JP2019027613A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2019027613A
JP2019027613A JP2017144179A JP2017144179A JP2019027613A JP 2019027613 A JP2019027613 A JP 2019027613A JP 2017144179 A JP2017144179 A JP 2017144179A JP 2017144179 A JP2017144179 A JP 2017144179A JP 2019027613 A JP2019027613 A JP 2019027613A
Authority
JP
Japan
Prior art keywords
outdoor
temperature
compressor
outdoor fan
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017144179A
Other languages
Japanese (ja)
Other versions
JP6897391B2 (en
Inventor
聡史 後藤
Satoshi Goto
聡史 後藤
光将 榎本
Mitsumasa Enomoto
光将 榎本
慎佑 吉田
Shinsuke Yoshida
慎佑 吉田
達哉 松川
Tatsuya Matsukawa
達哉 松川
勇太 清水
Yuta Shimizu
勇太 清水
山本 浩太郎
Kotaro Yamamoto
浩太郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2017144179A priority Critical patent/JP6897391B2/en
Publication of JP2019027613A publication Critical patent/JP2019027613A/en
Application granted granted Critical
Publication of JP6897391B2 publication Critical patent/JP6897391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide an air conditioner capable of rapidly reactivating a compressor after the compressor is stopped.SOLUTION: When stopping operating an air conditioner 1, a CPU 210 calculates a temperature difference ΔT by subtracting an outdoor heat exchange temperature Th from an outside air temperature To. If the temperature difference ΔT is equal to or greater than 1°C, cooling operation mode: outdoor fan rotation speed Cf=0 rpm or a heating operation mode: outdoor fan rotation speed Cf=800 rpm is extracted. If the temperature difference ΔT is less than -1°C, the CPU 210 extracts a cooling operation mode: outdoor fan rotation speed Cf=800 rpm or a heating operation mode: outdoor fan rotation speed Cf=0 rpm. If the temperature difference ΔT is -1°C or greater and less than 1°C, the CPU 210 extracts an outdoor fan rotation speed Cf=400 rpm. The CPU 210 then stops a compressor 21 after driving or stopping an outdoor fan 24 at the extracted outdoor fan rotation speed Cf.SELECTED DRAWING: Figure 2

Description

本発明は空気調和機に関わり、より詳細には、室外ファンの制御に関する。   The present invention relates to an air conditioner, and more particularly to control of an outdoor fan.

空気調和機が冷房運転あるいは暖房運転を行っているときに、使用者の指示により運転を停止する場合や、冷房運転時に室内温度が設定温度以下となる、あるいは、暖房運転時に室内温度が設定温度以上となって運転を一時的に停止する所謂サーモオフ状態とする場合は、それまで駆動していた圧縮機が停止される。   When the air conditioner is performing cooling operation or heating operation, when the operation is stopped by the user's instruction, the room temperature falls below the set temperature during the cooling operation, or the room temperature is set temperature during the heating operation In the case of the so-called thermo-off state in which the operation is temporarily stopped as described above, the compressor that has been driven so far is stopped.

圧縮機が停止した直後は、通常、圧縮機の高圧側(冷媒吐出側)の圧力と低圧側(冷媒吸入側)の圧力との圧力差が大きくなっている。このように圧力差が大きいままで、例えば、使用者の指示により運転を開始する場合等、圧縮機を再起動する場合は、圧縮機の高圧側と低圧側の圧力差に起因する大きな負荷により再起動ができない場合がある。従って、圧縮機を再起動させるためには、圧縮機の高圧側の圧力と低圧側の圧力との圧力差が小さくなっている必要がある。   Immediately after the compressor is stopped, the pressure difference between the pressure on the high pressure side (refrigerant discharge side) and the pressure on the low pressure side (refrigerant suction side) of the compressor is usually large. In this way, when the compressor is restarted, for example, when the operation is started according to a user's instruction while the pressure difference remains large, due to a large load caused by the pressure difference between the high pressure side and the low pressure side of the compressor. It may not be possible to restart. Therefore, in order to restart the compressor, the pressure difference between the pressure on the high pressure side and the pressure on the low pressure side of the compressor needs to be small.

圧縮機停止直後の高圧側の圧力と低圧側の圧力との圧力差は、圧縮機の停止からの時間が経つにつれて小さくなる。具体的には、室外熱交換器が冷房運転で凝縮器として機能している場合は、圧縮機の停止からの経過時間に応じて室外熱交換器の冷媒の放熱が進み、冷媒の放熱に応じて凝縮圧力つまりは圧縮機の高圧側の圧力が低下する。一方、室外熱交換器が暖房運転で蒸発器として機能している場合は、圧縮機の停止からの経過時間に応じて室外熱交換器の冷媒の吸熱が進み、冷媒の吸熱に応じて蒸発圧力つまりは圧縮機の低圧側の圧力が上昇する。   The pressure difference between the high-pressure side pressure and the low-pressure side pressure immediately after the compressor is stopped becomes smaller as time passes after the compressor is stopped. Specifically, when the outdoor heat exchanger functions as a condenser in the cooling operation, the heat release of the refrigerant in the outdoor heat exchanger proceeds according to the elapsed time from the stop of the compressor, and Thus, the condensing pressure, that is, the pressure on the high pressure side of the compressor is reduced. On the other hand, when the outdoor heat exchanger functions as an evaporator in heating operation, the heat absorption of the refrigerant of the outdoor heat exchanger proceeds according to the elapsed time from the stop of the compressor, and the evaporation pressure according to the heat absorption of the refrigerant That is, the pressure on the low pressure side of the compressor increases.

つまり、冷房運転時の圧縮機の停止後は、室外熱交換器において冷媒は自然に放熱するので、圧縮機の高圧側の圧力が低下するのに時間がかかる場合がある。また、暖房運転時の圧縮機の停止後は、室外熱交換器において冷媒は自然に吸熱するので、圧縮機の低圧側の圧力が上昇するのに時間がかかる場合がある。すなわち、高圧側の圧力と低圧側の圧力との圧力差が圧縮機の再起動に支障ない値(例えば、0.3MPa)まで低下するのに時間がかかり、圧縮機の停止後に早期に圧縮機を再起動できないという問題がある。   In other words, after the compressor is stopped during the cooling operation, the refrigerant naturally radiates heat in the outdoor heat exchanger, so it may take time for the pressure on the high pressure side of the compressor to decrease. Further, after the compressor is stopped during the heating operation, the refrigerant naturally absorbs heat in the outdoor heat exchanger, so it may take time for the pressure on the low pressure side of the compressor to rise. That is, it takes time for the pressure difference between the pressure on the high-pressure side and the pressure on the low-pressure side to drop to a value that does not hinder the restart of the compressor (for example, 0.3 MPa). There is a problem that cannot be restarted.

特許文献1には、上述した問題を解決する空気調和機として、圧縮機の停止後に室外ファンを所定時間駆動させることが提案されている。室外ファンを駆動させることによって、冷房運転では凝縮器として機能する室外熱交換器の冷媒が、室外ファンが停止している場合と比べて早く冷却されて凝縮圧力が低下つまりは高圧側の圧力が早く低下するので、高圧側の圧力と低圧側の圧力との圧力差が速やかに小さくなる。また、暖房運転では蒸発器として機能する室外熱交換器の冷媒が、室外ファンが停止している場合と比べて早く加熱されて蒸発圧力が上昇つまりは低圧側の圧力が早く上昇するので、高圧側の圧力と低圧側の圧力との圧力差が速やかに小さくなる。従って、高圧側の圧力と低圧側の圧力との圧力差が圧縮機の再起動に支障ない値まで速やかに小さくなるので、圧縮機を早く再起動できる。   Patent Document 1 proposes to drive an outdoor fan for a predetermined time after the compressor is stopped as an air conditioner that solves the above-described problem. By driving the outdoor fan, the refrigerant of the outdoor heat exchanger that functions as a condenser in the cooling operation is cooled earlier than when the outdoor fan is stopped, and the condensation pressure is reduced, that is, the pressure on the high pressure side is reduced. Since the pressure decreases quickly, the pressure difference between the pressure on the high pressure side and the pressure on the low pressure side quickly decreases. In the heating operation, the refrigerant of the outdoor heat exchanger that functions as an evaporator is heated faster than when the outdoor fan is stopped, and the evaporation pressure rises, that is, the pressure on the low-pressure side rises faster. The pressure difference between the pressure on the side and the pressure on the low pressure side is quickly reduced. Therefore, the pressure difference between the high-pressure side pressure and the low-pressure side pressure is quickly reduced to a value that does not hinder the restart of the compressor, so that the compressor can be restarted quickly.

特開平6−241586号公報JP-A-6-241586

しかし、特許文献1に記載の空気調和機のように、圧縮機の停止後に室外ファンを駆動しても、外気温度と室外熱交換器の温度(以降、室外熱交温度と記載する)の温度差によっては、必ずしも高圧側の圧力と低圧側の圧力との圧力差が圧縮機の再起動に支障ない値まで小さくなるのに要する時間が、室外ファンを駆動しない場合と比べて短くなるとは限らない。   However, even if the outdoor fan is driven after the compressor is stopped as in the air conditioner described in Patent Document 1, the temperature of the outdoor air temperature and the temperature of the outdoor heat exchanger (hereinafter referred to as the outdoor heat exchange temperature) Depending on the difference, the time required for the pressure difference between the pressure on the high-pressure side and the pressure on the low-pressure side to be reduced to a value that does not hinder the restart of the compressor is not necessarily shorter than when the outdoor fan is not driven. Absent.

例えば、冷房運転では、室外熱交温度より外気温度が高いときは、室外ファンの駆動により室外熱交換器に送られる外気によって冷媒が冷却されにくくなるので、室外ファンを駆動しない場合よりも高圧側の圧力と低圧側の圧力との圧力差が小さくなるのに時間がかかる。また、暖房運転では、室外熱交温度より外気温度が低いときは、室外ファンの駆動により室外熱交換器に送られる外気によって冷媒が加熱されにくくなるので、室外ファンを駆動しない場合よりも高圧側の圧力と低圧側の圧力との圧力差が小さくなるのに時間がかかる。従って、圧縮機の停止後に室外ファンを駆動しても、圧縮機の停止後に室外ファンを駆動しないときと比べて、圧縮機を再起動できるまでの時間を短縮できない場合があった。   For example, in the cooling operation, when the outdoor air temperature is higher than the outdoor heat exchange temperature, the refrigerant is less likely to be cooled by the outside air sent to the outdoor heat exchanger by driving the outdoor fan, so the higher pressure side than when the outdoor fan is not driven. It takes time to reduce the pressure difference between the pressure at the low pressure side and the pressure at the low pressure side. In the heating operation, when the outdoor air temperature is lower than the outdoor heat exchange temperature, the refrigerant is less likely to be heated by the outdoor air sent to the outdoor heat exchanger by driving the outdoor fan, so that the higher pressure side than when the outdoor fan is not driven. It takes time to reduce the pressure difference between the pressure at the low pressure side and the pressure at the low pressure side. Therefore, even if the outdoor fan is driven after the compressor is stopped, the time until the compressor can be restarted may not be shortened as compared with the case where the outdoor fan is not driven after the compressor is stopped.

本発明は、以上述べた問題点を解決するものであって、圧縮機の停止後に早期に圧縮機を再起動できる空気調和機を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide an air conditioner that can restart the compressor at an early stage after the compressor is stopped.

上記の課題を解決するために、本発明の空気調和機は、圧縮機と四方弁と室外熱交換器と室外ファンと外気温度を検出する外気温度検出手段と室外熱交換器の温度である室外熱交温度を検出する室外熱交温度検出手段を有する室外機と、室内熱交換器を有する室内機と、圧縮機と室外ファンの駆動を制御する制御手段を有する。そして、制御手段は、圧縮機を停止させるとき、空調運転の停止時点の運転モードと外気温度検出手段で検出した外気温度から室外熱交温度検出手段で検出した室外熱交温度を減じた温度差に基づいた回転数で室外ファンの駆動制御を行う。   In order to solve the above-described problems, an air conditioner of the present invention includes an outdoor air temperature detector, an outdoor heat exchanger, an outdoor fan, an outdoor fan, an outdoor air temperature detecting means for detecting an outdoor air temperature, and an outdoor heat exchanger. It has an outdoor unit having an outdoor heat exchange temperature detecting means for detecting a heat exchange temperature, an indoor unit having an indoor heat exchanger, and a control means for controlling driving of the compressor and the outdoor fan. And when the control means stops the compressor, the temperature difference obtained by subtracting the outdoor heat exchange temperature detected by the outdoor heat exchange temperature detection means from the operation mode at the time of stopping the air conditioning operation and the outside air temperature detected by the outside air temperature detection means. The drive control of the outdoor fan is performed at the rotation speed based on the above.

上記のように構成した本発明の空気調和機によれば、運転モードと外気温度から室外熱交温度を減じた温度差に基づいた回転数となるように、圧縮機停止後の室外ファンを制御する。これにより、従来の空気調和機以上に外気温度に左右されることがなく圧縮機の停止後に早期に圧縮機を再起動できる。   According to the air conditioner of the present invention configured as described above, the outdoor fan after the compressor is stopped is controlled so that the rotation speed is based on the temperature difference obtained by subtracting the outdoor heat exchange temperature from the operation mode and the outdoor air temperature. To do. Thereby, the compressor can be restarted early after the compressor is stopped without being influenced by the outside air temperature more than the conventional air conditioner.

本発明の実施形態における空気調和機の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。It is explanatory drawing of the air conditioner in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an outdoor unit control means. 本発明の実施形態における、ファン回転数テーブルである。It is a fan rotation speed table in the embodiment of the present invention. 本発明の実施形態における、室外機制御手段での処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process in the outdoor unit control means in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、室外機と室内機が2本の冷媒配管で接続された空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioner in which an outdoor unit and an indoor unit are connected by two refrigerant pipes will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)に示すように、本実施例における空気調和機1は、屋外に設置される室外機2と、室内に設置され室外機2に液管4およびガス管5で接続された室内機3を備えている。詳細には、液管4は、一端が室外機2の閉鎖弁25に、他端が室内機3の液管接続部33に接続されている。また、ガス管5は、一端が室外機2の閉鎖弁26に、他端が室内機3のガス管接続部34に接続されている。以上により、空気調和機1の冷媒回路10が形成されている。
<室外機の構成>
As shown in FIG. 1A, an air conditioner 1 according to this embodiment includes an outdoor unit 2 installed outdoors, and an indoor unit installed indoors and connected to the outdoor unit 2 with a liquid pipe 4 and a gas pipe 5. Machine 3 is provided. Specifically, the liquid pipe 4 has one end connected to the closing valve 25 of the outdoor unit 2 and the other end connected to the liquid pipe connecting portion 33 of the indoor unit 3. The gas pipe 5 has one end connected to the closing valve 26 of the outdoor unit 2 and the other end connected to the gas pipe connecting portion 34 of the indoor unit 3. Thus, the refrigerant circuit 10 of the air conditioner 1 is formed.
<Configuration of outdoor unit>

まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外ファン24と、液管4の一端が接続された閉鎖弁25と、ガス管5の一端が接続された閉鎖弁26と、膨張弁27を備えている。そして、室外ファン24を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを形成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 is connected to a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor fan 24, a closing valve 25 to which one end of the liquid pipe 4 is connected, and one end of the gas pipe 5. A closing valve 26 and an expansion valve 27 are provided. And these each apparatus except the outdoor fan 24 is mutually connected by each refrigerant | coolant piping explained in full detail below, and the outdoor unit refrigerant circuit 10a which makes a part of refrigerant circuit 10 is formed.

圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側は、四方弁22のポートaに吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、四方弁22のポートcに吸入管66で接続されている。   The compressor 21 is a variable capacity compressor capable of changing the operating capacity by controlling the rotation speed by an inverter (not shown). The refrigerant discharge side of the compressor 21 is connected to the port a of the four-way valve 22 by a discharge pipe 61. The refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22 by a suction pipe 66.

四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 61 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 62. The port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 66 as described above. The port d is connected to the shutoff valve 26 and the outdoor unit gas pipe 64.

室外熱交換器23は、冷媒と、後述する室外ファン24の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管63で接続されている。室外熱交換器23は、後述する四方弁22の切り替えによって、冷房運転時は凝縮器として機能し、暖房運転時は蒸発器として機能する。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 24 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 62, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 63. The outdoor heat exchanger 23 functions as a condenser during cooling operation and functions as an evaporator during heating operation by switching a four-way valve 22 described later.

膨張弁27は、例えば電子膨張弁である。膨張弁27は、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調節する。   The expansion valve 27 is an electronic expansion valve, for example. The expansion valve 27 adjusts the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing out of the outdoor heat exchanger 23 by adjusting the opening degree thereof.

室外ファン24は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン24は、図示しないファンモータによって回転することで室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を室外機2の図示しない吹出口から室外機2外部へ放出する。   The outdoor fan 24 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 24 is rotated by a fan motor (not shown) to take outside air into the outdoor unit 2 from a suction port (not shown) of the outdoor unit 2, and the outdoor air exchanged heat with the refrigerant in the outdoor heat exchanger 23. It discharges from the blower outlet which is not illustrated to the exterior of the outdoor unit 2.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力(本発明の高圧側の圧力に相当)を検出する高圧検出手段である吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ73が設けられている。吸入管66には、圧縮機21に吸入される冷媒の圧力(本発明の低圧側の圧力に相当)を検出する低圧検出手段である吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74とが設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, the discharge pipe 61 includes a discharge pressure sensor 71 which is a high pressure detection means for detecting the pressure of the refrigerant discharged from the compressor 21 (corresponding to the pressure on the high pressure side of the present invention). A discharge temperature sensor 73 for detecting the temperature of the refrigerant discharged from the compressor 21 is provided. The suction pipe 66 includes a suction pressure sensor 72 which is a low pressure detecting means for detecting the pressure of the refrigerant sucked into the compressor 21 (corresponding to the pressure on the low pressure side of the present invention), and the refrigerant sucked into the compressor 21. An intake temperature sensor 74 for detecting the temperature is provided.

室外熱交換器23の図示しない冷媒パスの略中間部には、室外熱交換器23の温度(以降、室外熱交温度と記載する)を検出する室外熱交温度検出手段である熱交温度センサ75が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度検出手段である外気温度センサ76が備えられている。   A heat exchange temperature sensor which is an outdoor heat exchange temperature detecting means for detecting the temperature of the outdoor heat exchanger 23 (hereinafter referred to as the outdoor heat exchange temperature) is provided at a substantially intermediate portion of a refrigerant path (not shown) of the outdoor heat exchanger 23. 75 is provided. An outdoor air temperature sensor 76 that is an outdoor air temperature detecting means for detecting the temperature of the outdoor air flowing into the outdoor unit 2, that is, the outdoor air temperature, is provided in the vicinity of a suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。   The outdoor unit 2 includes an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 1B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン24の制御状態等を記憶している。また、図示は省略するが、記憶部220には後述する室内機3から受信する要求能力に応じて圧縮機21の回転数を定めた回転数テーブルが予め記憶されている。通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The storage unit 220 includes a ROM and a RAM, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21 and the outdoor fan 24, and the like. Although not shown, the storage unit 220 stores in advance a rotation speed table that determines the rotation speed of the compressor 21 in accordance with a requested capability received from the indoor unit 3 described later. The communication unit 230 is an interface that performs communication with the indoor unit 3. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機3から送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン24の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り替え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁27の開度調整を行う。
<室内機の構成>
CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. Further, the CPU 210 takes in a control signal transmitted from the indoor unit 3 via the communication unit 230. The CPU 210 controls the driving of the compressor 21 and the outdoor fan 24 based on the detection results and control signals taken in. Further, the CPU 210 performs switching control of the four-way valve 22 based on the detected result and control signal taken in. Furthermore, the CPU 210 adjusts the opening degree of the outdoor expansion valve 27 based on the acquired detection result and control signal.
<Configuration of indoor unit>

次に、図1(A)を用いて、室内機3について説明する。室内機3は、室内熱交換器31と、室内ファン32と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを形成している。   Next, the indoor unit 3 will be described with reference to FIG. The indoor unit 3 includes an indoor heat exchanger 31, an indoor fan 32, a liquid pipe connection portion 33 to which the other end of the liquid pipe 4 is connected, and a gas pipe connection portion 34 to which the other end of the gas pipe 5 is connected. I have. And these each apparatus except the indoor fan 32 is mutually connected by each refrigerant | coolant piping explained in full detail below, and the indoor unit refrigerant circuit 10b which makes a part of refrigerant circuit 10 is formed.

室内熱交換器31は、冷媒と後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部33に室内機液管67で接続され、他方の冷媒出入口がガス管接続部34に室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。   The indoor heat exchanger 31 exchanges heat between indoor air taken into the indoor unit 3 from a suction port (not shown) of the indoor unit 3 by rotation of a refrigerant and an indoor fan 32 described later. An indoor unit liquid pipe 67 is connected to the liquid pipe connection part 33, and the other refrigerant inlet / outlet is connected to the gas pipe connection part 34 via an indoor unit gas pipe 68. The indoor heat exchanger 31 functions as an evaporator when the indoor unit 3 performs a cooling operation, and functions as a condenser when the indoor unit 3 performs a heating operation. In addition, in the liquid pipe connection part 33 and the gas pipe connection part 34, each refrigerant | coolant piping is connected by welding, a flare nut, etc.

室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン31は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。   The indoor fan 32 is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 31. The indoor fan 31 is rotated by a fan motor (not shown) so that indoor air is taken into the indoor unit 3 from a suction port (not shown) of the indoor unit 3, and the indoor air heat-exchanged with the refrigerant in the indoor heat exchanger 31 is taken into the room It blows out into the room from the blower outlet which machine 3 does not illustrate.

以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内機液管67には、室内熱交換器31に流入あるいは室内熱交換器31から流出する冷媒の温度を検出する液側温度センサ77が設けられている。室内機ガス管68には、室内熱交換器31から流出あるいは室内熱交換器31に流入する冷媒の温度を検出するガス側温度センサ78が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温センサ79が備えられている。
<冷媒回路の動作>
In addition to the configuration described above, the indoor unit 3 is provided with various sensors. The indoor unit liquid pipe 67 is provided with a liquid side temperature sensor 77 that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 31. The indoor unit gas pipe 68 is provided with a gas side temperature sensor 78 that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 31 or flowing into the indoor heat exchanger 31. A room temperature sensor 79 for detecting the temperature of the room air flowing into the indoor unit 3, that is, the room temperature, is provided near the suction port (not shown) of the indoor unit 3.
<Operation of refrigerant circuit>

次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。以下の説明では、まず、室内機3が暖房運転を行う場合について説明し、次に、冷房運転を行う場合について説明する。
<暖房運転>
Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioner 1 in the present embodiment will be described with reference to FIG. In the following description, the case where the indoor unit 3 performs the heating operation will be described first, and then the case where the cooling operation is performed will be described.
<Heating operation>

室内機3が暖房運転を行う場合、CPU210は、図1(A)に示すように四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り替える。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに室内熱交換器31が凝縮器として機能する暖房サイクルとなる。   When the indoor unit 3 performs the heating operation, the CPU 210 performs a state where the four-way valve 22 is indicated by a solid line as shown in FIG. 1A, that is, the port a and the port d of the four-way valve 22 communicate with each other. Switch so that b and port c communicate. As a result, the refrigerant circulates in the direction indicated by the solid line arrow in the refrigerant circuit 10, and the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchanger 31 functions as a condenser.

圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64を流れ、閉鎖弁26を介してガス管5に流入する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, flows from the four-way valve 22 through the outdoor unit gas pipe 64, and flows into the gas pipe 5 through the closing valve 26. The refrigerant flowing through the gas pipe 5 flows into the indoor unit 3 through the gas pipe connection part 34.

室内機3に流入した冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。   The refrigerant that has flowed into the indoor unit 3 flows through the indoor unit gas pipe 68 and flows into the indoor heat exchanger 31, and is condensed by exchanging heat with the indoor air taken into the indoor unit 3 by the rotation of the indoor fan 32. To do. As described above, the indoor heat exchanger 31 functions as a condenser, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room from a blower outlet (not shown), so that the indoor unit 3 is installed. The heated room is heated.

室内熱交換器31から流出した冷媒は室内機液管67を流れ、液管接続部33を介して液管4に流入する。液管4を流れ閉鎖弁25を介して室外機2に流入した冷媒は、室外機液管63を流れて室内機3で要求される暖房能力に応じた開度とされた膨張弁27を通過する際に減圧される。   The refrigerant flowing out of the indoor heat exchanger 31 flows through the indoor unit liquid pipe 67 and flows into the liquid pipe 4 through the liquid pipe connecting portion 33. The refrigerant flowing through the liquid pipe 4 and flowing into the outdoor unit 2 through the closing valve 25 flows through the outdoor unit liquid pipe 63 and passes through the expansion valve 27 having an opening corresponding to the heating capacity required by the indoor unit 3. When the pressure is reduced.

膨張弁27を通過して室外熱交換器23に流入した冷媒は、室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
<冷房運転>
The refrigerant flowing through the expansion valve 27 and flowing into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 24. The refrigerant that has flowed out of the outdoor heat exchanger 23 into the refrigerant pipe 62 flows through the four-way valve 22 and the suction pipe 66, is sucked into the compressor 21, and is compressed again.
<Cooling operation>

室内機3が冷房運転あるいは除霜運転を行う場合、CPU210は、図1(A)に示すように四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り替える。これにより、冷媒回路10において破線矢印で示す方向に冷媒が循環し、室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能する冷房サイクルとなる。   When the indoor unit 3 performs a cooling operation or a defrosting operation, the CPU 210 communicates the state where the four-way valve 22 is indicated by a broken line, that is, the port a and the port b of the four-way valve 22 as shown in FIG. In addition, the switching is performed so that the port c and the port d communicate with each other. As a result, the refrigerant circulates in the direction indicated by the broken-line arrow in the refrigerant circuit 10, and a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchanger 31 functions as an evaporator is formed.

圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から冷媒配管62を流れて室外熱交換器23に流入する。冷房運転の場合、室外熱交換器23に流入した冷媒は、室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, flows from the four-way valve 22 through the refrigerant pipe 62, and flows into the outdoor heat exchanger 23. In the case of the cooling operation, the refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 24.

室外熱交換器23から流出した冷媒は室外機液管63を流れ、室内機3で要求される冷房能力に応じた開度とされた膨張弁27および閉鎖弁25を介して液管4に流出する。液管4を流れ、液管接続部33を介して室内機3に流入した冷媒は、室内機液管67を流れて室内熱交換器31に流入する。   The refrigerant flowing out of the outdoor heat exchanger 23 flows through the outdoor unit liquid pipe 63, and flows out to the liquid pipe 4 through the expansion valve 27 and the closing valve 25 that have an opening degree corresponding to the cooling capacity required by the indoor unit 3. To do. The refrigerant flowing through the liquid pipe 4 and flowing into the indoor unit 3 through the liquid pipe connecting portion 33 flows through the indoor unit liquid pipe 67 and flows into the indoor heat exchanger 31.

室内熱交換器31に流入した冷媒は、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器31が蒸発器として機能し、冷房運転の場合は、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。   The refrigerant flowing into the indoor heat exchanger 31 evaporates by exchanging heat with the indoor air taken into the interior of the indoor unit 3 by the rotation of the indoor fan 32. Thus, in the case of cooling operation, the indoor heat exchanger 31 functions as an evaporator, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room from a blower outlet (not shown). The room where the indoor unit 3 is installed is cooled.

室内熱交換器31から流出した冷媒は、室内機ガス管68を流れ、ガス管接続部34を介してガス管5に流出する。ガス管5を流れる冷媒は、閉鎖弁26を介して室外機2に流入し、室外機ガス管64、四方弁22、吸入管66の順に流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant that has flowed out of the indoor heat exchanger 31 flows through the indoor unit gas pipe 68 and flows out to the gas pipe 5 through the gas pipe connecting portion 34. The refrigerant flowing in the gas pipe 5 flows into the outdoor unit 2 through the closing valve 26, flows in the order of the outdoor unit gas pipe 64, the four-way valve 22, and the suction pipe 66, and is sucked into the compressor 21 and compressed again.

以上説明した暖房運転や冷房運転を停止した後に圧縮機21を再起動する際、圧縮機21の冷媒吐出側の冷媒の圧力と冷媒吸入側の冷媒の圧力との圧力差をできる限り早く小さくすることが、本発明の目的であり、以下にその具体的な方法について説明する。
<圧縮機停止後の室外ファン制御>
When restarting the compressor 21 after stopping the heating operation or the cooling operation described above, the pressure difference between the refrigerant pressure on the refrigerant discharge side and the refrigerant pressure on the refrigerant suction side of the compressor 21 is reduced as soon as possible. This is the object of the present invention, and the specific method will be described below.
<Outdoor fan control after compressor stop>

次に、主に図2および図3を用いて、本実施形態の空気調和機1における、圧縮機21の停止後の室外ファン24の制御について具体的に説明する。   Next, the control of the outdoor fan 24 after the compressor 21 is stopped in the air conditioner 1 of the present embodiment will be specifically described mainly with reference to FIGS. 2 and 3.

空気調和機1が冷房運転あるいは暖房運転を行っているときに、使用者による図示しないリモコン操作によって運転停止の指示がなされた場合、あるいは、室内機5がサーモオフ状態となった場合は、圧縮機21が停止される。尚、サーモオフ状態とは、冷房運転時に室内機5の室温センサ79で検出した室内温度が、使用者が設定した設定温度より所定温度(例えば、1℃)以上低くなった状態、あるいは、暖房運転時に室内機5の室温センサ79で検出した室内温度が使用者が設定した設定温度より所定温度(例えば、1℃)以上高くなった状態である。   When the air conditioner 1 is performing a cooling operation or a heating operation, if the user gives an instruction to stop the operation by a remote control operation (not shown), or if the indoor unit 5 is in a thermo-off state, the compressor 21 is stopped. The thermo-off state is a state in which the room temperature detected by the room temperature sensor 79 of the indoor unit 5 during the cooling operation is lower than the set temperature set by the user by a predetermined temperature (for example, 1 ° C.) or the heating operation. In some cases, the room temperature detected by the room temperature sensor 79 of the indoor unit 5 is higher than a set temperature set by the user by a predetermined temperature (for example, 1 ° C.) or more.

圧縮機21を停止した直後は、冷媒回路10の高圧側の圧力(具体的には、圧縮機21の冷媒吐出側から膨張弁27までの間に存在する冷媒の圧力。単位:MPa。以降、高圧Phと記載する)と、冷媒回路10の低圧側の圧力(具体的には、膨張弁27から圧縮機21の冷媒吸入側までの間に存在する冷媒の圧力。単位:MPa。以降、低圧Plと記載する)との圧力差(単位:MPa。以降、圧力差ΔPと記載する)が大きい。   Immediately after the compressor 21 is stopped, the pressure on the high-pressure side of the refrigerant circuit 10 (specifically, the pressure of the refrigerant existing between the refrigerant discharge side of the compressor 21 and the expansion valve 27. Unit: MPa. High pressure Ph) and the pressure on the low pressure side of the refrigerant circuit 10 (specifically, the pressure of the refrigerant existing between the expansion valve 27 and the refrigerant suction side of the compressor 21. Unit: MPa. The pressure difference (indicated by Pl) (unit: MPa, hereinafter referred to as pressure difference ΔP) is large.

圧縮機21を停止した後に再起動するときに上記圧力差ΔPが大きいと、圧縮機21に加わる圧力差ΔPに起因する負荷が大きく、圧縮機21を再起動できない恐れがある。従って、圧縮機21を再起動するためには、圧力差ΔPが圧縮機21の再起動に支障ない値(例えば、0.3Ma。以降、閾圧力差Pthと記載する)以下に低下するまで待つ必要がある。   If the pressure difference ΔP is large when the compressor 21 is restarted after being stopped, the load due to the pressure difference ΔP applied to the compressor 21 is large, and the compressor 21 may not be restarted. Therefore, in order to restart the compressor 21, it waits until the pressure difference ΔP falls below a value that does not hinder the restarting of the compressor 21 (for example, 0.3 Ma, hereinafter referred to as the threshold pressure difference Pth). There is a need.

本実施形態では、圧力差ΔPが閾圧力差Pth以下に低下する(以降、「均圧する」と記載する場合がある)のにかかる時間を短縮するために、圧縮機21の停止時に、図2に示すファン回転数テーブル300に基づいて、室外ファン24の駆動制御を行う。   In the present embodiment, in order to reduce the time required for the pressure difference ΔP to fall below the threshold pressure difference Pth (hereinafter, sometimes referred to as “equalizing pressure”), when the compressor 21 is stopped, FIG. The drive control of the outdoor fan 24 is performed based on the fan rotation speed table 300 shown in FIG.

図2に示すファン回転数テーブル300は、空気調和機1の運転モードと、圧縮機21の停止時の外気温度(単位:℃。以降、外気温度Toと記載する)から圧縮機21の停止時の室外熱交換器23の温度(単位:℃。以降、室外熱交温度Thと記載する)を減じた温度差(単位:℃。以降、温度差ΔTと記載する)に応じて、室外ファン24の回転数(単位:rpm。以降、室外ファン回転数Cfと記載する)を定めている。   The fan rotation speed table 300 shown in FIG. 2 is based on the operation mode of the air conditioner 1 and the outside air temperature (unit: ° C., hereinafter referred to as the outside air temperature To) when the compressor 21 is stopped. Depending on the temperature difference (unit: ° C., hereinafter referred to as temperature difference ΔT) obtained by subtracting the temperature of the outdoor heat exchanger 23 (unit: ° C., hereinafter referred to as outdoor heat exchange temperature Th), the outdoor fan 24 will be described. The number of rotations (unit: rpm, hereinafter referred to as outdoor fan rotation number Cf) is determined.

具体的には、まず、運転モードが「冷房」(冷房運転を意味する)の場合に、温度差ΔTが1℃以上であるときの室外ファン回転数Cfが0rpm(つまり、停止)、温度差ΔTが−1℃以上1℃未満であるときの室外ファン回転数Cfが400rpm、温度差ΔTが−1℃未満であるときの室外ファン回転数Cfが800rpm、とされている。尚、上記温度差ΔTのうちの−1℃が本発明の第1閾温度であり、1℃が本発明の第2閾温度である。また、温度差ΔTが−1℃以上1℃未満であるときの室外ファン回転数Cf:400rpmを冷房時基準回転数とする。   Specifically, first, when the operation mode is “cooling” (meaning cooling operation), the outdoor fan rotation speed Cf when the temperature difference ΔT is 1 ° C. or more is 0 rpm (that is, stopped), and the temperature difference. The outdoor fan rotation speed Cf when ΔT is −1 ° C. or more and less than 1 ° C. is 400 rpm, and the outdoor fan rotation speed Cf when the temperature difference ΔT is less than −1 ° C. is 800 rpm. Of the temperature difference ΔT, −1 ° C. is the first threshold temperature of the present invention, and 1 ° C. is the second threshold temperature of the present invention. Further, the outdoor fan rotation speed Cf: 400 rpm when the temperature difference ΔT is −1 ° C. or more and less than 1 ° C. is set as the cooling reference rotation speed.

空気調和機1が冷房運転を行っているときは、前述したように室外熱交換器23が凝縮器として機能している。従って、室外熱交換器23における凝縮圧力、つまりは冷媒回路10の高圧側の圧力を速やかに低下させることができれば、圧力差ΔPを速やかに閾圧力差Pth以下に低下させることができる。   When the air conditioner 1 is performing the cooling operation, as described above, the outdoor heat exchanger 23 functions as a condenser. Therefore, if the condensation pressure in the outdoor heat exchanger 23, that is, the pressure on the high pressure side of the refrigerant circuit 10 can be quickly reduced, the pressure difference ΔP can be quickly reduced to the threshold pressure difference Pth or less.

以上記載した内容を考慮し、ファン回転数テーブル300の運転モード;「冷房」では、温度差ΔTが−1℃未満であるとき、つまり、室外熱交温度Thより外気温度Toが低いときは、冷房時基準回転数である室外ファン回転数Cf:400rpmより高い室外ファン回転数Cf:800rpmで室外ファン24を駆動する。これにより、外気温度Toの外気が多量に室外熱交換器23を通過するので、冷媒回路10の高圧側の圧力が速やかに低下して圧力差ΔPが速やかに閾圧力差Pth以下に低下する。   Considering the contents described above, in the operation mode of the fan rotation speed table 300; “cooling”, when the temperature difference ΔT is less than −1 ° C., that is, when the outdoor air temperature To is lower than the outdoor heat exchange temperature Th, The outdoor fan 24 is driven at an outdoor fan rotation speed Cf: 800 rpm which is higher than the outdoor fan rotation speed Cf: 400 rpm, which is the reference rotation speed during cooling. As a result, a large amount of outside air at the outside air temperature To passes through the outdoor heat exchanger 23, so that the pressure on the high-pressure side of the refrigerant circuit 10 quickly decreases, and the pressure difference ΔP quickly decreases below the threshold pressure difference Pth.

これに対し、温度差ΔTが1℃以上であるとき、つまり、室外熱交温度Thより外気温度Toが高いときは、室外ファン回転数Cf:0rpmとする、つまりは室外ファン24を停止する。室外熱交温度Thより外気温度Toが高い場合に室外ファン24を駆動すると、室外熱交換器23を通過する室外熱交温度Thより高い外気温度Toの外気によって室外熱交換器23の冷媒が冷えにくくなるので、室外ファン24を停止している場合と比べて冷媒回路10の高圧側の圧力が低下するのに時間がかかる。つまり、室外熱交温度Thより外気温度Toが高いときに室外ファン24を駆動すると、室外ファン24を停止している場合よりも圧力差ΔPが閾圧力差Pth以下に低下するまで長い時間がかかる。従って、温度差ΔTが1℃以上であるときは、室外ファン24を停止させて、圧力差ΔPが閾圧力差Pth以下に低下するまでの時間が長くならないようにする。   On the other hand, when the temperature difference ΔT is 1 ° C. or more, that is, when the outdoor air temperature To is higher than the outdoor heat exchange temperature Th, the outdoor fan rotation speed Cf is set to 0 rpm, that is, the outdoor fan 24 is stopped. When the outdoor fan 24 is driven when the outdoor air temperature To is higher than the outdoor heat exchanger temperature Th, the refrigerant in the outdoor heat exchanger 23 is cooled by the outdoor air having an outdoor air temperature To higher than the outdoor heat exchanger temperature Th passing through the outdoor heat exchanger 23. Since it becomes difficult, it takes time for the pressure on the high-pressure side of the refrigerant circuit 10 to decrease compared to when the outdoor fan 24 is stopped. That is, when the outdoor fan 24 is driven when the outdoor air temperature To is higher than the outdoor heat exchange temperature Th, it takes a longer time for the pressure difference ΔP to fall below the threshold pressure difference Pth than when the outdoor fan 24 is stopped. . Therefore, when the temperature difference ΔT is 1 ° C. or more, the outdoor fan 24 is stopped so that the time until the pressure difference ΔP drops below the threshold pressure difference Pth is not increased.

そして、温度差ΔTが−1℃以上1℃未満であるとき、つまり、室外熱交温度Thと外気温度Toがほぼ同じ温度であるときは、冷房時基準回転数である室外ファン回転数Cf:400rpmで室外ファン24を駆動する。   When the temperature difference ΔT is not less than −1 ° C. and less than 1 ° C., that is, when the outdoor heat exchange temperature Th and the outdoor air temperature To are substantially the same temperature, the outdoor fan rotation speed Cf that is the reference rotation speed during cooling: The outdoor fan 24 is driven at 400 rpm.

ファン回転数テーブル300における温度差ΔTが−1℃以上1℃未満であるとき、すなわち、室外熱交温度Thと外気温度Toがほぼ同じ温度であるときは、温度差ΔTが1℃以上であるとき、すなわち、外気温度Toが室外熱交温度Thより高い温度である場合と比べて、室外熱交換器23が冷えにくくなるということはない反面、温度差ΔTが−1℃未満であるとき、すなわち、外気温度Toが室外熱交温度Thより低い温度である場合と比べると、外気温度Toの外気によって室外熱交換器23が冷やされるのに時間がかかる。従って、温度差ΔTが−1℃以上1℃未満であるときは、室外ファン24を駆動して室外熱交換器23に外気を流すものの、その回転数Cfを温度差ΔTが−1℃未満であるときの室外ファン回転数Cf:800rpmより低い冷房時基準回転数である室外ファン回転数Cf:400rpmとしている。   When the temperature difference ΔT in the fan rotation speed table 300 is −1 ° C. or more and less than 1 ° C., that is, when the outdoor heat exchange temperature Th and the outdoor air temperature To are substantially the same temperature, the temperature difference ΔT is 1 ° C. or more. That is, compared to the case where the outdoor air temperature To is higher than the outdoor heat exchange temperature Th, the outdoor heat exchanger 23 is not difficult to cool, but the temperature difference ΔT is less than −1 ° C. That is, it takes time for the outdoor heat exchanger 23 to be cooled by the outside air at the outside air temperature To as compared with the case where the outside air temperature To is lower than the outdoor heat exchange temperature Th. Therefore, when the temperature difference ΔT is not less than −1 ° C. and less than 1 ° C., the outdoor fan 24 is driven to flow outside air to the outdoor heat exchanger 23, but the rotational speed Cf is less than −1 ° C. The outdoor fan rotational speed Cf at a certain time is set to an outdoor fan rotational speed Cf: 400 rpm which is a reference rotational speed during cooling lower than 800 rpm.

以上説明したように、ファン回転数テーブル300における冷房運転時の室外ファン回転数Cfは、温度差ΔTが負の温度から正の温度に向かって大きくなるのにつれて低い回転数に定められており、温度差ΔTが1℃以上つまり第2閾温度以上となれば室外ファン回転数Cfを0rpmとしている。これは、以下の理由による。   As described above, the outdoor fan rotation speed Cf during the cooling operation in the fan rotation speed table 300 is set to a lower rotation speed as the temperature difference ΔT increases from the negative temperature toward the positive temperature. If the temperature difference ΔT is 1 ° C. or more, that is, the second threshold temperature or more, the outdoor fan rotation speed Cf is set to 0 rpm. This is due to the following reason.

温度差ΔTが小さくなるにつれて、つまり、外気温度Toが室外熱交温度Thより低くなるにつれて、室外ファン回転数Cfを高くすることで、室外熱交温度Thより低い外気温度Toの外気を多量に室外熱交換器23に通過させて、圧力差ΔPを短時間で閾圧力差Pth以下にすることができる。   As the temperature difference ΔT decreases, that is, as the outdoor air temperature To becomes lower than the outdoor heat exchange temperature Th, the outdoor fan rotation speed Cf is increased, so that a large amount of outdoor air having an outdoor air temperature To lower than the outdoor heat exchange temperature Th is obtained. The pressure difference ΔP can be reduced to the threshold pressure difference Pth or less in a short time by passing it through the outdoor heat exchanger 23.

一方、温度差ΔTが大きくなるにつれて、つまり、外気温度Toが室外熱交温度Thより高くなるにつれて、室外ファン回転数Cfを低くすることで、室外熱交温度Thより高い外気温度Toの外気を必要以上に室外熱交換器23を通過させないようにして圧力差ΔPが閾圧力差Pth以下となる時間が長くならないようにしつつ、室外ファン回転数Cfを低くすることで室外ファン24の消費電力を低減できる。   On the other hand, as the temperature difference ΔT increases, that is, as the outdoor air temperature To becomes higher than the outdoor heat exchange temperature Th, the outdoor fan rotation speed Cf is decreased, thereby allowing the outdoor air having an outdoor air temperature To higher than the outdoor heat exchange temperature Th to flow. The power consumption of the outdoor fan 24 can be reduced by reducing the outdoor fan rotation speed Cf while preventing the outdoor heat exchanger 23 from passing more than necessary so that the time during which the pressure difference ΔP is equal to or less than the threshold pressure difference Pth does not increase. Can be reduced.

そして、温度差ΔTが第2閾温度(本実施形態では1℃)以上となれば室外ファン回転数Cfを0rpmとすることで、室外熱交温度Thより高い外気温度Toの外気によって室外熱交換器23が暖められることで、圧力差ΔPが閾圧力差Pth以下となる時間が、温度差ΔTが第2閾温度未満である場合よりもさらに長くなることを防ぎつつ、室外ファン24を停止させることで温度差ΔTが第2閾温度未満である場合よりもさらに消費電力を低減できる。   If the temperature difference ΔT is equal to or greater than the second threshold temperature (1 ° C. in the present embodiment), the outdoor fan rotation speed Cf is set to 0 rpm, so that the outdoor heat exchange is performed by the outdoor air having an outdoor air temperature To higher than the outdoor heat exchange temperature Th. As the chamber 23 is warmed, the outdoor fan 24 is stopped while preventing the time during which the pressure difference ΔP is equal to or less than the threshold pressure difference Pth from becoming longer than when the temperature difference ΔT is less than the second threshold temperature. Thus, the power consumption can be further reduced as compared with the case where the temperature difference ΔT is less than the second threshold temperature.

次に、運転モードが「暖房」(暖房運転を意味する)の場合に、温度差ΔTが1℃以上であるときの室外ファン回転数Cfが800rpm、温度差ΔTが−1℃以上1℃未満であるときの室外ファン回転数Cfが400rpm、温度差ΔTが−1℃未満であるときの室外ファン回転数Cfが0rpm(つまり、停止)、とされている。尚、上記温度差ΔTのうちの1℃が本発明の第3閾温度であり、−1℃が本発明の第4閾温度である。また、温度差ΔTが−1℃以上1℃未満であるときの室外ファン回転数Cf:400rpmを暖房時基準回転数とする。   Next, when the operation mode is “heating” (meaning heating operation), when the temperature difference ΔT is 1 ° C. or more, the outdoor fan rotation speed Cf is 800 rpm, and the temperature difference ΔT is −1 ° C. or more and less than 1 ° C. The outdoor fan rotation speed Cf is 400 rpm, and the outdoor fan rotation speed Cf when the temperature difference ΔT is less than −1 ° C. is 0 rpm (that is, stopped). Of the temperature difference ΔT, 1 ° C. is the third threshold temperature of the present invention, and −1 ° C. is the fourth threshold temperature of the present invention. Further, the outdoor fan rotation speed Cf: 400 rpm when the temperature difference ΔT is −1 ° C. or more and less than 1 ° C. is set as the heating-time reference rotation speed.

空気調和機1が暖房運転を行っているときは、前述したように室外熱交換器23が蒸発器として機能している。従って、室外熱交換器23における蒸発圧力つまりは冷媒回路10の低圧側の圧力を速やかに上昇させることができれば、圧力差ΔPを速やかに閾圧力差Pth以下に低下させることができる。   When the air conditioner 1 is performing the heating operation, the outdoor heat exchanger 23 functions as an evaporator as described above. Therefore, if the evaporation pressure in the outdoor heat exchanger 23, that is, the pressure on the low pressure side of the refrigerant circuit 10 can be quickly increased, the pressure difference ΔP can be quickly decreased to the threshold pressure difference Pth or less.

以上記載した内容を考慮し、ファン回転数テーブル300の運転モード;「暖房」では、温度差ΔTが1℃以上であるとき、つまり、室外熱交温度Thより外気温度Toが高いときは、暖房時基準回転数である室外ファン回転数Cf:400rpmより高い室外ファン回転数Cf:800rpmで室外ファン24を駆動する。これにより、外気温度Toの外気が多量に室外熱交換器23を通過するので、冷媒回路10の低圧側の圧力が速やかに上昇して圧力差ΔPが速やかに閾圧力差Pth以下に低下する。   Considering the contents described above, in the operation mode of the fan speed table 300; “heating”, when the temperature difference ΔT is 1 ° C. or more, that is, when the outdoor air temperature To is higher than the outdoor heat exchange temperature Th, heating is performed. The outdoor fan 24 is driven at an outdoor fan rotational speed Cf: 800 rpm which is higher than the outdoor fan rotational speed Cf: 400 rpm, which is the reference rotational speed. As a result, a large amount of outside air at the outside air temperature To passes through the outdoor heat exchanger 23, so that the pressure on the low pressure side of the refrigerant circuit 10 quickly rises and the pressure difference ΔP quickly falls below the threshold pressure difference Pth.

これに対し、温度差ΔTが−1℃未満であるとき、つまり、室外熱交温度Thより外気温度Toが低いときは、室外ファン回転数Cf:0rpmとする、つまりは室外ファン24を停止する。室外熱交温度Thより外気温度Toが低い場合に室外ファン24を駆動すると、室外熱交換器23を通過する低い外気温度Toの外気によって室外熱交換器23に滞在する冷媒が温まりにくくなるので、室外ファン24を停止している場合と比べて冷媒回路10の低圧側の圧力が上昇するのに時間がかかる。つまり、室外熱交温度Thより外気温度Toが低いときに室外ファン24を駆動すると、室外ファン24を停止している場合よりも圧力差ΔPが閾圧力差Pth以下に低下するまで長い時間がかかる。従って、温度差ΔTが−1℃未満であるときは、室外ファン24を停止させて、圧力差ΔPが閾圧力差Pth以下に低下するまでの時間が長くならないようにする。   On the other hand, when the temperature difference ΔT is less than −1 ° C., that is, when the outdoor air temperature To is lower than the outdoor heat exchange temperature Th, the outdoor fan rotation speed Cf is set to 0 rpm, that is, the outdoor fan 24 is stopped. . When the outdoor fan 24 is driven when the outdoor air temperature To is lower than the outdoor heat exchange temperature Th, the refrigerant staying in the outdoor heat exchanger 23 is less likely to be warmed by the outdoor air having the low outdoor air temperature To passing through the outdoor heat exchanger 23. Compared with the case where the outdoor fan 24 is stopped, it takes time for the pressure on the low pressure side of the refrigerant circuit 10 to increase. That is, if the outdoor fan 24 is driven when the outdoor air temperature To is lower than the outdoor heat exchange temperature Th, it takes a longer time for the pressure difference ΔP to fall below the threshold pressure difference Pth than when the outdoor fan 24 is stopped. . Therefore, when the temperature difference ΔT is less than −1 ° C., the outdoor fan 24 is stopped so that the time until the pressure difference ΔP drops below the threshold pressure difference Pth is not increased.

そして、温度差ΔTが−1℃以上1℃未満であるとき、つまり、室外熱交温度Thと外気温度Toがほぼ同じ温度であるときは、暖房時基準回転数である室外ファン回転数Cf:400rpmで室外ファン24を駆動する。   When the temperature difference ΔT is −1 ° C. or more and less than 1 ° C., that is, when the outdoor heat exchange temperature Th and the outdoor air temperature To are substantially the same temperature, the outdoor fan rotation speed Cf that is the reference rotation speed during heating: The outdoor fan 24 is driven at 400 rpm.

ファン回転数テーブル300における温度差ΔTが−1℃以上1℃未満であるとき、すなわち、室外熱交温度Thと外気温度Toがほぼ同じ温度であるときは、上述した温度差ΔTが−1℃未満であるとき、すなわち、外気温度Toが室外熱交温度Thより低い温度である場合と比べて、室外熱交換器23が暖まりにくくなるということはない反面、温度差ΔTが1℃以上であるとき、すなわち、外気温度Toが室外熱交温度Thより高い温度である場合と比べると、外気温度Toの外気によって室外熱交換器23が暖められるのに時間がかかる。従って、温度差ΔTが−1℃以上1℃未満であるときは、室外ファン24を駆動して室外熱交換器23に外気を流すものの、その回転数Cfを温度差ΔTが1℃以上であるときの室外ファン回転数Cf:800rpmより低い暖房時基準回転数である室外ファン回転数Cf:400rpmとしている。   When the temperature difference ΔT in the fan rotation speed table 300 is −1 ° C. or more and less than 1 ° C., that is, when the outdoor heat exchange temperature Th and the outdoor air temperature To are substantially the same temperature, the temperature difference ΔT described above is −1 ° C. However, compared with the case where the outdoor air temperature To is lower than the outdoor heat exchange temperature Th, the outdoor heat exchanger 23 is not easily warmed, but the temperature difference ΔT is 1 ° C. or more. In other words, as compared with a case where the outdoor air temperature To is higher than the outdoor heat exchange temperature Th, it takes time for the outdoor heat exchanger 23 to be warmed by the outdoor air at the outdoor air temperature To. Therefore, when the temperature difference ΔT is −1 ° C. or more and less than 1 ° C., the outdoor fan 24 is driven to flow the outside air to the outdoor heat exchanger 23, but the rotation speed Cf of the temperature difference ΔT is 1 ° C. or more. The outdoor fan rotation speed Cf is 400 rpm, which is a heating reference rotation speed lower than 800 rpm.

以上説明したように、ファン回転数テーブル300における暖房運転時の室外ファン回転数Cfは、温度差ΔTが正の温度から負の温度に向かって小さくなるのにつれて低い回転数に定められており、温度差ΔTが−1℃未満つまり第4閾温度未満となれば室外ファン回転数Cfを0rpmとしている。これは、以下の理由による。   As described above, the outdoor fan rotation speed Cf during the heating operation in the fan rotation speed table 300 is set to a lower rotation speed as the temperature difference ΔT decreases from the positive temperature toward the negative temperature. If the temperature difference ΔT is less than −1 ° C., that is, less than the fourth threshold temperature, the outdoor fan rotation speed Cf is set to 0 rpm. This is due to the following reason.

温度差ΔTが大きくなるにつれて、つまり、外気温度Toが室外熱交温度Thより高くなるにつれて、室外ファン回転数Cfを高くすることで、室外熱交温度Thより高い外気温度Toの外気を多量に室外熱交換器23に通過させて、圧力差ΔPを短時間で閾圧力差Pth以下にすることができる。   As the temperature difference ΔT increases, that is, as the outdoor air temperature To becomes higher than the outdoor heat exchange temperature Th, the outdoor fan rotational speed Cf is increased, so that a large amount of outdoor air with an outdoor air temperature To higher than the outdoor heat exchange temperature Th is obtained. The pressure difference ΔP can be reduced to the threshold pressure difference Pth or less in a short time by passing it through the outdoor heat exchanger 23.

一方、温度差ΔTが小さくなるにつれて、つまり、外気温度Toが室外熱交温度Thより低くなるにつれて、室外ファン回転数Cfを低くすることで、室外熱交温度Thより低い外気温度Toの外気を必要以上に室外熱交換器23を通過させないようにして圧力差ΔPが閾圧力差Pth以下となる時間が長くならないようにしつつ、室外ファン回転数Cfを低くすることで室外ファン24の消費電力を低減できる。   On the other hand, as the temperature difference ΔT becomes smaller, that is, as the outdoor air temperature To becomes lower than the outdoor heat exchange temperature Th, the outdoor fan rotational speed Cf is lowered, so that the outdoor air having an outdoor air temperature To lower than the outdoor heat exchange temperature Th is reduced. The power consumption of the outdoor fan 24 can be reduced by reducing the outdoor fan rotation speed Cf while preventing the outdoor heat exchanger 23 from passing more than necessary so that the time during which the pressure difference ΔP is equal to or less than the threshold pressure difference Pth does not increase. Can be reduced.

そして、温度差ΔTが第4閾温度(本実施形態では−1℃)未満となれば室外ファン回転数Cfを0rpmとすることで、室外熱交温度Thより低い外気温度Toの外気によって室外熱交換器23が冷やされることで、圧力差ΔPが閾圧力差Pth以下となる時間が、温度差ΔTが第4閾温度以上である場合よりもさらに長くなることを防ぎつつ、室外ファン24を停止させることで温度差ΔTが第4閾温度以上である場合よりもさらに消費電力を低減できる。   When the temperature difference ΔT is less than the fourth threshold temperature (-1 ° C. in the present embodiment), the outdoor fan rotation speed Cf is set to 0 rpm, so that the outdoor heat is generated by the outdoor air To that is lower than the outdoor heat exchange temperature Th. Since the exchanger 23 is cooled, the outdoor fan 24 is stopped while preventing the time during which the pressure difference ΔP is equal to or lower than the threshold pressure difference Pth from being longer than when the temperature difference ΔT is equal to or higher than the fourth threshold temperature. As a result, the power consumption can be further reduced as compared with the case where the temperature difference ΔT is equal to or higher than the fourth threshold temperature.

尚、ファン回転数テーブル300は、上述した温度差ΔTと圧力差ΔPとの関連性を考慮し、予め試験などを行って温度差ΔTに応じた室外ファン回転数Cfを求めて、室外機制御手段200の記憶部220に記憶されているものである。
<圧縮機停止後の室外ファンの制御に関わる処理>
The fan rotation speed table 300 considers the relationship between the temperature difference ΔT and the pressure difference ΔP described above, obtains the outdoor fan rotation speed Cf according to the temperature difference ΔT by performing a test in advance, and controls the outdoor unit. This is stored in the storage unit 220 of the means 200.
<Processing related to outdoor fan control after compressor stop>

次に、図3を用いて、圧縮機21を停止させるときの室外ファン23の制御について説明する。図3は、空気調和機1が使用者の運転停止指示やサーモオフによって冷房運転あるいは暖房運転を停止する際に、室外機制御手段200のCPU210が行う処理の流れを示すフローチャートである。図3において、STは処理のステップを表し、これに続く数字はステップの番号を表している。尚、図3は、本発明に関わる処理を中心に説明するものであり、これ以外の処理、例えば、空調運転時の使用者の要求に応じた圧縮機21の運転制御等といった、空気調和装置1の一般的な制御に関わる処理については説明を省略する。   Next, the control of the outdoor fan 23 when the compressor 21 is stopped will be described with reference to FIG. FIG. 3 is a flowchart showing a flow of processing performed by the CPU 210 of the outdoor unit control means 200 when the air conditioner 1 stops the cooling operation or the heating operation by a user's operation stop instruction or thermo-off. In FIG. 3, ST represents a process step, and the number following this represents a step number. Note that FIG. 3 mainly describes processing related to the present invention, and other processing, for example, an air conditioner such as operation control of the compressor 21 according to a user's request during air-conditioning operation. Description of processing related to general control 1 is omitted.

空気調和機1が冷房運転あるいは暖房運転を行っているときに、使用者による運転停止指示やサーモオフによって運転を停止する場合は、CPU210は、これまでに行っていた運転モードを判定する(ST1)。具体的には、CPU210は、使用者による運転停止指示やサーモオフによって運転を停止するまでの間に行っていた運転が冷房運転であるか暖房運転であるかを判定する。   When the air conditioner 1 is performing a cooling operation or a heating operation, when the operation is stopped by an operation stop instruction or a thermo-off by the user, the CPU 210 determines the operation mode that has been performed so far (ST1). . Specifically, the CPU 210 determines whether the operation that has been performed until the operation is stopped by a user's operation stop instruction or thermo-off is a cooling operation or a heating operation.

次に、CPU210は、外気温度センサ76で検出した外気温度Toと、熱交温度センサ75で検出した室外熱交温度Thをセンサ入力部240を介して取り込み、外気温度Toから室外熱交温度Thを減じて温度差ΔTを算出する(ST2)。   Next, the CPU 210 takes in the outside air temperature To detected by the outside air temperature sensor 76 and the outdoor heat exchange temperature Th detected by the heat exchange temperature sensor 75 via the sensor input unit 240, and the outdoor heat exchange temperature Th from the outside air temperature To. Is subtracted to calculate the temperature difference ΔT (ST2).

次に、CPU210は、記憶部220に記憶しているファン回転数テーブル300を参照し、ST1で算出した温度差ΔTに応じた室外ファン回転数Cfを抽出する。具体的には、CPU210は、まずST1で算出した温度差ΔTが1℃以上であるか否かを判断する(ST3)。   Next, the CPU 210 refers to the fan rotation speed table 300 stored in the storage unit 220 and extracts the outdoor fan rotation speed Cf corresponding to the temperature difference ΔT calculated in ST1. Specifically, the CPU 210 first determines whether or not the temperature difference ΔT calculated in ST1 is 1 ° C. or more (ST3).

算出した温度差ΔTが1℃以上であれば(ST3−Yes)、CPU210は、ST1で判定した運転モードが冷房運転であれば室外ファン回転数Cf=0rpmをファン回転数テーブル300から抽出して、あるいは、ST1で判定した運転モードが暖房運転であれば室外ファン回転数Cf=800rpmをファン回転数テーブル300から抽出して(ST11)、ST6に処理を進める。   If the calculated temperature difference ΔT is 1 ° C. or more (ST3-Yes), the CPU 210 extracts the outdoor fan rotation speed Cf = 0 rpm from the fan rotation speed table 300 if the operation mode determined in ST1 is the cooling operation. Alternatively, if the operation mode determined in ST1 is the heating operation, the outdoor fan rotation speed Cf = 800 rpm is extracted from the fan rotation speed table 300 (ST11), and the process proceeds to ST6.

算出した温度差ΔTが1℃以上でなければ(ST3−No)、CPU210は、算出した温度差ΔTが−1℃未満であるか否かを判断する(ST4)。   If the calculated temperature difference ΔT is not 1 ° C. or more (ST3-No), the CPU 210 determines whether or not the calculated temperature difference ΔT is less than −1 ° C. (ST4).

算出した温度差ΔTが−1℃未満であれば(ST4−Yes)、CPU210は、ST1で判定した運転モードが冷房運転であれば室外ファン回転数Cf=800rpmをファン回転数テーブル300から抽出して、あるいは、ST1で判定した運転モードが暖房運転であれば室外ファン回転数Cf=0rpmをファン回転数テーブル300から抽出して(ST12)、ST6に処理を進める。   If the calculated temperature difference ΔT is less than −1 ° C. (ST4-Yes), the CPU 210 extracts the outdoor fan rotation speed Cf = 800 rpm from the fan rotation speed table 300 if the operation mode determined in ST1 is the cooling operation. Alternatively, if the operation mode determined in ST1 is the heating operation, the outdoor fan rotation speed Cf = 0 rpm is extracted from the fan rotation speed table 300 (ST12), and the process proceeds to ST6.

算出した温度差ΔTが−1℃未満でなければ(ST4−Yes)、つまり、算出した温度差ΔTが−1℃以上1℃未満であれば、CPU210は、冷房運転/暖房運転で同じ回転数である室外ファン回転数Cf=400rpmをファン回転数テーブル300から抽出して、ST6に処理を進める。   If the calculated temperature difference ΔT is not less than −1 ° C. (ST4-Yes), that is, if the calculated temperature difference ΔT is not less than −1 ° C. and less than 1 ° C., the CPU 210 has the same rotational speed in the cooling operation / heating operation. The outdoor fan rotational speed Cf = 400 rpm is extracted from the fan rotational speed table 300, and the process proceeds to ST6.

ST5、ST11、ST12のいずれかの処理を終えたCPU210は、ST4、ST10、ST11のいずれかで抽出した室外ファン回転数Cfで室外ファン24を駆動(室外ファン回転数Cf=400rpmあるいは800rpmの場合)する、あるいは、室外ファン24を停止(室外ファン回転数Cf=0rpmの場合)する(ST6)。
ST6の処理を終えたCPU210は、圧縮機21を停止する(ST7)。
The CPU 210 that has finished any one of ST5, ST11, and ST12 drives the outdoor fan 24 at the outdoor fan rotational speed Cf extracted in any of ST4, ST10, and ST11 (when the outdoor fan rotational speed Cf = 400 rpm or 800 rpm). Or the outdoor fan 24 is stopped (when the outdoor fan rotation speed Cf = 0 rpm) (ST6).
CPU210 which finished the process of ST6 stops the compressor 21 (ST7).

次に、CPU210は、吐出圧力センサ71で検出した高圧Phと、吸入圧力センサ72で検出した低圧Plをセンサ入力部240を介して取り込み、高圧Phと低圧Plの圧力差ΔPを算出する(ST8)。   Next, the CPU 210 takes in the high pressure Ph detected by the discharge pressure sensor 71 and the low pressure Pl detected by the suction pressure sensor 72 via the sensor input unit 240, and calculates the pressure difference ΔP between the high pressure Ph and the low pressure Pl (ST8). ).

次に、CPU210は、ST8で算出した圧力差ΔPが閾圧力差Pth未満であるか否かを判断する(ST9)。算出した圧力差ΔPが閾圧力差Pth未満であれば(ST9−Yes)、CPU210は、ST6で室外ファン24を室外ファン回転数Cfで駆動させた場合は停止し、ST6で室外ファン24を停止させた場合はその状態を維持して(ST10)、処理を終了する。   Next, CPU 210 determines whether or not pressure difference ΔP calculated in ST8 is less than threshold pressure difference Pth (ST9). If the calculated pressure difference ΔP is less than the threshold pressure difference Pth (ST9-Yes), the CPU 210 stops when the outdoor fan 24 is driven at the outdoor fan rotation speed Cf at ST6, and stops the outdoor fan 24 at ST6. If so, that state is maintained (ST10) and the process is terminated.

一方、算出した圧力差ΔPが閾圧力差Pth未満でなければ(ST9−No)、CPU210は、ST8に処理を戻す。この場合、CPU210が高圧Phと低圧Plを定期的(例えば30秒ごと)に取り込み、ST9で圧力差ΔPが閾圧力差Pth未満となるまで、ST8〜ST9の処理を繰り返す。   On the other hand, if calculated pressure difference ΔP is not less than threshold pressure difference Pth (ST9-No), CPU 210 returns the process to ST8. In this case, the CPU 210 periodically takes in the high pressure Ph and the low pressure Pl (for example, every 30 seconds), and repeats the processes of ST8 to ST9 until the pressure difference ΔP becomes less than the threshold pressure difference Pth in ST9.

尚、ST9において圧力差ΔPが閾圧力差Pth未満となれば、すなわち、ST9の処理が「Yes」となって圧縮機21が再起動できる状態となる。このようにST9の処理後に圧縮機21が再起動できる状態であるか否かを判断するために、ST6において室外ファン24を停止とした場合でも、ST8〜ST9の処理が必要となる。   If the pressure difference ΔP is less than the threshold pressure difference Pth in ST9, that is, the process in ST9 is “Yes”, and the compressor 21 can be restarted. As described above, in order to determine whether or not the compressor 21 can be restarted after the process of ST9, the process of ST8 to ST9 is required even when the outdoor fan 24 is stopped in ST6.

以上説明したように、本実施形態の空気調和機1では、空気調和機1が圧縮機21を停止した後に、運転していた際の運転モードと外気温度Toと室外熱交温度Thの温度差ΔTに基づいて室外ファン回転数Cfを決定し、決定した室外ファン回転数Cfで室外ファン24が駆動あるいは停止するように、室外ファン24を制御する。これにより、運転停止後の冷媒回路10の均圧にかかる時間を短縮でき、圧縮機21の停止後に早期に圧縮機21が再起動できる。   As described above, in the air conditioner 1 of the present embodiment, the temperature difference between the operation mode, the outside air temperature To, and the outdoor heat exchanger temperature Th when the air conditioner 1 is operating after the compressor 21 is stopped. The outdoor fan rotation speed Cf is determined based on ΔT, and the outdoor fan 24 is controlled such that the outdoor fan 24 is driven or stopped at the determined outdoor fan rotation speed Cf. As a result, the time taken to equalize the refrigerant circuit 10 after the operation is stopped can be shortened, and the compressor 21 can be restarted early after the compressor 21 is stopped.

尚、以上説明した実施形態では、空気調和機1の運転停止時に室外ファン24を室外ファン回転数Cfで駆動させた場合に、圧力差ΔPが閾圧力差Pth以下となるまで室外ファン24を駆動させる場合について説明した。これに代えて、空気調和機1の運転停止時に室外ファン24を圧縮機21の運転停止時点から所定時間駆動させてもよい。この場合の所定時間は、予め試験などを行って決定すればよく、圧力差ΔPが閾圧力差Pth以下となるのに必要な時間とすればよい。   In the embodiment described above, when the outdoor fan 24 is driven at the outdoor fan rotation speed Cf when the operation of the air conditioner 1 is stopped, the outdoor fan 24 is driven until the pressure difference ΔP becomes equal to or less than the threshold pressure difference Pth. The case of making it explained was explained. Instead of this, the outdoor fan 24 may be driven for a predetermined time from the operation stop time of the compressor 21 when the operation of the air conditioner 1 is stopped. The predetermined time in this case may be determined by performing a test or the like in advance, and may be a time necessary for the pressure difference ΔP to be equal to or less than the threshold pressure difference Pth.

また、以上説明した実施形態では、図3のST7で圧縮機21を停止する前に、図3のST1〜ST6の処理を行って室外ファン24を室外ファン回転数Cfで駆動あるいは停止させているが、先にST7の処理を行って圧縮機21を停止した後に、ST1〜ST6の処理を行ってもよい。   Further, in the embodiment described above, before the compressor 21 is stopped in ST7 of FIG. 3, the processing of ST1 to ST6 of FIG. 3 is performed to drive or stop the outdoor fan 24 at the outdoor fan rotation speed Cf. However, after the process of ST7 is performed first and the compressor 21 is stopped, the processes of ST1 to ST6 may be performed.

また、以上説明した実施形態では、図2のファン回転数テーブル300において、冷房時基準回転数と暖房時基準回転数を同じ400rpmとしているが、冷房時基準回転数と暖房時基準回転数は異なる回転数であってもよい。   In the embodiment described above, in the fan rotation speed table 300 of FIG. 2, the cooling reference rotation speed and the heating reference rotation speed are set to the same 400 rpm, but the cooling reference rotation speed and the heating reference rotation speed are different. It may be the rotational speed.

また、運転モード:冷房、において、温度差ΔTが−1℃未満/−1℃以上1℃未満/1℃以上、の3つの範囲に分けて室外ファン回転数Cfを定めているが、温度差ΔTの範囲を増やしてもよい。例えば、温度差ΔTが1℃以上3℃未満のときの室外ファン回転数Cfを200rpm、温度差ΔTが3℃以上のときの室外ファン回転数Cfを0rpm(停止)としてもよい。   Further, in the operation mode: cooling, the outdoor fan rotation speed Cf is determined by dividing the temperature difference ΔT into three ranges of less than −1 ° C./−1° C. or more and less than 1 ° C./1° C. or more. The range of ΔT may be increased. For example, the outdoor fan rotation speed Cf when the temperature difference ΔT is 1 ° C. or more and less than 3 ° C. may be 200 rpm, and the outdoor fan rotation speed Cf when the temperature difference ΔT is 3 ° C. or more may be 0 rpm (stop).

さらには、運転モード:暖房、において、温度差ΔTが−1℃未満/−1℃以上1℃未満/1℃以上、の3つの範囲に分けて室外ファン回転数Cfを定めているが、温度差ΔTの範囲を増やしてもよい。例えば、温度差ΔTが−3℃以上−1℃未満のときの室外ファン回転数Cfを200rpm、温度差ΔTが−3℃未満のときの室外ファン回転数Cfを0rpm(停止)としてもよい。   Furthermore, in the operation mode: heating, the outdoor fan rotation speed Cf is determined by dividing the temperature difference ΔT into three ranges of less than −1 ° C./−1° C. or more and less than 1 ° C./1° C. or more. The range of the difference ΔT may be increased. For example, the outdoor fan rotation speed Cf when the temperature difference ΔT is −3 ° C. or more and less than −1 ° C. may be 200 rpm, and the outdoor fan rotation speed Cf when the temperature difference ΔT is less than −3 ° C. may be 0 rpm (stop).

1 空気調和機
2 室外機
3 室内機
10 冷媒回路
21 圧縮機
23 室外熱交換器
24 室外ファン
31 室内熱交換器
71 吐出圧力センサ
72 吸入圧力センサ
75 熱交温度センサ
76 外気温度センサ
200 室外機制御手段
210 CPU
220 記憶部
300 ファン回転数テーブル
Cf 室外ファン回転数
Ph 高圧
Pl 低圧
ΔP 圧力差
Th 室外熱交温度
To 外気温度
ΔT 温度差
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 10 Refrigerant circuit 21 Compressor 23 Outdoor heat exchanger 24 Outdoor fan 31 Indoor heat exchanger 71 Discharge pressure sensor 72 Suction pressure sensor 75 Heat exchange temperature sensor 76 Outside air temperature sensor 200 Outdoor unit control Means 210 CPU
220 Storage unit 300 Fan speed table Cf Outdoor fan speed Ph High pressure Pl Low pressure ΔP Pressure difference Th Outdoor heat exchange temperature To Outdoor temperature ΔT Temperature difference

Claims (7)

圧縮機と、四方弁と、室外熱交換器と、室外ファンと、外気温度を検出する外気温度検出手段と、前記室外熱交換器の温度である室外熱交温度を検出する室外熱交温度検出手段を有する室外機と、
室内熱交換器を有する室内機と、
前記圧縮機と前記室外ファンの駆動を制御する制御手段と、
を有する空気調和機であって、
前記制御手段は、前記圧縮機を停止させるとき、
前記空調運転の停止時点の運転モードと前記外気温度検出手段で検出した外気温度から前記室外熱交温度検出手段で検出した室外熱交温度を減じた温度差に基づいた回転数となるように、前記室外ファンを制御する、
ことを特徴とする空気調和機。
Compressor, four-way valve, outdoor heat exchanger, outdoor fan, outdoor air temperature detecting means for detecting the outdoor air temperature, and outdoor heat exchanger temperature detection for detecting the outdoor heat exchanger temperature which is the temperature of the outdoor heat exchanger An outdoor unit having means;
An indoor unit having an indoor heat exchanger;
Control means for controlling driving of the compressor and the outdoor fan;
An air conditioner having
The control means, when stopping the compressor,
The rotation speed is based on a temperature difference obtained by subtracting the outdoor heat exchange temperature detected by the outdoor heat exchange temperature detection means from the operation mode at the time of stopping the air conditioning operation and the outside air temperature detected by the outside air temperature detection means. Controlling the outdoor fan,
An air conditioner characterized by that.
前記運転モードは冷房運転であり、
前記冷房運転で前記圧縮機を停止するとき、
前記温度差が所定の第1閾温度未満であるときの室外ファンの回転数は、前記第1閾温度以上であるときの室外ファンの回転数より高い回転数である、
ことを特徴とする請求項1に記載の空気調和機。
The operation mode is a cooling operation,
When stopping the compressor in the cooling operation,
The rotational speed of the outdoor fan when the temperature difference is less than a predetermined first threshold temperature is higher than the rotational speed of the outdoor fan when the temperature difference is equal to or higher than the first threshold temperature.
The air conditioner according to claim 1.
前記温度差が前記第1閾温度より高い所定の第2閾温度以上であるとき、前記室外ファンは停止とされる、
ことを特徴とする請求項2に記載の空気調和機。
When the temperature difference is equal to or higher than a predetermined second threshold temperature higher than the first threshold temperature, the outdoor fan is stopped;
The air conditioner according to claim 2.
前記運転モードは暖房運転であり、
前記暖房運転で前記圧縮機を停止するとき、
前記温度差が所定の第3閾温度以上であるときの室外ファンの回転数は、前記第3閾温度未満であるときの室外ファンの回転数より高い回転数である、
ことを特徴とする請求項1に記載の空気調和機。
The operation mode is a heating operation,
When stopping the compressor in the heating operation,
The rotational speed of the outdoor fan when the temperature difference is equal to or higher than a predetermined third threshold temperature is higher than the rotational speed of the outdoor fan when the temperature difference is lower than the third threshold temperature.
The air conditioner according to claim 1.
前記温度差が前記第3閾温度より低い所定の第4閾温度未満であるとき、前記室外ファンは停止とされる、
ことを特徴とする請求項4に記載の空気調和機。
The outdoor fan is stopped when the temperature difference is less than a predetermined fourth threshold temperature lower than the third threshold temperature;
The air conditioner according to claim 4.
前記圧縮機の高圧側の圧力を検出する高圧検出手段と、前記圧縮機の低圧側の圧力を検出する低圧検出手段を有し、
前記制御手段は、前記圧縮機を停止させてから、前記高圧検出手段で検出した高圧側の圧力と前記低圧検出手段で検出した低圧側の圧力の圧力差が所定の閾圧力差以下となるまで、前記室外ファンを駆動し続ける、
ことを特徴とする請求項1、請求項2、請求項4、および、請求項5のいずれかに記載の空気調和機。
High pressure detection means for detecting the pressure on the high pressure side of the compressor, and low pressure detection means for detecting the pressure on the low pressure side of the compressor,
The control means, after stopping the compressor, until the pressure difference between the high-pressure side pressure detected by the high-pressure detection means and the low-pressure side pressure detected by the low-pressure detection means falls below a predetermined threshold pressure difference. Continue to drive the outdoor fan,
The air conditioner according to any one of claims 1, 2, 4, and 5.
前記制御手段は、前記圧縮機を停止させてから所定時間、前記室外ファンを駆動し続ける、
ことを特徴とする請求項1、請求項2、請求項4、および、請求項5のいずれかに記載の空気調和機。
The control means continues to drive the outdoor fan for a predetermined time after stopping the compressor.
The air conditioner according to any one of claims 1, 2, 4, and 5.
JP2017144179A 2017-07-26 2017-07-26 Air conditioner Active JP6897391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144179A JP6897391B2 (en) 2017-07-26 2017-07-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144179A JP6897391B2 (en) 2017-07-26 2017-07-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2019027613A true JP2019027613A (en) 2019-02-21
JP6897391B2 JP6897391B2 (en) 2021-06-30

Family

ID=65478139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144179A Active JP6897391B2 (en) 2017-07-26 2017-07-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP6897391B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259945A (en) * 1997-03-18 1998-09-29 Funai Electric Co Ltd Air conditioner
JP2011252641A (en) * 2010-06-01 2011-12-15 Panasonic Corp Air conditioner
JP2012193901A (en) * 2011-03-16 2012-10-11 Fujitsu General Ltd Multi-room type air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259945A (en) * 1997-03-18 1998-09-29 Funai Electric Co Ltd Air conditioner
JP2011252641A (en) * 2010-06-01 2011-12-15 Panasonic Corp Air conditioner
JP2012193901A (en) * 2011-03-16 2012-10-11 Fujitsu General Ltd Multi-room type air conditioner

Also Published As

Publication number Publication date
JP6897391B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6225548B2 (en) Air conditioner
JP5549773B1 (en) Air conditioner
JP6468300B2 (en) Air conditioner
JP6569536B2 (en) Air conditioner
JP6528623B2 (en) Air conditioner
JP6870382B2 (en) Air conditioner
JP2015034657A (en) Air conditioner
WO2016016913A1 (en) Air conditioning device
JP2017067301A (en) Air conditioning device
JP2016061456A (en) Air conditioning device
JP2019078411A (en) Air conditioner
JP2018146208A (en) Air conditioner
JP2019143877A (en) Air conditioning system
JP2018048752A (en) Air conditioner
JP2018132217A (en) Air conditioning equipment
JP2019168150A (en) Air conditioning device
JP2019020061A (en) Air-conditioner
JP2016070575A (en) Air conditioning device
JP6428221B2 (en) Air conditioner
JP2019143876A (en) Air conditioning system
JP2017015294A (en) Air conditioning device
JP2018159520A (en) Air conditioner
JP2018115805A (en) Air conditioner
JP2017142017A (en) Air conditioner
JP5598392B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151