JP2019025375A - Solid waste processing method - Google Patents

Solid waste processing method Download PDF

Info

Publication number
JP2019025375A
JP2019025375A JP2017143536A JP2017143536A JP2019025375A JP 2019025375 A JP2019025375 A JP 2019025375A JP 2017143536 A JP2017143536 A JP 2017143536A JP 2017143536 A JP2017143536 A JP 2017143536A JP 2019025375 A JP2019025375 A JP 2019025375A
Authority
JP
Japan
Prior art keywords
mass
waste
processing method
solid waste
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017143536A
Other languages
Japanese (ja)
Other versions
JP6874577B2 (en
Inventor
崇宏 関
Takahiro Seki
崇宏 関
清隆 吉井
Kiyotaka Yoshii
清隆 吉井
有記 長尾
Yuki Nagao
有記 長尾
吉田 洋一
Yoichi Yoshida
洋一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2017143536A priority Critical patent/JP6874577B2/en
Publication of JP2019025375A publication Critical patent/JP2019025375A/en
Application granted granted Critical
Publication of JP6874577B2 publication Critical patent/JP6874577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

To provide a solid waste processing method capable of restraining elution of toxic microelements from incineration ash containing toxic microelements efficiently, in a large scale and economically, and in an industrially simple manner.SOLUTION: A solid waste processing method according to the present invention comprises processes (i)-(iii) defined in the following. Waste heat is preferably used as a heat source for (ii). The treatment temperature of a dry process (ii) is preferably 80°C-300°C. (i) A process of mixing incineration ash and phosphor-including waste. (ii) A process of making the moisture content of a mixture of (i) 0 mass%-50 mass%. (iii) A process of burning dry matter from (ii) at 600°C-1200°C.SELECTED DRAWING: None

Description

本発明は固体廃棄物の処理方法に関する。   The present invention relates to a method for treating solid waste.

焼却灰からの有害微量元素溶出抑制方法としては、これまで、薬剤を添加する方法、溶媒で抽出する方法、加熱処理する方法等が知られている。この中でも比較的高い生産性で有害微量元素の溶出を抑制できる方法として、薬剤を添加する方法が繁用されているものの、添加する薬剤が製造コストを圧迫するため、これまで経済的な処理方法としては課題を有していた。   As a method for suppressing the elution of harmful trace elements from incinerated ash, a method of adding a chemical, a method of extracting with a solvent, a method of heat treatment, and the like are known. Among them, as a method that can suppress the elution of harmful trace elements with relatively high productivity, a method of adding a drug is frequently used. Had problems.

特許文献1には、焼却灰に塩素含有物質を加え、焼成処理を行うことによる無害化処理方法が記載されている。   Patent Document 1 describes a detoxification treatment method by adding a chlorine-containing substance to incineration ash and performing a firing treatment.

特許文献2には、焼却灰に、水溶液状の活性汚泥を造粒助材として添加混合し、これを造粒成形して粒子状物を製造する方法が記載されている。   Patent Document 2 describes a method in which an aqueous activated sludge is added to and mixed with incinerated ash as a granulation aid, and granulated to produce a particulate material.

特開2008−296080号公報JP 2008-296080 A 特開平7−941号公報Japanese Patent Laid-Open No. 7-941

しかしながら特許文献1記載の技術では、塩酸などの薬剤を用いているため、処理コストが高くなり、また、焼却灰に塩素分が残留する可能性がある。一般的な廃棄物の有効利用方法として、セメント原料化が挙げられるが、塩素分が残留していると、鉄筋コンクリート製造時の鉄筋腐食の原因となることから、望ましくない。
また、特許文献2に記載の処理方法では、プロセスの経済的考察がなされておらず、特に乾燥工程(水分除去処理)では、通常この処理費用が製造コストアップに繋がるため、この処理コストを抑えるための、実用的なプロセス開発が必要である。また、特許文献2には、規制対象元素の溶出抑制効果について記載されていない。
However, since the technique described in Patent Document 1 uses a chemical such as hydrochloric acid, the processing cost is high, and there is a possibility that chlorine remains in the incinerated ash. As a general method for effectively using waste, cement raw materials can be mentioned. However, residual chlorine is undesirable because it causes corrosion of reinforcing steel during the manufacture of reinforced concrete.
Further, in the processing method described in Patent Document 2, no economical consideration is given to the process, and particularly in the drying step (moisture removal processing), since this processing cost usually leads to an increase in manufacturing cost, this processing cost is suppressed. Therefore, practical process development is necessary. Further, Patent Document 2 does not describe the effect of suppressing elution of the regulated element.

以上の理由から、有害微量元素の溶出制御技術とプロセスの経済性とを両立した、高効率かつ、大規模で経済的な有害微量元素の溶出制御処理方法の開発が望まれている。   For these reasons, it is desired to develop a highly efficient, large-scale and economical method for controlling the leaching of harmful trace elements that is compatible with the leaching control technology for toxic trace elements and the economics of the process.

本発明は、以下に記載の(i)〜(iii)の工程を有する固体廃棄物の処理方法を提供することにより、前記課題を解決したものである。
(i)焼却灰と燐含有廃棄物とを混合する工程。
(ii)(i)の混合物の含水率を0質量%以上50質量%以下にする工程。
(iii)(ii)の乾燥物を600℃以上1200℃以下で焼成する工程。
This invention solves the said subject by providing the processing method of the solid waste which has the process of (i)-(iii) described below.
(I) A step of mixing incineration ash and phosphorus-containing waste.
(Ii) A step of adjusting the water content of the mixture of (i) to 0% by mass or more and 50% by mass or less.
(Iii) A step of firing the dried product of (ii) at 600 ° C. or more and 1200 ° C. or less.

本発明の処理方法によれば、有害微量元素を含有する焼却灰からの有害微量元素の溶出を、高効率かつ、大規模で経済的、且つ工業的に簡便に抑制することができる。   According to the treatment method of the present invention, the elution of harmful trace elements from the incinerated ash containing harmful trace elements can be easily suppressed with high efficiency, large scale, economically and industrially.

以下に本発明を好ましい実施形態に基づき説明するが、本発明は以下の実施形態に制限されるものではない。   The present invention will be described below based on preferred embodiments, but the present invention is not limited to the following embodiments.

本発明の処理対象の固体廃棄物である焼却灰は例えば、家庭から排出される一般ごみの焼却灰、産業用焼却灰、又は石炭火力発電所から排出されるフライアッシュやクリンカアッシュ等の石炭灰等が挙げられる。前記石炭灰は、石炭単独又は石炭とバイオマスとの混合物を燃焼させて発生する焼却灰であってもよい。バイオマスとは生物由来の有機物であり、例えば農作由来物、材木由来物であり、具体的には稲わら、もみ、ヤジガラ等の農作廃棄物や木質チップや木質ペレット、間伐材、建設用廃木材等の材木由来物などである。   The incineration ash that is the solid waste to be treated according to the present invention is, for example, incineration ash from household waste, industrial incineration ash, or coal ash such as fly ash and clinker ash discharged from a coal-fired power plant. Etc. The coal ash may be incinerated ash generated by burning coal alone or a mixture of coal and biomass. Biomass is organic matter derived from living organisms, such as those derived from agricultural production and timber. Specifically, agricultural waste such as rice straw, fir and jagged rice, wood chips, wood pellets, thinned wood, and construction waste wood. It is derived from timber such as.

前記焼却灰には、ヒ素、セレン、鉛、六価クロム、水銀及びカドミウムなどの重金属元素だけでなく、土壌汚染対策法に規定されるフッ素及びホウ素等の元素が多く含有されている場合がある。例えば後述する実施例のとおり環境庁告示第46号に準じた方法で溶出量を測定した場合に下記実施例に記載の環境基準値を超えている場合がある。従って、焼却灰をそのまま廃棄すると、これらの元素が環境中へ溶出し環境汚染の一因となるおそれがある。本発明の処理方法は、土壌環境基準の規制対象となっている前記8種の元素からなる群の少なくとも1種の元素について、焼却灰からの溶出量を低減するものである。本発明は、様々な組成や物性を有する焼却灰からの有害微量元素の溶出を抑制できる。   The incinerated ash may contain not only heavy metal elements such as arsenic, selenium, lead, hexavalent chromium, mercury and cadmium but also a large amount of elements such as fluorine and boron stipulated in the Soil Contamination Countermeasures Law. . For example, when the amount of elution is measured by a method according to Environment Agency Notification No. 46 as in the examples described later, the environmental standard values described in the following examples may be exceeded. Therefore, if the incinerated ash is discarded as it is, these elements may elute into the environment and contribute to environmental pollution. The processing method of this invention reduces the elution amount from incineration ash about the at least 1 sort (s) of the group which consists of said 8 types of elements which are the control object of soil environmental standard. The present invention can suppress the elution of harmful trace elements from incinerated ash having various compositions and physical properties.

本発明においては、燐含有廃棄物を用いて焼却灰を処理する。燐含有廃棄物を用い、且つ後述する焼成条件を採用することによって、焼却灰に含まれる有害微量元素の溶出量を抑制できることが本発明者の検討の結果判明した。本発明に用いる燐含有廃棄物としては燐を含有している廃棄物を広く包含する。例えば、一般下水汚泥、工業用下水汚泥などの下水汚泥系燐含有廃棄物、家畜や魚類の肉骨粉、麦わら、家畜排泄物などの農水産系燐含有廃棄物、燐酸亜鉛化成処理工程排出スラッジ、電子部品及びプリント基板の加工、脱脂工程等の洗浄液などの工業系燐含有廃棄物、おから、醤油かす、残飯等の食品系燐含有廃棄物群から選択される少なくとも1種の燐含有廃棄物であって、好ましくは下水汚泥系燐含有廃棄物、農水産系燐含有廃棄物、工業系燐含有廃棄物であって、更に好ましくは一般下水汚泥、工業用下水汚泥、肉骨粉である。これらの廃棄物は含水物、乾燥物、焼成物の何れであってもよい。また、これらの廃棄物の多くがカロリーを有するものであり、焼成時にそのカロリーによってエネルギーコストを削減することが可能である。   In the present invention, the incinerated ash is treated using phosphorus-containing waste. As a result of the inventor's examination, it was found that the amount of harmful trace elements contained in the incinerated ash can be suppressed by using phosphorus-containing waste and adopting the firing conditions described later. The phosphorus-containing waste used in the present invention widely includes waste containing phosphorus. For example, sewage sludge phosphorus-containing wastes such as general sewage sludge, industrial sewage sludge, agricultural and fishery phosphorus-containing wastes such as meat and bone meal, straw and livestock excrement of livestock and fish, zinc phosphate chemical conversion process discharge sludge, At least one type of phosphorus-containing waste selected from the group of industrial phosphorus-containing wastes such as cleaning liquids for processing electronic parts and printed circuit boards, degreasing processes, etc., okara, soy sauce cake, leftover food, etc. Preferably, it is sewage sludge phosphorus-containing waste, agricultural and fishery phosphorus-containing waste, industrial phosphorus-containing waste, and more preferably general sewage sludge, industrial sewage sludge, and meat-and-bone meal. These waste materials may be any of hydrated materials, dried products, and fired products. Moreover, many of these wastes have calories, and it is possible to reduce energy costs by calories during firing.

本発明に用いる燐含有廃棄物中の燐含有量は、使用する燐含有廃棄物の形態や含液率によって変化する。例えば一般的な脱水汚泥は含水率が80質量%以上90質量%以下程度となっている。脱水汚泥と焼却灰の混合物は含水率が通常30質量%以上となる。しかしながら、仮に(i)工程で得られた混合物の含水率が30質量%未満である場合であっても、(ii)の乾燥工程を行う場合は本発明に含まれる。従って、燐含有廃棄物は脱水汚泥と呼ばれる含水品だけでなく、水分を除去した乾燥品、更には200〜900℃で有機物を分解した汚泥焼成品であってもよい。   The phosphorus content in the phosphorus-containing waste used in the present invention varies depending on the form and the liquid content of the phosphorus-containing waste used. For example, a general dewatered sludge has a water content of about 80% by mass to 90% by mass. The mixture of dewatered sludge and incineration ash usually has a water content of 30% by mass or more. However, even if the moisture content of the mixture obtained in the step (i) is less than 30% by mass, the case where the drying step (ii) is performed is included in the present invention. Therefore, the phosphorus-containing waste is not limited to a water-containing product called dehydrated sludge, but may be a dried product from which moisture has been removed, or a sludge-fired product obtained by decomposing organic substances at 200 to 900 ° C.

燐含有廃棄物は、900℃で3時間焼成した状態で測定した蛍光X線分析(XRF)でのP換算での値が、1質量%以上70質量%以下が好ましく、5質量%以上60質量%以下であることがより好ましい。燐含有量が70質量%以下である場合、本発明の溶出抑制効果を高いものとしやすい。また燐含有量が1質量%以上である場合、生産性の低下を防止しやすい。本発明では燐含有廃棄物を用い、これを焼却灰と混合して乾燥させ、次いで焼成することによって、焼却灰に含まれる有害微量元素の溶出量を抑制できるとともに廃棄物の削減に寄与できる。また本発明では、燐含有廃棄物を焼却灰と混合して乾燥させ、次いで焼成することによって、燐含有廃棄物に含まれる有害微量元素、例えばホウ素、ヒ素、六価クロム又は燐等の溶出量を抑制できる。
The phosphorus-containing waste is preferably 1% by mass or more and 70% by mass or less, preferably 5% by mass or less in terms of P 2 O 5 as measured by fluorescent X-ray analysis (XRF) measured in a state where it is fired at 900 ° C. for 3 hours. More preferably, it is 60 mass% or less. When phosphorus content is 70 mass% or less, it is easy to make the elution suppression effect of this invention high. Further, when the phosphorus content is 1% by mass or more, it is easy to prevent a decrease in productivity. In the present invention, phosphorus-containing waste is used, mixed with incinerated ash, dried, and then calcined, whereby the amount of harmful trace elements contained in the incinerated ash can be suppressed and the amount of waste can be reduced. In the present invention, the phosphorus-containing waste is mixed with the incinerated ash, dried, and then baked, so that the amount of harmful trace elements contained in the phosphorus-containing waste, such as boron, arsenic, hexavalent chromium or phosphorus, is eluted. Can be suppressed.

本発明において(i)の焼却灰と燐含有廃棄物とを混合する工程において、焼却灰に混合させる燐含有廃棄物の量は、有害微量元素の溶出抑制効果が一層顕著に発現する観点から、焼却灰100質量部に対して燐元素(P)換算で、0.001質量部以上60質量部以下であることが好ましく、0.005質量部以上30質量部以下であることがより好ましく、0.01質量部以上20質量部以下であることが更に好ましい。燐含有廃棄物の添加量を0.001質量部以上60質量部以下に設定することで、有害微量元素の溶出抑制効果が十分発揮される。また、燐含有化合物の添加量を60質量部以下にすることで、焼却灰の処理物からの燐の溶出量を環境基準値以下にすることが容易である。   In the step of mixing the incinerated ash and the phosphorus-containing waste (i) in the present invention, the amount of the phosphorus-containing waste to be mixed with the incinerated ash is from the viewpoint that the elution suppressing effect of harmful trace elements is more remarkably expressed. It is preferably 0.001 to 60 parts by mass, more preferably 0.005 to 30 parts by mass in terms of phosphorus element (P) with respect to 100 parts by mass of incinerated ash. More preferably, the content is 0.01 part by mass or more and 20 parts by mass or less. By setting the addition amount of the phosphorus-containing waste to 0.001 part by mass or more and 60 parts by mass or less, the elution suppressing effect of harmful trace elements is sufficiently exhibited. Moreover, by making the addition amount of a phosphorus containing compound 60 mass parts or less, it is easy to make the phosphorus elution amount from the processed product of incineration ash below an environmental standard value.

(i)の混合工程では、焼却灰100質量部に対し、燐含有廃棄物を30質量部以上添加することが、有害微量元素の溶出量抑制の観点から好ましく、4000質量部以下添加することが生産性を低下させない等の観点から好ましい。これらの観点から、焼却灰100質量部に対し燐含有廃棄物を、50質量部以上2000質量部以下添加することが好ましく、100質量部以上1600質量部以下添加することがより好ましい。   In the mixing step (i), it is preferable to add 30 parts by mass or more of phosphorus-containing waste with respect to 100 parts by mass of incinerated ash, from the viewpoint of suppressing the amount of harmful trace elements eluted, and to add 4000 parts by mass or less. It is preferable from the viewpoint of not reducing productivity. From these viewpoints, it is preferable to add 50 parts by mass or more and 2000 parts by mass or less, and more preferably 100 parts by mass or more and 1600 parts by mass or less of phosphorus-containing waste with respect to 100 parts by mass of incinerated ash.

本発明の処理方法における(i)の混合工程では、焼却灰と燐含有廃棄物とを混合する方法に特に制限はない。例えば、焼却灰と燐含有廃棄物とを物理的に混合する方法、溶媒に燐含有廃棄物を溶解又は懸濁させた溶液又はスラリーに、焼却灰を含浸する方法、焼却灰と燐含有廃棄物とを物理的に混合した後に溶媒を添加する方法などが挙げられる。   In the mixing step (i) in the treatment method of the present invention, the method for mixing the incinerated ash and the phosphorus-containing waste is not particularly limited. For example, a method of physically mixing incineration ash and phosphorus-containing waste, a method of impregnating incineration ash in a solution or slurry in which phosphorus-containing waste is dissolved or suspended in a solvent, incineration ash and phosphorus-containing waste And a method of adding a solvent after physically mixing and the like.

溶媒を使用する場合、該溶媒としては、燐含有廃棄物を溶解し得るか、又は懸濁させ得るものを用いることができる。例えば、水(水道水、蒸留水、イオン交換水等)及び海水などの水性溶媒、並びにメタノール、エタノール及びイソプロピルアルコール等のアルコール類を初めとする有機溶媒を挙げることができる。好ましい溶媒は水である。有害微量元素の溶出抑制効果が一層顕著に発現する観点から、溶媒の使用量は、焼却灰100質量部に対して、5質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましい。   When a solvent is used, a solvent capable of dissolving or suspending the phosphorus-containing waste can be used as the solvent. Examples thereof include aqueous solvents such as water (tap water, distilled water, ion exchange water, etc.) and seawater, and organic solvents including alcohols such as methanol, ethanol and isopropyl alcohol. A preferred solvent is water. From the standpoint that the effect of suppressing the elution of harmful trace elements is more prominent, the amount of the solvent used is preferably 5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the incinerated ash. It is more preferable that the amount is not more than part by mass.

また(i)により得られる混合物は、(ii)の乾燥工程前の水分含量が10質量%超90質量%以下であることが好ましく、20質量%超85質量%以下であることがより好ましい。   Further, the mixture obtained by (i) preferably has a water content before the drying step of (ii) of more than 10% by mass and 90% by mass or less, and more preferably more than 20% by mass and 85% by mass or less.

本発明では混合物を成形してもよく、或いは成形しなくてもよい。混合物を成形する場合、(i)の混合工程後、(ii)の乾燥工程の前において、成形工程を行う或いは、(ii)の乾燥工程の後の何れで成形工程を行ってもよいが、水分量が多すぎると成形性が低下するため、(ii)の乾燥工程の後成形行うことが好ましい。   In the present invention, the mixture may or may not be molded. When molding the mixture, the molding step may be performed after the mixing step (i) and before the drying step (ii), or after the drying step (ii), If the water content is too large, the moldability is lowered, and therefore, it is preferable to carry out the molding after the drying step (ii).

本発明における(ii)の乾燥方法には特に制限はなく、一般的な加熱乾燥、気流乾燥、マイクロ波乾燥、天日干乾燥、真空乾燥、撹拌乾燥、円筒乾燥、噴霧乾燥、流動層乾燥、赤外線乾燥、高周波乾燥などが用いられるが、大規模かつ連続的に処理をすること、排熱を利用しやすい等の観点から、加熱乾燥、気流乾燥などが好ましい。気流乾燥としては、乾燥管中において混合物を熱ガスの気流によって運搬しながら乾燥させるものが挙げられる。   There is no particular limitation on the drying method (ii) in the present invention, and general heat drying, airflow drying, microwave drying, sun drying, vacuum drying, stirring drying, cylindrical drying, spray drying, fluidized bed drying, Infrared drying, high-frequency drying, and the like are used. From the viewpoints of large-scale and continuous processing and easy use of exhaust heat, heat drying, airflow drying, and the like are preferable. As the air flow drying, there is a method in which the mixture is dried while being transported by a hot gas flow in a drying tube.

乾燥工程後の混合物の含水率は、0質量%以上50質量%以下が好ましく、より好ましくは1質量%以上30質量%以下である。含水率が0質量%でも、溶出抑制効果に全く影響はないが、含水率が前記範囲内であれば、水が結合となり造粒され、最終処理物のハンドリング性が良くなるなど、より好適な混合状態を保つことができる。一方、含水率が50質量%を超えると、配管壁面に付着して流路の閉塞などを引き起こす可能性があり、設備の処理能力の低下を引き起こす。また、嵩比重が大きくなるため、次の焼成工程における処理容積が大きくなり、設備コストが高くなる。更に本発明の利点である乾燥工程での排熱により乾燥時のエネルギーコスト削減を行う観点と、次の焼成工程での水分除去に伴うエネルギーコスト削減の2つを考慮すると、乾燥工程での水分量は可能な限り低下させることが好ましい。   The water content of the mixture after the drying step is preferably 0% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 30% by mass or less. Even if the water content is 0% by mass, the elution suppression effect is not affected at all. A mixed state can be maintained. On the other hand, if the moisture content exceeds 50% by mass, it may adhere to the pipe wall surface and cause a blockage of the flow path, etc., resulting in a decrease in the processing capacity of the equipment. Moreover, since bulk specific gravity becomes large, the processing volume in the following baking process becomes large, and an installation cost becomes high. Furthermore, considering the two points of the energy cost reduction at the time of drying by the exhaust heat in the drying process, which is an advantage of the present invention, and the energy cost reduction accompanying the water removal in the next baking process, The amount is preferably reduced as much as possible.

(ii)の乾燥工程により、焼却灰と燐含有廃棄物との混合物の嵩及び質量を低減させることができ、これにより、(iii)の時間当たりの処理量を高めて経済性の高い処理を行うことができる。好ましくは、(ii)の乾燥工程後の当該混合物の質量(g)は、(ii)の乾燥工程前の該混合物の質量(g)に対して、70%以下であることが好ましく、50%以下であることがより好ましい。   The drying step of (ii) can reduce the volume and mass of the mixture of incinerated ash and phosphorus-containing waste, thereby increasing the amount of treatment per hour of (iii) and achieving a highly economical treatment. It can be carried out. Preferably, the mass (g) of the mixture after the drying step (ii) is preferably 70% or less with respect to the mass (g) of the mixture before the drying step (ii), and 50% The following is more preferable.

乾燥温度は、80℃以上300℃以下が望ましく、より好ましくは、100℃以上300℃以下、更に好ましくは、150℃以上300℃以下である。80℃以上とする場合、十分に水の除去を行うことができ、処理時間を短縮して処理量を向上できるほか、また嵩比重及び質量の低減効果が高いものとなる。一方で、300℃以下とすることで、汚泥の熱分解反応やダイオキシンなどの物質生成を抑制できる。   The drying temperature is desirably 80 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 300 ° C. or lower, and still more preferably 150 ° C. or higher and 300 ° C. or lower. When the temperature is 80 ° C. or higher, water can be sufficiently removed, the processing time can be shortened to improve the processing amount, and the bulk specific gravity and mass can be reduced more effectively. On the other hand, by setting it to 300 ° C. or lower, it is possible to suppress the thermal decomposition reaction of sludge and the production of substances such as dioxins.

乾燥時間は15分以上24時間以内が好ましく、30分以上10時間以内が更に好ましく、30分以上5時間以内が一層好ましい。   The drying time is preferably from 15 minutes to 24 hours, more preferably from 30 minutes to 10 hours, and even more preferably from 30 minutes to 5 hours.

乾燥工程の雰囲気は特に制限されず、例えば空気及び酸素等の酸素含有雰囲気、並びに窒素及びアルゴン等の不活性ガス雰囲気や、過熱水蒸気雰囲気で乾燥を行うことができる。経済的、排熱利用の観点からは、空気もしくは過熱水蒸気で乾燥を行うことが好ましい。   The atmosphere in the drying step is not particularly limited, and for example, drying can be performed in an oxygen-containing atmosphere such as air and oxygen, an inert gas atmosphere such as nitrogen and argon, or a superheated steam atmosphere. From the viewpoint of economical and exhaust heat utilization, it is preferable to perform drying with air or superheated steam.

本発明における(iii)の焼成方法に特に制限はなく、例えば、一般的な焼成炉、環状炉、キルンなどの焼成装置を用いることができるが、連続処理や排熱利用の観点からキルンが好ましい。キルンにはロータリーキルンが含まれる。ロータリーキルンを用いると、原料投入と処理を連続的に行えるほか、傾斜や回転速度によって滞留時間や造粒性を容易に制御することができる。(ii)の乾燥処理と(iii)の焼成処理とは、異なる装置により行われることが経済的に有利である。また(ii)の乾燥処理と(iii)の焼成処理とはその間に時間間隔を有していてもよいが、(ii)の乾燥処理と(iii)の焼成処理とを連続的に行うことが経済的に有利である。   There is no particular limitation on the firing method (iii) in the present invention, and for example, a firing device such as a general firing furnace, a ring furnace, or a kiln can be used, but a kiln is preferable from the viewpoint of continuous processing and utilization of exhaust heat. . Kilns include rotary kilns. When a rotary kiln is used, the raw material can be continuously charged and processed, and the residence time and granulation property can be easily controlled by the inclination and rotation speed. It is economically advantageous that the drying process (ii) and the firing process (iii) are performed by different apparatuses. Further, the drying treatment (ii) and the firing treatment (iii) may have a time interval between them, but the drying treatment (ii) and the firing treatment (iii) may be performed continuously. Economically advantageous.

焼成工程の雰囲気は特に制限されず、例えば空気及び酸素等の酸素含有雰囲気、並びに窒素及びアルゴン等の不活性ガス雰囲気とすることができる。経済的な観点からは、空気中で焼成を行うことが好ましい。空気中で焼成処理する場合、有害微量元素の溶出抑制効果が一層顕著になる観点から、空気を流通させながら焼成処理を行うことが好ましい。   The atmosphere of the firing step is not particularly limited, and can be, for example, an oxygen-containing atmosphere such as air and oxygen, and an inert gas atmosphere such as nitrogen and argon. From an economical point of view, it is preferable to perform the firing in air. In the case of firing in air, it is preferable to perform the firing treatment while circulating air from the viewpoint that the effect of suppressing the elution of harmful trace elements becomes more remarkable.

焼成処理は、処理物からの有害微量元素の溶出量を抑制できる温度で行うことが好ましい。検討の結果、600℃以上で加熱すると、加熱処理物からの有害微量元素の溶出量を十分に抑制できることが判明しており、この観点から、焼成温度は高ければ高いほど有害微量元素の溶出量を抑制できるが、元素によっては高温で逆に溶出しやすくなるものもある。そこで焼成処理は、600℃以上1200℃以下とすることが好ましく、700℃以上1200℃以下とすることが更に好ましく、800℃以上1100℃以下とすることが一層好ましく、900℃以上1000℃以下とすることが更に一層好ましい。   The firing treatment is preferably performed at a temperature at which the amount of harmful trace elements eluted from the treated product can be suppressed. As a result of examination, it has been found that heating at 600 ° C. or higher can sufficiently suppress the amount of harmful trace elements eluted from the heat-treated product. From this viewpoint, the higher the firing temperature, the higher the amount of harmful trace elements eluted. However, some elements tend to elute at a high temperature. Therefore, the baking treatment is preferably performed at 600 ° C. or more and 1200 ° C. or less, more preferably 700 ° C. or more and 1200 ° C. or less, further preferably 800 ° C. or more and 1100 ° C. or less, and 900 ° C. or more and 1000 ° C. or less. Even more preferably.

600℃以上、特に700℃以上で焼成処理することで、燐含有廃棄物が、石炭灰などの焼却灰中に含まれる未燃炭素の分解を促進し、焼却灰中の未燃炭素含有量を低減させることも可能となる。このことは特に、焼却灰が、炭素が豊富な物質であるバイオマスと石炭との混合物を燃焼させて発生する石炭灰である場合に有利である。焼却灰中の未燃炭素含有量を低減させることによって、例えば石炭灰にセメントを添加する盛土材の調製時に、使用するセメント量を低減することができる。またコンクリート製造時に石炭灰を添加する場合には、石炭灰由来のカーボン浮きを抑制することができる。   By firing at 600 ° C or higher, especially 700 ° C or higher, phosphorus-containing waste promotes the decomposition of unburned carbon contained in incinerated ash such as coal ash, and the unburned carbon content in incinerated ash is increased. It can also be reduced. This is particularly advantageous when the incineration ash is coal ash generated by burning a mixture of biomass and coal, which is a substance rich in carbon. By reducing the unburned carbon content in the incinerated ash, the amount of cement used can be reduced, for example, when preparing a banking material in which cement is added to coal ash. Moreover, when adding coal ash at the time of concrete manufacture, the carbon float derived from coal ash can be suppressed.

更には、この未燃炭素や燐含有廃棄物に含まれる可燃物の燃焼熱を焼成のためのエネルギーとして利用することができるため、補助燃料等のコストを抑えることができる。   Furthermore, since the combustion heat of the combustible material contained in the unburned carbon or phosphorus-containing waste can be used as energy for firing, the cost of auxiliary fuel or the like can be suppressed.

焼成処理の時間は、温度が上述の範囲である場合には、30分以上24時間以内が好ましく、1時間以上10時間以内が更に好ましく、1時間以上5時間以内が一層好ましい。この範囲の時間で焼成を行うことで、処理物からの有害微量元素の溶出量を十分に且つ経済的に抑制できる。   When the temperature is within the above-mentioned range, the firing treatment time is preferably 30 minutes or more and 24 hours or less, more preferably 1 hour or more and 10 hours or less, and further preferably 1 hour or more and 5 hours or less. By performing firing within the time in this range, the amount of harmful trace elements eluted from the treated product can be sufficiently and economically suppressed.

本発明においては、(ii)の乾燥工程又は、(iii)の焼成工程の熱源として排熱を利用することが好ましい。
特に本発明では、(ii)の乾燥工程が減容化を目的とするものであるところ、(ii)の乾燥工程及び(iii)の焼成工程のうち、(iii)の焼成工程は、燐含有廃棄物が通常カロリーを有するために燃料コストはそれほど大きくない一方で、(ii)の乾燥工程において大きなエネルギーを必要とすることが多い。従って、(ii)の乾燥工程に排熱を利用することで、処理の経済性を高めることができる。
例えば、(iii)の焼成工程において発生する排熱を、(ii)の乾燥工程における乾燥に用いると、補助燃料等のコストを抑えることができるために好ましい。なお(iii)の焼成工程において発生する排熱は、(ii)の乾燥工程における乾燥以外に、(iii)の焼成工程に導入するガスの予熱に用いてもよい。
In the present invention, it is preferable to use exhaust heat as a heat source for the drying step (ii) or the firing step (iii).
Particularly, in the present invention, the drying step (ii) is intended to reduce the volume, and among the drying step (ii) and the firing step (iii), the firing step (iii) contains phosphorus. While the fuel cost is not so high because the waste usually has calories, the drying process of (ii) often requires large energy. Therefore, by using the exhaust heat in the drying step (ii), the economics of the treatment can be improved.
For example, it is preferable to use the exhaust heat generated in the firing step (iii) for drying in the drying step (ii) because the cost of auxiliary fuel and the like can be suppressed. The exhaust heat generated in the firing step (iii) may be used for preheating the gas introduced into the firing step (iii) in addition to the drying in the drying step (ii).

また、(ii)又は(iii)、特に、(ii)の工程に、本処理方法とは別事業所で発生する排熱も当然用いることができる。この事業所は排熱を有するものであれば特に限定されないが、例えば、鉄鋼所、セメント製造設備などが挙げられる。   In addition, of course, the exhaust heat generated at a place different from the present processing method can also be used in the step (ii) or (iii), particularly the step (ii). Although this establishment will not be specifically limited if it has waste heat, For example, a steelworks, a cement manufacturing facility, etc. are mentioned.

本発明の処理方法によって得られた加熱処理物は、これを屋外に放置しても、それに含まれる有害微量元素の溶出量が抑制されたものなので、該加熱処理物を、環境に配慮した素材として再利用することができる。再利用の用途としては例えば、セメントやコンクリートの混和材、地盤改良材、路盤材、盛土、埋め戻し材等の建築材料及び土木材料などが好適に挙げられる。   The heat-treated product obtained by the treatment method of the present invention has a reduced amount of harmful trace elements contained therein even if it is left outdoors. Can be reused as Suitable examples of reuse include cement and concrete admixtures, ground improvement materials, roadbed materials, embankments, backfill materials, and civil engineering materials.

次に、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に制限されるものではない。以下の実施例及び比較例において、ホウ素、ヒ素、セレン、フッ素、六価クロム、鉛、カドミウム及び水銀の溶出試験は、平成3年環境庁告示第46号に定められた方法に準じて行った。また燐含有廃棄物中の燐含有率としては、900℃、3時間、空気雰囲気下で焼成した後のサンプル中の質量割合を蛍光X線分析(XRF)にて測定したP換算で表示した。なお、以下の各実施例における乾燥及び焼成は、何れも大気雰囲気中で行った。
〔実施例1〕
燐含有廃棄物として工場汚泥A(含水率88.5質量%、900℃で3時間焼成後の燐含有量がXRFでのP換算で34.4質量%)400質量部を石炭灰A 100質量部に添加して混合物を得た。石炭灰Aは、石炭を燃焼させて生じた残渣である。この混合物を、焼成炉中、200℃で2時間乾燥した。乾燥後の混合物の含水量は4.40質量%であった。また乾燥前の混合物の質量に対する、乾燥後の混合物の質量の割合(質量比)は27.5%であった。こうして得られた乾燥粉体を環状炉中、空気流通下、700℃で3時間加熱処理した。得られた粉体状の加熱処理物に含まれる有害微量元素の濃度を、環境庁告示第46号に定められた方法に準じて測定した。その結果を表1に示す。また、他の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、鉛<0.01mg/L、燐<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下(<0.01質量%)であった。なお、水銀の環境基準値は0.0005mg/L以下であり、カドミウムの環境基準値は0.01mg/L以下である。
EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited to these Examples. In the following Examples and Comparative Examples, boron, arsenic, selenium, fluorine, hexavalent chromium, lead, cadmium, and mercury dissolution tests were conducted in accordance with the method stipulated in Notification No. 46 of the Environment Agency in 1991. . As also phosphorus content of the phosphorus-containing waste, 900 ° C., 3 hours, in terms of P 2 O 5 was measured mass fraction in a sample after firing in an air atmosphere at X-ray fluorescence (XRF) displayed. In addition, drying and baking in each of the following examples were all performed in an air atmosphere.
[Example 1]
400 parts by mass of factory sludge A (water content 88.5% by mass, phosphorus content after calcining at 900 ° C. for 3 hours, 34.4% by mass in terms of P 2 O 5 in XRF) as phosphorus-containing waste A was added to 100 parts by mass to obtain a mixture. Coal ash A is a residue produced by burning coal. This mixture was dried in a baking furnace at 200 ° C. for 2 hours. The water content of the mixture after drying was 4.40% by mass. Moreover, the ratio (mass ratio) of the mass of the mixture after drying to the mass of the mixture before drying was 27.5%. The dry powder thus obtained was heat-treated at 700 ° C. for 3 hours in an annular furnace under air flow. The concentration of harmful trace elements contained in the obtained powdery heat-treated product was measured according to the method defined in Notification No. 46 of the Environment Agency. The results are shown in Table 1. Other harmful trace elements were mercury <0.0005 mg / L, cadmium <0.001 mg / L, lead <0.01 mg / L, and phosphorus <0.1 mg / L. The carbon content in elemental analysis (decomposition at 1150 ° C.) in the heat-treated product was below the detection limit (<0.01% by mass). In addition, the environmental standard value of mercury is 0.0005 mg / L or less, and the environmental standard value of cadmium is 0.01 mg / L or less.

〔実施例2ないし3〕
実施例1での工場汚泥Aの使用量を表1に示した量とした以外は、実施例1と同様の操作を行った。得られた加熱処理物の分析結果を表1に示す。
[Examples 2 to 3]
The same operation as in Example 1 was performed except that the amount of factory sludge A used in Example 1 was changed to the amount shown in Table 1. The analysis results of the heat-treated product obtained are shown in Table 1.

〔実施例4ないし5〕
実施例1での工場汚泥Aの使用量及び石炭灰Aとの混合物の焼成温度を表1に示した量及び温度とした以外は、実施例1と同様の操作を行った。得られた加熱処理物の分析結果を表1に示す。
[Examples 4 to 5]
The same operation as in Example 1 was performed, except that the amount of factory sludge A used in Example 1 and the firing temperature of the mixture with coal ash A were changed to the amounts and temperatures shown in Table 1. The analysis results of the heat-treated product obtained are shown in Table 1.

〔実施例6〕
実施例5での焼成炉での乾燥を100℃で1時間とした以外は、実施例5と同様の操作を行った。得られた加熱処理物の分析結果を表1に示す。
Example 6
The same operation as in Example 5 was performed except that drying in the baking furnace in Example 5 was performed at 100 ° C. for 1 hour. The analysis results of the heat-treated product obtained are shown in Table 1.

〔実施例7ないし9〕
実施例1での工場汚泥Aを下水汚泥A(含水率84.3質量%、900℃で3時間焼成後の燐含有量がXRFでのP換算で26.8質量%)とし、その使用量を表1に示した量とした以外は、実施例1と同様の操作を行った。得られた加熱処理物の分析結果を表1に示す。
[Examples 7 to 9]
The factory sludge A in Example 1 is sewage sludge A (water content 84.3% by mass, phosphorus content after calcination at 900 ° C. for 3 hours is 26.8% by mass in terms of P 2 O 5 in XRF), The same operation as in Example 1 was performed except that the amount used was the amount shown in Table 1. The analysis results of the heat-treated product obtained are shown in Table 1.

〔実施例10ないし12〕
実施例7での下水汚泥Aの使用量及び石炭灰Aとの混合物の焼成温度を表1に示した量及び温度とした以外は、実施例7と同様の操作を行った。得られた加熱処理物の分析結果を表1に示す。
[Examples 10 to 12]
The same operation as in Example 7 was carried out except that the amount of sewage sludge A used in Example 7 and the firing temperature of the mixture with coal ash A were changed to the amounts and temperatures shown in Table 1. The analysis results of the heat-treated product obtained are shown in Table 1.

〔比較例1〕
実施例1で用いた石炭灰Aそのものについて、実施例1と同様の処理を行った後、各有害微量元素の濃度測定を行った。その結果を表1に示す。
[Comparative Example 1]
About the coal ash A itself used in Example 1, after performing the process similar to Example 1, the density | concentration measurement of each harmful | toxic trace element was performed. The results are shown in Table 1.

〔比較例2〕
実施例1で用いた石炭灰Aそのものについて、実施例4と同様の処理を行った後、各有害微量元素の濃度測定を行った。その結果を表1に示す。
[Comparative Example 2]
About the coal ash A itself used in Example 1, after processing similar to Example 4, the density | concentration measurement of each harmful | toxic trace element was performed. The results are shown in Table 1.

〔比較例3〕
実施例4で使用した石炭灰を使用しない以外は、実施例4と同様の処理を行った後、各有害微量元素の濃度測定を行った。その結果を表1に示す。
[Comparative Example 3]
Except not using the coal ash used in Example 4, after performing the process similar to Example 4, the density | concentration measurement of each harmful | toxic trace element was performed. The results are shown in Table 1.

〔比較例4〕
実施例10で使用した石炭灰を使用しない以外は、実施例10と同様の処理を行った後、各有害微量元素の濃度測定を行った。その結果を表1に示す。
[Comparative Example 4]
Except not using the coal ash used in Example 10, after performing the process similar to Example 10, the density | concentration measurement of each harmful | toxic trace element was performed. The results are shown in Table 1.

Claims (12)

以下に記載の(i)〜(iii)の工程を有する固体廃棄物の処理方法。
(i)焼却灰と燐含有廃棄物とを混合する工程。
(ii)(i)の混合物の含水率を0質量%以上50質量%以下にする工程。
(iii)(ii)の乾燥物を600℃以上1200℃以下で焼成する工程。
The processing method of the solid waste which has the process of (i)-(iii) described below.
(I) A step of mixing incineration ash and phosphorus-containing waste.
(Ii) A step of adjusting the water content of the mixture of (i) to 0% by mass or more and 50% by mass or less.
(Iii) A step of firing the dried product of (ii) at 600 ° C. or more and 1200 ° C. or less.
(ii)又は(iii)の工程の熱源に、排熱を利用する、請求項1に記載の固体廃棄物の処理方法。   The solid waste processing method according to claim 1, wherein exhaust heat is used as a heat source in the step (ii) or (iii). (ii)乾燥工程の処理温度が80℃以上300℃以下である、請求項1又は2に記載の固体廃棄物の処理方法。   (Ii) The processing method of the solid waste of Claim 1 or 2 whose process temperature of a drying process is 80 degreeC or more and 300 degrees C or less. (ii)又は(iii)の工程で発生する排熱を、(ii)の工程の熱源に使用する請求項2記載の固体廃棄物の処理方法。   The solid waste processing method according to claim 2, wherein the waste heat generated in the step (ii) or (iii) is used as a heat source in the step (ii). (ii)の熱源として、前記固体廃棄物の処理方法とは異なる事業を行う設備において発生する排熱を利用する、請求項2に記載の固体廃棄物の処理方法。   The solid waste processing method according to claim 2, wherein exhaust heat generated in a facility that performs a business different from the solid waste processing method is used as a heat source of (ii). 前記固体廃棄物の処理方法とは異なる事業を行う設備が、セメントの製造設備である、請求項5に記載の固体廃棄物の処理方法。   The solid waste processing method according to claim 5, wherein the facility performing a business different from the solid waste processing method is a cement manufacturing facility. (iii)焼成工程に用いられる焼成設備がキルンである、請求項1〜6の何れか1項に記載の固体廃棄物の処理方法。   (Iii) The processing method of the solid waste of any one of Claims 1-6 whose baking equipment used for a baking process is a kiln. 前記燐含有廃棄物中の燐濃度が、900℃で3時間焼成した状態で測定した蛍光X線分析におけるP換算での値において、1質量%以上70質量%以下である、請求項1〜7の何れか1項に記載の固体廃棄物の処理方法。 The phosphorus concentration in the phosphorus-containing waste is 1% by mass or more and 70% by mass or less in terms of P 2 O 5 conversion in a fluorescent X-ray analysis measured in a state of firing at 900 ° C. for 3 hours. The processing method of the solid waste of any one of 1-7. 前記燐含有廃棄物の使用量が、焼却灰100質量部に対して燐元素換算で、0.01質量部から20質量部以下である、請求項1〜8の何れか1項に記載の固体廃棄物の処理方法。   9. The solid according to claim 1, wherein the amount of the phosphorus-containing waste used is 0.01 to 20 parts by mass in terms of phosphorus element with respect to 100 parts by mass of incinerated ash. Waste disposal method. 前記燐含有廃棄物が、下水汚泥系廃棄物、農水産系廃棄物、工業系廃棄物及び食品系廃棄物からなる群から選択される少なくとも1種である請求項1〜9の何れか1項に記載の固体廃棄物の処理方法。   The phosphorus-containing waste is at least one selected from the group consisting of sewage sludge waste, agricultural and fishery waste, industrial waste, and food waste. The processing method of the solid waste as described in 1 .. 前記焼却灰に含まれるホウ素、ヒ素、セレン、フッ素、六価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の元素の溶出量を低減させる請求項1〜10の何れか1項に記載の固体廃棄物の処理方法。   11. The elution amount of at least one element selected from the group consisting of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury, and cadmium contained in the incinerated ash is reduced. Solid waste disposal methods. 前記焼却灰が、石炭単独又は石炭とバイオマスとの混合物を燃焼させて発生する石炭灰である請求項1〜11の何れか1項に記載の固体廃棄物の処理方法。



The method for treating solid waste according to any one of claims 1 to 11, wherein the incineration ash is coal ash generated by burning coal alone or a mixture of coal and biomass.



JP2017143536A 2017-07-25 2017-07-25 Solid waste treatment method Active JP6874577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017143536A JP6874577B2 (en) 2017-07-25 2017-07-25 Solid waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143536A JP6874577B2 (en) 2017-07-25 2017-07-25 Solid waste treatment method

Publications (2)

Publication Number Publication Date
JP2019025375A true JP2019025375A (en) 2019-02-21
JP6874577B2 JP6874577B2 (en) 2021-05-19

Family

ID=65477087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143536A Active JP6874577B2 (en) 2017-07-25 2017-07-25 Solid waste treatment method

Country Status (1)

Country Link
JP (1) JP6874577B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212260A (en) * 1986-03-14 1987-09-18 明星工業株式会社 Method of converting waste matter to ceramics
US5846178A (en) * 1993-03-12 1998-12-08 Forrester; Keith E. Stabilization of lead bearing waste
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JP2008207160A (en) * 2007-02-28 2008-09-11 Sumitomo Osaka Cement Co Ltd Method and device for processing inorganic waste with high water content
JP2008296080A (en) * 2007-05-29 2008-12-11 Mhi Environment Engineering Co Ltd Method and apparatus for making heavy metal containing material harmless
JP2010120778A (en) * 2008-11-17 2010-06-03 Taiheiyo Cement Corp Facility for manufacturing raw fuel for manufacturing cement, cement manufacturing plant and method for manufacturing raw fuel for manufacturing cement
CN102070352A (en) * 2010-11-22 2011-05-25 清华大学 Method for recycling dewatered sludge, channel sediment and fly ash

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212260A (en) * 1986-03-14 1987-09-18 明星工業株式会社 Method of converting waste matter to ceramics
US5846178A (en) * 1993-03-12 1998-12-08 Forrester; Keith E. Stabilization of lead bearing waste
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JP2008207160A (en) * 2007-02-28 2008-09-11 Sumitomo Osaka Cement Co Ltd Method and device for processing inorganic waste with high water content
JP2008296080A (en) * 2007-05-29 2008-12-11 Mhi Environment Engineering Co Ltd Method and apparatus for making heavy metal containing material harmless
JP2010120778A (en) * 2008-11-17 2010-06-03 Taiheiyo Cement Corp Facility for manufacturing raw fuel for manufacturing cement, cement manufacturing plant and method for manufacturing raw fuel for manufacturing cement
CN102070352A (en) * 2010-11-22 2011-05-25 清华大学 Method for recycling dewatered sludge, channel sediment and fly ash

Also Published As

Publication number Publication date
JP6874577B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
KR101941319B1 (en) Phosphate fertilizer and method for producing phosphate fertilizer
JP7204156B2 (en) Pre-dechlorination and sintering process for highly chlorinated metallurgical waste and incineration fly ash
US4882067A (en) Process for the chemical bonding of heavy metals from sludge in the silicate structure of clays and shales and the manufacture of building and construction materials therewith
CN105924220B (en) Process for preparing filler by doping composite stabilizer into chemical sludge incineration ash
JP4826089B2 (en) Combustion ash treatment method
CN101376573A (en) Method for recycling sludge of sewage plant to produce cement
CN101638312B (en) Method for preparing light ceramsite by adopting DSD acid industrial sludge
CN112275783A (en) Fly ash detoxification treatment method and device
CN105130156A (en) Method for controlling sludge heavy metal to be discharged
CN101775868B (en) Method for sintering and curing industrial waste residue
JPH11246247A (en) Cement producing device
JP2018135237A (en) Method of producing phosphorous silicate fertilizer
JP6874577B2 (en) Solid waste treatment method
CN105601313A (en) Method for preparing baking-free ecological brick from chemical excess sludge and prepared product
JPWO2019009303A1 (en) Solid waste treatment method
CN106995306A (en) A kind of method of utilization activated sludge baking ceramsite
JP5319254B2 (en) Method for firing sludge granulated product and method of using the same
JP2015151292A (en) Phosphoric acid fertilizer, and production method thereof
JP6025540B2 (en) Method for producing phosphate fertilizer
JP2006198505A (en) Processing method of combustion ash
JP5954777B2 (en) Method for producing phosphate fertilizer
JP2008273749A (en) Artificial aggregate and its manufacturing method
CN105693051A (en) Curing and stabilizing agent for tannery sludge and method for treating pollution through curing and stabilizing agent
JP2005138074A (en) Material obtained by stabilizing waste
JPH08206627A (en) Disposal method for waste of fish and shellfish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 6874577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350