JP2019024040A - 非水系リチウム型蓄電素子 - Google Patents

非水系リチウム型蓄電素子 Download PDF

Info

Publication number
JP2019024040A
JP2019024040A JP2017142723A JP2017142723A JP2019024040A JP 2019024040 A JP2019024040 A JP 2019024040A JP 2017142723 A JP2017142723 A JP 2017142723A JP 2017142723 A JP2017142723 A JP 2017142723A JP 2019024040 A JP2019024040 A JP 2019024040A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
mass
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017142723A
Other languages
English (en)
Inventor
浩一 平岡
Koichi Hiraoka
浩一 平岡
森田 均
Hitoshi Morita
均 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017142723A priority Critical patent/JP2019024040A/ja
Publication of JP2019024040A publication Critical patent/JP2019024040A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】本発明が解決しようとする課題は、内部抵抗を低く保ったまま耐振動性に優れた非水系リチウム型蓄電素子を提供することである。【解決手段】非水系リチウム型蓄電素子は、ラミネートフィルムと、前記ラミネートフィルムに密閉収納された正極、負極、セパレータ及び非水電解液とを備え前記正極は、正極集電体上に、活性炭を含む材料から成る正極活物質層を有し、前記負極は、負極集電体上に、リチウムイオンを吸蔵及び放出可能な負極活物質層を有し、前記非水系リチウム型蓄電素子の厚み方向のばね定数をK(N/mm)、かつ前記非水系リチウム型蓄電素子の質量をM(g)とするとき、1.80≦K/M<4.00である。【選択図】図1

Description

本発明は、非水系リチウム型蓄電素子に関する。
太陽光発電又は風力発電等の負荷平準化装置、瞬時電圧低下対策装置、電気自動車又はハイブリッド自動車のエネルギー回生装置などのような蓄電システムにおいては、エネルギー容量が大きく、かつ急速充放電が可能な蓄電素子が必要とされている。
近年、リチウムイオン二次電池、ニッケル水素電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電素子を用いた蓄電モジュールが開発されている。これらの蓄電モジュールは、複数の蓄電素子が直列又は並列接続された蓄電体を含み、かつ高電圧又は大容量の状態で充放電することができるため、電源装置として様々な用途に用いられている。
このような蓄電モジュールは、ハイブリッド自動車のような車載用途としても脚光を浴びており、その中に含まれる蓄電素子としての性能が良いだけでなく、蓄電モジュールとしてもより高い水準の性能及び耐振動性が求められている。
とりわけ、蓄電モジュールを構成する蓄電素子は、質量及び体積エネルギー密度又は放熱性の向上の観点からラミネートフィルムを蓄電要素の外装体に用いることが多くなってきている(特許文献1、2)。
しかしながら、ラミネートフィルムは剛性が低いため、振動によるひずみ又は変形が生じ易く、蓄電素子の集電箔の破れ、蓄電モジュールの接続部の破損等の影響を受ける場合がある。
したがって、ラミネートフィルムを用いた蓄電素子及び、それを積層して構成される蓄電モジュールの耐振動性を向上させることが求められている。
特開2011−086483号公報 特開2015−029035号公報
特許文献1に記載されているラミネート型2次電池に依れば、ラミネートフィルムに密閉収納されている電池要素が、軸芯に捲回されている。特許文献1に記載のラミネート型2次電池は、軸芯を用いているため質量が増加し、そのため外部振動により生み出される応力は大きくなり、2次電池内部の集電箔及び2次電池モジュールを構成する部品へ印加される応力も大きくなる。このため、特許文献1に記載のラミネート型2次電池及び2次電池モジュールは、外部からの振動が加わった時に、集電箔及びモジュール部品の破損の恐れがある。
また、特許文献2に記載されている蓄電デバイスに依れば、外装フィルムの内部の蓄電デバイス要素が移動することを抑止するデバイス要素移動抑止機構が設けられている。このデバイス要素移動抑止機構は、蓄電デバイス要素の端子部材の延伸方向への動きを抑止するものであって、ラミネートフィルム特有の厚み方向への伸縮について対策されていない。このため、特許文献2に記載されている蓄電デバイスは、厚み方向への外部振動に対して、集電箔及びその周辺部分に破断が生じる恐れがある。
したがって、本発明が解決しようとする課題は、内部抵抗を低く保ったまま耐振動性に優れた非水系リチウム型蓄電素子を提供することである。
上記で説明された課題は、以下の技術的手段により解決される。
[1]
ラミネートフィルムと、
前記ラミネートフィルムに密閉収納された正極、負極、セパレータ及び非水電解液と、
を備える非水系リチウム型蓄電素子であって、
前記正極は、正極集電体上に、活性炭を含む材料から成る正極活物質層を有し、
前記負極は、負極集電体上に、リチウムイオンを吸蔵及び放出可能な負極活物質層を有し、
前記非水系リチウム型蓄電素子の厚み方向のばね定数をK(N/mm)、かつ
前記非水系リチウム型蓄電素子の質量をM(g)とするとき、
1.80≦K/M<4.00であることを特徴とする非水系リチウム型蓄電素子。
[2]
前記ばね定数Kが320N/mm以上である、[1]に記載の非水系リチウム型蓄電素子。
[3]
前記正極に含まれるリチウム化合物の量が、前記正極活物質層の全質量を基準として2質量%以上20質量%以下である、[1]又は[2]に記載の非水系リチウム型蓄電素子。
[4]
前記リチウム化合物は、炭酸リチウム、酸化リチウム、硫化リチウム及び水酸化リチウムから成る群から選択される少なくとも一種である、[3]に記載の非水系リチウム型蓄電素子。
[5]
前記正極集電体と前記負極集電体はともにプレーン箔である、[1]〜[4]のいずれか1項に記載の非水系リチウム型蓄電素子。
[6]
前記負極活物質層は、黒鉛を主成分とする材料から成る、[1]〜[5]のいずれか1項に記載の非水系リチウム型蓄電素子。
[7]
前記非水系リチウム型蓄電素子を2個以上30個以下積層して成る蓄電モジュールの共振周波数が、100Hz以上である、[1]〜[6]のいずれか1項に記載の非水系リチウム型蓄電素子。
[8][1]〜[6]のいずれか1項に記載の非水系リチウム型蓄電素子を2個以上30個以下積層して成る積層体を備え、かつ共振周波数が100Hz以上である蓄電モジュール。
本発明に係る非水系リチウム型蓄電素子は、厚み方向のばね定数をK(N/mm)、かつ質量をM(g)としたときの、K/Mの値が1.80≦K/M<4.00であれば、十分な剛性を得ることができ、内部抵抗を低く保ったまま、共振点を高周波数側へシフトさせることができる。これにより、自動車等の移動体で使用される周波数の範囲内で共振が抑制され、移動体に好適な耐振動性に優れた非水系リチウム型蓄電素子を提供することができる。
図1は、共振周波数評価用の蓄電モジュール(本実施形態に係る非水系リチウム型蓄電素子の4直列)の側面図である。 図2は、共振周波数評価用の蓄電モジュール(本実施形態に係る非水系リチウム型蓄電素子の30直列)の側面図である。
以下、本発明の実施形態につき詳細に説明するが、本発明は以下の実施形態に限定されない。
一般に、非水系リチウム型蓄電素子は、正極、負極、セパレータ、電解液、及び外装体を主な構成要素として備える。電解液としては、リチウム塩を溶解させた有機溶媒(以下、非水系電解液という。)を用いる。ラミネート型蓄電素子の場合には、外装体はラミネートフィルムでよい。
[正極]
正極は、正極集電体と、その片面又は両面に存在する正極活物質層とを有する。
また、正極は、蓄電素子組み立て前の正極前駆体として、リチウム化合物を含むことが好ましい。後述のように、本実施形態では蓄電素子組み立て工程内で、負極にリチウムイオンをプレドープすることが好ましい。そのプレドープ方法としては、前記リチウム化合物を含む正極前駆体、負極、セパレータ、外装体、及び非水系電解液を用いて蓄電素子を組み立てた後に、正極前駆体と負極との間に電圧を印加することが好ましい。前記リチウム化合物は前記正極前駆体の正極集電体上に形成された正極活物質層に含有されることが好ましい。
本明細書中、リチウムドープ工程前における正極状態のことを正極前駆体、リチウムドープ工程後における正極状態のことを正極と定義する。
[正極活物質層]
正極に含まれる正極活物質層は、活性炭を含む材料から成る。その材料は、活性炭を含む正極活物質を含有する。正極活物質層は、これ以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
また、正極前駆体の正極活物質層には、正極活物質以外のリチウム化合物が含有されることが好ましい。
[正極活物質]
正極活物質は、活性炭を含む。正極活物質としては、活性炭のみを使用してよく、又は活性炭に加えて、後述するような他の炭素材料を併用してよい。この炭素材料としては、カーボンナノチューブ、導電性高分子、又は多孔性の炭素材料を使用することがより好ましい。正極活物質には、活性炭を含む1種類以上の炭素材料を混合して使用してもよく、炭素材料以外の材料(例えば、リチウムと遷移金属との複合酸化物等)を含んでもよい。
好ましくは該正極活物質の総量に対する該炭素材料の含有率が、50質量%以上であり、より好ましくは70質量%以上である。該炭素材料の含有率は、100質量%であることができるが、他の材料の併用による効果を良好に得る観点から、例えば、90質量%以下又は80質量%以下であることが好ましい。
正極活物質として用いる活性炭の種類及びその原料には特に制限はない。しかしながら、高い入出力特性と、高いエネルギー密度とを両立させるために、活性炭の細孔を最適に制御することが好ましい。具体的には、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、
(1)高い入出力特性のためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m/g以上3,000m/g以下である活性炭(以下、活性炭1 ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m/g以上4,000m/g以下である活性炭(以下、活性炭2 ともいう。)が好ましい。
[活性炭の使用態様]
活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって上記した各々の特性値を混合物全体として示すものであってもよい。
上記の活性炭1及び2は、これらのうちのいずれか一方を選択して使用してもよいし、両者を混合して使用してもよい。
正極活物質は、活性炭1及び2以外の材料(例えば、前記特定のV1及び/若しくはV2を有さない活性炭、又は活性炭以外の材料(例えば、リチウムと遷移金属との複合酸化物等))を含んでもよい。例示の態様において、活性炭1の含有量、又は活性炭2の含有量、又は活性炭1及び2の合計含有量が、それぞれ、全正極活物質の50質量%より多いことが好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、100質量%であることが最も好ましい。
正極活物質層における正極活物質の含有割合は、正極前駆体における正極活物質層の全質量を基準として、35質量%以上95質量%以下であることが好ましい。正極活物質の含有割合の上限としては、45質量%以上であることがより好ましく、55質量%以上であることがさらに好ましい。一方、正極活物質の含有割合の下限としては、90質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。この範囲の含有割合とすることにより、好適な充放電特性を発揮する。
[リチウム化合物]
本実施形態の正極前駆体の正極活物質層には、正極活物質以外のリチウム化合物が含有されることが好ましい。また、本実施形態の正極の正極活物質層には、正極活物質以外のリチウム化合物が含有される。
前記リチウム化合物としては、後述のリチウムドープ工程において正極で分解し、リチウムイオンを放出することが可能であるという観点から、炭酸リチウム、酸化リチウム、硫化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムから選択される1種以上が好適に用いられる。中でも、炭酸リチウム、酸化リチウム、硫化リチウム及び水酸化リチウムから成る群から選択される少なくとも1種がより好適であり、空気中での取り扱いが可能であり、かつ吸湿性が低いという観点から炭酸リチウムがさらに好適に用いられる。このようなリチウム化合物は、電圧の印加によって分解し、負極へのリチウムドープのドーパント源として機能するとともに、正極活物質層において空孔を形成するから、電解液の保持性に優れ、イオン伝導性に優れる正極を形成することができる。
[正極前駆体のリチウム化合物]
リチウム化合物は、粒子状であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径は0.1μm以上100μm以下であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の上限としては50μm以下であることがより好ましく、20μm以下であることが更に好ましく、10μm以下であることが最も好ましい。他方、正極前駆体に含有されるリチウム化合物の平均粒子径の下限としては0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。リチウム化合物の平均粒子径が0.1μm以上であれば、正極におけるリチウム化合物の酸化反応後に残る空孔が電解液を保持するのに十分な容積を有することとなるため、高負荷充放電特性が向上する。リチウム化合物の平均粒子径が100μm以下であれば、リチウム化合物の表面積が過度に小さくはならないから、該リチウム化合物の酸化反応の速度を確保することができる。リチウム化合物の平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
リチウム化合物の微粒子化には、様々な方法を用いることができる。例えば、ボールミル、ビーズミル、リングミル、ジェットミル、ロッドミル等の粉砕機を使用することができる。
正極前駆体の正極活物質層におけるリチウム化合物の含有割合は、正極前駆体における正極活物質層の全質量を基準として、5質量%以上60質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましい。この範囲の含有割合とすることにより、負極へのドーパント源として好適な機能を発揮するとともに、正極に適当な程度の多孔性を付与することができ、かつ両者相俟って高負荷充放電効率に優れる蓄電素子を与えることができる。この含有割合の範囲の上限と下限は、任意に組み合わせることができる。
[正極のリチウム化合物]
正極は、正極活物質以外のリチウム化合物を含有する。正極が含有する、正極活物質以外のリチウム化合物の平均粒子径をXとするとき、0.1μm≦X≦10μmであることが好ましく、より好ましくは、0.5μm≦X≦5μmである。Xが0.1μm以上の場合、高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル特性が向上する。Xが10μm以下の場合、高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。
正極が含有する、正極活物質以外のリチウム化合物は、正極における正極活物質層の全質量を基準として、2質量%以上20質量%以下であることが好ましく、2.5質量%以上10質量%以下であることがより好ましい。リチウム化合物量が2質量%以上であると、正極活物質同士がより強固な結合を形成するため、正極の剛性が高くなり、2.5質量%以上でその効果が顕著になる。正極の剛性が高くなることで、ラミネート型の非水系リチウム型蓄電素子の剛性も向上し、蓄電素子のばね定数が向上する。これにより、振動印加時の共振周波数を高周波数側へシフトさせることができるため、実用途における周波数範囲で生じ得る共振を抑制することができる。また、リチウム化合物量が20質量%以下であると、正極活物質間の電子伝導性がリチウム化合物により阻害されることが比較的小さいため、高い入出力特性を示し、リチウム化合物量が10質量%以下であると、入出力特性の観点から特に好ましい。尚、下限と上限の組み合わせは任意のものであることができる。
[正極中のリチウム化合物の同定方法]
正極中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば、下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
以下に記載するSEM−EDX、ラマン、XPSを測定する際には、アルゴンボックス中で非水系リチウム型蓄電素子を解体して正極を取り出し、正極表面に付着した電解質を洗浄した後に測定を行うことが好ましい。正極の洗浄方法については、正極表面に付着した電解質を洗い流せればよいため、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート溶媒が好適に利用できる。洗浄方法としては、例えば、正極質量の50〜100倍のジエチルカーボネート溶媒に正極を10分間以上浸漬させ、その後溶媒を取り替えて再度正極を浸漬させる。その後正極をジエチルカーボネートから取り出し、真空乾燥(温度:0〜200℃、圧力:0〜20kPa、時間:1〜40時間の範囲で正極中のジエチルカーボネートの残存が1質量%以下になる条件とする。ジエチルカーボネートの残存量については、後述する蒸留水洗浄、液量調製後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。)させた後に、前記SEM−EDX、ラマン、XPSの解析を実施する。
後述するイオンクロマトグラフィーについては、正極を蒸留水で洗浄した後の水を解析することにより陰イオンを同定することができる。
前記解析手法にてリチウム化合物を同定できなかった場合、その他の解析手法として、固体7Li−NMR、XRD(X線回折)、TOF−SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等を用いることにより、リチウム化合物を同定することもできる。
[SEM−EDX]
酸素を含有するリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定例として、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、金、白金、オスミウム等を、真空蒸着、スパッタリング等の方法により表面処理することもできる。SEM−EDX画像の測定方法については、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物とする。
[ラマン]
炭酸イオンからなるリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のラマンイメージングにより判別できる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071〜1104cm−1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算するが、この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を前記炭酸イオンの頻度分布から差し引く。
[XPS]
リチウムの電子状態をXPSにより解析することによりリチウムの結合状態を判別することができる。測定条件の例として、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(リチウム)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVの条件にて測定できる。XPSの測定前に正極の表面をスパッタリングにてクリーニングすることが好ましい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。
得られたXPSスペクトルについて、
Li1sの結合エネルギー50〜54eVのピークをLiO又はLi−C結合、55〜60eVのピークをLiF、LiCO、LiPO(式中、x、y、及びzは1〜6の整数である)、
C1sの結合エネルギー285eVのピークをC−C結合、286eVのピークをC−O結合、288eVのピークをCOO、290〜292eVのピークをCO 2−、C−F結合、
O1sの結合エネルギー527〜530eVのピークをO2−(LiO)、531〜532eVのピークをCO、CO、OH、PO(式中、xは1〜4の整数である)、SiO(式中、xは1〜4の整数である)、533eVのピークをC−O、SiO(式中、xは1〜4の整数である)、
F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC−F結合、LiPO(式中、x、y、及びzは1〜6の整数である)、PF
P2pの結合エネルギーについて、133eVのピークをPO(式中、xは1〜4の整数である)、134〜136eVのピークをPF(式中、xは1〜6の整数である)、
Si2pの結合エネルギー99eVのピークをSi、シリサイド、101〜107eVのピークをSi(式中、x、及びyは、それぞれ任意の整数である)
として帰属することができる。
得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。前記で得られた電子状態の測定結果及び存在元素比の結果から、存在するリチウム化合物を同定することができる。
[イオンクロマトグラフィー]
正極の蒸留水洗浄液をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。また、質量分析計又は荷電化粒子検出を組み合わせて測定することもできるため、SEM−EDX、ラマン、XPSの解析結果から同定されたリチウム化合物を基に適切なカラム、検出器を組み合わせることが好ましい。
サンプルの保持時間は、使用するカラム、使用する溶離液等の条件が決まれば、イオン種成分毎に一定であり、また、ピークのレスポンスの大きさはイオン種毎に異なるが濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
[リチウム化合物の定量方法]
正極中に含まれるリチウム化合物の定量方法を以下に記載する。
正極を有機溶媒で洗浄し、その後蒸留水で洗浄し、蒸留水での洗浄前後の正極質量変化からリチウム化合物を定量することができる。測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm以上200cm以下であることが好ましく、更に好ましくは25cm以上150cm以下である。面積が5cm以上あれば測定の再現性が確保される。面積が200cm以下であればサンプルの取扱い性に優れる。有機溶媒による洗浄については正極表面に堆積した非水系電解液分解物を除去できれば良いため、有機溶媒は特に限定されないが、前記リチウム化合物の溶解度が2%以下である有機溶媒を用いることでリチウム化合物の溶出が抑制されるため好ましい。例えば、メタノール、アセトン等の極性溶媒が好適に用いられる。
正極の洗浄方法は、正極の質量に対し50〜100倍のメタノール溶液に正極を3日間以上十分に浸漬させる。この時、メタノールが揮発しないよう容器に蓋をするなどの対策を施すことが好ましい。その後正極をメタノールから取り出し、真空乾燥(温度:100〜200℃、圧力:0〜10kPa、時間:5〜20時間の範囲で正極中のメタノールの残存が1質量%以下になる条件とする。メタノールの残存量については、後述する蒸留水洗浄後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。)し、その時の正極の質量をM[g]とする。続いて、正極の質量の100倍(100M[g])の蒸留水に正極を3日間以上十分に浸漬させる。この時、蒸留水が揮発しないよう容器に蓋をする等の対策を施すことが好ましい。3日間以上浸漬させた後、蒸留水から正極を取り出し(前述のイオンクロマトグラフィーを測定する場合は、蒸留水の量が100M[g]になるように液量を調製する。)、前記のメタノール洗浄と同様に真空乾燥する。この時の正極の質量をM[g]とし、続いて、得られた正極の集電体の質量を測定するため、スパチュラ、ブラシ、刷毛等を用いて集電体上の正極活物質層を取り除く。得られた正極集電体の質量をM[g]とすると、正極中に含まれるリチウム化合物の質量%Zは、下記式(1):
Z=100×[1−(M−M)/(M−M)] ...式(1)
により算出できる。
[正極活物質層の任意成分]
本実施形態における正極活物質層は、必要に応じて、正極活物質及びリチウム化合物の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
導電性フィラーとしては、特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、黒鉛、カーボンナノチューブ、これらの混合物等を用いることができる。導電性フィラーの使用量は、正極活物質100質量部に対して、好ましくは0質量部超30質量部以下である。より好ましくは0.01質量部以上20質量部以下、さらに好ましくは1質量部以上15質量部以下である。導電性フィラーの使用量が30質量部よりも多くなると、正極活物質層における正極活物質の含有割合が少なくなるために、正極活物質層体積当たりのエネルギー密度が低下するので好ましくない。
分散安定剤としては、特に制限されるものではないが、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、正極活物質100質量部に対して、好ましくは、0質量部超又は0.1質量部以上、10質量部以下である。分散安定剤の使用量が10質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
[正極集電体]
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こらない材料で、金属箔が好ましい。本実施形態の非水系リチウム型蓄電素子における正極集電体としては、アルミニウム箔が特に好ましい。
また、正極集電体はプレーン箔であることが好ましい。一般に、プレーン箔は、無孔箔と呼ばれることもある。正極集電体が穿孔箔であると、穿孔の部分の剛性が活物質の剛性に依存してしまうことに対し、正極集電体がプレーン箔であれば、活物質の剛性が低くても集電箔により電極としての剛性を高く保つことができる。正極集電体の厚みは、正極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmでよい。
[正極前駆体の製造]
本実施形態において、非水系リチウム型蓄電素子の正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることが出来る。さらに、得られた正極前駆体にプレスを施して、正極活物質層の膜厚 又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
前記正極前駆体の塗工液は、正極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調製してもよい。また、水又は有機溶媒に結着剤又は分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、正極活物質を含む各種材料粉末を追加して、塗工液を調製してもよい。前記ドライブレンドする方法として、例えばボールミル等を使用して正極活物質及びリチウム化合物、並びに必要に応じて導電性フィラーを予備混合して、導電性の低いリチウム化合物に導電性フィラーをコーティングさせる予備混合をしてもよい。これにより、後述のリチウムドープ工程において正極前駆体でリチウム化合物が分解し易くなる。前記塗工液の溶媒に水を使用する場合には、リチウム化合物を加えることで塗工液がアルカリ性になることもあるため、必要に応じてpH調整剤を添加してもよい。
前記正極前駆体の塗工液の調製には、特に制限されるものではないが、好適にはホモディスパー又は多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることが出来る。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散を行うことが好ましい。周速が1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。また、周速が50m/s以下であれば、分散による熱又はせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
前記塗工液の分散度は、粒ゲージで測定した粒度が0.1μm以上100μm以下であることが好ましい。分散度の上限としては、より好ましくは粒度が80μm以下、さらに好ましくは粒度が50μm以下である。粒度が0.1μm未満では、正極活物質を含む各種材料粉末の粒子径以下のサイズとなり、塗工液作製時に材料を破砕していることになり好ましくない。また、粒度が100μm以下であれば、塗工液吐出時の詰まり、塗膜のスジ発生等がなく、安定に塗工ができる。
前記正極前駆体の塗工液の粘度(ηb)は、1,000mPa・s以上20,000mPa・s以下が好ましく、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び膜厚が良好に制御できる。また、粘度(ηb)が20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
また、該塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
前記正極前駆体の塗膜の形成は特に制限されるものではないが、好適にはダイコーターやコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることが出来る。塗膜は単層塗工で形成してもよいし、多層塗工で形成してもよい。多層塗工の場合には、塗膜各層内のリチウム化合物の含有量が異なるように塗工液組成を調製してもよい。また、塗工速度は0.1m/分以上100m/分以下であることが好ましく、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工出来る。他方、塗工速度が100m/分以下であれば、塗工精度を十分に確保できる。
前記正極前駆体の塗膜の乾燥については、特に制限されるものではないが、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることが出来る。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。また、複数の乾燥方法を組み合わせて塗膜を乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましく、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることが出来る。他方、乾燥温度が200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、及び正極集電体や正極活物質層の酸化を抑制できる。
前記正極前駆体のプレスには、特に制限されるものではないが、好適には油圧プレス機、真空プレス機等のプレス機を用いることが出来る。正極活物質層の膜厚、嵩密度及び電極強度は、後述するプレス圧力、隙間、及びプレス部の表面温度により調整できる。
プレス圧力は0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。他方、プレス圧力が20kN/cm以下であれば、正極前駆体に撓み又はシワが生じることがなく、所望の正極活物質層膜厚又は嵩密度に調整できる。
また、プレスロール同士の隙間は、所望の正極活物質層の膜厚又は嵩密度となるように乾燥後の正極前駆体膜厚に応じて任意の値を設定できる。さらに、プレス速度は正極前駆体に撓み又はシワが生じない任意の速度に設定できる。
また、プレス部の表面温度は室温でもよいし、必要によりプレス部を加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは融点マイナス45℃以上、さらに好ましくは融点マイナス30℃以上である。他方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは融点プラス30℃以下、さらに好ましくは融点プラス20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、プレス部の表面を90℃以上200℃以下に加温することが好ましく、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱することである。また、結着剤にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、プレス部の表面を40℃以上150℃以下に加温することが好ましく、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加温することである。
結着剤の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
また、プレス圧力、隙間、速度、及びプレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
前記正極活物質層の膜厚は、正極集電体の片面当たり20μm以上200μm以下であることが好ましい。前記正極活物質層の膜厚は、より好ましくは片面当たり25μm以上100μm以下であり、更に好ましくは30μm以上80μm以下である。この膜厚が20μm以上であれば、十分な充放電容量を発現することができる。他方、この膜厚が200μm以下であれば、電極内のイオン拡散抵抗を低く維持することができる。そのため、十分な出力特性が得られるとともに、セル体積を縮小することができ、従ってエネルギー密度を高めることができる。上記正極活物質層の膜厚の範囲の上限と下限は、任意に組み合わせることができる。なお、集電体が凹凸を有する場合における正極活物質層の膜厚とは、集電体の凹凸を有していない部分の片面当たりの膜厚の平均値をいう。
[負極]
負極は、負極集電体と、その片面又は両面に存在する負極活物質層とを有する。
[負極活物質層]
負極活物質層は、リチウムイオンを吸蔵及び放出可能な層である。負極活物質層は、リチウムイオンを吸蔵・放出できる負極活物質を含む。負極活物質層は、これ以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
[負極活物質]
前記負極活物質としては、リチウムイオンを吸蔵・放出可能な物質を用いることができる。具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。好ましくは該負極活物質の総量に対する該炭素材料の含有率が50質量%以上であり、より好ましくは70質量%以上である。該炭素材料の含有率が100質量%でよいが、他の材料の併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下であることが好ましい。
負極活物質には、リチウムイオンをドープすることが好ましい。本明細書において、負極活物質にドープされたリチウムイオンとしては、主に3つの形態が包含される。
第一の形態としては、非水系リチウム型蓄電素子を作製する前に、負極活物質に設計値として予め吸蔵させるリチウムイオンである。
第二の形態としては、非水系リチウム型蓄電素子を作製し、出荷する際の負極活物質に吸蔵されているリチウムイオンである。
第三の形態としては、非水系リチウム型蓄電素子をデバイスとして使用した後の負極活物質に吸蔵されているリチウムイオンである。
負極活物質にリチウムイオンをドープしておくことにより、得られる非水系リチウム型蓄電素子の容量及び作動電圧を良好に制御することが可能となる。
前記炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素質材料前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。
炭素材料は、リチウムイオンの吸脱着の観点から、黒鉛を主成分とする材料であることが好ましい。黒鉛を主成分とすることは、黒鉛の含有量が、炭素材料の質量を基準として、50質量%以上であることを意味する。
前記複合炭素材料の好ましい例を示す。
[複合炭素材料1]
複合炭素材料1は、BET比表面積が0.5m/g以上80m/g以下の炭素材料1種以上を前記基材として用いた前記複合炭素材料である。該基材は、特に制限されるものではないが、天然黒鉛、人造黒鉛、低結晶黒鉛、ハードカーボン、ソフトカーボン、カーボンブラック等を好適に用いることができる。
複合炭素材料1のBET比表面積は、1m/g以上50m/g以下が好ましく、より好ましくは1.5m/g以上40m/g以下、さらに好ましくは2m/g以上25m/g以下である。このBET比表面積が1m/g以上であれば、リチウムイオンとの反応場を十分に確保できるため、高い入出力特性を示すことが出来る。他方、BET比表面積が50m/g以下であれば、リチウムイオンの充放電効率が向上し、かつ充放電中の非水系電解液の分解反応が抑制されるため、高いサイクル耐久性を示すことが出来る。
複合炭素材料1の平均粒子径は1μm以上10μm以下であることが好ましい。この平均粒子径は、より好ましくは2μm以上8μm以下、さらに好ましくは3μm以上6μm以下である。平均粒子径が1μm以上であれば、リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことが出来る。他方、10μm以下であれば、複合炭素材料2と非水系電解液との反応面積が増加するため、高い入出力特性を示すことができる。
複合炭素材料1における該炭素質材料の該基材に対する質量比率は1質量%以上30質量%以下が好ましい。この質量比率は、より好ましくは1.2質量%以上25質量%以下、さらに好ましくは1.5質量%以上20質量%以下である。炭素質材料の質量比率が質量1%以上であれば、該炭素質材料によりリチウムイオンとの反応サイトを十分に増加でき、かつリチウムイオンの脱溶媒和も容易となるため、高い入出力特性を示すことが出来る。他方、炭素質材料の質量比率が30質量%以下であれば、該炭素質材料と該基材との間のリチウムイオンの固体内拡散を良好に保持できるため、高い入出力特性を示すことが出来る。また、リチウムイオンの充放電効率が向上出来るため、高いサイクル耐久性を示すことが出来る。
複合炭素材料1の単位質量当たりのリチウムイオンのドープ量は、50mAh/g以上700mAh/g以下であることが好ましく、より好ましくは70mAh/g以上650mAh/g以下、さらに好ましくは90mAh/g以上600mAh/g以下、特に好ましくは100mAh/g以上550mAh/g以下である。
複合炭素材料1にリチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料1を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
該ドープ量が50mAh/g以上であれば、複合炭素材料1におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされるため、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
一方で、ドープ量が700mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれがない。
以下、複合炭素材料1の好ましい例として、該基材として黒鉛材料を用いた複合炭素材料1aについて説明する。
複合炭素材料1aの平均粒子径は1μm以上10μm以下であることが好ましい。この平均粒子径は、より好ましくは2μm以上8μm以下、さらに好ましくは3μm以上6μm以下である。平均粒子径が1μm以上であれば、リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことが出来る。他方、10μm以下であれば、複合炭素材料1aと非水系電解液との反応面積が増加するため、高い入出力特性を示すことができる。
複合炭素材料1aのBET比表面積は、1m/g以上20m/g以下であることが好ましい。より好ましくは1m/g以上15m/g以下である。このBET比表面積が1m/g以上であれば、リチウムイオンとの反応場を十分に確保できるため、高い入出力特性を示すことが出来る。他方、BET比表面積が20m/g以下であれば、リチウムイオンの充放電効率が向上し、かつ充放電中の非水系電解液の分解反応が抑制されるため、高いサイクル耐久性を示すことが出来る。
該基材として用いる前記黒鉛材料としては、得られる複合炭素材料1aが所望の特性を発揮する限り、特に制限はない。例えば人造黒鉛、天然黒鉛、黒鉛化メソフェーズカーボン小球体、黒鉛ウイスカ等を使用することができる。該黒鉛材料の平均粒子径は、好ましくは1μm以上10μm以下、より好ましくは2μm以上8μm以下である。
上記の複合炭素材料1aの原料として用いる炭素質材料前駆体とは、熱処理することにより、黒鉛材料に炭素質材料を複合させることができる、固体、液体、又は溶剤に溶解可能な有機材料である。この炭素質材料前駆体としては、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等を挙げることができる。これらの炭素質材料前駆体の中でも、安価であるピッチを用いることが、製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。石油系ピッチとしては、例えば原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。
複合炭素材料1aにおける該炭素質材料の該黒鉛材料に対する質量比率は1質量%以上10質量%以下が好ましい。この質量比率は、より好ましくは1.2質量%以上8質量%以下、さらに好ましくは1.5質量%以上6質量%以下、特に好ましくは2質量%以上5質量%以下である。炭素質材料の質量比率が1質量%以上であれば、該炭素質材料によりリチウムイオンとの反応サイトを十分に増加でき、かつリチウムイオンの脱溶媒和も容易となるため、高い入出力特性を示すことが出来る。他方、炭素質材料の質量比率が20質量%以下であれば、該炭素質材料と該黒鉛材料との間のリチウムイオンの固体内拡散を良好に保持できるため、高い入出力特性を示すことが出来る。また、リチウムイオンの充放電効率が向上出来るため、高いサイクル耐久性を示すことが出来る。
[任意成分]
本発明における負極活物質層は、必要に応じて、負極活物質の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
導電性フィラーの種類は特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維等が例示される。導電性フィラーの使用量は、負極活物質100質量部に対して、好ましくは0質量部以上30質量部以下である。より好ましくは0質量部以上20質量部以下、さらに好ましくは0質量部以上15質量部以下である。
結着剤としては、特に制限されるものではないが、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着剤の使用量は、負極活物質100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは2質量部以上27質量部以下、さらに好ましくは3質量部以上25質量部以下である。結着剤の量が1質量部以上であれば、十分な電極強度が発現される。一方で結着剤の量が30質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
分散安定剤としては、特に制限されるものではないが、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、負極活物質100質量部に対して、好ましくは0質量部超10質量部以下である。分散安定剤の量が10質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
[負極集電体]
本発明における負極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化が起こらない金属箔であることが好ましい。また、負極集電体はプレーン箔であることがより好ましい。負極集電体が穿孔箔の場合、穿孔の部分の剛性が活物質の剛性に依存するが、プレーン箔の場合は、活物質の剛性が低くても集電箔により電極としての剛性を高く保つことができる。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施の形態の非水系リチウム型蓄電素子における負極集電体としては、銅箔が好ましい。
[負極の製造]
負極は、負極集電体の片面上又は両面上に負極活物質層を有して成る。典型的な態様において負極活物質層は負極集電体に固着している。
負極は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、負極活物質を含む各種材料を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を負極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより負極を得ることが出来る。さらに得られた負極にプレスを施して、負極活物質層の膜厚又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、負極活物質を含む各種材料を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて負極集電体に貼り付ける方法も可能である。
塗工液の調製は、負極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水又は有機溶媒、及び/又はそれらに結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調製してもよい。また、水又は有機溶媒に結着剤や分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、負極活物質を含む各種材料粉末を追加して調製してもよい。前記塗工液の調製に特に制限されるものではないが、好適にはホモディスパー又は多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることが出来る。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。また、周速50m/s以下であれば、分散による熱又はせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
前記塗工液の粘度(ηb)は、1,000mPa・s以上20,000mPa・s以下が好ましく、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び膜厚が良好に制御できる。また、20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
また、該塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
前記塗膜の形成は特に制限されるものではないが、好適にはダイコーター又はコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることが出来る。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。また、塗工速度は0.1m/分以上100m/分以下であることが好ましく、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工出来る。他方、塗工速度が100m/分以下であれば、塗工精度を十分に確保できる。
前記塗膜の乾燥は特に制限されるものではないが、好適には熱風乾燥、赤外線(IR)乾燥等の乾燥方法を用いることが出来る。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。また、複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましく、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることが出来る。他方、乾燥温度が200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れ又はマイグレーションによる結着剤の偏在、及び負極集電体又は負極活物質層の酸化を抑制できる。
前記負極のプレスは特に制限されるものではないが、好適には油圧プレス機、真空プレス機等のプレス機を用いることが出来る。負極活物質層の膜厚、嵩密度及び電極強度は後述するプレス圧力、隙間、プレス部の表面温度等により調整できる。プレス圧力は0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。他方、プレス圧力が20kN/cm以下であれば、負極に撓み又はシワが生じることがなく、所望の負極活物質層膜厚又は嵩密度に調整できる。また、プレスロール同士の隙間は所望の負極活物質層の膜厚又は嵩密度となるように乾燥後の負極膜厚に応じて任意の値を設定できる。さらに、プレス速度は負極に撓み又はシワが生じない任意の速度に設定できる。また、プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは45℃以上、さらに好ましくは30℃以上である。他方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは30℃以下、さらに好ましくは20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、90℃以上200℃以下に加温することが好ましい。より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱することである。また、結着剤にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、40℃以上150℃以下に加温することが好ましい。より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加温することである。
結着剤の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
また、プレス圧力、隙間、速度、及びプレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
負極活物質層の膜厚は、片面当たり、5μm以上100μm以下が好ましい。該負極活物質層の膜厚の下限は、さらに好ましくは7μm以上であり、より好ましくは10μm以上である。該負極活物質層の膜厚の上限は、さらに好ましくは80μm以下であり、より好ましくは60μm以下である。この膜厚が5μm以上であれば、負極活物質層を塗工した際にスジ等が発生せず塗工性に優れる。他方、この膜厚が100μm以下であれば、セル体積を縮小することによって高いエネルギー密度を発現できる。なお、集電体が凹凸を有する場合における負極活物質層の膜厚とは、集電体の凹凸を有していない部分の片面当たりの膜厚の平均値をいう。
負極活物質層の嵩密度は、好ましくは0.30g/cm以上1.8g/cm以下であり、より好ましくは0.40g/cm以上1.5g/cm以下、さらに好ましくは0.45g/cm以上1.3g/cm以下である。嵩密度が0.30g/cm以上であれば、十分な強度を保つことができるとともに、負極活物質間の十分な導電性を発現することができる。また、1.8g/cm以下であれば、負極活物質層内でイオンが十分に拡散できる空孔が確保できる。
[測定項目]
本明細書におけるBET比表面積及び平均細孔径、メソ孔量、マイクロ孔量は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、平均細孔径は質量当たりの全細孔容積をBET比表面積で除すことにより、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱されたものである(E. P. Barrett, L. G. Joyner and P. Halenda, J. Am. Chem. Soc., 73, 373(1951))。
また、MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、R.S.Mikhail, Brunauer, Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。
本明細書における平均粒子径は、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。この平均粒子径は市販のレーザー回折式粒度分布測定装置を用いて測定することができる。
本明細書における出荷時及び使用後の非水系リチウム型蓄電素子における負極活物質のリチウムイオンのドープ量は、例えば、以下のようにして知ることができる。
先ず、本実施形態における負極活物質層をエチルメチルカーボネート又はジメチルカーボネートで洗浄し風乾した後、メタノール及びイソプロパノールから成る混合溶媒により抽出した抽出液と、抽出後の負極活物質層と、を得る。この抽出は、典型的にはArボックス内にて、環境温度23℃で行われる。
上記のようにして得られた抽出液と、抽出後の負極活物質層と、に含まれるリチウム量を、それぞれ、例えばICP−MS(誘導結合プラズマ質量分析計)等を用いて定量し、その合計を求めることによって、負極活物質におけるリチウムイオンのドープ量を知ることができる。そして、得られた値を抽出に供した負極活物質量で割り付けて、上記単位の数値を算出すればよい。
本明細書における1次粒子径は、粉体を電子顕微鏡で数視野撮影し、それらの視野中の粒子の粒子径を、全自動画像処理装置等を用いて2,000〜3,000個程度計測し、これらを算術平均した値を1次粒子径とする方法により得ることができる。
本明細書中、分散度は、JIS K5600に規定された粒ゲージによる分散度評価試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から僅かに溢れさせる。次いで、スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1〜2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
本明細書における粘度(ηb)及びTI値は、それぞれ以下の方法により求められる値である。まず、E型粘度計を用いて温度25℃、ずり速度2s−1の条件で2分以上測定した後の安定した粘度(ηa)を取得する。次いで、ずり速度を20s−1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得する。上記で得た粘度の値を用いてTI値はTI値=ηa/ηbの式により算出される。ずり速度を2s−1から20s−1へ上昇させる際は、1段階で上昇させてもよいし、上記の範囲で多段的にずり速度を上昇させ、適宜そのずり速度における粘度を取得しながら上昇させてもよい。
[電解液]
本実施形態の電解液は、非水系電解液である。すなわち、この電解液は、後述する非水溶媒を含む。非水系電解液は、該非水系電解液の総量を基準として、0.5mol/L以上のリチウム塩を含有することが好ましい。すなわち、非水系電解液は、リチウムイオンを電解質として含む。
[リチウム塩]
本実施形態の非水系電解液は、リチウム塩として、例えば、(LiN(SOF))、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiN(SOCF)(SOH)、LiC(SOF)、LiC(SOCF、LiC(SO、LiCFSO、LiCSO、LiPF、LiBF等を単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、LiPF及び/又はLiN(SOF)を含むことが好ましい。
非水系電解液中のリチウム塩濃度は、該非水系電解液の総量を基準として、0.5mol/L以上であることが好ましく、0.5mol/L以上2.0mol/L以下の範囲がより好ましい。リチウム塩濃度が0.5mol/L以上であれば、陰イオンが十分に存在するので蓄電素子の容量を十分高くできる。また、リチウム塩濃度が2.0mol/L以下である場合、未溶解のリチウム塩が非水系電解液中に析出すること、及び電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下せず、出力特性も低下しないため好ましい。
本実施形態の非水系電解液は、該非水系電解液の総量を基準として、0.1mol/L以上1.5mol/L以下の濃度のLiN(SOF)を含むことが好ましく、LiN(SOF)の濃度は、より好ましくは0.3mol/L以上1.2mol/L以下である。LiN(SOF)濃度が0.1mol/L以上であれば、電解液のイオン伝導度を高めるとともに、負極界面に電解質被膜が適量堆積し、これにより電解液が分解することによるガスを低減することができる。他方、この濃度が1.5mol/L以下であれば、充放電の時に電解質塩の析出が起きず、かつ長期間経過後であっても電解液の粘度が増加を引き起こすことがない。
[非水溶媒]
本実施形態の非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のリチウム塩を溶解させる点、及び正極活物質層にリチウム化合物を適量堆積させる点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等が挙げられる。
環状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは15質量%以上、より好ましくは20質量%以上である。上記合計含有量が15質量%以上であれば、所望の濃度のリチウム塩を溶解させることが可能となり、高いリチウムイオン伝導度を発現することができる。さらに正極活物質層にリチウム化合物を適量堆積させることが可能となり、電解液の酸化分解を抑制することができる。
本実施形態の非水系電解液は、非水溶媒として、好ましくは、鎖状カーボネートを含有する。非水系電解液が鎖状カーボネートを含有することは、高いリチウムイオン伝導度を発現する点で有利である。鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ジプロピルカーボネート、ジブチルカーボネート等に代表されるジアルキルカーボネート化合物が挙げられる。ジアルキルカーボネート化合物は典型的には非置換である。
鎖状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。上記鎖状カーボネートの含有量が30質量%以上であれば、電解液の低粘度化が可能であり、高いリチウムイオン伝導度を発現することができる。上記合計濃度が95質量%以下であれば、電解液が、後述する添加剤をさらに含有することができる。
[スルトン化合物]
本実施形態の非水系電解液は、添加剤としてスルトン化合物を含有してよい。
前記スルトン化合物としては、例えば、下記一般式(5)〜(7)で表されるスルトン化合物を挙げることができる。これらのスルトン化合物は、単独で用いてもよく、又は2種以上を混合して用いてもよい。
Figure 2019024040
{式(5)中、R11〜R16は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し、互いに同一であっても異なっていてもよく;そしてnは0〜3の整数である。}
Figure 2019024040
{式(6)中、R11〜R14は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し、互いに同一であっても異なっていてもよく;そしてnは0〜3の整数である。}
Figure 2019024040
{式(7)中、R11〜R16は、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、又は炭素数1〜12のハロゲン化アルキル基を表し、互いに同一であっても異なっていてもよい。}
本実施形態では、抵抗への悪影響の少なさの観点、及び非水系電解液の高温における分解を抑制してガス発生を抑えるという観点から、一般式(5)で表されるスルトン化合物としては、1,3−プロパンスルトン、2,4−ブタンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン又は2,4−ペンタンスルトンが好ましく、一般式(6)で表されるスルトン化合物としては、1,3−プロペンスルトン又は1,4−ブテンスルトンが好ましく、一般式(7)で表されるスルトン化合物としては、1,5,2,4−ジオキサジチエパン2,2,4,4−テトラオキシドが好ましく、その他のスルトン化合物としては、メチレンビス(ベンゼンスルホン酸)、メチレンビス(フェニルメタンスルホン酸)、メチレンビス(エタンスルホン酸)、メチレンビス(2,4,6,トリメチルベンゼンスルホン酸)、及びメチレンビス(2−トリフルオロメチルベンゼンスルホン酸)を挙げることができ、これらのうちから選択される少なくとも1種以上を選択することが好ましい。
[セパレータ]
正極前駆体及び負極は、セパレータを介して積層又は捲回され、正極前駆体、負極及びセパレータを有する電極積層体又は電極捲回体が形成される。
前記セパレータとしては、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜、又は電気二重層キャパシタで用いられるセルロース製の不織紙等を用いることができる。これらのセパレータの片面または両面に、有機または無機の微粒子からなる膜が積層されていてもよい。また、セパレータの内部に有機または無機の微粒子が含まれていてもよい。
セパレータの厚みは5μm以上35μm以下が好ましい。5μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。他方、35μm以下の厚みとすることにより、非水系リチウム型蓄電素子の入出力特性が高くなる傾向があるため好ましい。
また、有機または無機の微粒子からなる膜は、1μm以上10μm以下が好ましい。1μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。他方、10μm以下の厚みとすることにより、非水系リチウム型蓄電素子の入出力特性が高くなる傾向があるため好ましい。
[非水系リチウム型蓄電素子]
本実施形態の非水系リチウム型蓄電素子は、後述する電極積層体又は電極捲回体が、前記非水系電解液とともに前記外装体内に収納されて構成される。また、剛性の観点から、電極積層体又は電極捲回体に含まれる正負極の集電体は、ともにプレーン箔であることが好ましい。
[組立]
セル組み立て工程で得られる電極積層体は、枚葉の形状にカットした正極前駆体と負極を、セパレータを介して積層して成る積層体に、正極端子と負極端子を接続したものである。また、電極捲回体は、正極前駆体と負極を、セパレータを介して捲回して成る捲回体に正極端子及び負極端子を接続したものである。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
正極端子と負極端子の接続の方法は特に限定はしないが、抵抗溶接、超音波溶接などの方法で行う。
[外装体]
本実施形態では、外装体としては、ラミネートフィルム、ラミネート包材等を使用できる。
ラミネート包材としては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムから成る3層構成のものが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内装樹脂フィルムは、内部に収納する非水系電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変性ポリオレフィン等が好適に使用できる。
[外装体への収納]
乾燥した電極積層体又は電極捲回体は、ラミネート包材の中に収納し、開口部を1方だけ残した状態で封止することが好ましい。外装体の封止方法は特に限定しないが、ヒートシール、インパルスシールなどの方法を用いる。
[乾燥]
外装体へ収納した電極積層体又は電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法に限定はないが、真空乾燥などにより乾燥する。残存溶媒は、正極活物質層又は負極活物質層の質量あたり、1.5質量%以下が好ましい。残存溶媒が1.5質量%より多いと、系内に溶媒が残存し、自己放電特性又はサイクル特性を悪化させるため、好ましくない。
[注液、含浸、封止工程]
組立工程の終了後に、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液する。注液工程の終了後に、更に、含浸を行い、正極、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープ工程において、ドープが不均一に進むため、得られる非水系リチウム型蓄電素子の抵抗が上昇したり、耐久性が低下したりする。上記含浸の方法としては、特に制限されないが、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸工程終了後には、外装体が開口した状態の電極積層体又は電極捲回体を減圧しながら封止することで密閉する。
[リチウムドープ工程]
リチウムドープ工程において、好ましくは、前記正極前駆体と負極との間に電圧を印加して前記リチウム化合物を分解することにより、正極前駆体中のリチウム化合物を分解してリチウムイオンを放出し、負極でリチウムイオンを還元することにより負極活物質層にリチウムイオンがプレドープされる。
このリチウムドープ工程において、正極前駆体中のリチウム化合物の酸化分解に伴い、CO等のガスが発生する。そのため、電圧を印加する際には、発生したガスを外装体の外部に放出する手段を講ずることが好ましい。この手段としては、例えば、外装体の一部を開口させた状態で電圧を印加する方法;前記外装体の一部に予めガス抜き弁、ガス透過フィルム等の適宜のガス放出手段を設置した状態で電圧を印加する方法;等を挙げることができる。
[エージング工程]
リチウムドープ工程の終了後に、電極積層体又は電極捲回体にエージングを行うことが好ましい。エージング工程において非水系電解液中の溶媒が負極で分解し、負極表面にリチウムイオン透過性の固体高分子被膜が形成される。
上記エージングの方法としては、特に制限されないが、例えば、高温環境下で非水系電解液中の溶媒を反応させる方法等を用いることができる。
[ガス抜き工程]
エージング工程の終了後に、更にガス抜きを行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。非水系電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系リチウム型蓄電素子の抵抗が上昇してしまう。
上記ガス抜きの方法としては、特に制限されないが、例えば、前記外装体を開口した状態で電極積層体又は電極捲回体を減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。
[蓄電モジュール]
一般に、蓄電モジュールは、バッテリーモジュール、キャパシタモジュール、コンデンサモジュール、組蓄電池又は組電池とも呼ばれ、かつ蓄電素子は、キャパシタ、セル、蓄電セル又は蓄電池とも呼ばれる。
[共振周波数評価用蓄電モジュールの構成]
蓄電モジュールは、セルを積層して一体化したもの(以下、セルスタックと呼ぶ)を両端に位置する金属板(以下、エンドプレートと呼ぶ)とシャフトで構成した枠組みの中に収め、両端のエンドプレートでセルスタックを加圧保持することで構成される。加圧は蓄電素子の電極体収納部であるカップ部に0.3kgf/cm印加されるように、シャフトの長さを調整して定寸加圧する。セルの端子同士は接続する必要はない。また、隣り合うセル間には、エンドプレートよりも厚みの小さい金属板(以下、放熱板と呼ぶ)を挿入していてもよい。
図1は、本実施形態に係る非水系リチウム型蓄電素子を4個直列に配置したセルスタックを備える蓄電モジュールの一例を示す側面図である。また、図2は、本実施形態に係る非水系リチウム型蓄電素子を30個直列に配置したセルスタックを備える蓄電モジュールの一例を示す側面図である。
図1及び2に示すように、蓄電素子(4)の積層体であるセルスタックを、エンドプレート(3)と4本のシャフト(2)で構成した枠組みの中に組み込むことにより、蓄電素子(4)を4直列にした蓄電モジュール(1)と30直列にした蓄電モジュール(6)を組み立てることができる。放熱板(5)は、隣り合う蓄電素子(4,4)間に配置されることができる。なお、図1及び2は側面図であるため、4本のシャフト(2)のうち2本しか図示されていないことを理解されたい。また、セルスタックを構成する非水系リチウム型蓄電素子の数は、2個以上30個以下の範囲内において可変であることも理解されたい。
エンドプレートとセルスタックの間には、電気絶縁層があることが好ましい。電気絶縁層の厚みは0.2mm以上1.0mm以下であることが好ましい。電気絶縁層の厚みが、0.2mm以上であれば、セルスタックとエンドプレートとの間に2.5kV以上の絶縁耐圧を付与することができ、1.0mm以下であれば、蓄電モジュールの体積と質量を増大する必要がなく維持することができる。
[非水系リチウム型蓄電素子の特性評価]
[常温放電内部抵抗]
本明細書では、常温放電内部抵抗Ra(Ω)とは、以下の方法によって得られる値である:
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=3.8−Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
[ばね定数測定]
非水系リチウム型蓄電素子のばね定数K(N/mm)は、以下の方法によって得られる値である:
先ず、扁平形状の蓄電素子を厚み方向(積層方向)に、0.30(kg/cm)の圧力を印加し、その時の厚みX1(mm)を得る。続いて、0.35(kgf/cm)、0.40(kgf/cm)、0.45(kgf/cm)、及び0.50(kgf/cm)の各圧力で同様に厚みX2(mm)、X3(mm)、X4(mm)、及びX5(mm)を測定し、それぞれの厚み変位量X;(X=X1−Xn;n=2、3,4,5)を算出する。すなわち、座標(変位量X,圧力)について、座標(0,0.30)、(X1−X2,0.35)、(X1−X3、0.40)、(X1−X4、0.45)、(X1−X5、0.50)の5点をプロットし、最小二乗法により直線近似をした時に求められる傾きが、ばね定数K(N/mm)である。
[質量測定]
非水系リチウム型蓄電素子の質量M(g)は、電子天秤によって測定される。蓄電素子は、蓄電モジュールを構成する際に用いられる状態で測定される。L字端子又はコの字端子のように端子接続部に金属を媒介させている場合は、媒介させる前の状態にて質量Mの測定を行う。
[共振周波数測定]
図1又は2に示すような蓄電モジュール(1,6)を構成し、振動試験機を用いて、振動加速度を1Gに保ったまま、周波数を7Hz〜200Hzまで変化させたときの、蓄電モジュール(1,6)の加速度応答を測定することによって共振周波数が得られる。蓄電モジュール(1,6)の加速度は、エンドプレート(3)に加速度計を取り付けることによって求められる。加振方向は、蓄電素子(4)の積層方向(厚み方向)とする。これは、ラミネート型蓄電素子が厚み方向に伸縮し易く、共振による破損が生じ易いためである。また、共振周波数は、横軸を周波数、縦軸を加速度としたときの加速度のピークにおける周波数のことを言う。加速度のピークが2つ以上ある場合は、最も小さい共振周波数を蓄電モジュールの共振周波数とする。
蓄電モジュールを構成する非水系リチウム型蓄電素子の数は、2個以上30個以下の範囲内において可変である。
[K/M]
K/Mは、上記方法で算出したばね定数K(N/mm)を上記方法で測定した質量M(g)で除した値である。K/Mは、1.80≦K/M<4.00であることが好ましく、1.81≦K/M≦3.99がより好ましく、1.82≦K/M≦3・98がさらに好ましい。K/Mが1.80以上であれば、非水系リチウム型蓄電素子の剛性が十分に高いため、蓄電モジュールの振動時において、蓄電素子の伸縮を好適に抑制することができる。これにより、共振周波数は高周波数側へシフトし、実用周波数の範囲内で生じ得る共振を抑制することができる。また、K/Mが4.00よりも小さければ、非水系リチウム型蓄電素子内において、電解液の拡散パスを効率よく形成することができ、充放電時のリチウム拡散を制限することがないため、抵抗増大を防ぐことができる。K/Mは、例えば、正極又は正極前駆体に含まれるリチウム化合物の種類又は量、集電体の平滑性、負極活物質の種類などを制御することにより1.80以上4.00未満の範囲内に調整されることができる。
また、ばね定数K(N/mm)は、320N/mm以上であることが好ましく、より好ましくは、420N/mm以上であり、特に好ましくは520N/mm以上である。ばね定数Kが320N/mm以上であれば、蓄電モジュールの共振周波数が100Hz以上となり、実用周波数の範囲外に共振周波数をシフトさせることができるため、耐振動性を向上させることができる。ばね定数Kが420N/mm以上であると、その効果は顕著となり、ばね定数Kが520N/mm以上であると、その効果は、さらに顕著となる。
以下に、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
[炭酸リチウムの粉砕]
平均粒子径53μmの炭酸リチウム200gを、アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、液体窒素で−196℃に冷却化した後、ドライアイスビーズを用い、周速10.0m/sにて9分間粉砕した。−196℃で熱変性を防止し、脆性破壊することにより得られた炭酸リチウムについて平均粒子径を測定することで仕込みの炭酸リチウム粒子径を求めたところ、2.0μmであった。
[正極活物質の調製]
[活性炭1の調製]
破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で前記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
この活性炭1について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.2μmであった。また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[活性炭2の調製]
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調製した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
この活性炭2について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.1μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
[正極塗工液(組成a)の調製]
正極活物質として上記で得た活性炭1又は2を用い、仕込みのリチウム化合物として上記で得た炭酸リチウム又は下記表3で示される酸化、硫化若しくは水酸化リチウムを用いて、下記方法で正極塗工液(組成a)を製造した。
活性炭1又は2を46.5質量部、炭酸リチウム又は酸化、硫化若しくは水酸化リチウムを38.0質量部、ケッチェンブラックを4.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を10.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
[正極塗工液(組成b)の調製]
正極活物質として上記で得た活性炭1又は2を用い、仕込みのリチウム化合物として上記で得た炭酸リチウム又は下記表3で示される酸化、硫化若しくは水酸化リチウムを用いて、下記方法で正極塗工液(組成b)を製造した。
活性炭1又は2を58.5質量部、炭酸リチウム又は酸化、硫化若しくは水酸化リチウムを26.0質量部、ケッチェンブラックを4.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を10.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
[正極塗工液(組成c)の調製]
正極活物質として上記で得た活性炭1又は2を用い、仕込みのリチウム化合物として上記で得た炭酸リチウム又は下記表3で示される酸化、硫化若しくは水酸化リチウムを用いて、下記方法で正極塗工液(組成c)を製造した。
活性炭1又は2を64.5質量部、炭酸リチウム又は酸化、硫化若しくは水酸化リチウムを20.0質量部、ケッチェンブラックを4.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を10.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
[正極塗工液(組成d)の調製]
正極活物質として上記で得た活性炭1又は2を用い、仕込みのリチウム化合物として上記で得た炭酸リチウム又は下記表3で示される酸化、硫化若しくは水酸化リチウムを用いて、下記方法で正極塗工液(組成b)を製造した。
活性炭1又は2を74.5質量部、炭酸リチウム又は酸化、硫化若しくは水酸化リチウムを10.0質量部、ケッチェンブラックを4.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を10.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
[正極塗工液(組成e)の調製]
正極活物質として上記で得た活性炭1又は2を用い、仕込みのリチウム化合物として上記で得た炭酸リチウム又は下記表3で示される酸化、硫化若しくは水酸化リチウムを用いて、下記方法で正極塗工液(組成e)を製造した。
活性炭1又は2を35.5質量部、炭酸リチウム又は酸化、硫化若しくは水酸化リチウムを49.0質量部、ケッチェンブラックを4.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を10.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
[正極塗工液(組成f)の調製]
正極活物質として上記で得た活性炭1又は2を用い、仕込みのリチウム化合物として上記で得た炭酸リチウム又は下記表3で示される酸化、硫化若しくは水酸化リチウムを用いて、下記方法で正極塗工液(組成f)を製造した。
活性炭1又は2を78.5質量部、炭酸リチウム又は酸化、硫化若しくは水酸化リチウムを6.0質量部、ケッチェンブラックを4.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVDF(ポリフッ化ビニリデン)を10.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
[正極塗工液(組成g)の調製]
正極活物質として上記で得た活性炭1又は2を用いて、かつ仕込みのリチウム化合物を用いずに、下記方法で正極塗工液(組成g)を製造した。
活性炭1又は2を82.5質量部、ケッチェンブラックを4.0質量部、PVP(ポリビニルピロリドン)を3.5質量部、及びPVDF(ポリフッ化ビニリデン)を10.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
[正極前駆体の調製]
上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。
[負極の製造]
[負極1の調製例]
平均粒子径が4.9μm、かつBET比表面積が6.1m/gの人造黒鉛の使用量150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:65℃)15gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置した。これを窒素雰囲気下、1000℃まで8時間で昇温し、同温度で4時間保持することにより熱反応させ、複合炭素材料1を得た。得られた複合炭素材料1を自然冷却により60℃まで冷却した後、電気炉から取り出した。
得られた複合炭素材料1について、上記と同様の方法で平均粒子径及びBET比表面積を測定した。結果を下記表1に示す。
複合炭素材料1を負極活物質として用いて負極1を製造した。
複合炭素材料1を80質量部、アセチレンブラックを8質量部、及びPVdF(ポリフッ化ビニリデン)を12質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した結果、粘度(ηb)は2,791mPa・s、TI値は2.7であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて、厚さ10μmの貫通孔を持たない電解銅箔(プレーン箔)の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極1を得た。得られた負極1を、ロールプレス機を用いてプレスした。上記で得られた負極1の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した。測定された膜厚の平均値から銅箔の厚さを引いて、負極1の負極活物質層の膜厚を求めた。負極1の負極活物質層の膜厚は、片面あたり25μmであった。
[負極2の調製例]
負極2については、表1に示すように基材及びその質量部、石炭系ピッチの質量部、並びに熱処理温度を調整した他は、負極1の調製例と同様にして、負極活物質の製造及び評価を行った。また、表1に示される負極活物質を用いて、表1に記載の塗工液の配合となるように塗工液を調製した他は、負極1の調製例と同様にして、負極2の製造及び評価を行った。
負極2の結果を表1に示す。
Figure 2019024040
[電解液の調製]
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SOF)及びLiPFの濃度比が25:75(モル比)であり、かつLiN(SOF)及びLiPFの濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
ここで調製した電解液におけるLiN(SOF)及びLiPFの濃度は、それぞれ、0.3mol/L及び0.9mol/Lであった。
[実施例1]
下記表3に示される正極活物質、正極塗工液、リチウム化合物、集電体及び負極活物質を用いて、以下のとおりに非水系リチウム型蓄電素子を調製した。
[非水系リチウム型蓄電素子の調製]
[組立工程]
得られた両面負極1と両面正極前駆体を10cm×10cm(100cm)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極1を21枚と両面正極前駆体を20枚とを用い、負極1と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ、負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。乾燥した電極積層体を露点−45℃のドライ環境下にて、アルミラミネート包材からなる外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。
アルミラミネート包材には、昭和電工パッケージング株式会社製のカップ成型包材(St5−ON25/AL40/CPP80)を使用した。アルミラミネート包材は、80μmのポリプロピレン層、40μmのアルミ箔層、25μmのナイロン層で構成される。それぞれの層は、接着剤によって接着されており、総厚みは、150μmである。
[注液、含浸、封止工程]
アルミラミネート包材の中に収納された電極積層体に、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを温度25℃の大気圧下で注入した。続いて、減圧チャンバーの中に前記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から−87kPaまで減圧した後、大気圧に戻す工程を4回繰り返した後、15分間静置した。さらに、常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す工程を合計7回繰り返した(それぞれ、−95,96,97,81,97,97,97kPaまで減圧した)。以上の工程により、非水系電解液を電極積層体に含浸させた。
その後、非水系リチウム型蓄電素子を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
[リチウムドープ工程]
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値50mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
[エージング工程]
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、1.0Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。その後、非水系リチウム型蓄電素子を60℃の恒温槽に60時間保管した。
[ガス抜き工程]
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。次いで、減圧チャンバーの中に前記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す工程を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の工程により、非水系リチウム型蓄電素子が完成した。
[蓄電素子の評価]
[Raの算出]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、次いで、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温放電内部抵抗Raを算出した。
常温放電内部抵抗Raは1.14mΩであった。
[蓄電素子のばね定数Kの測定]
得られた蓄電素子について、蓄電素子の電極体が収納されているカップ部にベーク板にて圧力を印加した。印加は、圧気をレギュレータにて制御することにより行った。まず、0.30(kg/cm)の圧力を印加し、その時の厚みX1(mm)を得た。続いて、同様に0.35(kgf/cm)、0.40(kgf/cm)、0.45(kgf/cm)、及び0.50(kgf/cm)の各圧力における各厚みX2(mm)、X3(mm)、X4(mm)、及びX5(mm)を測定し、各厚み変位量X;(X=X1−Xn;n=2、3,4,5)を算出し、座標(0,0.30)、(X1−X2,0.35)、(X1−X3、0.40)、(X1−X4、0.45)、及び(X1−X5、0.50)の5点をプロットし、最小二乗法により直線近似した時の傾きを表すばね定数K(N/mm)を算出した。
なお、蓄電素子の厚みの各値(Xn)は、圧力を印加したまま1分放置した後の厚みを計測することにより得た。
ばね定数Kは、698(N/mm)であった。
[蓄電素子の質量Mの測定]
得られた蓄電素子について、島津製作所製の電子天秤TX3202Nを用いて質量M(g)の測定を行った。
質量M(g)は、176gであった。
[K/Mの測定]
K/Mは、上記で算出したばね定数K(N/mm)を上記で測定した質量M(g)で除することにより算出した。
K/Mは、3.97であった。
[リチウム化合物の定量]
得られた蓄電素子を解体して正極を取り出し、正極試料1とした。前記得られた正極試料1を5cm×5cmの大きさ(質量0.256g)に切り出し、20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後、正極を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。この時の正極質量Mは0.250gであり、洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.00gの蒸留水に正極を含浸させ、容器に蓋をして45℃環境下、3日間静置した。その後正極を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。この時の正極質量Mは0.221gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。その後、スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の質量Mを測定したところ0.098gであった。上記で説明された(1)式に従い、正極中の炭酸リチウム量Zを定量したところ19質量%であった。
[共振周波数測定用蓄電モジュールの組立]
図1及び2に示すように、蓄電素子(4)の積層体であるセルスタックを、エンドプレート(3)と4本のシャフト(2)で構成した枠組みの中に組み込むことにより、蓄電素子(4)を4直列にした蓄電モジュール(1)と30直列にした蓄電モジュール(6)を組み立てた。放熱板(5)は隣り合う蓄電素子(4,4)間に配置した。電極タブ部は、接続しなかった。
各部品の材料と寸法について下記表2に示した。
Figure 2019024040
シャフトの長さは、電極体を収納している蓄電素子のカップ部が、定寸加圧で0.3kgf/cm印加されるように設定した。また、シャフトとエンドプレートはM6のボルトで締結した。上記部品の寸法公差はJIS−0405中級に従って加工されたものを用いた。
[共振周波数の測定]
上記で構成した4直列及び30直列の蓄電モジュールについて、エミック社製の水平垂直切替式複合環境振動試験機を用いて、振動加速度を1Gの一定値に制御しながら、水平方向かつ蓄電素子の積層方向に振動を印加した。そして周波数を7Hz〜200Hzまで変化させた。このときの蓄電モジュールのエンドプレートに加速度センサ(富士セラミックス製 型式:B21SG)を取り付け、振動時の加速度応答を計測した。得られた加速度の振動周波数依存性をグラフにしたところ、4直列の蓄電モジュールについては、振動周波数が180Hzの時に、加速度のピークが観測された。また、30直列の蓄電モジュールについては、振動周波数が160Hzの時に、加速度のピークが観測された。
すなわち、蓄電モジュール(4直列)と蓄電モジュール(30直列)の共振周波数は、それぞれ180Hz、160Hzであった。
実施例1で得られた蓄電素子及びモジュールの調製条件と評価結果とを下記表3及び4に示す。
[実施例2〜32並びに比較例1〜22]
非水系リチウム型蓄電素子の調製条件をそれぞれ、以下の表3に示す通りとした他は、実施例1と同様にして、実施例2〜32と比較例1〜22の非水系リチウム型蓄電素子と蓄電モジュールをそれぞれ作製し、各種の評価を行った。得られた非水系リチウム型蓄電素子と蓄電モジュールの評価結果を以下の表4に示す。
Figure 2019024040
Figure 2019024040
本発明に係る非水系リチウム型蓄電素子及び蓄電モジュールは、初期入出力特性に優れ、高いエネルギー密度を有し、高負荷充放電サイクル特性、高温保存耐久性に優れるため、例えば、自動車において、内燃機関又は燃料電池、モーター、及び蓄電素子を組み合わせたハイブリット駆動システムの分野、緊急時のバッテリーバックアップ用途、更には瞬間電力ピークのアシスト用途等で好適に利用できる。
1 共振周波数評価用蓄電モジュール(4直列)
2 シャフト
3 エンドプレート
4 蓄電素子
5 放熱板
6 共振周波数評価用蓄電モジュール(30直列)

Claims (8)

  1. ラミネートフィルムと、
    前記ラミネートフィルムに密閉収納された正極、負極、セパレータ及び非水電解液と、
    を備える非水系リチウム型蓄電素子であって、
    前記正極は、正極集電体上に、活性炭を含む材料から成る正極活物質層を有し、
    前記負極は、負極集電体上に、リチウムイオンを吸蔵及び放出可能な負極活物質層を有し、
    前記非水系リチウム型蓄電素子の厚み方向のばね定数をK(N/mm)、かつ
    前記非水系リチウム型蓄電素子の質量をM(g)とするとき、
    1.80≦K/M<4.00であることを特徴とする非水系リチウム型蓄電素子。
  2. 前記ばね定数Kが320N/mm以上である、請求項1に記載の非水系リチウム型蓄電素子。
  3. 前記正極に含まれるリチウム化合物の量が、前記正極活物質層の全質量を基準として2質量%以上20質量%以下である、請求項1又は2に記載の非水系リチウム型蓄電素子。
  4. 前記リチウム化合物は、炭酸リチウム、酸化リチウム、硫化リチウム及び水酸化リチウムから成る群から選択される少なくとも一種である、請求項3に記載の非水系リチウム型蓄電素子。
  5. 前記正極集電体と前記負極集電体はともにプレーン箔である、請求項1〜4のいずれか1項に記載の非水系リチウム型蓄電素子。
  6. 前記負極活物質層は、黒鉛を主成分とする材料から成る、請求項1〜5のいずれか1項に記載の非水系リチウム型蓄電素子。
  7. 前記非水系リチウム型蓄電素子を2個以上30個以下積層して成る蓄電モジュールの共振周波数が、100Hz以上である、請求項1〜6のいずれか1項に記載の非水系リチウム型蓄電素子。
  8. 請求項1〜6のいずれか1項に記載の非水系リチウム型蓄電素子を2個以上30個以下積層して成る積層体を備え、かつ共振周波数が100Hz以上である蓄電モジュール。
JP2017142723A 2017-07-24 2017-07-24 非水系リチウム型蓄電素子 Pending JP2019024040A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142723A JP2019024040A (ja) 2017-07-24 2017-07-24 非水系リチウム型蓄電素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142723A JP2019024040A (ja) 2017-07-24 2017-07-24 非水系リチウム型蓄電素子

Publications (1)

Publication Number Publication Date
JP2019024040A true JP2019024040A (ja) 2019-02-14

Family

ID=65369031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142723A Pending JP2019024040A (ja) 2017-07-24 2017-07-24 非水系リチウム型蓄電素子

Country Status (1)

Country Link
JP (1) JP2019024040A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209928A1 (ja) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 リチウムイオンキャパシタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014123A (ja) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd 組電池
JP2010225291A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp リチウムイオン二次電池及びその製造方法
JP2010287641A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp 蓄電デバイス
JP2011243937A (ja) * 2010-05-17 2011-12-01 Samsung Electro-Mechanics Co Ltd リチウムイオンキャパシタの製造方法及びそれにより製造されたリチウムイオンキャパシタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014123A (ja) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd 組電池
JP2010225291A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp リチウムイオン二次電池及びその製造方法
JP2010287641A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp 蓄電デバイス
JP2011243937A (ja) * 2010-05-17 2011-12-01 Samsung Electro-Mechanics Co Ltd リチウムイオンキャパシタの製造方法及びそれにより製造されたリチウムイオンキャパシタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209928A1 (ja) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 リチウムイオンキャパシタ

Similar Documents

Publication Publication Date Title
JP6227837B1 (ja) 非水系リチウム型蓄電素子
WO2017126697A1 (ja) 非水系リチウム型蓄電素子
WO2017126689A1 (ja) 非水系リチウム蓄電素子
JP6815305B2 (ja) 非水系リチウム蓄電素子の製造方法
WO2017126691A1 (ja) 非水系リチウム型蓄電素子
JP2018061039A (ja) 非水系リチウム型蓄電素子
JP6957250B2 (ja) 非水系リチウム型蓄電素子
JP2018056410A (ja) 非水系リチウム蓄電素子
JP6976113B2 (ja) 非水系リチウム型蓄電素子
JP6815150B2 (ja) 非水系リチウム型蓄電素子
JP2019029632A (ja) 非水系リチウム蓄電素子を有する蓄電モジュール
JP2018056427A (ja) 非水系リチウム型蓄電素子
JP2019024040A (ja) 非水系リチウム型蓄電素子
JP2018056416A (ja) 非水系リチウム型蓄電素子
JP2018056428A (ja) 非水系リチウム型蓄電素子用の負極
JP2018026393A (ja) 非水系リチウム型蓄電素子
JP6829572B2 (ja) 捲回式非水系リチウム型蓄電素子
JP2018056438A (ja) 捲回式非水系リチウム型蓄電素子
JP2018061019A (ja) 非水系リチウム蓄電素子
JP2018056414A (ja) 非水系リチウム型蓄電素子
JP2018056429A (ja) 非水系リチウム型蓄電素子
JP2018056409A (ja) 非水系リチウム型蓄電素子
JP2018056413A (ja) 非水系リチウム型蓄電素子
JP2018056404A (ja) 非水系リチウム型蓄電素子
JP6815151B2 (ja) 非水系リチウム型蓄電素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210817