JP2019028024A - Fault point location method, device therefor, and program - Google Patents

Fault point location method, device therefor, and program Download PDF

Info

Publication number
JP2019028024A
JP2019028024A JP2017150800A JP2017150800A JP2019028024A JP 2019028024 A JP2019028024 A JP 2019028024A JP 2017150800 A JP2017150800 A JP 2017150800A JP 2017150800 A JP2017150800 A JP 2017150800A JP 2019028024 A JP2019028024 A JP 2019028024A
Authority
JP
Japan
Prior art keywords
current
voltage
reactor
self
line impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017150800A
Other languages
Japanese (ja)
Inventor
拓明 松尾
Hiroaki Matsuo
拓明 松尾
宏樹 宮嶋
Hiroki Miyajima
宏樹 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017150800A priority Critical patent/JP2019028024A/en
Publication of JP2019028024A publication Critical patent/JP2019028024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

To provide a fault point location method, a device therefore, and a program with which it is possible to locate a fault point in the shunt reactor installation section of a power transmission line buried in the ground.SOLUTION: Provided is a fault point location method, with a shunt reactor installed, for locating a fault point in the shunt reactor installation section of a power transmission line buried in the ground, comprising: an acquisition step for acquiring an own edge voltage, an other edge voltage, an own edge current, an other edge current, an own edge reactor current, and an other edge reactor current; and a computation step for calculating the ratio of entire line impedance of the power transmission line to the line impedance to the fault point. The computation step calculates said ratio on the basis of the own edge voltage, other edge voltage, own edge current, other edge current, own edge reactor current, and other edge reactor current acquired in the acquisition step.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、送電線における故障点標定装置、その方法及びプログラムに関する。   Embodiments described herein relate generally to a fault location device, a method, and a program for a transmission line.

近年、電力需要の増加から、安定した送電システムが求められている。そのため、送電線における故障発生時において、故障点を早急に発見及び解消することが必要とされる。   In recent years, a stable power transmission system has been demanded due to an increase in power demand. Therefore, when a failure occurs in the transmission line, it is necessary to quickly find and eliminate the failure point.

図6に示すように、三相交流回路における送電線で電気故障が発生した際、測定可能な自端電流I1、相手端電流I2、自端電圧V1、相手端電圧V2と、既知の値である送電線101全体の線路インピーダンスKzを用いて故障点を標定している。   As shown in FIG. 6, when an electrical failure occurs in a transmission line in a three-phase AC circuit, measurable self-end current I1, counterpart end current I2, end-end voltage V1, end-end voltage V2, and the known values The failure point is determined using the line impedance Kz of a certain power transmission line 101 as a whole.

故障点は、送電線101の全線路インピーダンスKzと故障点までの線路インピーダンスKzLの比率(PU)を算出することで求めることができる。   The failure point can be obtained by calculating the ratio (PU) of the total line impedance Kz of the transmission line 101 and the line impedance KzL up to the failure point.

ここで、故障点までの線路インピーダンスKzLは測定できない値であり、各端の電流、電圧から算出される。その考え方を以下で説明する。   Here, the line impedance KzL up to the failure point is a value that cannot be measured, and is calculated from the current and voltage at each end. The concept will be described below.

自端電圧V1は、故障点までの線路降下電圧VL1と、故障点電圧Vfの和で表すことができ、故障点までの線路降下電圧VL1は、自端電流I1と故障点までの線路インピーダンスKzLを乗じることで算出することができる(図6の式(101))。ここで、故障点電圧Vfは測定できない値であるため、式(101)からはKzLを算出することはできない。   The own-end voltage V1 can be expressed by the sum of the line drop voltage VL1 up to the failure point and the failure point voltage Vf. Can be calculated (Equation (101) in FIG. 6). Here, since the failure point voltage Vf is a value that cannot be measured, KzL cannot be calculated from the equation (101).

そこで、相手端電圧V2に着目すると、相手端電圧V2は自端電圧V1と同様に、故障点までの線路降下電圧VL2と、故障点電圧Vfの和で表すことができ、故障点までの線路降下電圧VL2は、相手端電流I2に、全線路インピーダンスKzと故障点までの線路インピーダンスKzLの差分を乗じることで算出することができる(図6の式(102))。   Therefore, when paying attention to the other end voltage V2, the other end voltage V2 can be expressed by the sum of the line drop voltage VL2 up to the failure point and the failure point voltage Vf in the same manner as the own end voltage V1. The drop voltage VL2 can be calculated by multiplying the counterpart current I2 by the difference between the total line impedance Kz and the line impedance KzL up to the failure point (formula (102) in FIG. 6).

ここで、図6の式(103)に示すように、V1、V2について連立方程式を立て、V1からV2を引くと、故障点電圧Vfが相殺されるため、図6の式(104)に示すように、故障点までの線路インピーダンスKzLを算出することができる。   Here, as shown in the equation (103) of FIG. 6, when simultaneous equations are established for V1 and V2 and V2 is subtracted from V1, the failure point voltage Vf is canceled out, so that the equation (104) of FIG. Thus, the line impedance KzL up to the failure point can be calculated.

最後に、式(104)をKzで割ることで、図6の式(105)の故障点の標定式を得ることができる。すなわち、V1,V2の差電圧から故障点の標定式が得られ、全線路インピーダンスKzに対する故障点までの線路インピーダンスKzLの比率dを算出することで、故障点を標定することができる。   Finally, by dividing equation (104) by Kz, a fault point orientation equation of equation (105) in FIG. 6 can be obtained. That is, a fault point location formula is obtained from the voltage difference between V1 and V2, and the fault point can be determined by calculating the ratio d of the line impedance KzL to the fault point with respect to the total line impedance Kz.

特開2008−261751号公報Japanese Patent Laid-Open No. 2008-261751

従来の故障点標定方式は、一般的な架線の送電区間においては適用可能である。しかし、送電線が地中に埋設されている場合、寄生容量による大地への漏れ電流が一般的な架線と比較して大きく、送電線に設置した分岐リアクトルの電流で大地の漏れ電流を打ち消している。この点、従来方式では、分岐リアクトルに流れる電流を考慮していないため、地中に埋設された送電線に対して適用することができない。   The conventional fault location method can be applied in a general overhead line transmission section. However, when the transmission line is buried in the ground, the leakage current to the ground due to parasitic capacitance is larger than that of a general overhead line, and the ground leakage current is canceled out by the current of the branch reactor installed in the transmission line. Yes. In this regard, the conventional method cannot be applied to a transmission line buried in the ground because the current flowing through the branch reactor is not taken into consideration.

本発明の実施形態に係る故障点標定方法、その装置及びプログラムは、上記のような課題を解決するためになされたものであり、地中に埋設された送電線の分路リアクトル設置区間において故障点を標定することのできる故障点標定方法、その装置及びプログラムを提供することを目的とする。   The failure point locating method, the apparatus and the program according to the embodiment of the present invention have been made to solve the above-described problems, and have failed in a shunt reactor installation section of a transmission line buried in the ground. It is an object of the present invention to provide a failure point locating method, a device thereof, and a program capable of locating points.

上記の目的を達成するために、本実施形態の故障点標定方法は、分岐リアクトルが設置されるとともに地中に埋設された送電線の前記分岐リアクトルの設置区間における故障点を標定する故障点標定方法であって、自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、および相手端リアクトル電流を取得する取得ステップと、前記送電線の全線路インピーダンスと故障点までの線路インピーダンスの比率を算出する演算ステップと、を備え、前記演算ステップは、前記取得ステップが取得した自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、相手端リアクトル電流、および前記全線路インピーダンスに基づいて、前記比率を算出することを特徴とする。   In order to achieve the above object, the failure point locating method of the present embodiment is a failure point locating in which a branch reactor is installed and a failure point in a section where the branch reactor is installed in a transmission line buried in the ground is determined. A method for acquiring a self-end voltage, a counterpart voltage, a self-end current, a counterpart end current, a self-end reactor current, and a counterpart end reactor current, and all line impedances and fault points of the transmission line A calculation step for calculating a ratio of line impedance, and the calculation step includes a self-end voltage, a partner end voltage, a self-end current, a partner end current, a partner end reactor current, and a partner end reactor current acquired by the acquisition step. And the ratio is calculated based on the total line impedance.

本実施形態は、上記の各ステップの機能をコンピュータ又は電子回路により実現する装置、上記の各ステップの処理をコンピュータに実行させるプログラムとして捉えることもできる。   This embodiment can also be understood as a device that realizes the function of each step described above by a computer or an electronic circuit, and a program that causes a computer to execute the process of each step described above.

第1の実施形態に係る故障点標定装置が適用される交流送電線を示す図である。It is a figure which shows the alternating current power transmission line with which the failure point location apparatus which concerns on 1st Embodiment is applied. 第1の実施形態に係る故障点標定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the failure point location apparatus which concerns on 1st Embodiment. 漏れ点集中近似等価点を説明するための図である。It is a figure for demonstrating a leak point concentration approximate equivalent point. 漏れ点集中近似等価点よりも自端側で故障が生じた場合の故障点の標定式の算出過程を示す図である。It is a figure which shows the calculation process of the fault point orientation formula in case a failure arises in the end side rather than the leak point concentration approximate equivalent point. 第2の実施形態に係る故障点標定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the failure point location apparatus which concerns on 2nd Embodiment. 従来技術による故障点の標定式を説明するための図である。It is a figure for demonstrating the orientation formula of the failure point by a prior art.

[1.第1の実施形態]
[1−1.構成]
以下では、図1および図2を参照しつつ、本実施形態に係る故障点標定装置について説明する。図1は、本実施形態に係る故障点標定装置が適用される交流送電線を示す図である。
[1. First Embodiment]
[1-1. Constitution]
Hereinafter, the failure point locating device according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram illustrating an AC power transmission line to which the fault location apparatus according to the present embodiment is applied.

送電線1は、地中に埋設された送電線であり、例えば、地中ケーブルである。送電線1には、分岐リアクトル2a、2bが設置されている。この分岐リアクトル2a、2bが設置された送電線端を自端1a、相手端1bと称し、自端及び相手端の区間を分岐リアクトルの設置区間と称する。   The power transmission line 1 is a power transmission line buried in the ground, for example, a ground cable. Branch reactors 2 a and 2 b are installed in the power transmission line 1. The transmission line end where the branch reactors 2a and 2b are installed is referred to as a self end 1a and a counterpart end 1b, and the section between the self end and the counterpart end is referred to as a branch reactor installation section.

送電線1には、CT、VTなどの図示しない電流測定装置、電圧測定装置が設けられており、電流測定装置は、自端電流、相手端電流、自端分岐リアクトル電流、相手端分岐リアクトル電流をそれぞれ測定し、本故障点標定装置にそれぞれ送信する。電圧測定装置は、自端電圧、相手端電圧をそれぞれ測定し、本故障点標定装置にそれぞれ送信する。   The power transmission line 1 is provided with a current measuring device and a voltage measuring device (not shown) such as CT and VT, and the current measuring device has its own end current, opposite end current, own end branch reactor current, and other end branch reactor current. Are measured and transmitted to the fault location device. The voltage measuring device measures the self-end voltage and the counterpart end voltage, and transmits them to the fault location device.

故障点標定装置は、電流測定装置及び電圧測定装置に有線又は無線で接続されており、測定された電流値、電圧値を取得する。具体的には、この電流値は、自端電流、相手端電流、自端分岐リアクトル電流、相手端分岐リアクトル電流の値であり、電圧値は、自端電圧、相手端電圧の値である。   The failure point locating device is connected to the current measuring device and the voltage measuring device by wire or wirelessly, and acquires the measured current value and voltage value. Specifically, this current value is a value of a self-end current, a counterpart end current, a self-end branch reactor current, or a counterpart end branch reactor current, and a voltage value is a value of the self-end voltage or the counterpart voltage.

故障点標定装置は、地中に埋設された送電線1の分岐リアクトル設置区間における故障点を標定する装置である。故障点とは、短絡や地絡が発生した地点である。   The failure point locating device is a device for locating a failure point in a branch reactor installation section of the transmission line 1 buried in the ground. A failure point is a point where a short circuit or a ground fault has occurred.

図2は、本実施形態に係る故障点標定装置の機能ブロック図である。故障点標定装置は、全線路インピーダンスKzが予め記憶された記憶部21、電流測定装置及び電圧測定装置から電流値及び電圧値を取得する取得部22、記憶部21及び取得部22から取得した物理量に基づいて、送電線1の全線路インピーダンスKzと故障点までの線路インピーダンスKzLの比率を算出する演算部23と、を有する。各部21〜23は、単一のコンピュータ又はネットワーク接続された複数のコンピュータを含み構成されている。すなわち、故障点標定装置は、プログラムをHDDやSSD等に記憶しており、RAMに適宜展開し、CPUで処理することにより、各部の演算を行う。   FIG. 2 is a functional block diagram of the fault location apparatus according to the present embodiment. The fault location apparatus includes a storage unit 21 in which all line impedances Kz are stored in advance, an acquisition unit 22 that acquires current values and voltage values from the current measurement device and the voltage measurement device, and a physical quantity acquired from the storage unit 21 and the acquisition unit 22. And a calculation unit 23 that calculates the ratio of the total line impedance Kz of the power transmission line 1 to the line impedance KzL up to the failure point. Each of the units 21 to 23 includes a single computer or a plurality of computers connected via a network. That is, the failure point locating apparatus stores a program in an HDD, an SSD, or the like, appropriately expands in a RAM, and performs processing of each unit by being processed by a CPU.

取得部22は、電流測定装置から、自端電流、相手端電流、自端分岐リアクトル電流、及び相手端分岐リアクトル電流の値を取得し、また、電圧測定装置から、自端電圧及び相手端電圧の値を取得する。   The acquisition unit 22 acquires values of the self-end current, the counterpart end current, the self-end branch reactor current, and the counterpart end branch reactor current from the current measurement device, and the self-end voltage and the counterpart end voltage from the voltage measurement device. Get the value of.

演算部23は、プロセッサを含み構成され、記憶部21から取得した送電線1の全線路インピーダンスKzと、取得部22から取得した自端電流、相手端電流、自端分岐リアクトル電流、相手端分岐リアクトル電流、自端電圧及び相手端電圧とに基づいて、送電線1の全線路インピーダンスKzと故障点までの線路インピーダンスKzLの比率を算出する。   The calculation unit 23 is configured to include a processor, and the total line impedance Kz of the transmission line 1 acquired from the storage unit 21, the own end current, the other end current, the own end branch reactor current, and the other end branch acquired from the acquisition unit 22. Based on the reactor current, the local voltage, and the counterpart voltage, the ratio of the total line impedance Kz of the transmission line 1 to the line impedance KzL up to the failure point is calculated.

具体的には、演算部23は、プロセッサが、記憶部21から全線路インピーダンスKzを読み出すとともに、このKzと、取得部22から取得した各電流値、電圧値と、故障点の標定式である式(1)とに基づいて比率dを算出する。
(数1)

Figure 2019028024
I1:自端電流、I2:相手端電流
V1:自端電圧、V2:相手端電圧
IL1:自端リアクトル電流、IL2:相手端リアクトル電流
Kz:全線路インピーダンス
Kρ:漏れ電流集中近似等価点
本実施形態では、漏れ電流集中近似等価点Kρは、全線路インピーダンスの半分値とし、例えば0.5とする。 Specifically, the calculation unit 23 is a standardized expression of the failure point, with the processor reading out the entire line impedance Kz from the storage unit 21 and the Kz, each current value and voltage value acquired from the acquisition unit 22. The ratio d is calculated based on the formula (1).
(Equation 1)
Figure 2019028024
I1: Own end current, I2: Counter end current V1: Own end voltage, V2: Counter end voltage IL1: Self end reactor current, IL2: Counter end reactor current Kz: Total line impedance Kρ: Leakage current concentration approximate equivalent point In the embodiment, the leakage current concentration approximate equivalent point Kρ is a half value of the total line impedance, for example, 0.5.

また、故障点標定装置は、不図示の通信手段又は表示手段を備え、通信手段により、算出した比率d(故障点)を外部に送信しても良いし、表示手段により、算出した比率d(故障点)を表示させ、ユーザが読み取り可能にしても良い。通信手段は有線又は無線を問わない。また、表示手段は、例えば、液晶ディスプレイ等が挙げられるが、これに限定せず公知のものを用いることができる。   Further, the failure point locating apparatus includes a communication unit or a display unit (not shown), and the communication unit may transmit the calculated ratio d (failure point) to the outside, or the display unit calculates the ratio d ( The failure point) may be displayed so that the user can read it. The communication means may be wired or wireless. The display means includes, for example, a liquid crystal display, but is not limited thereto, and known ones can be used.

[1−2.作用]
まず、漏れ点集中近似等価点Kρについて説明し、次に、上記式(1)に示す故障点の標定式について説明する。
[1-2. Action]
First, the leakage point concentration approximate equivalent point Kρ will be described, and then the fault point orientation formula shown in the above equation (1) will be described.

送電線1は、寄生容量に起因して送電線1から大地に漏れ電流が流れる。この漏れ電流は、通常、図3に示すように、送電線1から均等に流れているが、ここでは、一点から流れるものとして近似する。この点を漏れ点集中近似等価点Kρ(以下、単に「等価点」とも称する。)とする。Kρは、送電線1の全線路インピーダンスKzに対する比率であり、全線路インピーダンスKzを1PUとすると、Kρは0〜1までの値となる。上記の通り、本実施形態では、Kρ=0.5とする。   In the transmission line 1, a leakage current flows from the transmission line 1 to the ground due to the parasitic capacitance. As shown in FIG. 3, this leakage current normally flows evenly from the power transmission line 1, but here it is approximated as flowing from one point. This point is referred to as a leak point concentration approximate equivalent point Kρ (hereinafter also simply referred to as “equivalent point”). Kρ is a ratio with respect to the total line impedance Kz of the power transmission line 1, and when the total line impedance Kz is 1PU, Kρ is a value from 0 to 1. As described above, in this embodiment, Kρ = 0.5.

故障点は、送電線1の全線路インピーダンスKzと故障点までの線路インピーダンスKzLの比率dを算出することで求められる。ここで、故障点までの線路インピーダンスKzLは計測できない値であり、これを測定可能な各端1a、1bの電圧、電流、分岐リアクトル電流から求める。その考え方を図1に基づいて以下で説明する。   The failure point is obtained by calculating a ratio d between the total line impedance Kz of the transmission line 1 and the line impedance KzL up to the failure point. Here, the line impedance KzL up to the failure point is a value that cannot be measured, and is obtained from the voltage, current, and branch reactor current of each end 1a, 1b that can be measured. The concept will be described below with reference to FIG.

まず、式(2)に示すように、自端電圧V1は、等価点Kρまでの線路降下電圧Vρと、等価点Kρから故障点までの線路降下電圧VL1と、故障点電圧Vfの和で表すことができ、相手端電圧V2は、故障点までの線路降下電圧VL2と、故障点電圧Vfの和で表すことができる。
(数2)

Figure 2019028024
Vρは、式(3)に示すように、自端電流I1から自端リアクトル電流IL1を引いた電流に、等価点Kρまでの線路インピーダンスKρ×Kzを乗じたものである。VL1は、式(4)に示すように、自端電流I1と相手端リアクトル電流IL2の和に、故障点までの線路インピーダンスKzと等価点Kρまでの線路インピーダンスKρ×Kzの差分を乗じた値となる。VL2は、式(5)に示すように、相手端電流I2と相手端リアクトル電流IL2の差分に、全線路インピーダンスKzと故障点までの線路インピーダンスKzLの差分を乗じた値となる。
(数3)
Figure 2019028024
(数4)
Figure 2019028024
(数5)
Figure 2019028024
なお、両端の分岐リアクトル2a、2bに流れ込む分岐リアクトル電流が漏れ電流Iρを相殺するものとしている(Iρ=−(IL1+IL2))。 First, as shown in the equation (2), the self-end voltage V1 is represented by the sum of the line drop voltage Vρ up to the equivalent point Kρ, the line drop voltage VL1 from the equivalent point Kρ to the fault point, and the fault point voltage Vf. The counterpart terminal voltage V2 can be expressed by the sum of the line drop voltage VL2 up to the failure point and the failure point voltage Vf.
(Equation 2)
Figure 2019028024
Vρ is obtained by multiplying the current obtained by subtracting the self-end reactor current IL1 from the self-end current I1 by the line impedance Kρ × Kz up to the equivalent point Kρ, as shown in Expression (3). VL1 is a value obtained by multiplying the sum of the self-end current I1 and the counterpart end reactor current IL2 by the difference between the line impedance Kz up to the failure point and the line impedance Kρ × Kz up to the equivalent point Kρ, as shown in Equation (4). It becomes. As shown in Expression (5), VL2 is a value obtained by multiplying the difference between the counterpart end current I2 and the counterpart end reactor current IL2 by the difference between the total line impedance Kz and the line impedance KzL up to the failure point.
(Equation 3)
Figure 2019028024
(Equation 4)
Figure 2019028024
(Equation 5)
Figure 2019028024
Note that the branch reactor current flowing into the branch reactors 2a and 2b at both ends cancels the leakage current Iρ (Iρ = − (IL1 + IL2)).

式(3)〜式(5)を式(2)に代入すると、式(6)の連立方程式を立てることができる。
(数6)

Figure 2019028024
式(6)について、V1からV2を引き、未知な故障点電圧Vfを相殺し、KzLについて解くことで、式(7)が得られる。
(数7)
Figure 2019028024
このようにして、測定可能な電流、電圧の値から未知である故障点までの線路インピーダンスKzLを得ることができる。最後に、式(7)をKzで割ると、式(1)の故障点の標定式を得ることができる。 By substituting Equations (3) to (5) into Equation (2), the simultaneous equations of Equation (6) can be established.
(Equation 6)
Figure 2019028024
With respect to Expression (6), Expression (7) is obtained by subtracting V2 from V1, canceling out the unknown failure point voltage Vf, and solving for KzL.
(Equation 7)
Figure 2019028024
In this way, the line impedance KzL from the measurable current and voltage values to the unknown fault point can be obtained. Finally, when equation (7) is divided by Kz, the failure point orientation equation of equation (1) can be obtained.

ここで、式(1)によれば、Kρの値によってdが求まる。本実施形態では、Kρ=0.5とする。すなわち、等価点が自端1aと相手端1bの中央であるとして近似する。これにより、故障点を近似的に得ることができる。その理由は、等価点以降の相手端1b側で故障が発生した場合も、等価点よりも自端1a側で故障が発生した場合も、故障点の標定式は上記式(1)の形で同じであり、等価点をどこに近似しても誤差を少なくして故障点を標定できるからである。つまり、等価点は、分岐リアクトル設置区間内で、任意に決めることができる。そのため、等価点を分岐リアクトル設置区間内で定義したときに、実際に近似できる等価点と異なる場合も想定される。例えば、Kρ=0.9と定義したが、実際の等価点はKρ=0.1だとすると、そのズレの分だけ故障点の標定に影響する。本実施形態では、Kρ=0.5と定義することにより、実際の等価点とのズレ分を最小にすることができるので、簡易に故障点を標定することができる。   Here, according to the equation (1), d is obtained from the value of Kρ. In this embodiment, Kρ = 0.5. That is, it is approximated that the equivalent point is the center of the own end 1a and the counterpart end 1b. Thereby, a failure point can be obtained approximately. The reason is that the failure point standardization formula is expressed by the above formula (1) regardless of whether a failure occurs on the other end 1b side after the equivalent point or a failure occurs on the own end 1a side from the equivalent point. This is because no matter where the equivalent point is approximated, the error point can be reduced and the failure point can be determined. That is, the equivalent point can be arbitrarily determined within the branch reactor installation section. Therefore, when the equivalent point is defined in the branch reactor installation section, it may be assumed that it is different from the equivalent point that can be approximated in practice. For example, although Kρ = 0.9 is defined, if the actual equivalent point is Kρ = 0.1, the fault point is affected by the deviation. In the present embodiment, by defining Kρ = 0.5, the deviation from the actual equivalent point can be minimized, so that the failure point can be easily determined.

次に、等価点以降の相手端1b側で故障が発生した場合も、等価点よりも自端1a側で故障が発生した場合も、故障点の標定式は上記式(1)の形で同じであることについて、説明する。   Next, even when a failure occurs on the other end 1b side after the equivalent point, or when a failure occurs on the own end 1a side relative to the equivalent point, the failure point orientation formula is the same in the form of the above equation (1). That will be explained.

故障点の標定式は、故障点dと等価点Kρの位置関係で算出過程が異なる。すなわち、Kρ≦dと、Kρ>dの場合に場合分けできる。   The fault point orientation formula has a different calculation process depending on the positional relationship between the fault point d and the equivalent point Kρ. That is, the case can be divided into cases where Kρ ≦ d and Kρ> d.

(1)Kρ≦dの場合(等価点以降の相手端1b側で故障が発生した場合)
この場合は、図1及び式(2)〜式(7)の算出過程と同じであるので省略する。
(1) When Kρ ≦ d (when a failure occurs on the other end 1b side after the equivalent point)
In this case, since it is the same as the calculation process of FIG. 1 and Formula (2)-Formula (7), it abbreviate | omits.

(2)Kρ>dの場合(等価点より自端1a側で故障が発生した場合)
図4に示すように、(1)の場合と同様に、分岐リアクトル電流の等価点への流れ込みを考慮して、両端1a、1bの差電圧を算出すると、式(8)で表すことができる。
(数8)

Figure 2019028024
式(8)をKzLについて解くと、式(9)のように表すことができる。
(数9)
Figure 2019028024
式(9)をKzで割ると、式(10)を得ることができる。
(数10)
Figure 2019028024
この式(10)は、式(1)と同じであることが分かる。すなわち、等価点が分岐リアクトル設置区間のどこにあっても、故障点は、式(1)で標定できることが分かる。 (2) When Kρ> d (when a failure occurs on the end 1a side from the equivalent point)
As shown in FIG. 4, as in the case of (1), when the difference voltage between both ends 1a and 1b is calculated in consideration of the flow of the branch reactor current to the equivalent point, it can be expressed by equation (8). .
(Equation 8)
Figure 2019028024
When Equation (8) is solved for KzL, it can be expressed as Equation (9).
(Equation 9)
Figure 2019028024
When equation (9) is divided by Kz, equation (10) can be obtained.
(Equation 10)
Figure 2019028024
It can be seen that the equation (10) is the same as the equation (1). That is, it can be seen that the failure point can be determined by the equation (1) wherever the equivalent point is in the branch reactor installation section.

[1−3.効果]
本実施形態の故障点標定装置は、分岐リアクトル2a、2bが設置されるとともに地中に埋設された送電線1の分岐リアクトル2a、2bの設置区間における故障点を標定する故障点標定装置であって、送電線1の全線路インピーダンスKzが予め記憶された記憶部21と、自端電圧V1、相手端電圧V2、自端電流I1、相手端電流I2、自端リアクトル電流IL1、および相手端リアクトル電流IL2を取得する取得部22と、送電線1の全線路インピーダンスKzと故障点までの線路インピーダンスKzLの比率dを算出する演算部23と、を備え、演算部23は、取得部22が取得した自端電圧V1、相手端電圧V2、自端電流I1、相手端電流I2、自端リアクトル電流IL1、相手端リアクトル電流IL2、および全線路インピーダンスKzに基づいて、比率dを算出するようにした。
[1-3. effect]
The failure point locating device of the present embodiment is a failure point locating device that locates the failure point in the installation section of the branch reactors 2a, 2b of the transmission line 1 embedded in the ground while the branch reactors 2a, 2b are installed. Thus, the storage unit 21 in which the total line impedance Kz of the power transmission line 1 is stored in advance, the local terminal voltage V1, the partner terminal voltage V2, the terminal terminal current I1, the partner terminal current I2, the terminal terminal reactor current IL1, and the partner terminal reactor An acquisition unit 22 that acquires the current IL2, and a calculation unit 23 that calculates a ratio d of the total line impedance Kz of the power transmission line 1 and the line impedance KzL up to the failure point. The calculation unit 23 is acquired by the acquisition unit 22. Self-terminal voltage V1, mating terminal voltage V2, self-terminal current I1, mating terminal current I2, self-terminal reactor current IL1, mating terminal reactor current IL2, and all line impedance Based on the dance Kz, and calculate the ratio d.

これにより、地中に埋設された送電線の分路リアクトル設置区間において故障点を標定することができる。   Thereby, a failure point can be located in the shunt reactor installation section of the transmission line buried in the ground.

特に、演算部23は、上記式(1)に基づき比率dを算出するとともに、Kρ=0.5とした。これにより、故障点を誤差を小さくして簡易に標定することができる。   In particular, the calculation unit 23 calculates the ratio d based on the above formula (1) and sets Kρ = 0.5. As a result, the failure point can be easily determined with a small error.

[2.第2の実施形態]
[2−1.構成]
第2の実施形態について、図5を用いて説明する。第2の実施形態は、第1の実施形態と基本構成は同じである。第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
[2. Second Embodiment]
[2-1. Constitution]
A second embodiment will be described with reference to FIG. The basic configuration of the second embodiment is the same as that of the first embodiment. Only the differences from the first embodiment will be described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.

図5は、第2の実施形態に係る故障点標定装置の機能ブロック図である。第2の実施形態に係る故障点標定装置は、取得部22が取得した電流値I1,I2,IL1,IL2、電圧値V1,V2を保存する保存部24を備える。   FIG. 5 is a functional block diagram of the failure point locating device according to the second embodiment. The failure point locating device according to the second embodiment includes a storage unit 24 that stores the current values I1, I2, IL1, and IL2, and the voltage values V1 and V2 acquired by the acquisition unit 22.

すなわち、取得部22は、異なる時刻で異なる電流値I1,I2,IL1,IL2、電圧値V1,V2を取得する。保存部24は、例えば、時刻t1、時刻t2(<t1)で取得部22が電流値I1,I2,IL1,IL2、電圧値V1,V2を取得する場合、時刻t1の各値を保存する。この保存部24は、メモリ又はハードディスクなどの記録媒体で構成することができ、演算部23の要求に応じて、保存したデータを演算部23に出力する。   That is, the acquisition unit 22 acquires different current values I1, I2, IL1, and IL2 and voltage values V1 and V2 at different times. For example, when the acquisition unit 22 acquires the current values I1, I2, IL1, IL2, and the voltage values V1, V2 at time t1 and time t2 (<t1), the storage unit 24 stores each value at time t1. The storage unit 24 can be configured by a recording medium such as a memory or a hard disk, and outputs the stored data to the calculation unit 23 in response to a request from the calculation unit 23.

演算部23は、異なる時刻t1、t2で取得した各電圧V1,V2、電流I1,I2,IL1,IL2、および全線路インピーダンスKzに基づいて、比率dを算出する。具体的には、演算部23は、プロセッサが、記憶部21から全線路インピーダンスKzを読み出すとともに、保存部24から時刻t1における電流値I1,I2,IL1,IL2、電圧値V1,V2を読み出し、取得部22から時刻t2における電流値I1,I2,IL1,IL2、電圧値V1,V2を読み出し、各時刻t1、t2における上記式(1)の連立方程式を解くことによって、比率dを算出する。なお、異なる時刻t1、t2で取得した各電圧V1,V2、電流I1,I2,IL1,IL2はそれぞれ異なる値である。   The calculation unit 23 calculates the ratio d based on the voltages V1 and V2, currents I1, I2, IL1, and IL2 acquired at different times t1 and t2, and the total line impedance Kz. Specifically, in the processor 23, the processor reads the entire line impedance Kz from the storage unit 21, and reads the current values I1, I2, IL1, IL2, and the voltage values V1, V2 at the time t1 from the storage unit 24. The current values I1, I2, IL1, and IL2, and the voltage values V1 and V2 at the time t2 are read from the acquisition unit 22, and the ratio d is calculated by solving the simultaneous equations of the above formula (1) at the times t1 and t2. Note that the voltages V1 and V2 and the currents I1, I2, IL1, and IL2 acquired at different times t1 and t2 have different values.

[2−2.作用・効果]
本実施形態の作用について説明する。式(1)に示すように、電圧V1,V2、電流I1,I2,IL1,IL2は測定可能な既存値であるのに対し、Kρおよびdは未知数である。第1の実施形態ではKρを0.5とすることにより簡易的に故障点を標定したが、本来的にはKρおよびdは未知数である。
[2-2. Action / Effect]
The operation of this embodiment will be described. As shown in equation (1), voltages V1 and V2, currents I1, I2, IL1, and IL2 are existing values that can be measured, whereas Kρ and d are unknowns. In the first embodiment, the failure point is simply determined by setting Kρ to 0.5, but Kρ and d are essentially unknowns.

そこで、本実施形態では、異なる時刻t1、t2で取得した電流値I1,I2,IL1,IL2、電圧値V1,V2を利用する。すなわち、異なる時刻t1、t2で取得した電流値I1,I2,IL1,IL2、電圧値V1,V2はそれぞれ異なる値であるため、各時刻の電流値I1,I2,IL1,IL2、電圧値V1,V2を式(1)に代入することにより、Kρおよびdを未知数とした2本の連立方程式を得ることができる。そして、演算部23がこの連立方程式を解くことで、比率dおよびKρを得ることができる。   Therefore, in this embodiment, current values I1, I2, IL1, and IL2 and voltage values V1 and V2 acquired at different times t1 and t2 are used. That is, since the current values I1, I2, IL1, and IL2, and the voltage values V1 and V2 acquired at different times t1 and t2, are different values, the current values I1, I2, IL1, and IL2, and the voltage value V1, at each time. By substituting V2 into equation (1), two simultaneous equations with Kρ and d as unknowns can be obtained. And the calculating part 23 can obtain this ratio d and K (rho) by solving this simultaneous equation.

このように、測定値から比率dおよびKρを得ることができるので、正確に故障点の標定をすることができる。   In this way, since the ratios d and Kρ can be obtained from the measured values, the fault point can be accurately determined.

[3.その他の実施形態]
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[3. Other Embodiments]
In the present specification, a plurality of embodiments according to the present invention have been described. However, these embodiments are presented as examples and are not intended to limit the scope of the invention. The above embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

例えば、保存部24は、異なる時刻の電流値I1,I2,IL1,IL2、電圧値V1,V2を保存し、故障点標定装置は、保存部24が保存した各電気量がそれぞれ異なるか否かを判定する判定部を備えていても良い。これにより、演算部23において利用できる電気量の判別を行うことができる。例えば、異なる時刻t1、t2で取得した電流値I1,I2,IL1,IL2、電圧値V1,V2の何れもが同じであれば、演算部23により連立方程式を解くことができないが、いずれかの電流値、電圧値が異なっていれば、連立方程式を解くことができる。   For example, the storage unit 24 stores the current values I1, I2, IL1, and IL2 and the voltage values V1 and V2 at different times, and the failure point locating device determines whether or not each electric quantity stored by the storage unit 24 is different. A determination unit for determining Thereby, it is possible to determine the amount of electricity that can be used in the calculation unit 23. For example, if the current values I1, I2, IL1, and IL2, and the voltage values V1 and V2 acquired at different times t1 and t2 are the same, the simultaneous equation cannot be solved by the calculation unit 23. If the current value and the voltage value are different, the simultaneous equations can be solved.

1 送電線
1a 自端
1b 相手端
2a 分岐リアクトル
2b 分岐リアクトル
21 記憶部
22 取得部
23 演算部
24 保存部
DESCRIPTION OF SYMBOLS 1 Transmission line 1a Own end 1b Opposite end 2a Branching reactor 2b Branching reactor 21 Storage part 22 Acquisition part 23 Calculation part 24 Storage part

Claims (9)

分岐リアクトルが設置されるとともに地中に埋設された送電線の前記分岐リアクトルの設置区間における故障点を標定する故障点標定方法であって、
自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、および相手端リアクトル電流を取得する取得ステップと、
前記送電線の全線路インピーダンスと故障点までの線路インピーダンスの比率を算出する演算ステップと、
を備え、
前記演算ステップは、前記取得ステップが取得した自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、相手端リアクトル電流、および前記全線路インピーダンスに基づいて、前記比率を算出すること、
を特徴とする故障点標定方法。
A failure point locating method for locating a failure point in an installation section of the branch reactor of a transmission line embedded in the ground while a branch reactor is installed,
An acquisition step of acquiring a self-terminal voltage, a partner terminal voltage, a self-terminal current, a partner terminal current, a self-terminal reactor current, and a partner terminal reactor current;
A calculation step for calculating the ratio of the total line impedance of the power transmission line and the line impedance up to the failure point,
With
The calculation step calculates the ratio based on the own end voltage, the other end voltage, the own end current, the other end current, the other end reactor current, the other end reactor current, and the all line impedance obtained by the obtaining step. To do,
A fault location method characterized by
前記演算ステップは、下記の式(1)に基づいて前記比率を算出すること、
を特徴とする請求項1に記載の故障点標定方法。
Figure 2019028024
I1:自端電流、I2:相手端電流
V1:自端電圧、V2:相手端電圧
IL1:自端リアクトル電流、IL2:相手端リアクトル電流
Kz:全線路インピーダンス
Kρ:漏れ電流集中近似等価点
The calculation step calculates the ratio based on the following formula (1):
The fault location method according to claim 1, wherein:
Figure 2019028024
I1: Own end current, I2: Counter end current V1: Own end voltage, V2: Counter end voltage IL1: Self end reactor current, IL2: Counter end reactor current Kz: Total line impedance Kρ: Leakage current concentration approximate equivalent point
前記演算ステップでは、前記漏れ電流集中近似等価点を全線路インピーダンスの半分値とすること、
を特徴とする請求項2に記載の故障点標定方法。
In the calculation step, the leakage current concentration approximate equivalent point is set to a half value of the total line impedance,
The failure point locating method according to claim 2.
前記取得ステップでは、異なる時刻で各電圧、電流を取得し、
前記演算ステップでは、前記異なる時刻で取得した各電圧、電流、および前記全線路インピーダンスに基づいて、前記比率を算出すること、
を特徴とする請求項1又は2に記載の故障点標定方法。
In the acquisition step, each voltage and current is acquired at different times,
In the calculation step, calculating the ratio based on each voltage, current acquired at the different time, and the total line impedance,
The failure point locating method according to claim 1 or 2.
分岐リアクトルが設置されるとともに地中に埋設された送電線の前記分岐リアクトルの設置区間における故障点を標定する故障点標定装置であって、
前記送電線の全線路インピーダンスが予め記憶された記憶部と、
自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、および相手端リアクトル電流を取得する取得部と、
前記送電線の全線路インピーダンスと故障点までの線路インピーダンスの比率を算出する演算部と、
を備え、
前記演算部は、前記取得部が取得した自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、相手端リアクトル電流、および前記全線路インピーダンスに基づいて、前記比率を算出すること、
を特徴とする故障点標定装置。
A failure point locating device for locating a failure point in an installation section of the branch reactor of a transmission line embedded in the ground while a branch reactor is installed,
A storage unit in which all line impedances of the transmission lines are stored in advance;
An acquisition unit for acquiring a self-end voltage, a counterpart voltage, a self-end current, a counterpart end current, a self-end reactor current, and a counterpart end reactor current;
An arithmetic unit that calculates the ratio of the total line impedance of the transmission line and the line impedance up to the failure point,
With
The calculation unit calculates the ratio based on the own end voltage, the other end voltage, the own end current, the other end current, the other end reactor current, the other end reactor current, and the all line impedance acquired by the acquisition unit. To do,
Failure point locator characterized by
前記演算部は、下記の式(2)に基づいて前記比率を算出すること、
を特徴とする請求項5に記載の故障点標定装置。
Figure 2019028024
I1:自端電流、I2:相手端電流
V1:自端電圧、V2:相手端電圧
IL1:自端リアクトル電流、IL2:相手端リアクトル電流
Kz:全線路インピーダンス
Kρ:漏れ電流集中近似等価点
The calculation unit calculates the ratio based on the following equation (2):
The failure point locating device according to claim 5.
Figure 2019028024
I1: Own end current, I2: Counter end current V1: Own end voltage, V2: Counter end voltage IL1: Self end reactor current, IL2: Counter end reactor current Kz: Total line impedance Kρ: Leakage current concentration approximate equivalent point
前記演算部は、前記漏れ電流集中近似等価点を全線路インピーダンスの半分値とすること、
を特徴とする請求項6に記載の故障点標定装置。
The arithmetic unit, the leakage current concentration approximate equivalent point to be a half value of the total line impedance,
The failure point locating device according to claim 6.
前記取得部は、異なる時刻で各電圧、電流を取得し、
前記演算部は、前記異なる時刻で取得した各電圧、電流、および前記全線路インピーダンスに基づいて、前記比率を算出すること、
を特徴とする請求項5又は6に記載の故障点標定装置。
The acquisition unit acquires each voltage and current at different times,
The calculation unit calculates the ratio based on each voltage, current acquired at the different time, and the total line impedance,
The failure point locating device according to claim 5 or 6.
分岐リアクトルが設置されるとともに地中に埋設された送電線の前記分岐リアクトルの設置区間における故障点を標定する故障点標定プログラムであって、
コンピュータに、
自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、および相手端リアクトル電流を取得する取得処理と、
前記送電線の全線路インピーダンスと故障点までの線路インピーダンスの比率を算出する演算処理と、
を実行させ、
前記演算処理は、前記取得処理が取得した自端電圧、相手端電圧、自端電流、相手端電流、自端リアクトル電流、相手端リアクトル電流、および前記全線路インピーダンスに基づいて、前記比率を算出すること、
を特徴とする故障点標定プラグラム。
A fault location program that locates a fault point in an installation section of the branch reactor of a transmission line embedded in the ground while a branch reactor is installed,
On the computer,
An acquisition process for acquiring a self-terminal voltage, a partner terminal voltage, a self-terminal current, a partner terminal current, a self-terminal reactor current, and a partner terminal reactor current;
Arithmetic processing to calculate the ratio of the total line impedance of the transmission line and the line impedance up to the failure point,
And execute
The calculation process calculates the ratio based on the self-end voltage, the counterpart end voltage, the self-end current, the counterpart end current, the self-end reactor current, the counterpart end reactor current, and the total line impedance acquired by the acquisition process. To do,
Fault location program characterized by
JP2017150800A 2017-08-03 2017-08-03 Fault point location method, device therefor, and program Pending JP2019028024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150800A JP2019028024A (en) 2017-08-03 2017-08-03 Fault point location method, device therefor, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150800A JP2019028024A (en) 2017-08-03 2017-08-03 Fault point location method, device therefor, and program

Publications (1)

Publication Number Publication Date
JP2019028024A true JP2019028024A (en) 2019-02-21

Family

ID=65476103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150800A Pending JP2019028024A (en) 2017-08-03 2017-08-03 Fault point location method, device therefor, and program

Country Status (1)

Country Link
JP (1) JP2019028024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253051A (en) * 2021-05-12 2021-08-13 武汉一维路科技有限公司 Cloud computing-based smart grid operation and maintenance operation system safety online real-time monitoring method and device and storage medium
JP2021523674A (en) * 2018-05-09 2021-09-02 アイティーイー カンパニー リミテッド Electrical failure universal detection and recovery distribution system and its construction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523674A (en) * 2018-05-09 2021-09-02 アイティーイー カンパニー リミテッド Electrical failure universal detection and recovery distribution system and its construction method
CN113253051A (en) * 2021-05-12 2021-08-13 武汉一维路科技有限公司 Cloud computing-based smart grid operation and maintenance operation system safety online real-time monitoring method and device and storage medium
CN113253051B (en) * 2021-05-12 2022-10-11 泰安泰山高压开关有限公司 Intelligent power grid operation and maintenance operation system safety online real-time monitoring method and storage medium

Similar Documents

Publication Publication Date Title
JP6829073B2 (en) Detection of power diversion path
US20150097574A1 (en) Phase determining method, phase determining apparatus, and recording medium
EP2950109B1 (en) Calibration methods for voltage sensing devices
KR100473798B1 (en) Method for detecting line to ground fault location for power systems
EP2950108B1 (en) Contactless voltage sensing devices
Dashti et al. Accuracy improvement of impedance‐based fault location method for power distribution network using distributed‐parameter line model
CN107430161B (en) Method and system for monitoring transformer bushing
JP2015107012A (en) Power distribution-monitoring system, and power distribution-monitoring device
JP2012198134A (en) Fault point locating device and program
JP2012515521A5 (en)
US20160018458A1 (en) Electric outage detection and localization
US20120299603A1 (en) On-line monitoring system of insulation losses for underground power cables
EP3642636B1 (en) Method for detecting impedances in an electrical power distribution grid
US20190391191A1 (en) A method and system for locating a fault in a mixed power transmission line
US10439434B2 (en) Impedance shift analysis to predict failures in an electrical power distribution network
JP2019028024A (en) Fault point location method, device therefor, and program
US9548607B2 (en) System and method for monitoring and controlling electrical network
US9863997B2 (en) Devices, methods, and systems for localizing a fault on a live cable
US20210165032A1 (en) System and Method for Analyzing Fault Data of a Power Transmission Network
JP6552949B2 (en) Failure location device, method and program thereof
RU2651610C1 (en) Method for revealing the places of origin and magnitude of non-technical losses of energy in electrical networks by data of synchronous measurements
US20150100256A1 (en) Imbalance determining method, imbalance determining apparatus, and recording medium
Xiu et al. Fault-location Observability Analysis on Power Distribution Systems
JP6272378B2 (en) Resistance value measuring system and resistance value measuring method
US10267830B2 (en) Facility selection supporting method and facility selection supporting device