15 ns was supplied to the magnetic thin wire while applying a magnetic field of a certain magnitude from the outside in the thin wire direction. Before and after the current supply, observe the position of the magnetic domain wall of the magnetic thin wire, measure the distance and direction of the magnetic wall moving from the MO difference image, and calculate the distance per unit time from the total current supply time (15ns x number of pulses). Calculated as the moving speed. While applying a magnetic field of 25 mT, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2 mA (the sample of the comparative example is 1.8, 2.0, A current of 2.2 mA) was supplied. In addition, a (0T) current was supplied to the sample of the example without applying a magnetic field, simulating a comparative example without a nanomagnet. Further, for the sample of the example, a magnetic field of 4,8,12,25 mT was applied when a current of 2.2 mA was supplied. These magnetic field application and current supply were performed by changing the directions in the + x direction and the −x direction, respectively. Further, for the sample of the example, an external magnetic field was applied downward in the initial setting process to generate a down-up domain wall, and the same measurement was performed.

各測定を5回行い、平均値および標準偏差を算出した。図16Aおよび図16Bに、実施例のサンプルによる磁壁移動速度(ν)の電流密度(J)依存性のグラフを示す。図17Aおよび図17Bに、実施例のサンプルによる磁壁移動速度(ν)の磁界(H)依存性のグラフを示す。図16Aおよび図17Aはup-down磁壁を生成したサンプル、図16Bおよび図17Bはdown-up磁壁を生成したサンプルである。また、これらのグラフのプロットエリア内に、磁壁における磁化方向を簡易的に表す矢印を示す。また、図18に、比較例のサンプルと、磁界印加のない実施例のサンプルとによる、磁壁移動速度(ν)の電流密度(J)依存性のグラフを示す。なお、磁壁移動速度は、磁壁が+x方向に移動した場合には正、-x方向に移動した場合には負で表す。 Each measurement was performed 5 times and the mean and standard deviation were calculated. 16A and 16B show graphs of the current density (J) dependence of the domain wall moving speed (ν) according to the sample of the example. 17A and 17B show graphs of the magnetic field (H) dependence of the domain wall moving velocity (ν) according to the sample of the example. 16A and 17A are samples in which an up-down domain wall is generated, and FIGS. 16B and 17B are samples in which a down-down domain wall is generated. Also, in the plot area of these graphs, an arrow that simply indicates the magnetization direction of the domain wall is shown. Further, FIG. 18 shows a graph of the current density (J) dependence of the domain wall moving speed (ν) between the sample of the comparative example and the sample of the example in which no magnetic field is applied. The domain wall moving speed is expressed as positive when the domain wall moves in the + x direction and as negative when the domain wall moves in the −x direction.

チャネル層を積層した磁性細線のサンプルは、図16Aおよび図16Bに示すように、磁性細線への細線方向の電流供給で磁壁が移動し、さらに電流密度が高いほど移動速度が高速になる傾向が観察された。なお、磁界を印加していない状態(H=0T)を、図18に拡大して示す。また、電流供給と共に磁界を細線方向に印加することにより、磁壁の移動速度が高速になり、図17Aおよび図17Bに示すように、特に絶対値8mT以上で顕著であり、磁界が大きいほど移動速度が高速になった。図18に示すように、磁界が印加されていなくても電流供給のみで磁壁が移動するが、最高移動速度は10.5m/sであり、2.15×1011A/m2の電流を供給したときがピークであった。これに対して、25mTの磁界印加では、電流密度を1.23~2.15×1011A/m2以上供給すると移動方向が安定し、3.38×1011A/m2まで大きくしても磁壁の移動速度が電流密度に伴い増大し、磁界を印加していない場合の20倍以上に高速となった。また、8mTの磁界印加でも、約10倍に高速となった。 As shown in FIGS. 16A and 16B, the magnetic domain wall of the magnetic thin wire sample in which the channel layer is laminated moves due to the current supply in the thin wire direction to the magnetic thin wire, and the higher the current density, the higher the moving speed tends to be. Observed. The state in which no magnetic field is applied (H = 0T) is shown in an enlarged manner in FIG. Further, by applying a magnetic field in the wire direction together with the current supply, the moving speed of the domain wall becomes high, and as shown in FIGS. 17A and 17B, it is particularly remarkable at an absolute value of 8 mT or more, and the larger the magnetic field, the faster the moving speed. Became faster. As shown in FIG. 18, the domain wall moves only by supplying a current even if a magnetic field is not applied, but the maximum moving speed is 10.5 m / s, and a current of 2.15 × 10 11 A / m 2 is applied. The peak was when it was supplied. On the other hand, when a magnetic field of 25 mT is applied, the moving direction becomes stable when the current density is 1.23 to 2.15 × 10 11 A / m 2 or more, and the current density is increased to 3.38 × 10 11 A / m 2 . However, the moving speed of the magnetic wall increased with the current density, and became more than 20 times faster than when no magnetic field was applied. Moreover, even when a magnetic field of 8 mT was applied, the speed was about 10 times faster.

図16Aおよび図17Aのup-down磁壁は、磁界を+x方向に印加されている(図16A:●(黒丸)、図17A:プロットエリア右半分)と、右旋回のネール型の磁気構造となるので、電流の供給方向と同じ方向に移動し、磁界を-x方向に印加されている(図16A:○(白丸)、図17A:プロットエリア左半分)と、左旋回のネール型の磁気構造となるので、電流の供給方向の逆方向に移動した。一方、図16Bおよび図17Bのdown-up磁壁は、磁界を+x方向に印加されている(図16B:●(黒丸)、図17B:プロットエリア右半分)と、左旋回のネール型の磁気構造(図4A、図4B参照)となるので電流の供給方向の逆方向に移動し、磁界を-x方向に印加されている(図16B:○(白丸)、図17B:プロットエリア左半分)と、右旋回のネール型の磁気構造(図3A、図3B参照)となるので電流の供給方向と同じ方向に移動した。また、磁界が印加されていないと、図18に示すように、up-down磁壁、down-up磁壁共に、電流の供給方向と同じ方向に移動した。さらに、磁界が絶対値で12mT以下では、左旋回よりも右旋回のネール型の磁気構造の磁壁の方が、移動速度が高速であった。これは、印加磁界がDMIによる有効磁界と同じ向きであることによると考えられる。一方、印加磁界が25mTでは移動速度の有意差がなく、これは有効磁界に対して印加磁界が十分に強いことによると考えられる。 The up-down magnetic walls of FIGS. 16A and 17A have a magnetic field applied in the + x direction (FIG. 16A: ● (black circle), FIG. 17A: right half of the plot area) and a right-turning nail-shaped magnetic structure. Therefore, when the magnetism moves in the same direction as the current supply direction and the magnetic field is applied in the −x direction (Fig. 16A: ○ (white circle), Fig. 17A: left half of the plot area), it is a left-turning nail-type magnetism. Since it has a structure, it moved in the direction opposite to the current supply direction. On the other hand, the down-up magnetic wall of FIGS. 16B and 17B has a left-turning nail-shaped magnetic structure when a magnetic field is applied in the + x direction (FIG. 16B: ● (black circle), FIG. 17B: right half of the plot area). (See FIGS. 4A and 4B), so that the current moves in the opposite direction of the current supply direction and the magnetic field is applied in the −x direction (FIG. 16B: ○ (white circle), FIG. 17B: left half of the plot area). Since it has a right-turning nail-type magnetic structure (see FIGS. 3A and 3B), it moved in the same direction as the current supply direction. Further, when no magnetic field was applied, both the up-down domain wall and the down-up domain wall moved in the same direction as the current supply direction, as shown in FIG. Further, when the magnetic field had an absolute value of 12 mT or less, the moving speed of the domain wall having a right-turning nail-type magnetic structure was faster than that of the left-turning. It is considered that this is because the applied magnetic field has the same direction as the effective magnetic field by DMI. On the other hand, when the applied magnetic field is 25 mT, there is no significant difference in the moving speed, which is considered to be due to the applied magnetic field being sufficiently stronger than the effective magnetic field.

図18に示すように、チャネル層がない比較例のサンプル(Ta膜無)では、磁界が印加されていなくても磁壁が電流の供給方向と逆方向に磁壁が移動したが、チャネル層が積層された実施例のサンプルよりも低速であり、磁界を印加するとさらに移動速度が低下し、ほとんど移動しなかった。 As shown in FIG. 18, in the sample of the comparative example without the channel layer (without Ta film), the domain wall moved in the direction opposite to the current supply direction even when no magnetic field was applied, but the channel layers were laminated. It was slower than the sample of the example given, and when a magnetic field was applied, the moving speed was further reduced, and there was almost no movement.

このように、磁性細線がチャネル層を積層して備えると共に、細線方向における一方向に磁界を印加されることにより、小さな電流で磁壁を高速移動させることができる。印加磁界は8mT以上で効果が得られ、このような磁界は、画素やメモリセルに磁性細線と共に形成される、磁性細線と同程度の平面視サイズの硬磁性材料からなるナノ磁石からの漏れ磁界で十分であるといえる。さらに、厚さ10nm、幅500nmという比較的厚くかつ幅広の磁性細線においても高い効果が得られることが確認された。 As described above, the magnetic domain wall can be moved at high speed with a small current by providing the magnetic fine wire by stacking the channel layers and applying a magnetic field in one direction in the thin wire direction. The effect is obtained when the applied magnetic field is 8 mT or more, and such a magnetic field is a leakage magnetic field from a nanomagnet made of a hard magnetic material having a planoscopic size similar to that of the magnetic fine wire, which is formed in a pixel or a memory cell together with the magnetic fine wire. Is enough. Furthermore, it was confirmed that a high effect can be obtained even with a relatively thick and wide magnetic thin wire having a thickness of 10 nm and a width of 500 nm.

以上、本発明に係る磁壁移動素子およびこれを備える磁気記憶素子、ならびに磁気メモリおよび空間光変調器を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。 Although the embodiments for implementing the domain wall moving element and the magnetic storage element provided with the domain wall moving element, and the magnetic memory and the spatial light modulator according to the present invention have been described above, the present invention is limited to these embodiments. It is not a thing, and various changes can be made within the range shown in the claim.

10,10E 光変調素子(磁壁移動素子)
10A,10B,10C,10D 磁気抵抗効果素子(磁気記憶素子)
1 磁性細線
11 磁性層
12 チャネル層
3 障壁層(絶縁膜)
41,42 磁化固定層
43 磁化固定層(参照層)
51 ナノ磁石(磁界印加部材)
51a,51b ナノ磁石(磁界印加部材)
52 ナノ磁石(副磁界印加部材)
53a,53b ナノ磁石(副磁界印加部材)
61,62 電極
63 電極
90 空間光変調器
90A 磁気メモリ
9 画素
9A メモリセル
10,10E Light modulation element (domain wall moving element)
10A, 10B, 10C, 10D Magnetoresistive element (magnetic storage element)
1 Magnetic wire 11 Magnetic layer 12 Channel layer 3 Barrier layer (insulating film)
41, 42 Magnetized fixed layer 43 Magnetized fixed layer (reference layer)
51 Nano magnet (magnetic field application member)
51a, 51b Nano magnet (magnetic field application member)
52 Nano magnet (secondary magnetic field application member)
53a, 53b Nano magnet (secondary magnetic field application member)
61, 62 Electrode 63 Electrode 90 Spatial Light Modulator 90A Magnetic Memory 9 Pixel 9A Memory Cell

Claims (9)

垂直磁気異方性材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の下側に配置された面内磁気異方性の硬磁性材料からなる磁界印加部材と、を備え、
前記磁界印加部材は、磁化方向が前記磁性細線の細線方向における所定の一方向に固定され、発する磁界が前記磁性細線に印加され、
前記磁性細線に電流を細線方向に供給されると、前記磁性層に生成している磁壁が、細線方向における前記電流の供給方向に対応した方向に移動することを特徴とする磁壁移動素子。
A magnetic thin wire formed by laminating a magnetic layer made of a vertically magnetic anisotropy material and a channel layer having a spin hole effect to form a fine wire, and an in-plane magnetic anisotropy arranged below the magnetic fine wire. With a magnetic field application member made of hard magnetic material,
In the magnetic field applying member, the magnetization direction is fixed in a predetermined direction in the thin wire direction of the magnetic thin wire, and the generated magnetic field is applied to the magnetic thin wire.
A magnetic domain wall moving element characterized in that when a current is supplied to the magnetic thin wire in the thin wire direction, the magnetic domain wall generated in the magnetic layer moves in a direction corresponding to the current supply direction in the thin wire direction.
前記磁性細線は、前記磁界印加部材に対して、細線方向の一方または両方の外側に延設されていることを特徴とする請求項1に記載の磁壁移動素子。 The magnetic domain wall moving element according to claim 1, wherein the magnetic fine wire extends to the outside of one or both of the thin wire directions with respect to the magnetic field applying member. 前記磁界印加部材に対して前記磁性細線の細線方向の前記一方側または両側に、面内磁気異方性の硬磁性材料からなる副磁界印加部材をさらに備え、
前記副磁界印加部材は、前記磁界印加部材と逆方向に磁化方向が固定され、
前記磁界印加部材と前記副磁界印加部材とがそれぞれ発する磁界が合成された磁界が、前記磁性細線に印加されることを特徴とする請求項2に記載の磁壁移動素子。
A sub-magnetic field applying member made of a hard magnetic material having in-plane magnetic anisotropy is further provided on one side or both sides of the magnetic field applying member in the wire direction of the magnetic wire.
The magnetizing direction of the sub-magnetic field applying member is fixed in the direction opposite to that of the magnetic field applying member.
The domain wall moving element according to claim 2, wherein a magnetic field obtained by combining magnetic fields generated by the magnetic field applying member and the submagnetic field applying member is applied to the magnetic fine wire.
前記磁界印加部材に対して前記磁性細線の細線方向の前記一方側または両側に、垂直磁気異方性の硬磁性材料からなる副磁界印加部材をさらに備え、
前記副磁界印加部材は、前記磁界印加部材の当該副磁界印加部材に対向する極と同極を上側に固定され、発する磁界が前記磁性細線に印加されることを特徴とする請求項2に記載の磁壁移動素子。
A submagnetic field application member made of a hard magnetic material having vertical magnetic anisotropy is further provided on one side or both sides of the magnetic field application member in the wire direction of the magnetic wire.
The second aspect of claim 2, wherein the sub-magnetic field applying member has the same pole as the pole facing the sub-magnetic field applying member of the magnetic field applying member fixed on the upper side, and the generated magnetic field is applied to the magnetic domain wall. Domain wall moving element.
前記副磁界印加部材は、前記磁界印加部材の両側に設けられ、前記磁性細線に接続し、
前記副磁界印加部材を経由して、前記磁性細線に電流を供給されることを特徴とする請求項3または請求項4に記載の磁壁移動素子。
The sub-magnetic field applying member is provided on both sides of the magnetic field applying member and is connected to the magnetic thin wire.
The domain wall moving element according to claim 3 or 4, wherein a current is supplied to the magnetic wire via the submagnetic field application member.
前記磁性層の垂直磁気異方性材料が磁気光学材料であることを特徴とする請求項1ないし請求項5のいずれか一項に記載の磁壁移動素子。 The domain wall moving element according to any one of claims 1 to 5, wherein the magnetic anisotropy material of the magnetic layer is a magnetic optical material. 請求項1ないし請求項6のいずれか一項に記載の磁壁移動素子を備える磁気記憶素子であって、
前記磁性細線は、前記チャネル層が前記磁性層の下に積層され、
前記磁性層の磁壁の移動範囲内における上面に、非磁性金属膜または絶縁膜を挟んで、垂直磁気異方性材料からなる参照層を積層して備えることを特徴とする磁気記憶素子。
A magnetic storage element including the domain wall moving element according to any one of claims 1 to 6.
In the magnetic thin wire, the channel layer is laminated under the magnetic layer, and the magnetic wire is laminated.
A magnetic storage element characterized in that a reference layer made of a vertically magnetic anisotropy material is laminated on the upper surface of the magnetic wall within the moving range of the magnetic layer with a non-magnetic metal film or an insulating film interposed therebetween.
請求項6に記載の磁壁移動素子を画素に備え、光を上方から入射して反射させる空間光変調器。 A spatial light modulator in which the domain wall moving element according to claim 6 is provided in a pixel, and light is incident and reflected from above. 請求項7に記載の磁気記憶素子をメモリセルに備える磁気メモリ。 A magnetic memory including the magnetic storage element according to claim 7 in a memory cell.
JP2020195579A 2020-11-25 2020-11-25 Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory Pending JP2022083931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020195579A JP2022083931A (en) 2020-11-25 2020-11-25 Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195579A JP2022083931A (en) 2020-11-25 2020-11-25 Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory

Publications (1)

Publication Number Publication Date
JP2022083931A true JP2022083931A (en) 2022-06-06

Family

ID=81855529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195579A Pending JP2022083931A (en) 2020-11-25 2020-11-25 Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory

Country Status (1)

Country Link
JP (1) JP2022083931A (en)

Similar Documents

Publication Publication Date Title
JP4413603B2 (en) Magnetic storage device and magnetic information writing method
US7307876B2 (en) High speed low power annular magnetic devices based on current induced spin-momentum transfer
JP4682585B2 (en) Memory element and memory
US8432728B2 (en) Magnetic recording element
JP5847190B2 (en) Bipolar spin transfer inversion
JP5618103B2 (en) Magnetoresistive element and magnetic memory
JP5461683B2 (en) Magnetic memory cell and magnetic random access memory
CN103392245A (en) Writeable magnetic element
US8929131B2 (en) Magnetic memory element and non-volatile storage device
TWI422083B (en) Magnetic memory lattice and magnetic random access memory
JP5092464B2 (en) Domain wall displacement type magnetic recording element having domain wall displacement detection terminal
US11309006B2 (en) Magnetic memory devices including magnetic structure with magnetic domains
JP2022083931A (en) Domain wall moving element, magnetic storage element, spatial light modulator, and magnetic memory
JP6886888B2 (en) Domain wall moving element and magnetic memory
JP2023055588A (en) Method for initializing domain wall motion element and magnetic device
JP2008300622A (en) Magnetoresistive element and magnetic memory device
WO2013080437A1 (en) Storage element, and storage device
CN113921052A (en) Magnetic racetrack memory
JP2020120001A (en) Magnetic memory element

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003