JP2019026918A - Conjugate of metal and fluororubber, and bonding method thereof - Google Patents

Conjugate of metal and fluororubber, and bonding method thereof Download PDF

Info

Publication number
JP2019026918A
JP2019026918A JP2017150726A JP2017150726A JP2019026918A JP 2019026918 A JP2019026918 A JP 2019026918A JP 2017150726 A JP2017150726 A JP 2017150726A JP 2017150726 A JP2017150726 A JP 2017150726A JP 2019026918 A JP2019026918 A JP 2019026918A
Authority
JP
Japan
Prior art keywords
metal
hydroxide
aluminum
fluororubber
test water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017150726A
Other languages
Japanese (ja)
Other versions
JP6345323B1 (en
Inventor
祐介 岩城
Yusuke Iwaki
祐介 岩城
豪彦 植村
Takehiko Uemura
豪彦 植村
有治 小野寺
Yuji Onodera
有治 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UMI CO Ltd
Original Assignee
UMI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMI CO Ltd filed Critical UMI CO Ltd
Priority to JP2017150726A priority Critical patent/JP6345323B1/en
Application granted granted Critical
Publication of JP6345323B1 publication Critical patent/JP6345323B1/en
Publication of JP2019026918A publication Critical patent/JP2019026918A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To provide a conjugate formed by bonding a metal to a fluororubber without using a primer; and to provide a bonding method thereof.SOLUTION: A bonding method of a metal to a fluorine-containing material to be used includes steps of: forming a hydroxide of a metal on the surface of the metal by immersing/contacting a metal into/with test water at 250°C or lower; and forming the fluorine-containing material on the surface of the metal. A conjugate of the fluorine-containing material and the metal to be used contains the metal, the hydroxide of the metal positioned on the surface of the metal, and the fluorine-containing material positioned on the surface of the hydroxide of the metal.SELECTED DRAWING: Figure 1

Description

本発明は、金属とフッ素ゴムとの接合体およびその接合方法に関するものである。 The present invention relates to a joined body of metal and fluororubber and a joining method thereof.

従来、金属基材とフッ素ゴム、または、パーフルオロエラストマーとの接着として、プライマーの使用がされていた(特許文献1)。   Conventionally, a primer has been used as an adhesion between a metal substrate and fluororubber or perfluoroelastomer (Patent Document 1).

特開昭63−112674号公報Japanese Unexamined Patent Publication No. Sho 63-112673

しかし、プライマーは耐熱性が弱いので、分解、または、変質により接着力が低下する。また、均一に塗布するのに高い技術を要する。このため、品質の安定性に問題がある。
よって、本願の課題は、プライマーを用いずに、金属とフッ素ゴムとを接合した接合体とその接合方法を提供することである。
However, since the primer has low heat resistance, the adhesive strength is reduced by decomposition or alteration. Moreover, a high technique is required for uniform application. For this reason, there is a problem in the stability of quality.
Therefore, the subject of this application is providing the joining body which joined the metal and fluororubber, and its joining method, without using a primer.

上記課題を解決するために、金属を試験水に250℃以下で浸漬または接触させ、上記金属の表面に上記金属の水酸化物を形成する工程と、上記金属の表面にフッ素材料を形成する工程と、を含む金属とフッ素材料との接合方法を用いる。
また、金属と、上記金属表面に位置する上記金属の水酸化物と、上記金属の水酸化物の表面に位置するフッ素材料と、を含むフッ素材料と金属との接合体を用いる。
In order to solve the above problems, a step of immersing or contacting a metal in test water at 250 ° C. or less to form a hydroxide of the metal on the surface of the metal, and a step of forming a fluorine material on the surface of the metal And a bonding method of a metal containing fluorine and a fluorine material.
In addition, a joined body of a fluorine material and a metal including a metal, a hydroxide of the metal located on the metal surface, and a fluorine material located on the surface of the metal hydroxide is used.

本発明の接合体とその接合方法によれば、プライマーを用いずに、金属とフッ素ゴムとを接合した接合体とその接合方法を提供することができる。   According to the joined body and the joining method of the present invention, it is possible to provide a joined body obtained by joining a metal and fluororubber without using a primer and the joining method thereof.

実施の形態のプロセスを説明するフロー図Flow chart explaining the process of the embodiment (a)〜(d)実施の形態のプロセスを説明する断面図(A)-(d) Sectional drawing explaining the process of embodiment 未処理のアルミニウム基板と90℃の試験水に5時間浸漬後のアルミニウム基板(実施例3)との表面のSEM像図SEM image of the surface of an untreated aluminum substrate and an aluminum substrate (Example 3) after being immersed in 90 ° C. test water for 5 hours 未処理のアルミニウム基板と90℃の試験水に5時間浸漬後のアルミニウム基板(実施例3)とのEDXスペクトル図EDX spectrum diagram of an untreated aluminum substrate and an aluminum substrate (Example 3) after being immersed in 90 ° C. test water for 5 hours 試験水に90℃、5hの条件で浸漬したアルミニウム基材(実施例3、7)において、フッ素ゴム(3元系パーオキサイド加硫)、および、パーフルオロエラスストマーを90°剥離した後のアルミニウム基板のSEM像の図およびEDXスペクトルの図Aluminum after exfoliating fluororubber (ternary peroxide vulcanization) and perfluoroelastomer 90 ° in an aluminum substrate (Examples 3 and 7) immersed in test water at 90 ° C. for 5 hours SEM image of substrate and EDX spectrum

以下、一つの実施の形態で説明する。一つの例示であり、発明は、下記に限定されない。
(実施の形態)
実施の形態のプロセスを図1に示す。図2(a)〜図2(d)で各工程を説明する。
Hereinafter, one embodiment will be described. It is one example and the invention is not limited to the following.
(Embodiment)
The process of the embodiment is shown in FIG. Each step will be described with reference to FIGS.

<金属板10>
金属板10の金属材料は、以下が好ましい。すべて満たす金属が好ましい。
<Metal plate 10>
The metal material of the metal plate 10 is preferably as follows. Metals that fill all are preferred.

(a)標準電極電位が溶存酸素の還元反応(約+0.4V)の電位より卑な電位であること、溶存酸素がない場合には、水の還元反応の電位(−0.83V)よりも卑な電位であること。
(b)表面の不働態膜、および、内部の金属物質が、pH3〜4程度の弱酸、または、pH8〜10程度の弱塩基で溶解すること。
(A) The standard electrode potential is lower than the potential of the reduction reaction of dissolved oxygen (about + 0.4V), and when there is no dissolved oxygen, the potential of the reduction reaction of water (−0.83V) Be a low-potential.
(B) The surface passive film and the internal metal substance are dissolved with a weak acid having a pH of about 3 to 4 or a weak base having a pH of about 8 to 10.

(c)溶解した金属イオンが加水分解して水酸化物を生じること。
(d)pH−電位図のpH7の時の酸素の還元反応の電位、または、水の還元反応の電位付近で均一に腐食しないこと。
(C) The dissolved metal ion is hydrolyzed to produce a hydroxide.
(D) Do not corrode uniformly near the potential of the oxygen reduction reaction at the pH-potential diagram of pH 7 or the potential of the water reduction reaction.

具体的には、アルミニウム、マグネシウム、亜鉛、マンガン、ベリリウムの単体金属、あるいは、それらを主とした合金が挙げられる。以下、アルミニウムで説明するが、マグネシウム、亜鉛、マンガン、ベリリウムの単体金属、あるいは、それらを主とした合金でも同様である。   Specific examples include simple metals such as aluminum, magnesium, zinc, manganese, and beryllium, and alloys mainly composed of them. Hereinafter, aluminum will be described, but the same applies to simple metals of magnesium, zinc, manganese, and beryllium or alloys mainly composed of them.

(1)加温工程(図2(a))
試験水12を加熱器16で加温する。試験水12は、関東化学株式会社製の超純水が使用できる。
(1) Heating step (FIG. 2 (a))
The test water 12 is heated by the heater 16. As the test water 12, ultrapure water manufactured by Kanto Chemical Co., Inc. can be used.

試験水12は、10MΩ・cm以上、18.2MΩ・cm以下の電気抵抗値が必要である。蒸留水、イオン交換水ではその電気抵抗率を満たさないので不可である。   The test water 12 needs an electric resistance value of 10 MΩ · cm or more and 18.2 MΩ · cm or less. Distilled water and ion-exchanged water are not possible because they do not satisfy the electrical resistivity.

試験水12の電気抵抗値が低いと、金属板10(以下、アルミニウムで説明)の溶解反応(孔食発生)をアノード、アルミニウム内の微量の不純物界面で起こる酸素分子の還元反応をカソードとする電池反応が起こらないのでよくない。   When the electric resistance value of the test water 12 is low, the dissolution reaction (pitting corrosion generation) of the metal plate 10 (hereinafter referred to as aluminum) is used as an anode, and the reduction reaction of oxygen molecules that occurs at a trace impurity interface in the aluminum is used as a cathode. It is not good because no battery reaction occurs.

また、その電池反応により生成したアルミニウムイオンと水との加水分解反応による、酸と水酸化物の生成が起らないためよくない。 Further, it is not good because acid and hydroxide are not generated by hydrolysis reaction between aluminum ions and water generated by the battery reaction.

また、アンカー効果が生ずると考えられる適切な穴径をもつ孔食が生じる塩素イオン、硝酸イオン、ケイ酸イオン、次亜塩素酸イオン、または、リン酸イオン等が適切な濃度の水であってもよい。なお、純度の低い精製水程度では効果がない。
加温温度は、常温から沸騰水、さらには、オートクレーブにて100℃以上にした試験水12でも有効である。常温の場合、浸漬時間が増え、高温の場合、より短時間で効果がある。加温の方式は特に限定はなく、ホットプレート、マントルヒーター、ビーカーに巻き付け型のヒーターでも良いが、金属板10を均一に処理するために、撹拌することが好ましい。
In addition, chlorine ions, nitrate ions, silicate ions, hypochlorite ions, or phosphate ions that cause pitting corrosion with an appropriate hole diameter that is considered to cause the anchor effect is water with an appropriate concentration. Also good. In addition, there is no effect in the grade of purified water with low purity.
The heating temperature is also effective from normal temperature to boiling water, and even test water 12 that has been raised to 100 ° C. or higher by an autoclave. When the temperature is normal, the immersion time increases, and when the temperature is high, the effect is shorter. There is no particular limitation on the heating method, and a hot plate, a mantle heater, or a beaker-type heater may be used.

(2)浸漬工程(図2(b))
加温した試験水12に金属板10を浸漬する。
使用した試験水12は、10MΩ・cm以上の電気抵抗値が必要である。浸漬時間は試験水12の温度により様々である。20℃の場合、280時間、40℃の場合、50時間、90℃の場合、2時間程度必要である。浸漬中は撹拌し、加温は一定に保つのが好ましい。
(2) Immersion process (Fig. 2 (b))
The metal plate 10 is immersed in the heated test water 12.
The test water 12 used needs an electric resistance value of 10 MΩ · cm or more. The immersion time varies depending on the temperature of the test water 12. In the case of 20 ° C., 280 hours, in the case of 40 ° C., 50 hours, and in the case of 90 ° C., about 2 hours are required. It is preferable to stir during the immersion and keep the heating constant.

<ベイマイト処理>
なお、通常アルミニウムの表面処理でベイマイト処理がある。これとの違いを以下で説明する。
ベイマイト処理は、アルミニウム表面が高温の水と反応することで膨張し、基板水平方向に対して200nm程度の周期の粗い凹凸もつ水和酸化物被膜(AlOOH)が形成する反応である。
<Boehmite treatment>
In addition, there is usually a boehmite treatment with a surface treatment of aluminum. Differences from this will be described below.
The boehmite treatment is a reaction in which the aluminum surface expands by reacting with high-temperature water and forms a hydrated oxide film (AlOOH) having rough irregularities with a period of about 200 nm in the horizontal direction of the substrate.

実施の形態の試験水12の浸漬の場合、局所的な電池反応が生じることで、アルミニウムの溶解と水酸化アルミニウム(Al(OH))が生じる反応により、ナノサイズの棒状の物質が積み重なった周期10nm〜100nmの微細な凹凸をもつ構造となる。この構造体は隙間が多く、表面から1μm〜5μmの深さまで積み重なっている。 In the case of immersion of the test water 12 of the embodiment, a local battery reaction occurs, and a nano-sized rod-shaped substance is stacked due to a reaction in which aluminum is dissolved and aluminum hydroxide (Al (OH) 3 ) is generated. The structure has fine irregularities with a period of 10 nm to 100 nm. This structure has many gaps and is stacked from the surface to a depth of 1 μm to 5 μm.

そのため、ベイマイト処理よりも接着物がより細かく、深く、多く隙間に入り込むことから、より強いアンカー効果が期待できる。
なお、浸漬は必須でなく、例えば、金属板10の表面に、試験水12をスプレーしつづけてもよい。または、試験水12の蒸気を金属板10の表面に、吹きつけつづけてもよい。
Therefore, since the adhesive is finer and deeper than the boehmite treatment and enters many gaps, a stronger anchor effect can be expected.
The immersion is not essential. For example, the test water 12 may be continuously sprayed on the surface of the metal plate 10. Or you may keep spraying the vapor | steam of the test water 12 on the surface of the metal plate 10. FIG.

(3)成形工程(図2(c))
金型19に金属板10と耐熱性フィルム17をセットとし、180℃に加熱した下型内にフッ素ゴム13のコンパウンドを置き、180℃に加熱した上型をプレスする(一次加硫)。結果、金属板10上にフッ素ゴム13が形成される。結果、図2(d)で示すフッ素ゴム13と金属板10との接合体15が製造される。成型条件は180℃で10分間プレス成型した。なお、耐熱性フィルム17は、下記で説明する評価するためのものである。
(3) Molding process (FIG. 2 (c))
The metal plate 10 and the heat-resistant film 17 are set as a set on the mold 19, the compound of the fluoro rubber 13 is placed in the lower mold heated to 180 ° C., and the upper mold heated to 180 ° C. is pressed (primary vulcanization). As a result, the fluororubber 13 is formed on the metal plate 10. As a result, the joined body 15 of the fluororubber 13 and the metal plate 10 shown in FIG. The molding conditions were press molding at 180 ° C. for 10 minutes. The heat resistant film 17 is for evaluation described below.

フッ素ゴム13としては、フッ化ビニリデン由来の構成単位、ヘキサフルオロプロピレンの構成単位、および、テトラフルオロエチレン由来の構成単位を主とした構成をもつフッ素ゴム組成物も利用できる。なお、フッ素ゴム全般に適応できる。
テトラフルオロエチレン由来の構成単位、パーフルオロ(アルキルビニルエーテル)又は、パーフルオロ(アルコキシアルキルビニルエーテル)由来の構成単位を主とした構成を含有するパーフルオロエラストマーも利用できる。
As the fluororubber 13, a fluororubber composition having a constitution mainly composed of a structural unit derived from vinylidene fluoride, a structural unit derived from hexafluoropropylene, and a structural unit derived from tetrafluoroethylene can also be used. It can be applied to all fluoro rubbers.
A perfluoroelastomer containing a constitutional unit mainly derived from a constitutional unit derived from tetrafluoroethylene, perfluoro (alkyl vinyl ether) or perfluoro (alkoxyalkyl vinyl ether) can also be used.

なお、金型19では、フッ素ゴム13を金属板10に押し付けている。ただし、押し付けなくとも、フッ素ゴム13と金属板10とを接着できる。
(4)2次加硫
金型19から、接合体15を取り出し、電気炉で、2次加硫をする。熱処理は、230℃で10時間した。2次加硫は、通常の条件でよい。
In the mold 19, the fluororubber 13 is pressed against the metal plate 10. However, the fluororubber 13 and the metal plate 10 can be bonded without pressing.
(4) Secondary vulcanization The joined body 15 is taken out from the mold 19 and subjected to secondary vulcanization with an electric furnace. The heat treatment was performed at 230 ° C. for 10 hours. Secondary vulcanization may be performed under normal conditions.

<実施例>
以下に実施例のサンプルを作製し、評価した。表1に条件、結果を示す。条件を記載していない事項は上記実施の形態で示した条件である。
<Example>
The sample of the Example was produced below and evaluated. Table 1 shows the conditions and results. Matters that do not describe conditions are the conditions described in the above embodiment.

(1)加温工程
ビーカーに超純水(試験水12)を加え、ホットスターラー(加熱器16)にて所定の温度に温調した。温度、時間を表1に示す。
(1) Heating process Ultrapure water (test water 12) was added to a beaker, and the temperature was adjusted to a predetermined temperature with a hot stirrer (heater 16). Table 1 shows the temperature and time.

(2)浸漬工程
撹拌子にて撹拌中の溶液(試験水12)に、治具で固定した60mm×25mm×2mmのA5052のアルミニウム基材(金属板10)を所定時間浸漬させた。
(3)成形工程
浸漬後、自然乾燥させて、金型19に基板(金属板10)を入れ、フッ素ゴム13として、3元系パーオキサイド加硫、または、パーフルオロエラストマーを所定量入れ、表1に示す加硫温度、加硫時間の条件で、ゴムとアルミニウム基材の接合体15のサンプルをプレス成型した。
(2) Immersion step A 60 mm × 25 mm × 2 mm A5052 aluminum substrate (metal plate 10) fixed with a jig was immersed in the solution (test water 12) being stirred by a stir bar for a predetermined time.
(3) After dipping in the molding process, the substrate is naturally dried, and the substrate (metal plate 10) is placed in the mold 19, and a predetermined amount of ternary peroxide vulcanization or perfluoroelastomer is added as the fluoro rubber 13. Under the conditions of vulcanization temperature and vulcanization time shown in No. 1, a sample of the bonded body 15 of rubber and aluminum substrate was press-molded.

フッ素ゴムとして、バイトン(ケマーズ株式会社の商標)、パーフルオロエラストマーとして、カルレッツ(デュポン株式会社の商標)を使用した。
(4)2次加硫
2次加硫を表1に示す条件で行った。
<比較例>
以下に比較例のサンプルを作製し、評価した。表1に条件、結果を示す。実施例と同様の工程を、条件を変えて実施した比較例と、いくつかの工程を実施しなかった比較例とがある。
Viton (trademark of Chemers Co., Ltd.) was used as the fluororubber, and Kalrez (trademark of DuPont Co., Ltd.) was used as the perfluoroelastomer.
(4) Secondary vulcanization Secondary vulcanization was performed under the conditions shown in Table 1.
<Comparative example>
The sample of the comparative example was produced and evaluated below. Table 1 shows the conditions and results. There are a comparative example in which the same steps as in the examples were performed under different conditions, and a comparative example in which some steps were not performed.

また、他の例と異なり、プライマー塗布をした比較例3,6もある。これは、アルミニウム基材表面を、プライマー処理として、溶剤系のプライマーをウェスに染み込ませ、アルミ基板に手で擦って塗って、常温で1時間程度乾燥させた。
ケムロック607にてプライマー処理をした。ケムロック607はロードコーポレーション社製の金属とゴムとの接着用のプライマーで、数種類のシランカップリング剤とアルコール、および、トルエンから成る固形分濃度6.2〜6.8wt%の溶液である。
Further, unlike the other examples, there are also Comparative Examples 3 and 6 in which primer is applied. In this method, the surface of the aluminum base material was used as a primer treatment, and a solvent-based primer was soaked into the waste cloth and rubbed onto the aluminum substrate by hand, and dried at room temperature for about 1 hour.
Primer treatment was performed with Chemlock 607. Chemlock 607 is a primer for adhesion between metals and rubbers manufactured by Road Corporation, and is a solution having a solid content concentration of 6.2 to 6.8 wt% composed of several types of silane coupling agents, alcohol, and toluene.

<評価方法>
2次加硫後、耐熱性フィルム17を取り除き、アルミニウム上とフッ素ゴム13との間に隙間を設けることで、90°剥離試験機の治具に、取り付けられるようにした。テンシロン(引張試験機)にてゴムとアルミニウム基材の90°剥離を行い、剥離強さを測定した。試験片準備及び試験方法については、JISのK6256−2に準じて行った。テンシロン引張試験機とは、島津製作所社製(型番AGS−X)の引張試験器である。
<Evaluation method>
After the secondary vulcanization, the heat-resistant film 17 was removed, and a gap was provided between the aluminum and the fluororubber 13 so that it could be attached to a jig of a 90 ° peel tester. 90 ° peeling between the rubber and the aluminum substrate was performed with a Tensilon (tensile tester), and the peel strength was measured. About test piece preparation and the test method, it carried out according to JISK6256-2. The Tensilon tensile tester is a tensile tester manufactured by Shimadzu Corporation (model number AGS-X).

一部ゴム破壊のものは、ゴム自体が破壊されたもので、接合が強固なものである。
界面剥離したものは、ゴムとアルミニウムとの界面で剥離したもので、接合が弱いものである。
剥離強さが0のものは、一次加硫(プレス成型時)に加硫接着しなかったものである。
Some of the rubber-destructed ones are those in which the rubber itself has been destroyed and the bonding is strong.
What peeled at the interface is peeled off at the interface between the rubber and aluminum, and the bond is weak.
Those having a peel strength of 0 were those which were not vulcanized and bonded during primary vulcanization (during press molding).

<合否>
剥離強さが、25N/mm以上のものを合格とした。この理由は本接着技術の適用が考えられるアルミニウム基板とフッ素系ゴムの接着に必要な数値であるからである。
<Pass / fail>
A peel strength of 25 N / mm or more was accepted. This is because the numerical value is necessary for bonding the aluminum substrate and the fluorine-based rubber to which this bonding technique can be applied.

<考察>
(1)表1の結果から、アルミニウムの処理条件は、65℃〜90℃で、処理時間は、1時間〜5時間が必要である。
(2)比較例3、6は、プライマー処理したものであるが、大きく剥離強さが異なる。プライマー剤と金属、ゴムとの関係の最適化が必要である。また、プライマー処理自体が必要なため、本願の課題から、外れる。
<Discussion>
(1) From the results in Table 1, the processing conditions for aluminum are 65 ° C. to 90 ° C., and the processing time is 1 hour to 5 hours.
(2) Comparative Examples 3 and 6 are primer-treated, but have significantly different peel strengths. It is necessary to optimize the relationship between the primer agent, metal and rubber. Moreover, since primer processing itself is required, it deviates from the subject of this application.

(3)実施例1〜3と、実施例4〜7とで、フッ素ゴムの種類に依存せず、接合ができている。
(4)プライマー処理に対して、実施の形態の方法では、ゴムの種類によらず、接合ができている。実施の形態の方法では、金属とゴムとの種類に対して、最適化をする必要がない。
(3) In Examples 1 to 3 and Examples 4 to 7, bonding is possible without depending on the type of fluororubber.
(4) With respect to the primer treatment, the method of the embodiment allows bonding regardless of the type of rubber. In the method of the embodiment, it is not necessary to optimize the type of metal and rubber.

<写真観観察>
図3に未処理のアルミニウム基板と、90℃の試験水に5時間浸漬後のアルミニウム基板(実施例3)の表面のSEM像を示す。アルミニウムの表面には、直径10nm〜70nm、長さ100nm〜300nmの棒状(繊維状)の物質が積み重なり、深くにまで形成していることがわかる。このことから、アンカー効果により、アルミニウムとゴムとが接着していると考えることができる。また、アルミニウムの試験水12への浸漬後の低倍率のSEM像にて、円形状のブツが存在しているのが確認できる(点線で囲った部位)。ブツは薄膜が積み重なった構造をもち、組成は周囲の表面と変わらず、1500μmの面積に1個程度存在する。大きさは直径1μm〜15μmである。
<Photograph observation>
FIG. 3 shows SEM images of the untreated aluminum substrate and the surface of the aluminum substrate (Example 3) after being immersed in 90 ° C. test water for 5 hours. It can be seen that rod-like (fibrous) substances having a diameter of 10 nm to 70 nm and a length of 100 nm to 300 nm are stacked on the surface of the aluminum and formed deep. From this, it can be considered that aluminum and rubber are bonded due to the anchor effect. In addition, it can be confirmed that a circular shape is present in the low-magnification SEM image after immersion of aluminum in test water 12 (part surrounded by a dotted line). The bun has a structure in which thin films are stacked, and the composition is the same as the surrounding surface, and there is about one in an area of 1500 μm 2 . The size is 1 μm to 15 μm in diameter.

図4に未処理のアルミニウム基板、および、90℃の試験水に5時間浸漬後のアルミニウム基板(実施例3)について、上部のSEM像全体の範囲のEDXスペクトルを示し、そのEDXスペクトルから得られた表面から1μmの深さの元素組成を表2に示す。   FIG. 4 shows an EDX spectrum of the entire upper SEM image for an untreated aluminum substrate and an aluminum substrate (Example 3) after being immersed in 90 ° C. test water for 5 hours, and obtained from the EDX spectrum. Table 2 shows the elemental composition at a depth of 1 μm from the surface.

図4、および、表2の結果により、酸素原子の存在量が増え、水酸化物、あるいは酸化物が生じていると考えられるが、文献(軽金属第56巻第2号(2006)82)により、水酸化アルミニウムであると考えられる。 From the results of FIG. 4 and Table 2, it is considered that the abundance of oxygen atoms is increased and hydroxides or oxides are generated. According to the literature (Light Metals Vol. 56 No. 2 (2006) 82) It is considered to be aluminum hydroxide.

図5に試験水12に90℃、5時間の条件で浸漬したアルミニウム基材(実施例3、7)からフッ素ゴム(3元系パーオキサイド加硫)、および、パーフルオロエラスストマーを90°剥離離した後のアルミ基板のSEM像を示す。表3に、そのSEM像全体の範囲のEDXによる表面から1μmの深さの元素分析の結果を示す。   FIG. 5 shows 90 ° peeling of fluororubber (ternary peroxide vulcanization) and perfluoroelastomer from an aluminum substrate (Examples 3 and 7) immersed in test water 12 at 90 ° C. for 5 hours. The SEM image of the aluminum substrate after separating is shown. Table 3 shows the results of elemental analysis at a depth of 1 μm from the surface by EDX over the entire SEM image.

図5の点線で囲まれた部位に、ゴムが存在していることが確認できる。図5、および、表3より、炭素やフッ素が多く検出されたので、フッ素ゴム(3次元パーオキサイド加加硫)、および、パーフルオロエラストマーは、90°剥離した後でも試験水12での処理された基板上に残存していることが、SEM像のみからでなく、元素分析によっても明らかになった。 It can be confirmed that rubber is present in a portion surrounded by a dotted line in FIG. 5 and Table 3, since a large amount of carbon and fluorine were detected, fluororubber (three-dimensional peroxide vulcanization) and perfluoroelastomer were treated with test water 12 even after 90 ° peeling. It was clarified not only from the SEM image but also by elemental analysis that it remained on the substrate.

これらの結果により、金属とフッ素系ゴムとの接着力の向上は、試験水12の浸漬による直径10nm〜70nm、長さ100nm〜300nmの棒状の水酸化アルルミニウムの隙間に、ゴムが入り込むことによるアンカー効果によるものだと考えられる。
(全体として)
アルミニウムで説明したが、マグネシウム、亜鉛、マンガン、ベリリウムの単体金属、あるいは、それらを主とした合金でも同様である。また、試験水12の浸漬に必要な時間に違いはあるものの、アルミニウムの純度には影響されない。試験水12で表面数μmにナノサイズの棒状の金属の水酸化物が形成できる金属なら適用できる。
Based on these results, the improvement of the adhesion between the metal and the fluorine-based rubber is due to the rubber entering the gap between the rod-shaped aluminum hydroxides having a diameter of 10 nm to 70 nm and a length of 100 nm to 300 nm by immersion of the test water 12. This is probably due to the anchor effect.
(as a whole)
Although described with aluminum, the same applies to simple metals such as magnesium, zinc, manganese, and beryllium or alloys mainly composed of them. Further, although there is a difference in the time required for immersing the test water 12, it is not affected by the purity of aluminum. Any metal that can form a nanosized rod-like metal hydroxide with a surface of several μm in the test water 12 can be used.

本発明の金属とフッ素材料との接合方法、金属とフッ素材料との接合体は、種々の金属とゴムとの接合に利用できる。
で利用できる。
The joining method of a metal and a fluorine material and the joined body of a metal and a fluorine material of the present invention can be used for joining various metals and rubber.
Available at.

10 金属板
12 試験水
13 フッ素ゴム
15 接合体
16 加熱器
17 耐熱性フィルム
19 金型

DESCRIPTION OF SYMBOLS 10 Metal plate 12 Test water 13 Fluoro rubber 15 Joined body 16 Heater 17 Heat resistant film 19 Mold

Claims (8)

金属を試験水に250℃以下で浸漬または接触させ、前記金属の表面に前記金属の水酸化物を形成する工程と、
前記金属の表面にフッ素材料を形成する工程と、を含む金属とフッ素材料との接合方法。
Immersing or contacting a metal in test water at 250 ° C. or lower to form a hydroxide of the metal on the surface of the metal;
Forming a fluorine material on a surface of the metal, and joining the metal and the fluorine material.
前記試験水の電気抵抗値は、10MΩ・cm以上、18.2MΩ・cm以下である請求項1記載の金属とフッ素材料との接合方法。 The method for joining a metal and a fluorine material according to claim 1, wherein the electric resistance value of the test water is 10 MΩ · cm or more and 18.2 MΩ · cm or less. 前記水酸化物は、厚さが1μm〜5μmである請求項1又2記載の金属とフッ素材料との接合方法。 The method for joining a metal and a fluorine material according to claim 1 or 2, wherein the hydroxide has a thickness of 1 µm to 5 µm. 前記水酸化物は、直径10nm〜70nm、長さ100nm〜300nmの繊維状であるある請求項1から3のいずれか1項に記載の金属とフッ素材料との接合方法。 The method for joining a metal and a fluorine material according to any one of claims 1 to 3, wherein the hydroxide is a fiber having a diameter of 10 nm to 70 nm and a length of 100 nm to 300 nm. 前記水酸化物の表面に、直径1μm〜15μmの円形状のブツがある請求項1から4のいずれか1項に記載の金属とフッ素材料との接合方法。 The method for joining a metal and a fluorine material according to any one of claims 1 to 4, wherein the surface of the hydroxide has a circular shape having a diameter of 1 µm to 15 µm. 金属と、
前記金属の表面に位置する前記金属の水酸化物と、
前記金属の水酸化物の表面に位置するフッ素材料と、を含むフッ素材料と金属との接合体。
Metal,
A hydroxide of the metal located on the surface of the metal;
A joined body of a fluorine material and a metal including a fluorine material located on a surface of the metal hydroxide.
前記金属の水酸化物は、1μm以上、5μm以下の厚みである請求項6記載のフッ素材料と金属との接合体。 The joined body of fluorine material and metal according to claim 6, wherein the metal hydroxide has a thickness of 1 µm or more and 5 µm or less. 前記金属の水酸化物は、繊維状である請求項6又は7記載のフッ素材料と金属との接合体。





The joined body of a fluorine material and a metal according to claim 6 or 7, wherein the metal hydroxide is fibrous.





JP2017150726A 2017-08-03 2017-08-03 Bonded body of metal and fluororubber and bonding method thereof Active JP6345323B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150726A JP6345323B1 (en) 2017-08-03 2017-08-03 Bonded body of metal and fluororubber and bonding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150726A JP6345323B1 (en) 2017-08-03 2017-08-03 Bonded body of metal and fluororubber and bonding method thereof

Publications (2)

Publication Number Publication Date
JP6345323B1 JP6345323B1 (en) 2018-06-20
JP2019026918A true JP2019026918A (en) 2019-02-21

Family

ID=62635689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150726A Active JP6345323B1 (en) 2017-08-03 2017-08-03 Bonded body of metal and fluororubber and bonding method thereof

Country Status (1)

Country Link
JP (1) JP6345323B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158877A (en) * 1980-05-14 1981-12-07 Showa Alum Corp Treatment of substrate of aluminum surface
JPH05271954A (en) * 1992-03-24 1993-10-19 Furukawa Alum Co Ltd Al sheet excellent in formability, weldability and corrosion resistance
JPH07138765A (en) * 1993-11-19 1995-05-30 Sumitomo Metal Ind Ltd Al and al alloy having surface layer excellent in adhesiveness and its production
JP2004277784A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Aluminum of high corrosion resistance and wear resistance, and surface treatment method therefor
WO2011021571A1 (en) * 2009-08-20 2011-02-24 独立行政法人産業技術総合研究所 Method for surface-treating base of magnesium or alloy thereof, and nanostructures
JP2012001753A (en) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial Science & Technology Method of forming microstructure on surface of aluminum metal or aluminum alloy
JP2017013084A (en) * 2015-06-29 2017-01-19 マツダ株式会社 Joining method of metal member and resin member, metal member used in the method, and conjugant of metal member and resin member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158877A (en) * 1980-05-14 1981-12-07 Showa Alum Corp Treatment of substrate of aluminum surface
JPH05271954A (en) * 1992-03-24 1993-10-19 Furukawa Alum Co Ltd Al sheet excellent in formability, weldability and corrosion resistance
JPH07138765A (en) * 1993-11-19 1995-05-30 Sumitomo Metal Ind Ltd Al and al alloy having surface layer excellent in adhesiveness and its production
JP2004277784A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Aluminum of high corrosion resistance and wear resistance, and surface treatment method therefor
WO2011021571A1 (en) * 2009-08-20 2011-02-24 独立行政法人産業技術総合研究所 Method for surface-treating base of magnesium or alloy thereof, and nanostructures
JP2012001753A (en) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial Science & Technology Method of forming microstructure on surface of aluminum metal or aluminum alloy
JP2017013084A (en) * 2015-06-29 2017-01-19 マツダ株式会社 Joining method of metal member and resin member, metal member used in the method, and conjugant of metal member and resin member

Also Published As

Publication number Publication date
JP6345323B1 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
EP1918427A1 (en) Metal oxide film, laminate, metal member and process for producing the same
KR20140035926A (en) Method for producing aluminum-resin complex
CN110983415B (en) Magnesium-lithium alloy surface composite oxidation treatment method
TW201410924A (en) Surface treatment method for aluminum alloy parts for valves
CN1234915C (en) Improved zinc-chromium stabilizer containing hydrogen inhibiting additive
JP4656405B2 (en) Surface treatment method of aluminum or its alloy
JP2009138229A (en) Method for forming protective film
TWI554183B (en) Forming method for a metal housing
TW201343983A (en) Metal material surface treatment method, and metal material
JP6345323B1 (en) Bonded body of metal and fluororubber and bonding method thereof
JP3506827B2 (en) Surface-treated aluminum material and method for producing the same
KR101681537B1 (en) Manufacturing method for dimensionally stable electrode and dimensionally stable electrode manufactured by the same
JPWO2018062046A1 (en) Aluminum member for electrode and method for manufacturing aluminum member for electrode
JPH09316693A (en) Fluororesin-coated aluminum alloy member and its production
CN108431934A (en) The corrosion-resistant coating of semiconductor processing equipment
JP2013049903A (en) Method for manufacturing aluminum anodic oxide coating being superior in productivity and having high voltage endurance
US20160168742A1 (en) Method for anodizing aluminum alloy workpiece, method for surface treating aluminum alloy workpiece, and anodizing solution mixes
KR100819180B1 (en) Method for anodizing of aluminium drum
JP4426383B2 (en) Method for forming oxide film on aluminum or aluminum alloy
CN112004669B (en) Nickel-free sealing of anodized metal substrates
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JP2000282294A (en) Formation of anodically oxidized film excellent in thermal crack resistance and corrosion resistance and anodically oxidized film-coated member
CN110894619A (en) Anodic oxidation electrolyte, application, titanium alloy structure and anodic oxidation method
JP2004238717A (en) Passivation treatment method of stainless steel material
KR101313014B1 (en) Method for Treating the Surface of the Heat Sink for LED

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180522

R150 Certificate of patent or registration of utility model

Ref document number: 6345323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350