JP6552949B2 - Failure location device, method and program thereof - Google Patents

Failure location device, method and program thereof Download PDF

Info

Publication number
JP6552949B2
JP6552949B2 JP2015232785A JP2015232785A JP6552949B2 JP 6552949 B2 JP6552949 B2 JP 6552949B2 JP 2015232785 A JP2015232785 A JP 2015232785A JP 2015232785 A JP2015232785 A JP 2015232785A JP 6552949 B2 JP6552949 B2 JP 6552949B2
Authority
JP
Japan
Prior art keywords
current
reference end
line
point
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015232785A
Other languages
Japanese (ja)
Other versions
JP2017101931A (en
Inventor
芳彦 山邉
芳彦 山邉
拓明 松尾
拓明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015232785A priority Critical patent/JP6552949B2/en
Publication of JP2017101931A publication Critical patent/JP2017101931A/en
Application granted granted Critical
Publication of JP6552949B2 publication Critical patent/JP6552949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

本発明の実施形態は、送電線路における故障点標定装置、その方法及びプログラムに関する。   Embodiments of the present invention relate to an apparatus for locating a fault in a transmission line, and a method and program thereof.

近年、電力需要の増加から、安定した送電システムが求められている。そのため、送電線路における故障発生時において、故障点を早急に発見及び解消することが必要とされる。   In recent years, a stable power transmission system is required from the increase in power demand. Therefore, when a failure occurs in the transmission line, it is necessary to quickly find and eliminate the failure point.

送電線路における故障点の標定としては、従来から、送電線路の一端の電圧および電流から求める線路リアクタンス値と、その方向を基に標定を実施する方式が知られている。図12は、従来方式を説明するための標定原理図である。図12に示すように、送電線路102の一端に交流電源101が接続されている。交流電源101から送電線路102の他端側に交流電力を送電する。   As a method of locating a failure point in a power transmission line, a method of performing positioning based on a line reactance value obtained from a voltage and a current of one end of the power transmission line and its direction is known. FIG. 12 is a principle diagram for explaining the conventional method. As shown in FIG. 12, an AC power supply 101 is connected to one end of the power transmission line 102. AC power is transmitted from the AC power supply 101 to the other end of the power transmission line 102.

従来方式の故障点標定式は、次のようにして求められる。すなわち、送電線路102において故障が発生した場合、交流電源101から供給された電流は、送電線路102の基準端を通過し、標定点を介して故障点に流出する場合を考える。故障点定数Zは不定であるが、標定点と故障点はピンポイントで結合するため、標定点と故障点の間を抵抗とみなすことができる。つまり、コイル成分がないとみなせるため、故障点電圧Vと基準端電流Iは同位相とみなせる。 The failure point localization formula of the conventional method is obtained as follows. That is, when a failure occurs in the transmission line 102, a case where the current supplied from the AC power supply 101 passes through the reference end of the transmission line 102 and flows out to the failure point through the orientation point. Although the fault point constant Z f is indeterminate, since the control point and the fault point are connected at a pinpoint, it can be regarded as resistance between the control point and the fault point. That is, since it is considered that there is no coil component, the fault point voltage V f and the reference end current I 1 can be regarded as the same phase.

また、基準端電圧Vは、故障点電圧Vに基準端から故障点までの線路降下電圧を加えたものとみなすことができる。また、基準端から故障点までの線路定数Zは、基準端から故障点までの抵抗成分とリアクタンス成分の和である。以上より、図12の電流と電圧の関係をベクトル図として図13に示す。 Also, the reference end voltages V 1 can be regarded as plus line drop voltage from the reference edge to the failure point fault point voltage V f. Further, the line constant Z 1 from the reference edge to the fault point is the sum of the resistance component and reactance component of the reference edge to the fault point. From the above, the relationship between the current and the voltage in FIG. 12 is shown in FIG. 13 as a vector diagram.

図13より、基準端電圧V、基準端電流Iから求めるリアクタンス成分は、基準端から故障点までの線路リアクタンスと等価である。線路定数(インピーダンス)、抵抗、およびリアクタンスの間には、線路定数を斜辺、抵抗を隣辺、リアクタンスを対辺とする直角三角形の関係が成立するからである。 From FIG. 13, the reactance component determined from the reference end voltage V 1 and the reference end current I 1 is equivalent to the line reactance from the reference end to the failure point. This is because there is a right triangle relationship between the line constant (impedance), resistance, and reactance, with the line constant as the hypotenuse, resistance as the adjacent side, and reactance as the opposite side.

従って、基準端電圧Vと故障点電圧Vとの位相差をφIfとすると、線路リアクタンスjXは、下記の(式101)により求めることができる。
(数101)

Figure 0006552949
Therefore, when the phase difference between the reference end voltages V 1 and fault point voltage V f and phi the If, line reactance jX can be obtained by the following equation (101).
(Number 101)
Figure 0006552949

特開2008−261751号公報Japanese Patent Laid-Open No. 2008-261751

ところで、送電線路の運用形態の複雑化に伴い、送電線路に漏れ電流が生じ、この漏れ電流が故障点に流れ込む場合がある。しかし、従来の送電線故障の標定方式は、故障点に流れ込む漏れ電流を考慮したものではなかった。そのため、漏れ電流が生じうる送電線路において、従来の標定方式を用いて得られる標定値は大きな標定誤差を含んだものとなり、正確な故障点の標定ができないという問題があった。   By the way, with the complication of the operation form of the transmission line, a leakage current is generated in the transmission line, and this leakage current may flow into the failure point. However, conventional power line fault location methods do not take into account the leakage current that flows into the fault point. Therefore, in the power transmission line where leakage current may occur, the positioning value obtained using the conventional positioning method includes a large positioning error, and there is a problem that accurate fault point can not be located.

本発明の実施形態に係る故障点標定装置、その方法及びプログラムは、上記のような課題を解決するためになされたものであり、送電線路に漏れ電流が生じても正確な故障点標定が可能な故障点標定装置、その方法及びプログラムを提供することを目的とする。   The failure point locating device, the method and the program according to the embodiment of the present invention are made to solve the above-described problems, and accurate failure point locating is possible even if a leakage current occurs in the transmission line. It is an object of the present invention to provide a fault localization apparatus, method and program thereof.

上記の目的を達成するために、本実施形態の故障点標定装置は、送電線路の故障点を標定する故障点標定装置であって、前記送電線路の基準端における電流及び電圧、並びに前記故障点に流れる漏れ電流を測定する電気量測定部と、前記基準端の電流と前記漏れ電流とを加算して得られる総和電流を算出する総和電流算出部と、前記基準端の電流と前記総和電流との位相差を算出する電流位相差算出部と、前記基準端の電圧と前記総和電流との位相差を算出する電圧位相差算出部と、前記送電線路の線路角が予め記憶された記憶部と、前記基準端における電流及び電圧、両前記位相差、及び前記線路角に基づいて、前記基準端から前記故障点までの線路リアクタンスを算出するリアクタンス算出部と、を備えることを特徴とする。   In order to achieve the above object, the failure point locating device of the present embodiment is a failure point locating device for locating a failure point of a transmission line, and includes a current and voltage at a reference end of the transmission line, and the failure point. , A total current calculation unit for calculating a total current obtained by adding the current at the reference end and the leakage current, a current at the reference end, and the total current A current phase difference calculating unit that calculates the phase difference of the voltage phase, a voltage phase difference calculating unit that calculates the phase difference between the voltage at the reference end and the total current, a storage unit in which the line angle of the power transmission line is stored in advance And a reactance calculation unit configured to calculate a line reactance from the reference end to the failure point based on the current and voltage at the reference end, the phase difference between the two, and the line angle.

本実施形態は、上記の各部の機能をコンピュータ又は電子回路により実現する方法、上記の各部の処理をコンピュータに実行させるプログラムとして捉えることもできる。   The present embodiment can also be understood as a method for realizing the functions of the respective units by a computer or an electronic circuit, and a program for causing a computer to execute the processes of the respective units.

第1の実施形態に係る故障点標定装置が適用される交流送電システムを示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the alternating current transmission system to which the failure point localization apparatus which concerns on 1st Embodiment is applied. 第1の実施形態に係る故障点標定装置の構成を示す機能ブロック図である。It is a functional block diagram showing composition of a fault localization device concerning a 1st embodiment. 漏れ電流が存在する図1のシステムのリアクタンス標定における電流と電圧のベクトル図である。FIG. 6 is a vector diagram of current and voltage in reactance localization of the system of FIG. 1 in the presence of leakage current. 実施例1の基準端電流(1PU)と漏れ電流(0.5PU)との位相差に対する標定リアクタンスを示すグラフである。It is a graph which shows the orientation reactance with respect to the phase difference of the reference end electric current (1PU) of Example 1, and a leakage current (0.5PU). 実施例2の基準端電流(1PU)と漏れ電流(1PU)との位相差に対する標定リアクタンスを示すグラフである。It is a graph which shows the standard reactance with respect to the phase difference of the reference end electric current (1PU) of Example 2, and a leakage current (1PU). 実施例3の基準端電流(1PU)と漏れ電流(2PU)との位相差に対する標定リアクタンスを示すグラフである。It is a graph which shows the orientation reactance with respect to the phase difference of the reference end electric current (1PU) of Example 3, and leakage current (2PU). 第2の実施形態に係る故障点標定装置が適用される交流送電システムを示す図である。It is a figure which shows the alternating current transmission system to which the failure point localization apparatus which concerns on 2nd Embodiment is applied. 第2の実施形態に係る故障点標定装置の機能ブロック図である。It is a functional block diagram of the fault localization device concerning a 2nd embodiment. 漏れ電流が存在する図7のシステムのリアクタンス標定における電流と電圧のベクトル図である。FIG. 8 is a vector diagram of current and voltage in reactance positioning of the system of FIG. 7 in the presence of leakage current. 第3の実施形態に係る故障点標定装置が適用される交流送電システムを示す図である。It is a figure which shows the alternating current transmission system to which the failure point localization apparatus which concerns on 3rd Embodiment is applied. 第3の実施形態の故障点標定装置の機能ブロック図である。It is a functional block diagram of the failure point localization apparatus of 3rd Embodiment. 従来方式を説明するための標定原理図である。It is an orientation principle figure for demonstrating a conventional system. 図12の関係を示す電流と電圧のベクトル図である。It is a vector diagram of current and voltage showing the relationship of FIG.

[1.第1の実施形態]
[1−1.全体構成]
以下では、図1〜図3を参照しつつ、本実施形態に係る故障点標定装置について説明する。図1は、本実施形態に係る故障点標定装置が適用される交流送電システムを示す図である。
[1. First embodiment]
[1-1. overall structure]
Hereinafter, the failure point locating device according to the present embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing an AC power transmission system to which a failure localization apparatus according to the present embodiment is applied.

図1に示すように、交流送電システムは、交流電源1と送電線路2を備え、送電線路2の基準端には交流電源1が接続され、送電線路2の他端に交流電源又は負荷が接続されている。交流電源1は、送電線路2を介して、他端の負荷などに電力を供給する。交流電源1は、例えば電力会社の交流系統、変電所である。送電線路2は、交流の電力を送る線路であり、架線やケーブルを含む。交流送電システムは、例えば、新幹線などの電車に電力を供給するシステムが挙げられる。   As shown in FIG. 1, the AC power transmission system includes an AC power supply 1 and a power transmission line 2, the AC power supply 1 is connected to the reference end of the power transmission line 2, and the AC power supply or load is connected to the other end of the power transmission line 2. Has been. The AC power supply 1 supplies power to the load at the other end and the like via the power transmission line 2. The AC power source 1 is, for example, an AC system or substation of an electric power company. The power transmission line 2 is a line for sending AC power, and includes overhead lines and cables. Examples of the AC power transmission system include a system that supplies power to a train such as a bullet train.

故障点標定装置は、送電線路2を標定対象とし、送電線路2の故障点を標定する。故障点とは、短絡や地絡が発生した地点である。故障点標定装置は、事故が発生した場合に送電線路2に流れる漏れ電流を考慮し、送電線路2の基準端から故障点までの線路リアクタンスを求める。   The failure point locating device uses the power transmission line 2 as a target for location, and locates the failure point of the power transmission line 2. The failure point is a point at which a short circuit or ground fault has occurred. The fault localization apparatus determines a line reactance from the reference end of the transmission line 2 to the fault point in consideration of the leakage current flowing through the transmission line 2 when an accident occurs.

故障点には、線路リアクタンス2の標定地点となる標定点を介して、基準端を通過する電流Iと事故により発生した漏れ電流Iρとが流入する。基準端は、故障点標定する際に基準とする送電線路2上の点であり、標定点より交流電源1側の送電線路2上の点である。なお、漏れ電流Iρの発生は、例えば、送電線路2の交流電源1の接続端とは反対側に電車が接続されている場合、事故発生時に当該電車がバッテリとして機能することにより発生する。 A current I 1 passing through the reference end and a leakage current I ρ caused by an accident flow into the failure point through the orientation point that is the orientation point of the line reactance 2. The reference end is a point on the transmission line 2 used as a reference when locating the failure point, and is a point on the transmission line 2 on the side of the AC power supply 1 from the control point. For example, when a train is connected to the side of the power transmission line 2 opposite to the connection end of the AC power supply 1, the leakage current occurs when the train functions as a battery when an accident occurs.

[1−2.詳細構成]
(故障点標定装置)
図2は、本実施形態に係る故障点標定装置の構成を示す機能ブロック図である。図2に示すように、故障点標定装置は、電気量測定部31、総和電流算出部32、電流位相差算出部33、電圧位相差算出部34、記憶部35、及びリアクタンス算出部36を有している。各部32〜34、36は、単一のコンピュータ又はネットワーク接続された複数のコンピュータを含み構成されている。すなわち、故障点標定装置は、プログラムをHDDやSSD等に記憶しており、RAMに適宜展開し、CPUで処理することにより、各種の演算を行う。
[1-2. Detailed configuration]
(Trouble point locating device)
FIG. 2 is a functional block diagram showing the configuration of the fault localization apparatus according to the present embodiment. As shown in FIG. 2, the failure point locating device includes an electric quantity measurement unit 31, a total current calculation unit 32, a current phase difference calculation unit 33, a voltage phase difference calculation unit 34, a storage unit 35, and a reactance calculation unit 36. doing. Each of the units 32 to 34, 36 includes a single computer or a plurality of networked computers. That is, the failure point localization apparatus stores a program in an HDD, an SSD, or the like, appropriately expands it in a RAM, and performs various operations by processing with a CPU.

電気量測定部31は、送電線路2の基準端における電流I及び電圧Vを測定する。事故が発生した場合、送電線路2には、漏れ電流Iρが流れ、故障点に流入する場合がある。電気量測定部31は、この故障点に流れる漏れ電流Iρも測定する。電気量測定部31としては、例えば、基準端の電流Iは、基準端に設けた電流検出器で測定し、漏れ電流Iρは、基準端以外の箇所に設けた電流検出器で測定する。電圧Vは、例えば交流電源1と基準端との間の電圧を検出する電圧検出器で測定する。 The electrical quantity measuring unit 31 measures the current I 1 and the voltage V 1 at the reference end of the transmission line 2. When an accident occurs, the leakage current I ρ flows through the transmission line 2 and may flow into the failure point. The electric quantity measurement unit 31 also measures the leakage current I 流 れ る flowing to the failure point. The electric quantity measuring unit 31, for example, the current I 1 of the reference edge is determined by the current detector provided in the reference end, the leakage current I [rho, measured by the current detector provided at a location other than the reference edge . Voltages V 1 is measured by the voltage detector for detecting a voltage between the example AC power supply 1 and the reference end.

総和電流算出部32は、電気量測定部31により得られた基準端の電流Iと漏れ電流Iρとを加算し、総和電流Iを算出する。この総和電流Iは、故障点に流れる故障点電流Iである。すなわち、I=I=I+Iρの関係式が成立する。 The total current calculation unit 32 calculates the total current I by adding the current I 1 at the reference end obtained by the electric quantity measurement unit 31 and the leakage current I ρ . This total current I is the fault point current If flowing to the fault point. That is, the relational expression I = I f = I 1 + I 成立 holds.

電流位相差算出部33は、基準端の電流Iと総和電流Iとの位相差φを算出する。電圧位相差算出部34は、基準端の電圧Vと総和電流Iとの位相差φIfを算出する。位相差φは、基準端の電圧Vと総和電流Iの有効電力、無効電力から算出され、位相差φIfは、基準端の電流Iと総和電流Iの有効電力、無効電力から算出される。 Current phase difference calculation unit 33 calculates a phase difference phi f between the current I 1 of the reference edge and the sum current I. Voltage phase difference calculator 34 calculates a phase difference phi the If the voltage V 1 of the reference edge and the sum current I. The phase difference φ f is calculated from the active power and reactive power of the reference end voltage V 1 and the total current I, and the phase difference φ If is calculated from the active power and reactive power of the reference end current I 1 and the total current I. Be done.

記憶部35は、故障点を標定する演算に必要な各種のパラメータやその演算に用いるプログラムが予め記憶されている。パラメータとしては、送電線路2の各区間における線路定数Zや、線路定数の線路角がある。線路角は、送電線路2の抵抗R成分とリアクタンス成分jXの三角比関数角度であり、後述の図3に示すように、基準端から故障点までの線路定数Zと抵抗R成分との成す角度である。これらのパラメータは、送電線路2の電気的特性の一つであって、送電線路2の素材などの構成により一意的に決まる値である。この記憶部35に記憶されるプログラムとしては、各算出部32〜34、36の演算に用いるプログラムが挙げられる。 The storage unit 35 stores in advance various parameters necessary for calculation for determining a failure point and a program used for the calculation. The parameters include the line constant Z in each section of the power transmission line 2 and the line angle of the line constant. Line angle is a trigonometric ratio function angle resistor R component and the reactance component jX of the transmission line 2, as shown in Figure 3 will be described later, formed by the line constant Z 1 and the resistance R component from the reference edge to the fault point It is an angle. These parameters are one of the electrical characteristics of the transmission line 2 and are values uniquely determined by the configuration of the material of the transmission line 2 and the like. As a program memorize | stored in this memory | storage part 35, the program used for the calculation of each calculation part 32-34, 36 is mentioned.

リアクタンス算出部36は、漏れ電流Iρを考慮して、基準端から故障点までの線路リアクタンスjXを算出する。この線路リアクタンスjXの算出式、すなわち故障点の標定式は、下記の(式1)である。
(数1)

Figure 0006552949
The reactance calculation unit 36 calculates the line reactance jX from the reference end to the failure point in consideration of the leakage current I ρ . The formula for calculating the line reactance jX, that is, the fault location standard formula is (Formula 1) below.
(Equation 1)
Figure 0006552949

また、故障点標定装置は、不図示の通信手段又は表示手段を備え、通信手段により、算出した線路リアクタンスを外部に送信しても良いし、表示手段により、算出した線路リアクタンスを表示させ、ユーザが読み取り可能にしても良い。通信手段は有線又は無線を問わない。また、表示手段は、例えば、液晶ディスプレイ等が挙げられるが、これに限定せず公知のものを用いることができる。   Further, the failure point locating device includes a communication unit or a display unit (not shown), and the communication unit may transmit the calculated line reactance to the outside, or the display unit may display the calculated line reactance, May be readable. The communication means may be wired or wireless. Moreover, although a liquid crystal display etc. are mentioned as a display means, for example, it can not limit to this and can use a well-known thing.

[1−3.作用]
まず、上記(式1)に示す故障点の標定式について、従来の標定式と対比させつつ説明し、次いで、本実施形態の故障点標定装置の動作を説明し、さらに実施例を示す。
[1-3. Action]
First, the fault point location formula shown in the above (Formula 1) will be described in comparison with the conventional location formula, then the operation of the fault location apparatus of the present embodiment will be described, and further examples will be shown.

[1−3−1.故障点標定式]
図3は、漏れ電流が存在する図1のシステムのリアクタンス標定における電流と電圧のベクトル図である。図3に示すように、求めたい線路リアクタンスは、Iを斜辺、IRを隣辺とした直角三角形における対辺を求めることで求められる。すなわち、線路定数Zは、抵抗R成分とリアクタンスX成分の和で表せるから(Z=R+jX)、上記の対辺IjXをIで割れば良い。ここで、IとIRの成す角が線路角kθであり、故障点電流Iと電圧Vの成す角が位相差φIfである。
[1-3-1. Failure point localization formula]
FIG. 3 is a vector diagram of current and voltage in reactance positioning of the system of FIG. 1 in the presence of leakage current. As shown in FIG. 3, the line reactance to be determined can be determined by determining the opposite side of a right triangle with I 1 Z 1 as the oblique side and I 1 R as the adjacent side. That is, the line constant Z 1, since expressed by the sum of the resistance R component and the reactance X component (Z 1 = R + jX), the opposite sides I 1 jX may be divided by I 1. Here, the angle formed by I 1 Z 1 and I 1 R is the line angle k θ , and the angle formed by the fault point current If and the voltage V 1 is the phase difference φ If .

図3に示すように、斜辺をIとする直角三角形において、位相差φIfと向かい合う対辺をSとすると、次の3つの関係式(1)〜(3)が成立し、SとIを消去することで、上記の(式1)の標定式を得ることができる。
S/V=sinφIf…(1)
S/I=sin(kθ−φ)…(2)
jIX/I=sinkθ…(3)
As shown in FIG. 3, in a right triangle having an oblique side as I 1 Z 1 , assuming that the opposite side facing the phase difference φ If is S, the following three relational expressions (1) to (3) hold, By deleting I 1 Z 1 , the orientation formula of the above (Formula 1) can be obtained.
S / V 1 = sinφ If (1)
S / I 1 Z 1 = sin (k θ −φ f ) (2)
jI 1 X / I 1 Z 1 = sink θ (3)

図1および図3に示すように、送電線路2に短絡や地絡などで故障点が発生した場合、送電線路2に漏れ電流Iρが発生し、故障点には、基準端の電流Iと漏れ電流Iρとが流入する。基準端電流Iと漏れ電流Iρはそれぞれ位相を有するため、両電流には位相差が生じ得る。そのため、故障点に流れる故障点電流Iは基準端電流Iから当該電流Iと漏れ電流Iρの位相差φ分だけズレが生じる。 As shown in FIG. 1 and FIG. 3, when a failure point occurs in the transmission line 2 due to a short circuit or a ground fault, a leakage current I is generated in the transmission line 2 and a current I 1 at the reference end is generated at the failure point. And leakage current I ρ flow in. Since the reference end current I 1 and the leakage current I 有 す る each have a phase, a phase difference may occur between the two currents. Therefore, the fault point current I f flowing to the fault point is deviated from the reference end current I 1 by the phase difference φ f of the current I 1 and the leakage current I ρ .

上記(式101)に示すように、従来の故障点の標定式は、漏れ電流Iρによる位相ズレを考慮したものでない。そのため、図13に示すように、(式101)により算出される線路リアクタンスは、求めたい線路リアクタンスから標定誤差Xe(=V1・sinφI1−IjX)分ずれる。 As shown in the above (Equation 101), the conventional formula for determining the failure point does not take into consideration the phase shift due to the leakage current I ρ . Therefore, as shown in FIG. 13, line reactance calculated by (Formula 101) is determined like line orientation reactance error Xe (= V1 · sinφ I1 -I 1 jX) minute shifts.

これに対し、本実施形態では、(式1)から明らかなように、基準端電流Iと漏れ電流Iρの位相差φが含まれており、漏れ電流Iρを考慮したものである。また、漏れ電流Iρの存在により、故障点電流I(総和電流I)の位相も基準端電流Iから変化する。そのため、位相差φIfも漏れ電流Iρを考慮したものである。このように、本実施形態によれば、漏れ電流Iρによる位相の変化が考慮されているため、正確な線路リアクタンスを求めることができる。 On the other hand, in this embodiment, as is clear from (Equation 1), the phase difference φ f between the reference end current I 1 and the leakage current I ρ is included, and the leakage current I ρ is taken into consideration. . Further, due to the presence of the leakage current I ρ , the phase of the failure point current I f (total current I) also changes from the reference end current I 1 . Therefore, the phase difference φ If also takes into consideration the leakage current I ρ . As described above, according to the present embodiment, since the change in phase due to the leakage current I 考慮 is considered, it is possible to obtain an accurate line reactance.

[1−3−2.動作]
本実施形態の故障点標定装置の動作について、詳細に説明する。なお、ここで示す動作は一例であって、後述のステップS02〜S04の順番を前後又は並列させても良い。
[1-3-2. Operation]
The operation of the fault localization apparatus of the present embodiment will be described in detail. In addition, the operation | movement shown here is an example, Comprising: You may make order of the below-mentioned steps S02-S04 back and forth or parallel.

まず、ステップS01として、電気量測定部31により、基準端における電流I及び電圧V、並びに、漏れ電流Iρを測定する。次に、ステップS02として、総和電流算出部32により、電気量測定部31で測定された電流Iと漏れ電流Iρとを加算し、総和電流Iを算出する。この総和電流Iは、故障点電流Iと等しい。ステップS03は、電流位相差算出部33により、基準端の電流Iと総和電流Iとの位相差φを算出する。ステップS04は、電圧位相差算出部34により、基準端の電圧Vと総和電流Iとの位相差φIfを算出する。 First, in step S01, the electric quantity measurement unit 31 measures the current I 1 and the voltage V 1 at the reference end and the leakage current I ρ . Next, in step S02, the total sum current calculation unit 32, measured by adding the current I 1 and the leakage current I [rho electric quantity measuring unit 31 calculates the sum current I. This total current I is equal to the fault point current If . Step S03 is the current phase difference calculator 33 calculates a phase difference phi f between the current I 1 of the reference edge and the sum current I. In step S 04, the voltage phase difference calculation unit 34 calculates the phase difference φ If between the reference end voltage V 1 and the total current I.

なお、故障点電流Iと故障点電圧Vは同位相である。標定点と故障点がピンポイントで結合するため、故障点定数Zは抵抗分とみなすことができ、コイル成分による位相のズレが生じないからである。従って、位相差φIfは、基準端の電圧Vと故障点電圧Vとの位相差と等しい。 The fault point current If and the fault point voltage Vf have the same phase. Since the control point and the failure point are connected at the pin point, the failure point constant Z f can be regarded as a resistance component, and there is no phase shift due to the coil component. Accordingly, the phase difference φ If is equal to the phase difference between the reference end voltage V 1 and the failure point voltage V f .

さらに、ステップS05として、リアクタンス算出部36により、各部31〜35から得られる電流I、電圧V、位相差φ、φIf、線路角kθ、及び(式1)に基づいて、基準端から故障点までの線路リアクタンスを算出する。なお、算出した線路リアクタンス値を通信手段により外部に送信しても良いし、表示手段によりその値を表示するようにしても良い。 Further, as step S05, the reactance calculation unit 36 determines the reference based on the current I 1 , voltage V 1 , phase difference φ f , φ If , line angle k θ , and (Equation 1) obtained from the units 31 to 35. Calculate the line reactance from the end to the failure point. The calculated line reactance value may be transmitted to the outside by the communication means, or the value may be displayed by the display means.

[1−3−3.実施例]
本実施形態において、上記(式1)に基づく実施例1〜3を示す。図1に示すように、漏れ電流が存在する送電線路2において、漏れ電流の位相角を0〜360°まで回転させ、基準端から故障点までの線路リアクタンスを算出した。
[1-3-3. Example]
In the present embodiment, Examples 1 to 3 based on the above (Formula 1) are shown. As shown in FIG. 1, in the power transmission line 2 in which a leakage current exists, the phase angle of the leakage current was rotated from 0 to 360 °, and the line reactance from the reference end to the failure point was calculated.

実施例1〜3の条件は下記の通りであり、基準端から故障点までの線路リアクタンスjXが1[PU]となるように設定している。換言すれば、算出した線路リアクタンスが1[PU]を示せば、正確な故障点標定ができていると判定でき、それ以外の値を示せば、標定誤差を含んでいると判定できる。   The conditions of the first to third embodiments are as follows, and the line reactance jX from the reference end to the failure point is set to 1 [PU]. In other words, if the calculated line reactance indicates 1 [PU], it can be determined that an accurate fault location has been achieved, and if any other value is indicated, it can be determined that an orientation error is included.

基準端の電圧V、線路角kθ、漏れ電流Iρの位相差を0〜360°回転させる点は共通し、漏れ電流Iρの値をそれぞれ0.5、1、2と異なる値とした。
・ 実施例1〜3:I=1[PU]、V=((1.26)+(1.38)1/2[PU]、kθ=60[DEG]
・ 実施例1:Iρ=0.5[PU]
・ 実施例2:Iρ=1[PU]
・ 実施例3:Iρ=2[PU]
The point that the phase difference between the reference end voltage V 1 , line angle k θ , and leakage current I ρ is rotated by 0 to 360 ° is common, and the value of the leakage current I ρ is different from 0.5, 1 and 2, respectively. did.
Examples 1-3: I 1 = 1 [PU], V 1 = ((1.26) 2 + (1.38) 2 ) 1/2 [PU], k θ = 60 [DEG]
Example 1: I ρ = 0.5 [PU]
Example 2: I ρ = 1 [PU]
Example 3: I ρ = 2 [PU]

図4〜図6にその結果を示す。すなわち、図4が実施例1の結果、図5が実施例2の結果、図6が実施例3の結果を示し、各図に示すグラフの横軸が基準端電流Iに対する漏れ電流Iρの位相差φρを示し、縦軸が標定された線路リアクタンスjXを示す。また、図4〜図6に実施例1〜3の比較のため、従来例1〜3を示す。従来例1〜3は、実施例1〜3と同じ条件で、従来の(式101)に基づく結果である。 The results are shown in FIGS. That is, FIG. 4 shows the result of Example 1, FIG. 5 shows the result of Example 2, FIG. 6 shows the result of Example 3, and the horizontal axis of the graph shown in each figure shows the leakage current I に 対 す to the reference end current I 1 of it shows the phase difference phi [rho, indicating the line reactance jX the vertical axis is the orientation. Further, Conventional Examples 1 to 3 are shown in FIGS. 4 to 6 for comparison of Examples 1 to 3. FIG. Conventional Examples 1 to 3 are results based on the conventional (Formula 101) under the same conditions as in Examples 1 to 3.

図4〜図6に示すように、例えば、基準端電流Iと漏れ電流Iρの位相差がない場合(φ=0)、各実施例と従来例の線路リアクタンスは一致している。しかし、従来例1〜3では、基準端電流Iと漏れ電流Iρの方向が一致しない場合、標定された線路リアクタンスの値が変動しており、標定誤差が含まれることが分かる。これに対し、実施例1〜3では、基準端電流Iと漏れ電流Iρとの位相差がある場合であっても、一定の線路リアクタンス値(1PU)が得られており、正確に故障点を標定することができることが分かる。 As shown in FIGS. 4 to 6, for example, when there is no phase difference between the reference end current I 1 and the leakage current I ρf = 0), the line reactances of the respective examples and the conventional example match. However, in the conventional examples 1 to 3, when the directions of the reference end current I 1 and the leakage current I ρ do not coincide with each other, it can be seen that the value of the standardized line reactance fluctuates and a standardization error is included. On the other hand, in Examples 1 to 3, even if there is a phase difference between the reference end current I 1 and the leakage current I ρ , a constant line reactance value (1PU) is obtained, and the failure is accurately caused. It can be seen that the points can be located.

また、従来例1〜3では、基準端電流Iに対する漏れ電流Iρの値の比率が大きくなるにつれて、標定誤差が大きくなるのに対し、実施例1〜3では、一定の線路リアクタンス値が得られており、漏れ電流Iρの大きさや位相が変化しても、正確な故障点の標定をすることができることが分かる。 In the conventional examples 1 to 3, the orientation error increases as the ratio of the value of the leakage current I ρ to the reference end current I 1 increases. In the first to third examples, a constant line reactance value is obtained. It can be understood that accurate fault point localization can be performed even if the magnitude and phase of the leakage current I 変 化 change.

[1−4.効果]
本実施形態の故障点標定装置は、送電線路2の故障点を標定する故障点標定装置であって、送電線路2の基準端における電流I及び電圧V、並びに故障点に流れる漏れ電流Iρを測定する電気量測定部31と、基準端の電流Iと漏れ電流Iρとを加算して得られる総和電流Iを算出する総和電流算出部32と、基準端の電流Iと総和電流Iとの位相差φを算出する電流位相差算出部33と、基準端の電圧Vと総和電流Iとの位相差φIfを算出する電圧位相差算出部34と、送電線路2の線路角kθが予め記憶された記憶部35と、基準端における電流I及び電圧V、両前記位相差φ、φIf、及び線路角kθに基づいて、基準端から故障点までの線路リアクタンスjXを算出するリアクタンス算出部36と、を備えるようにした。
[1-4. effect]
The fault localization apparatus according to the present embodiment is a fault localization apparatus for locating the fault point of the transmission line 2 and includes the current I 1 and the voltage V 1 at the reference end of the transmission line 2 and the leakage current I flowing to the fault point. an electrical quantity measuring unit 31 that measures ρ , a total current calculating unit 32 that calculates a total current I obtained by adding the current I 1 at the reference end and the leakage current I ρ, and the current I 1 and the total at the reference end Current phase difference calculation unit 33 for calculating phase difference φ f with current I, voltage phase difference calculation unit 34 for calculating phase difference φ If between reference voltage V 1 and total current I, and power transmission line 2 From the reference end to the failure point based on the storage unit 35 in which the line angle k θ is stored in advance, the current I 1 and the voltage V 1 at the reference end, the phase differences φ f and φ If , and the line angle k θ. A reactance calculation unit 36 for calculating the line reactance jX of And obtain way.

これにより、標定対象の送電線路2に漏れ電流Iρが発生する場合であっても、漏れ電流Iρの存在によって生じる位相のズレも加味しているので、故障点を正確に標定することができる。 As a result, even when the leakage current I occurs in the transmission line 2 to be localized, the phase shift caused by the presence of the leakage current I is also taken into consideration, so that the failure point can be accurately determined. it can.

[2.第2の実施形態]
[2−1.構成]
第2の実施形態について、図7〜図9を用いて説明する。第2の実施形態は、第1の実施形態と基本構成は同じである。第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
[2. Second embodiment]
[2-1. Constitution]
A second embodiment will be described using FIGS. 7 to 9. The second embodiment has the same basic configuration as the first embodiment. Only the differences from the first embodiment will be described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.

図7は、第2の実施形態に係る故障点標定装置が適用される交流送電システムを示す図である。第2の実施形態の送電線路2は、基準端と分岐点2aとを有する基本線路21と、基本線路21から分岐点2aで分岐する分岐路22とを有する。基準端は、交流電源1と分岐点2aとの間に位置する。なお、基準端及び分岐点2aは、送電線路2において不動である。   FIG. 7 is a diagram showing an AC power transmission system to which the fault localization device according to the second embodiment is applied. The power transmission line 2 of the second embodiment has a basic line 21 having a reference end and a branch point 2a, and a branch path 22 branched from the basic line 21 at the branch point 2a. The reference end is located between the AC power source 1 and the branch point 2a. The reference end and the branch point 2 a are stationary in the power transmission line 2.

ここで、分岐点2aを基準として、交流電源1側を前方、交流電源1の反対側を後方と称する。すなわち、分岐点2aから見て基準端側が前方であり、前方以外の箇所が後方である。後方は、基本線路21の分岐点2aの下流側の送電線路と、分岐路22とを含む。故障点は、送電線路2のどこで発生するかは不定であるが、その発生が想定される位置は、前方又は後方である。   Here, with reference to the branch point 2a, the AC power supply 1 side is referred to as the front, and the opposite side of the AC power supply 1 as the rear. That is, the reference end side is the front as viewed from the branch point 2a, and a point other than the front is the rear. The rear includes a power transmission line downstream of the branch point 2 a of the basic line 21 and a branch path 22. Although the failure point occurs in any place in the transmission line 2, the position where the occurrence is assumed is forward or backward.

基準端と分岐点2aの間の距離は固定されているので、その間の線路定数Z1−1も予め決まる。記憶部35には、基準端と分岐点2aの間の線路定数Z1−1が予め記憶されている。また、記憶部35には、後述する判定に必要な各種の閾値が予め記憶されている。 Because the reference edge distance between the branch point 2a is fixed, determined in advance even during line constant Z 1-1. The storage unit 35, line constant Z 1-1 between the reference end and the branching point 2a are stored in advance. In addition, in the storage unit 35, various threshold values necessary for the determination described later are stored in advance.

図8は、第2の実施形態に係る故障点標定装置の機能ブロック図である。リアクタンス算出部36は、前方故障標定算出部36aと、後方故障標定算出部36bとを有する。前方故障標定算出部36aは、分岐点2aから見て基準端側である前方で発生した故障点を標定する前方故障標定式に基づいて、基準端から故障点までの線路リアクタンスjXを算出する。前方故障標定式とは、上記(式1)である。すなわち、前方で故障点が発生した場合、故障点には、基準端電流Iと、後方から流れてきた漏れ電流Iρとが流入するため、上記(式1)で前方故障を標定する。 FIG. 8 is a functional block diagram of the fault localization device according to the second embodiment. The reactance calculation unit 36 includes a front fault orientation calculation unit 36a and a rear fault orientation calculation unit 36b. The forward failure localization calculation unit 36a calculates the line reactance jX from the reference end to the failure point based on the forward failure localization formula that locates a failure point that has occurred on the front side which is the reference end side from the branch point 2a. The forward failure location formula is the above (Formula 1). That is, when a failure point occurs in the front, the reference end current I 1 and the leakage current I 流 れ flowing from the rear flow into the failure point, so the front failure is determined by the above (Equation 1).

後方故障標定算出部36bは、分岐点2aの後方で故障点が発生した場合に、基準端から故障点までの線路リアクタンスを算出する。この算出には、第1の実施形態と同様に、電気量測定部31で測定した基準端電流I、電圧V、電流位相差算出部33で算出した位相差φ、電圧位相差算出部34で算出した位相差φIfの他、記憶部35に記憶された線路定数Z1−1と下記の(式2)に示す後方故障点標定式を用いる。
(数2)

Figure 0006552949
The rear failure localization calculation unit 36b calculates a line reactance from the reference end to the failure point when a failure point occurs behind the branch point 2a. In this calculation, as in the first embodiment, the reference end current I 1 and voltage V 1 measured by the electric quantity measurement unit 31, the phase difference φ f calculated by the current phase difference calculation unit 33, and the voltage phase difference calculation other phase difference phi the If calculated in section 34, using the backward fault point locating formula shown in the storage unit 35 stored in the line constants Z 1-1 and the following (equation 2).
(Equation 2)
Figure 0006552949

なお、図7において、基準端から分岐点2aまでの線路降下電圧はI・Z1−1である。また、分岐点2aから故障点までの線路降下電圧(I+Iρ)・Z1−2である。故障点の線路定数Zは不定であるため、故障点電圧Vも不定である。但し、故障点に流れ込む故障点電流IとVは同位相である。図7に示す関係を電流ベクトル図として図9に示す。 In FIG. 7, the line drop voltage from the reference end to the branch point 2a is I 1 · Z 1-1 . Further, a line drop voltage to fault point from the branch point 2a (I 1 + I ρ) · Z 1-2. Since the line constant Z f point of failure is indeterminate, the fault point voltage V f is also indefinite. However, the fault point current I f and V f, which flows into the fault point are in phase. The relationship shown in FIG. 7 is shown in FIG. 9 as a current vector diagram.

図9に示すように、基準端電圧Vは、故障点電圧Vfに、分岐点2aから故障点までの線路降下電圧と、基準端から分岐点2aまでの線路降下電圧を加算したものであり、図9から上記(式2)を求めることができる。 As shown in FIG. 9, the reference terminal voltages V 1 is the fault point voltage Vf, is obtained by adding the line drop voltage to fault point from the branch point 2a, the line voltage drop from the reference edge to the branch point 2a The above (Equation 2) can be obtained from FIG.

なお、図7は、故障点が後方のうち、基本線路21で発生している例を示すが、故障点が分岐路22で発生する場合もありうる。この場合であっても、上記(式2)を用いて後方故障点を標定することができる。   Although FIG. 7 shows an example in which the failure point occurs in the basic line 21 of the rear, the failure point may occur in the branch path 22. Even in this case, the rear failure point can be located using the above (Equation 2).

更に、故障点標定装置は、故障点が前方で発生したか、後方で発生したかを判定する判定部37を有している。すなわち、判定部37は、前方故障標定算出部36aの算出した線路リアクタンスの入力を受け、その入力値が、記憶部35に記憶された所定の閾値以内であるか否かを判定する。判定部37は、入力値が所定の閾値以内である場合は、前方で故障点が発生したと判定し、入力値が所定の閾値超である場合は、後方で故障点が発生したと判定する。この場合は、後方故障標定算出部36bに線路リアクタンスの算出指令を出力する。なお、当該閾値は、基準端から分岐点2aまでの距離が既知であるので、例えば、当該距離と線路定数(インダンクタンス)との関係式から定まるインダクタンスの既知の距離を線路定数とすることができる。   Furthermore, the failure point locating device includes a determination unit 37 that determines whether a failure point has occurred in the front or in the rear. That is, determination unit 37 receives the input of the line reactance calculated by forward failure localization calculation unit 36a, and determines whether the input value is within the predetermined threshold stored in storage unit 35 or not. When the input value is within the predetermined threshold, the determination unit 37 determines that a failure point has occurred in the front, and when the input value exceeds the predetermined threshold, determines that a failure point has occurred in the rear. . In this case, a command to calculate the line reactance is output to the rear failure localization calculation unit 36b. In addition, since the distance from the reference end to the branch point 2a is known, the known distance of the inductance determined from the relational expression between the distance and the line constant (inductance) is taken as the line constant, for example. Can do.

[2−2.動作]
本実施形態の故障点標定装置の動作を説明する。第1の実施形態と同じ点はその説明を省略する。
[2-2. Operation]
The operation of the fault localization device of this embodiment will be described. The same points as the first embodiment will not be described.

故障点標定装置は、基準端の電流I、電圧V、位相差φ、φIfを算出すると、これらの値と線路角kθと上記(式1)とに基づいて、前方故障標定を行う。すなわち、前方故障標定算出部36aは、基準端から故障点までの線路リアクタンスを算出し、その算出した値を判定部37に出力する。 When the fault location device calculates the current I 1 , voltage V 1 , phase difference φ f , φ If at the reference end, based on these values, the line angle k θ and the above (formula 1), the forward fault location is determined. I do. That is, the forward failure localization calculation unit 36a calculates the line reactance from the reference end to the failure point, and outputs the calculated value to the determination unit 37.

判定部37は、前方故障標定算出部36aから入力された線路リアクタンス値が、記憶部35に記憶された所定の閾値以内にあるかを判定する。この線路リアクタンス値が所定の閾値以内である場合は、判定部37は、故障点が前方で発生したと判定し、後方の故障点標定は行わない。   The determination unit 37 determines whether the line reactance value input from the forward failure localization calculation unit 36a is within a predetermined threshold stored in the storage unit 35. If the line reactance value is within the predetermined threshold value, the determination unit 37 determines that the failure point has occurred in the front, and the failure point localization in the rear is not performed.

一方、前方故障標定算出部36aから入力された線路リアクタンス値が、記憶部35に記憶された所定の閾値超である場合は、後方で故障点が発生したと判定する。この場合、判定部37は、後方故障標定算出部36bに算出指令を出力し、後方故障標定算出部36bは、電流I、電圧V、位相差φ、φIf、線路角kθ、線路定数Z1−1、及び上記(式2)の後方故障標定式に基づいて、基準端から故障点までの線路リアクタンスjXを算出する。 On the other hand, when the line reactance value input from the forward failure orientation calculation unit 36a exceeds a predetermined threshold stored in the storage unit 35, it is determined that a failure point has occurred at the rear. In this case, the determination unit 37 outputs a calculation command to the rear failure orientation calculation unit 36b, and the rear failure orientation calculation unit 36b includes a current I 1 , a voltage V 1 , a phase difference φ f , φ If , a line angle k θ , The line reactance jX from the reference end to the failure point is calculated based on the line constant Z 1-1 and the rear failure location equation of the above (formula 2).

上記の通り、第2の実施形態に係る故障点標定装置の動作を説明したが、上記の動作は一例であって、前方故障標定算出部36a、後方故障標定算出部36bによって、並列に線路リアクタンスを算出し、判定部37により、故障点の発生が前方か、後方かを判定しても良い。   As described above, although the operation of the fault localization apparatus according to the second embodiment has been described, the above operation is an example, and the line reactance is paralleled by the forward failure localization calculation unit 36a and the rear failure localization calculation unit 36b. May be calculated, and the determination unit 37 may determine whether the occurrence of the failure point is forward or backward.

[2−3.効果]
(1)本実施形態の故障点標定装置では、送電線路2は、基準端と分岐点2aとを有する基本線路21と、基本線路21から分岐点2aで分岐する分岐路22とを有し、リアクタンス算出部36は、分岐点2aから見て基準端側である前方で発生した故障点を標定する前方故障標定式に基づいて線路リアクタンスjXを算出する前方故障標定算出部36aを有し、前方故障標定算出部36aが算出した値が、所定の閾値以内である場合は、前方で故障点が発生したと判定し、前方故障標定算出部36aが算出した値が、所定の閾値超である場合は、前方以外である後方で故障点が発生したと判定する判定部37を備えるようにした。これにより、分岐点2aを境にして故障区間を特定することができる。
[2-3. effect]
(1) In the fault location apparatus of the present embodiment, the power transmission line 2 includes a basic line 21 having a reference end and a branch point 2a, and a branch path 22 that branches from the basic line 21 at the branch point 2a. The reactance calculation unit 36 has a forward failure localization calculation unit 36a that calculates the line reactance jX based on a forward failure localization formula that locates a failure point generated forward on the reference end side as viewed from the branch point 2a. If the value calculated by the failure localization calculation unit 36a is within the predetermined threshold, it is determined that a failure point has occurred in the front, and the value calculated by the forward failure localization calculation unit 36a is greater than the predetermined threshold Has a determination unit 37 that determines that a failure point has occurred at the rear other than the front. Thereby, a fault section can be specified bordering on branch point 2a.

(2)記憶部35には、基準端と分岐点2aの間の線路定数Z1−1が予め記憶され、リアクタンス算出部36は、線路定数Z1−1、及び、電流I、電圧V、位相差φ、φIf、線路角kθ、後方で発生した故障点を標定する後方故障標定式に基づいて線路リアクタンスを算出する後方故障標定算出部36aを有し、後方故障標定算出部36aは、判定部37が、分岐点2aの後方で故障点が発生したと判定した場合に、後方故障標定式に基づいて線路リアクタンスjXを算出するようにした。これにより、後方で故障が発生した場合でも、漏れ電流Iρを考慮した正確なリアクタンスを算出することができる。 (2) in the storage unit 35 is stored line constant Z 1-1 between the reference end and the branching point 2a in advance, the reactance calculator 36, line constant Z 1-1 and the current I 1, the voltage V 1 , a rear fault localization calculation unit 36a for calculating a line reactance based on a rear fault localization formula that locates a fault point generated at the rear with a phase difference φ f , φ If , a track angle k θ , The unit 36a calculates the line reactance jX based on the backward failure orientation formula when the determination unit 37 determines that a failure point has occurred behind the branch point 2a. As a result, even when a failure occurs behind, it is possible to calculate an accurate reactance in consideration of the leakage current I ρ .

[3.第3の実施形態]
第3の実施形態について、図10を用いて説明する。第3の実施形態は、第2の実施形態と基本構成は同じである。第2の実施形態と異なる点のみを説明し、第2の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
[3. Third embodiment]
The third embodiment will be described with reference to FIG. The third embodiment is the same as the second embodiment in basic configuration. Only differences from the second embodiment will be described, and the same parts as those of the second embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.

図10は、第3の実施形態に係る故障点標定装置が適用される交流送電システムを示す図である。第3の実施形態に係る交流送電システムは、分岐点2aを境に3つの区間1〜3を有するT字状の送電線路2と、交流電源1、11を有する。交流電源1と交流電源11とを基本線路21が接続し、基本線路21の分岐点2aから分岐路22が分岐している。区間3の分岐点2aとは反対側端は、他の交流送電線路、交流電源、又は負荷に接続される。   FIG. 10 is a diagram showing an AC power transmission system to which the fault localization device according to the third embodiment is applied. The AC power transmission system according to the third embodiment includes a T-shaped power transmission line 2 having three sections 1 to 3 bordering on a branch point 2 a and AC power supplies 1 and 11. A basic line 21 connects the AC power source 1 and the AC power source 11, and a branch path 22 branches from a branch point 2 a of the basic line 21. The other end of the section 3 opposite to the branch point 2a is connected to another AC transmission line, an AC power supply, or a load.

区間1は、交流電源1と分岐点2aとの間に設定され、区間2は、交流電源11と分岐点2aとの間に設定され、区間3は、分岐路22に設定されている。区間1〜3には、それぞれ基準端が設けられている。区間1の基準端は交流電源1側の端であり、区間2の基準端は交流電源11側の端である。区間3の基準端は、分岐点2a側の端である。   Section 1 is set between the AC power supply 1 and the branch point 2a, section 2 is set between the AC power supply 11 and the branch point 2a, and section 3 is set as the branch path 22. A reference end is provided for each of the sections 1 to 3. The reference end of section 1 is the end on the side of AC power supply 1, and the reference end of section 2 is the end on the side of AC power supply 11. The reference end of the section 3 is an end on the branch point 2a side.

図11は、第3の実施形態の故障点標定装置の機能ブロック図である。記憶部35には、各区間1〜3における既知の線路定数Z、Z、Z及び線路角kθ1、kθ2、kθ3、並びに、判定部37の判定で用いる各区間の所定の閾値が予め記憶されている。電気量測定部31は、区間1、2における基準端の電流I、I及び電圧V、Vを測定する。 FIG. 11 is a functional block diagram of the fault localization apparatus of the third embodiment. In the storage unit 35, the known line constants Z 1 , Z 2 , Z 3 and the line angles k θ1 , k θ2 , k θ3 in each of the sections 1 to 3 and predetermined sections of each section used in the determination of the determination unit 37 are stored. The threshold is stored in advance. The quantity-of-electricity measurement unit 31 measures the currents I 1 and I 2 and the voltages V 1 and V 2 at the reference end in the sections 1 and 2 .

図11に示すように、本実施形態では、故障点標定装置は、区間3における基準端の電流I、電圧Vを算出する電流・電圧算出部38を有している。電流・電圧算出部38は、電気量測定部31により得た電流I、I及び電圧V、Vと、次の関係式に基づいて算出する。
=I+I …(4)
=(V−I・Z+V−I・Z)/2 …(5)
As shown in FIG. 11, in the present embodiment, the fault localization apparatus includes a current / voltage calculation unit 38 that calculates the current I 3 and the voltage V 3 at the reference end in the section 3. The current / voltage calculation unit 38 calculates the currents I 1 and I 2 and the voltages V 1 and V 2 obtained by the electric quantity measurement unit 31 based on the following relational expression.
I 3 = I 1 + I 2 (4)
V 3 = (V 1 −I 1 · Z 1 + V 2 −I 2 · Z 2 ) / 2 (5)

なお、区間3の基準端の電流I、電圧Vは、区間3に電流検出器、電圧検出器を設けることで電気量測定部31により測定するようにしても良い。 The current I 3 and the voltage V 3 at the reference end of the section 3 may be measured by the electric quantity measuring unit 31 by providing a current detector and a voltage detector in the section 3.

総和電流算出部32、電流位相差算出部33、電圧位相差算出部34、リアクタンス算出部36は、それぞれの区間毎に算出を行う。特に、リアクタンス算出部36は、各区間において、その基準端における電流I、I、I及び電圧V、V、V、両位相差φf1、φf2、φf3、φIf1、φIf2、φIf3及び線路角kθ1、kθ2、kθ3、前方故障標定式(式1)に基づいて、各区間の基準端から故障点までの線路リアクタンスを算出する。 The total current calculation unit 32, the current phase difference calculation unit 33, the voltage phase difference calculation unit 34, and the reactance calculation unit 36 perform calculation for each section. In particular, the reactance calculation unit 36 has, in each section, currents I 1 , I 2 , I 3 and voltages V 1 , V 2 , V 3 , both phase differences φ f1 , φ f2 , φ f3 , φ If1 at their reference ends. The line reactance from the reference end of each section to the failure point is calculated based on φ If2 , φ If3, line angles k θ1 , k θ2 , k θ3 and the forward fault localization formula (equation 1).

すなわち、区間1の線路リアクタンスjXは、下記の(式3)で求め、区間2の線路リアクタンスjXは、下記の(式4)で求め、区間3の線路リアクタンスjXは、下記の(式5)で求める。なお、リアクタンス算出部36に後方故障点標定算出部36bは設けなくても良い。
(数3)

Figure 0006552949
(数4)
Figure 0006552949
(数5)
Figure 0006552949
That is, the line reactance jX 1 of section 1, determined by the following equation (3), the line reactance jX 2 of section 2, determined by the following equation (4), line reactance jX 3 sections 3, below ( It calculates | requires by Formula 5). Note that the reactance calculation unit 36 does not have to be provided with the rear failure point location calculation unit 36b.
(Equation 3)
Figure 0006552949
(Equation 4)
Figure 0006552949
(Number 5)
Figure 0006552949

ここで、記憶部35に記憶された判定部37で用いる各区間の所定の閾値は、区間1がZ・sinkθ1であり、区間2がZ・sinkθ2であり、区間3がZ・sinkθ3である。 Here, the predetermined threshold value of each section used in the determination unit 37 stored in the storage unit 35 is that the section 1 is Z 1 · sink θ1 , the section 2 is Z 2 · sink θ2 , and the section 3 is Z 3. It is sink θ3 .

判定部37は、次のように判定する。
(1)jX≦Z・sinkθ1の場合は、故障点は区間1に存在すると判定し、標定値をjXとする。
(2)jX>Z・sinkθ1、かつjX≦Z・sinkθ2の場合は、故障点は区間2に存在すると判定し、標定値をjXとする。
(3)jX>Z・sinkθ1、かつ、jX>Z・sinkθ2、かつjX≦Z・sinkθ3の場合は、故障点は区間3に存在すると判定し、標定値をjXとする。
(4)jX>Z・sinkθ1、かつ、jX>Z・sinkθ2、かつjX>Z・sinkθ3の場合は、故障点は区間3の外部、すなわち区間3の基準端から見て分岐点2aとは反対側に存在すると判定し、標定値を無効とする。
The determination unit 37 determines as follows.
(1) In the case of jX 1 ≦ Z 1 · sink θ 1, it is determined that the failure point is in the section 1 and the positioning value is jX 1 .
(2) When jX 1 > Z 1 · sink θ 1 and jX 2 ≦ Z 2 · sink θ 2, it is determined that the failure point exists in section 2 and the orientation value is set to jX 2 .
(3) jX 1> Z 1 · sink θ1 and,, jX 2> Z 2 · sink θ2, and in the case of jX 3 ≦ Z 3 · sink θ3 , determines that the failure point is present in the section 3, the orientation value It is jX 3 .
(4) In the case of jX 1 > Z 1 · sink θ1 and jX 2 > Z 2 · sink θ2 and jX 3 > Z 3 · sink θ3 , the failure point is the outside of section 3, that is, the reference end of section 3 From the point of view, it is determined that it exists on the side opposite to the branch point 2a, and the orientation value is invalidated.

以上のように、本実施形態によれば、送電線路2が複数の送電線路を有する場合であっても、どの区間で故障点が発生したかを判定することができるとともに、その有効標定値を求めることができる。   As described above, according to the present embodiment, even if the power transmission line 2 has a plurality of power transmission lines, it can be determined in which section a failure point has occurred, and its effective positioning value Can be sought.

本実施形態の変形例として、区間1〜3における線路リアクタンスの算出を並行して実行し、判定部37は、区間1〜3の算出した線路リアクタンスが、その区間1〜3の所定の閾値以内である場合、当該区間1〜3で故障点が発生したと判定するようにしても良い。また、故障点の発生した区間1〜3が特定された時点で判定部37の判定を終了しても良い。   As a modification of this embodiment, calculation of the line reactance in the sections 1 to 3 is performed in parallel, and the determination unit 37 determines that the calculated line reactance of the sections 1 to 3 is within the predetermined threshold of the sections 1 to 3 In this case, it may be determined that a failure point has occurred in the sections 1 to 3. Further, the determination of the determination unit 37 may be ended when the sections 1 to 3 in which the failure point has occurred are specified.

[4.その他の実施形態]
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[4. Other Embodiments]
While several embodiments of the present invention have been described herein, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. The embodiment as described above can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.

例えば、第2の実施形態及び第3の実施形態では、分岐点2aを1つとした例で説明したが、2つ以上の分岐点を有する送電線路2であっても、故障点標定装置は適用可能である。第3の実施形態では、送電線路2に1つのT字状送電線を有するとしたが、2つ以上であっても故障点標定装置は適用可能である。   For example, in the second embodiment and the third embodiment, an example in which the number of branch points 2a is one is described. However, the failure point localization device is applied even to the power transmission line 2 having two or more branch points. Is possible. In the third embodiment, the transmission line 2 has one T-shaped transmission line. However, the fault localization apparatus can be applied even if there are two or more transmission lines.

1、11 交流電源
2 送電線路
2a 分岐点
21 基本線路
22 分岐路
1, 11 AC power supply 2 transmission line 2a branch point 21 basic line 22 branch

Claims (6)

送電線路の故障点を標定する故障点標定装置であって、
前記送電線路の基準端における電流及び電圧、並びに前記故障点に流れる漏れ電流を測定する電気量測定部と、
前記基準端の電流と前記漏れ電流とを加算して得られる総和電流を算出する総和電流算出部と、
前記基準端の電流と前記総和電流との位相差を算出する電流位相差算出部と、
前記基準端の電圧と前記総和電流との位相差を算出する電圧位相差算出部と、
前記送電線路の線路角が予め記憶された記憶部と、
前記基準端における電流及び電圧、両前記位相差、及び前記線路角に基づいて、前記基準端から前記故障点までの線路リアクタンスを算出するリアクタンス算出部と、
を備えることを特徴とする故障点標定装置。
A fault localization apparatus for locating a fault point of a transmission line, comprising:
An electric quantity measuring unit for measuring the current and voltage at the reference end of the transmission line, and the leakage current flowing through the failure point;
A total current calculation unit that calculates a total current obtained by adding the current at the reference end and the leakage current;
A current phase difference calculating unit that calculates a phase difference between the current at the reference end and the total current;
A voltage phase difference calculation unit that calculates a phase difference between the voltage at the reference end and the total current;
A storage unit in which line angles of the power transmission line are stored in advance;
A reactance calculation unit that calculates a line reactance from the reference end to the failure point based on the current and voltage at the reference end, both the phase difference, and the line angle;
A failure point locating device comprising:
前記送電線路は、前記基準端と分岐点とを有する基本線路と、前記基本線路から分岐点で分岐する分岐路とを有し、
前記リアクタンス算出部は、
前記分岐点から見て前記基準端側である前方で発生した故障点を標定する前方故障標定式に基づいて前記線路リアクタンスを算出する前方故障標定算出部を有し、
前記前方故障標定算出部が算出した値が、所定の閾値以内である場合は、前記前方で故障点が発生したと判定し、前記前方故障標定算出部が算出した値が、所定の閾値超である場合は、前記前方以外である後方で故障点が発生したと判定する判定部を備えること、
を特徴とする請求項1記載の故障点標定装置。
The transmission line includes a basic line having the reference end and a branch point, and a branch path branched from the basic line at a branch point.
The reactance calculation unit includes:
A forward fault orientation calculating unit that calculates the line reactance based on a forward fault orientation formula that locates a failure point that has occurred in front of the reference end when viewed from the branch point;
If the value calculated by the forward failure localization calculation unit is within the predetermined threshold, it is determined that a failure point has occurred in the forward direction, and the value calculated by the forward failure localization calculation unit is greater than the predetermined threshold. If there is, including a determination unit that determines that a failure point has occurred in the rear other than the front,
The fault localization apparatus according to claim 1, characterized in that
前記記憶部には、前記基準端と前記分岐点の間の線路定数が予め記憶され、
前記リアクタンス算出部は、
前記線路定数、及び、前記後方で発生した故障点を標定する後方故障標定式に基づいて前記線路リアクタンスを算出する後方故障標定算出部を有し、
前記後方故障標定算出部は、前記判定部が、前記分岐点の後方で故障点が発生したと判定した場合に、前記後方故障標定式に基づいて前記線路リアクタンスを算出すること、
を特徴とする請求項2記載の故障点標定装置。
In the storage unit, a line constant between the reference end and the branch point is stored in advance,
The reactance calculation unit
A rear fault localization calculation unit that calculates the line reactance based on the line constant and a rear fault localization formula that locates the fault point that has occurred at the rear;
The rear fault orientation calculation unit, when the determination unit determines that a fault point has occurred behind the branch point, to calculate the line reactance based on the rear fault orientation formula,
The fault localization apparatus according to claim 2, wherein
前記送電線路は、前記分岐点を境に第1乃至第3の区間を有するT字状の送電線路を有し、前記第1の区間と第2の区間の前記分岐点と反対側の端には交流電源がそれぞれ接続され、
前記第1乃至第3の区間はそれぞれ前記基準端を有し、
前記総和電流算出部は、前記総和電流を各前記区間においてそれぞれ算出し、
前記電流位相差算出部は、各前記区間において、前記基準端の電流と前記総和電流との位相差をそれぞれ算出し、
前記電圧位相差算出部は、各前記区間において、前記基準端の電圧と前記総和電流との位相差をそれぞれ算出し、
前記記憶部には、前記各区間における線路角、線路定数、所定の閾値がそれぞれ予め記憶され、
前記リアクタンス算出部は、各前記区間において、前記基準端における電流及び電圧、両前記位相差、及び前記線路角に基づいて、前記基準端から前記故障点までの線路リアクタンスをそれぞれ算出し、
前記判定部は、
各前記区間の算出された線路リアクタンスが、各前記区間の前記所定の閾値以内である場合、当該区間で故障点が発生したと判定すること、
を特徴とする請求項2記載の故障点標定装置。
The power transmission line has a T-shaped power transmission line having first to third sections with the branch point as a boundary, and is located at an end opposite to the branch point of the first section and the second section. Are connected to AC power supply,
Each of the first to third sections has the reference end,
The total current calculation unit calculates the total current in each of the sections,
The current phase difference calculation unit calculates a phase difference between the current at the reference end and the total current in each of the sections,
The voltage phase difference calculation unit calculates a phase difference between the voltage at the reference end and the total current in each of the sections,
The line angle, the line constant, and the predetermined threshold value in each section are stored in advance in the storage unit, respectively.
The reactance calculation unit calculates a line reactance from the reference end to the fault point based on the current and voltage at the reference end, both the phase difference, and the line angle in each of the sections,
The determination unit is
When the calculated line reactance of each of the sections is within the predetermined threshold of each of the sections, it is determined that a fault point has occurred in the section;
The fault localization apparatus according to claim 2, wherein
送電線路の故障点を標定する故障点標定方法であって、
前記送電線路の基準端における電流及び電圧、並びに前記故障点に流れる漏れ電流を測定する電気量測定ステップと、
前記基準端の電流と前記漏れ電流とを加算して得られる総和電流を算出する総和電流算出ステップと、
前記基準端の電流と前記総和電流との位相差を算出する電流位相差算出ステップと、
前記基準端の電圧と前記総和電流との位相差を算出する電圧位相差算出ステップと、
前記基準端における電流及び電圧、両前記位相差、及び前記送電線路の線路角に基づいて、前記基準端から前記故障点までの線路リアクタンスを算出するリアクタンス算出ステップと、
を備えることを特徴とする故障点標定方法。
A fault point locating method for locating a fault point of a transmission line, comprising:
An electric quantity measuring step for measuring a current and a voltage at a reference end of the transmission line, and a leakage current flowing through the failure point;
A total current calculation step of calculating a total current obtained by adding the current at the reference end and the leakage current;
A current phase difference calculating step of calculating a phase difference between the current at the reference end and the total current;
A voltage phase difference calculating step of calculating a phase difference between the voltage at the reference end and the total current;
A reactance calculation step of calculating a line reactance from the reference end to the failure point based on the current and voltage at the reference end, the phase difference between the two, and the line angle of the power transmission line;
A failure point locating method characterized by comprising:
送電線路の故障点を標定する故障点標定プログラムであって、
コンピュータに、
前記送電線路の基準端における電流及び電圧、並びに前記故障点に流れる漏れ電流を測定する電気量測定処理と、
前記基準端の電流と前記漏れ電流とを加算して得られる総和電流を算出する総和電流算出処理と、
前記基準端の電流と前記総和電流との位相差を算出する電流位相差算出処理と、
前記基準端の電圧と前記総和電流との位相差を算出する電圧位相差算出処理と、
前記基準端における電流及び電圧、両前記位相差、及び前記送電線路の線路角に基づいて、前記基準端から前記故障点までの線路リアクタンスを算出するリアクタンス算出処理と、
を実行させること、
を特徴とする故障点標定プログラム。
A fault point localization program for locating a fault point of a transmission line, comprising:
On the computer
An electric quantity measurement process for measuring the current and voltage at the reference end of the transmission line, and the leakage current flowing through the failure point;
A total current calculation process for calculating a total current obtained by adding the current at the reference end and the leakage current;
Current phase difference calculation processing for calculating a phase difference between the current at the reference end and the total current;
Voltage phase difference calculation processing for calculating a phase difference between the voltage at the reference end and the total current;
Reactance calculation processing for calculating a line reactance from the reference end to the failure point based on the current and voltage at the reference end, both phase differences, and a line angle of the transmission line;
To run
Fault location program characterized by
JP2015232785A 2015-11-30 2015-11-30 Failure location device, method and program thereof Active JP6552949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232785A JP6552949B2 (en) 2015-11-30 2015-11-30 Failure location device, method and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232785A JP6552949B2 (en) 2015-11-30 2015-11-30 Failure location device, method and program thereof

Publications (2)

Publication Number Publication Date
JP2017101931A JP2017101931A (en) 2017-06-08
JP6552949B2 true JP6552949B2 (en) 2019-07-31

Family

ID=59015564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232785A Active JP6552949B2 (en) 2015-11-30 2015-11-30 Failure location device, method and program thereof

Country Status (1)

Country Link
JP (1) JP6552949B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111292A1 (en) * 2017-12-04 2019-06-13 東芝三菱電機産業システム株式会社 Power conditioner system, power system comprising same, and fault location method
CN108445352B (en) * 2018-03-20 2019-12-27 山东大学 Intelligent power distribution network fault detection method and system oriented to protected element model
CN109858456B (en) * 2019-02-18 2023-09-22 沈阳铁道科学技术研究所有限公司 Railway vehicle state fault analysis system
CN114157348B (en) * 2021-11-24 2023-02-24 国网四川省电力公司信息通信公司 Optical cable fault point positioning method

Also Published As

Publication number Publication date
JP2017101931A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6552949B2 (en) Failure location device, method and program thereof
CN101251568B (en) System and method for determining location of phase-to-earth fault
US7999557B2 (en) Method for determining location of phase-to-earth fault
US7514933B2 (en) System and method for determining location of phase-to-earth fault
EP2000811B1 (en) Method for determining location of phase-to-earth fault
EP1739441B1 (en) Method and system for determining location of phase-to-earth fault
JP2012198134A (en) Fault point locating device and program
KR102460706B1 (en) Apparatus and method detecting direction of fault current
US20190067714A1 (en) Temperature estimating apparatus
EP2682768B1 (en) Method and apparatus for determining the distance to phase-to-earth fault
EP4130757A1 (en) Current measuring device, current measuring method, and non-transitory computer-readable storage medium
Matavalam et al. Calculating the long term voltage stability margin using a linear index
US20150100255A1 (en) Method for locating faults in a power network having fault indicators
JP2008191035A (en) Leakage position detection method, leakage position detection program, and leakage position detection device
CN104931781A (en) Method and device for measuring electric quantity phase angle of three-phase four-line circuit
Daisy et al. Single phase fault location in power distribution network using combination of impedance based method and voltage sage matching algorithm
Reinhard et al. On computing power system steady-state stability using synchrophasor data
GB2567489A (en) Fault mapping method and system for power distribution networks
Steglich et al. A Novel Method for Earth Fault Distance Calculation in Compensated Grids Using Symmetrical Components
KR20220039975A (en) Method for estimating location of breakdown of branch line in the ac power suplly system of electric railway
CN105629176A (en) Battery capacity test method, rechargeable battery charging circuit and electronic equipment
KR102302915B1 (en) Load shedding apparatus using voltage stability index
CN108572301A (en) Mixing breakdown of conducting wires localization method and system based on 3 current acquisitions
Shamsudin et al. Three phase fault algorithm in distribution system by using database approach and impedance based method
US11808799B2 (en) Fault detection method and apparatus for three-phase power distribution system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170913

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6552949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150