JP2019020371A - Aircraft indicator for orientation and calibration of aircraft-mounted camera and laser range finder - Google Patents

Aircraft indicator for orientation and calibration of aircraft-mounted camera and laser range finder Download PDF

Info

Publication number
JP2019020371A
JP2019020371A JP2017147186A JP2017147186A JP2019020371A JP 2019020371 A JP2019020371 A JP 2019020371A JP 2017147186 A JP2017147186 A JP 2017147186A JP 2017147186 A JP2017147186 A JP 2017147186A JP 2019020371 A JP2019020371 A JP 2019020371A
Authority
JP
Japan
Prior art keywords
aircraft
laser
aerial
orientation
indicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017147186A
Other languages
Japanese (ja)
Inventor
宏介 津留
Kosuke Tsuru
宏介 津留
克明 西野
Katsuaki Nishino
克明 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017147186A priority Critical patent/JP2019020371A/en
Publication of JP2019020371A publication Critical patent/JP2019020371A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide an aircraft indicator as an index for orientation of giving ground coordinates and for calibration of obtaining a positional relationship with a direct orientation device to an altitude point group measured by photograph taken with aircraft-mounted camera and laser range finder.SOLUTION: The aircraft indicator used for orientation in aerial laser surveying is provided with a side plate for easily reading the shape of the top board. The aircraft indicator is also provided with a cone-shaped body which is attached on a top plate for clarifying three-dimensional shape of the aircraft indicator in order to facilitate three-dimensional analysis of a displacement of the aircraft indicator on a piece of data observed from plural directions. Photographing and laser ranging from extremely low altitude made it possible to receive sunlight or laser beam reflected by a small reflector. Reflectors are provided around the position of the ground coordinate to obtain data clearer than the other area. With this, the position of the aircraft indicator can be easily and automatically detected from aerial photograph and altitude point groups.SELECTED DRAWING: Figure 4

Description

この発明は、航空機に搭載された、カメラにより撮影した写真やレーザ測距儀により測定した標高点群に、地上座標を与える標定や直接定位装置との位置関係を求める較正のための指標に関する。  The present invention relates to an index for calibration that obtains a positional relationship with an orientation that gives ground coordinates to an altitude point group that is mounted on an aircraft and that is taken by a camera or an altitude point group measured by a laser rangefinder.

地形図作成においては、広域を均質な精度で作成できるという理由から、航空機から撮影した空中写真を使用した空中写真測量が標準的な手法として普及している(文献1参照)。  In topographic map creation, aerial photogrammetry using aerial photographs taken from aircraft has become widespread as a standard technique because a wide area can be created with uniform accuracy (see Reference 1).

空中写真測量では、空中写真に地上座標を与えるための指標として対空標識と呼ばれる標識を設置するとともに、対空標識には地上座標が与えられる。この地上座標を持った対空標識を空中写真上で観測することにより、空中写真に地上座標系での位置と傾きを与える標定、複数の空中写真に地上座標系での位置と傾き一挙に与える空中三角測量が行われてきた。空中三角測量は、標定の一手法である。  In aerial photogrammetry, a sign called an anti-air sign is installed as an index for giving ground coordinates to the aerial photograph, and ground coordinates are given to the anti-air sign. By observing the anti-air signs with the ground coordinates on the aerial photograph, the orientation that gives the position and inclination in the ground coordinate system to the aerial photograph, the aerial that gives the position and inclination in the ground coordinate system to multiple aerial photographs at once Triangulation has been carried out. Aerial triangulation is a method of orientation.

近年では、GPS衛星などの測位衛星を用いた衛星測位装置と加速度計や角速度計が組み込まれた慣性計測装置で構成される直接定位装置を航空機に搭載し、空中写真に地上座標系での位置と傾きを与えることも可能となっているが、衛星測位による座標系と地上座標系とのズレを補正するために対空標識が必要となる。  In recent years, a direct positioning device consisting of a satellite positioning device using a positioning satellite such as a GPS satellite and an inertial measurement device incorporating an accelerometer or angular velocity meter is installed in an aircraft, and the position in the ground coordinate system is displayed in an aerial photograph. However, in order to correct the deviation between the coordinate system by satellite positioning and the ground coordinate system, an anti-air sign is necessary.

カメラの変わりにレーザ測距儀を搭載し、地形の高さを高密度な標高点群として整備する航空レーザ測量も普及しているが、衛星測位で得られる高さと日常的に使われている水準測量で得られる高さとを整合させるために、調整用基準点とも呼ばれる対空標識を必要としている(文献1参照)。  Aviation laser surveying, which is equipped with a laser rangefinder instead of a camera and maintains the height of the terrain as a high-density altitude point group, is also popular, but it is used daily with the height obtained by satellite positioning In order to match the height obtained by leveling, an anti-air sign called an adjustment reference point is required (see Document 1).

直接定位装置で観測したデータからカメラやレーザ測距儀に地上座標系での位置や傾きを与えるためには、直接定位装置とカメラ、あるいは直接定位装置とレーザ測距儀の関係を標定ソフトに与える必要がある。この関係は、直接定位装置から与えられた位置と傾きを、対空標識を撮影あるいは測距して対空標識から標定された位置と傾きと比較する較正作業によって求める(文献2参照)。  In order to give the camera and laser rangefinder the position and tilt in the ground coordinate system from the data observed by the direct location device, the relationship between the direct location device and the camera, or the direct location device and the laser rangefinder is used in the orientation software. Need to give. This relationship is obtained by a calibration operation in which the position and inclination given from the direct localization apparatus are compared with the position and inclination determined from the anti-air sign by photographing or ranging the anti-air sign (see Document 2).

空中写真測量に用いられる対空標識には、設置後に伸びる周辺の草に覆われるのを防げる高さの足が付けられているのが標準で、これ以外に路面や屋上に描かれたり、路面表示が使われたりすることもある。  Anti-air signs used for aerial photogrammetry are standardly equipped with feet that are high enough to prevent the surrounding grass from being covered by the grass that extends after installation. May be used.

空中写真測量に用いられる対空標識には、地上座標が与えられたところが認識しやすいように、地上座標が与えられたところを頂点とする三角形や交点とする市松模様といった模様が描かれることもある。  Anti-air signs used for aerial photogrammetry may have a pattern such as a triangle with a vertex at the given ground coordinate or a checkered pattern with an intersection to make it easier to recognize where the ground coordinate is given. .

標定と較正は、同じ形の対空標識を使うことができる。  Orientation and calibration can use the same form of anti-air signs.

航空レーザ測量に用いられる対空標識では、標定には数メートル四方の平坦地が、較正には大規模で矩形の屋根を持つ建物等が代用される。
航空レーザ測量では、測距できる標高点群の間隔が数十センチメートル以上と広いため、広い平坦地や大きな建物が必要となる。
In air-to-air signs used for aerial laser surveying, a flat area of several meters square is used for orientation, and a large building with a rectangular roof is used for calibration.
In aerial laser surveying, the distance between altitude points that can be measured is as wide as several tens of centimeters, so a large flat land or a large building is required.

文献1Reference 1

『作業規程の準則』 平成28年3月31日 国土交通省告示 第565号“Work Rules” March 31, 2016 Ministry of Land, Infrastructure, Transport and Tourism Notification No. 565

文献2Reference 2

『航空レーザ測量の品質評価』津留 宏介、中島 保、藤原 輝芳 写真測量とリモートセンシング Vol.41、No.1、2002“Quality evaluation of aerial laser surveying” Kosuke Tsudome, Tamotsu Nakajima, Teruyoshi Fujiwara Photogrammetry and remote sensing Vol. 41, no. 1, 2002

カメラの解像度が向上したり、レーザ測距儀の測距間隔が短くできるように向上したり、これらの向上を活かせる低高度での飛行が可能な無人航空機が登場したりして、より高解像度の空中写真の撮影や高密度の標高点群の作成が行われようになった(文献3参照)。
空中写真の高解像度化や標高点群の高密度化にともなって、対空標識に求められる大きさや形状も異なってくる。
しかしながら、単純に小さくしただけでは、新たな環境に適応できない面がある。
The resolution of the camera has been improved, the range of the laser rangefinder can be shortened, and unmanned aircraft capable of flying at low altitudes that can take advantage of these improvements has emerged. Taking high-resolution aerial photographs and creating high-density elevation point clouds (see Reference 3).
As the resolution of aerial photographs increases and the density of elevation points increases, the size and shape required for anti-air signs also differ.
However, there are aspects that cannot be adapted to new environments simply by reducing the size.

超低高度からの撮影では、航空機の飛行高度に対する対空標識の高さが相対的に高く、空中写真の端になるほど対空標識の下が明瞭に写るようになる。
空中写真は、航空機の飛行に添って60パーセント以上重複して撮影されるが、対空標識の空中写真への写り方は、空中写真ごとに異なってくる。
超低高度からの撮影では、空中写真の解像度が高いくなることもあり、空中写真ごとの対空標識の写り方の違いは、より明瞭となる。
このように同じ対空標識が、空中写真ごとに異なって写ることは、コンピュータソフトを使用した自動処理による対空標識の観測を阻害することになる。
When shooting from an ultra-low altitude, the height of the anti-air sign relative to the flight altitude of the aircraft is relatively high, and the lower the anti-air sign becomes clearer the closer to the end of the aerial photograph.
Although aerial photographs are taken more than 60 percent along with the flight of the aircraft, the way in which aerial signs are reflected in the aerial photographs varies from aerial photographs.
When shooting from an ultra-low altitude, the resolution of aerial photographs may become high, and the difference in how the anti-air signs are captured for each aerial photograph becomes clearer.
In this way, the same anti-air sign appearing differently for each aerial photograph hinders the observation of the anti-air sign by automatic processing using computer software.

超低高度からのレーザ測距では、高密度な測距が可能となることから、対空標識の大きさは小さくでき、経済的となる。
超低高度からのレーザ測距では、測距対象地域が狭くなる。狭い対象地域では、対空標識を設置できる場所が限られてくる。従来の航空レーザ測量のように、平らな場所を選定できる可能性が小さくなるため、足を付けた対空標識の設置が有効となる。
しかしながら、足を付けて対空標識を設置すると、対空標識の下もレーザ測距されることになる。
対空標識の付近や真下に測距されたレーザ光が反射して対空標識の裏側に当たり、その反射光が入射してきた経路を戻ってレーザ測距儀に戻ってくるマルチパスが発生する。
これらの対空標識下のレーザ測距やマルチパスされたレーザ測距は、対空標識の天板を正しくレーザ測距された標高との区別を困難にする。
対空標識の足を長くすることによって問題は解決の方向に向かうが、材料費が上昇するとともに、保管や運搬に関わる負荷の増大、設置精度の低下などが生じ、本質的な解決策にはならない。
Laser ranging from an ultra-low altitude enables high-density ranging, so the size of the anti-air sign can be reduced and it is economical.
In laser ranging from an extremely low altitude, the area to be measured is narrowed. In narrow target areas, the places where anti-air signs can be installed are limited. Since the possibility of selecting a flat place is reduced as in conventional aerial laser surveying, installation of anti-air signs with feet is effective.
However, if an anti-air sign is installed with a foot attached, laser ranging will also be performed under the anti-air sign.
A multi-path is generated in which the laser light measured near or directly below the anti-air sign is reflected and hits the back side of the anti-air sign and returns to the laser rangefinder through the path on which the reflected light has entered.
Laser ranging under these anti-air signs and multipath laser ranging makes it difficult to distinguish the top plate of the anti-air sign from the altitude correctly measured by laser.
Increasing the length of the anti-air sign will lead to the solution, but this will not be an essential solution because it will increase the cost of materials, increase the load related to storage and transportation, decrease the installation accuracy, etc. .

超低高度からのレーザ測距では、高密度な測距が可能となることから、較正に用いられる対空標識も小さくすることが可能となる。
超低高度からのレーザ測距では、測距対象地域が狭くなる。狭い対象地域では、従来の航空レーザ測量のように矩形の屋根を持つ建物などを利用することが困難なため、自ら設置する必要が生じる。狭い対象地域では、矩形の屋根を持つ建物などのような形状に変わって、直接定位装置とレーザ測距儀との位置関係を効率的に算出できる形状であることも必要となる。
Laser ranging from an ultra-low altitude enables high-density ranging, so that the air-to-air sign used for calibration can also be reduced.
In laser ranging from an extremely low altitude, the area to be measured is narrowed. In a narrow target area, it is difficult to use a building with a rectangular roof as in conventional aerial laser surveying, so it is necessary to install it by itself. In a narrow target area, instead of a shape such as a building having a rectangular roof, it is also necessary to have a shape that can efficiently calculate the positional relationship between the direct positioning device and the laser rangefinder.

文献3Reference 3

『UAVを用いた公共測量マニュアル(案)』 平成29年3月 国土交通省 国土地理院"Public survey manual using UAV (draft)" March 2017 Ministry of Land, Infrastructure, Transport and Tourism Geographical Survey Institute

課題を解決するための手段Means for solving the problem

対空標識の下が写ったり、対空標識の下を測距したり、対空標識の下や周辺を測距したレーザ光が反射して対空標識の裏側にあたってマルチパスにならないように、対空標識が撮影される側、対空標識が測距される側に側板を設置する。
対空標識の前方向を側板で覆ってもよい。
天板と側板の違いが明瞭になるように色を変えたり、模様を付けたりしてもよい。
The anti-air sign is photographed so that the bottom of the anti-air sign is reflected, the distance is measured under the anti-air sign, and the laser light that is measured under and around the anti-air sign is reflected to avoid multipath on the back side of the anti-air sign. The side plate is installed on the side where the anti-air sign is measured.
The front direction of the anti-air sign may be covered with a side plate.
The color may be changed or a pattern may be added so that the difference between the top plate and the side plate becomes clear.

レーザ測距されたデータから形状が明確に分かる錐体を、対空標識の上に設置する。錐体は完全な形状ではなく、レーザ測距される側だけであってもよい。
錐体の先端には、地上座標が与えられるようにする。
錐体の先端は、対空標識の中心と一致していなくてもよい。
A cone whose shape is clear from the laser-measured data is placed on the anti-air sign. The cone is not a perfect shape and may be only on the side where laser ranging is performed.
Ground coordinates are given to the tip of the cone.
The tip of the cone does not have to coincide with the center of the antiaircraft sign.

地上座標を与える位置、通常は対空標識の中心に、反射板を設置する。
反射板は、その中央に穴が空いていてもよい。穴が空いていないものは、反射板の中心が地上座標を与える位置に、鋲などによって貼り付けられるものとする。
撮影や観測が超低高度から行われることもあり、小さな反射板であっても他と較べて明るく写るため、あるいは強い反射強度を観測しやすいため、対空標識の位置を自動処理で探しやすくなる。
A reflector is placed at the position where the ground coordinates are given, usually at the center of the anti-air sign.
The reflector may have a hole in the center. In the case where there is no hole, it is assumed that the center of the reflecting plate is pasted to the position where the ground coordinates are given by a scissors or the like.
Shooting and observation may be performed from an ultra-low altitude, and even a small reflector will appear brighter than others, or it will be easier to observe strong reflection intensity, making it easier to find the position of anti-air signs using automatic processing. .

発明の実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の対空標識の作成方法の実施の一形態について、図面を参照して説明する。  Hereinafter, an embodiment of a method for creating an anti-air sign according to the present invention will be described with reference to the drawings.

天板
本発明の対空標識は、下から杭などで支えても歪みが生じない、厚みのある木材などの材料で作成する。図1は、足を設置して地面から離れて天板のみの三枚羽根形状の対空標識を設置した図である。
対空標識の形状は、側板を付けるものは、正多角形、円、羽根形状のいずれかとする。錐体を付けるものは、正多角形、円のいずれかとする。
対空標識の大きさは、撮影する空中写真の縮尺や測距するレーザ光の間隔に応じて決定し、空中写真上あるいは標高点群で明瞭に認識できる縮尺や間隔とする。
Top plate The anti-air sign of the present invention is made of a material such as thick wood that does not distort even if supported by a pile from below. FIG. 1 is a diagram in which feet are installed and a three-blade-shaped anti-air sign with only a top plate away from the ground is installed.
The shape of the anti-air sign shall be either a regular polygon, a circle, or a blade shape with a side plate attached. The one with a cone is either a regular polygon or a circle.
The size of the anti-air sign is determined according to the scale of the aerial photograph to be taken and the interval of the laser light to be measured, and is set to a scale and an interval that can be clearly recognized on the aerial photograph or the altitude point group.

側板
図2は、側板を取り付けた円、四角形、四枚羽根形状の対空標識の図である。
対空標識の天板側面への側板の取り付け位置は、空中写真に写る側、あるいはレーザ光で測距される側に設置し、撮影や測距が複数箇所から行われる場合には、全面に側板を取り付ける。
側面の幅は、空中写真に写す場合には数画素以上で写る、レーザ光で測距する場合には数点以上が測距できる長さとする。
Side Plate FIG. 2 is a diagram of an anti-air sign in a circle, square, or four-blade shape with a side plate attached.
The side plate is attached to the side of the top plate of the anti-air sign on the side where it is shown in the aerial photograph or the side where the distance is measured with laser light. Install.
The width of the side surface is a length that can be measured by several pixels or more when shooting in an aerial photograph, and can measure a distance of several or more points when measuring with laser light.

錐体
図3は、円錐を円形状の天板に、四角錐を四角形状の天板に、それぞれ設置した図である。
対空標識の天板上への錐体の設置は、錐体が安定するように設置する。
錐体の形状は、角錐でも円錐でもよく、実際に設置するのはレーザ光が照射される側面だけでもよい。
錐体の側面は、レーザ光が測距される側に設置し、測距が対空標識周辺の全ての方向から行われる場合には、全面を覆う。
錐体の大きさは、レーザ測距された標高点群により十分に錐体の形状が表現できる大きさとする。また、天板の大きさと同じでもよい。
FIG. 3 is a diagram in which a cone is installed on a circular top plate and a quadrangular pyramid is installed on a square top plate.
Place the cone on the top of the anti-air sign so that the cone is stable.
The shape of the cone may be a pyramid or a cone, and only the side surface on which the laser beam is irradiated may be actually installed.
The side surface of the cone is installed on the side where the laser light is measured, and covers the entire surface when the distance measurement is performed from all directions around the anti-air sign.
The size of the cone is set such that the shape of the cone can be sufficiently expressed by the altitude point group obtained by laser ranging. Moreover, it may be the same as the size of the top board.

反射板
図4は、反射板を、円形状の天板中央に、円錐状の頂点に、それぞれ設置した図である。
天板の中央には、空中写真に太陽光を反射して非常に明るく写ったり、レーザ光を非常に強く反射したりする反射板を設置する。
反射板の形状は、正多角形や円などの中心が特定できるものとし、その中央に穴が空いていてもよい。穴が空いていないものは、天板と反射板の中心同士が一致するように鋲などによって天板に貼り付けても壊れないものとする。
反射板の大きさは、空中写真に写す場合は数画素以上に写る寸法、レーザ光を照射する場合は数点以上が照射される寸法とする。
Reflector FIG. 4 is a diagram in which a reflector is installed at the center of the circular top plate and at the apex of the cone.
At the center of the top plate, a reflector that reflects the sunlight in the aerial photograph and appears very bright, or reflects the laser beam very strongly is installed.
As for the shape of the reflector, a center such as a regular polygon or a circle can be specified, and a hole may be formed in the center. Those that are not perforated shall not break even if they are attached to the top plate with a scissors or the like so that the centers of the top plate and the reflecting plate coincide with each other.
The size of the reflector is such that it is projected to several pixels or more when photographed in an aerial photograph, and is dimensioned to irradiate several points or more when illuminated with laser light.

側板や錐体の構造は、天板へ現場で組み立てられるものでも、天板へ予め設置されているものでもよいが、運搬や保管のためには組み立てられるものが好ましい。
側板や錐体自体も、幾つかの部品で構成し、組み立てられるようにしてもよい。
The structure of the side plate and the cone may be assembled to the top plate in the field or may be pre-installed on the top plate, but is preferably assembled for transportation and storage.
The side plate and the cone itself may also be constituted by several parts and assembled.

作成された対空標識は、杭などを用い、多少の衝撃では外れたり歪んだりしないように地上に設置する。  The created anti-air signs are placed on the ground so that they will not come off or be distorted by a slight impact using piles.

設置された対空標識の天板の中心あるいは錐体の頂点に基準点測量により地上座標を与える。
地上座標は、国が定めた測地座標系でも、利用者が設定した任意の座標系でもよい。
The ground coordinates are given by the reference point survey to the center of the top of the installed anti-air sign or the apex of the cone.
The ground coordinates may be a geodetic coordinate system defined by the country or an arbitrary coordinate system set by the user.

地上座標を与えられたところには、地上画素寸法の大きさやレーザ測距される間隔に応じた大きさの反射板を設置する。  Where the ground coordinates are given, a reflector having a size corresponding to the size of the ground pixel size and the interval for laser ranging is installed.

発明の効果Effect of the invention

以上で説明したように、本発明では、対空標識の天板に加え、側板を備えるとともに、側板に天板とは異なる色や模様を付けることができることによって、対空標識を撮影した空中写真では、対空標識の天板の形状が明瞭となり、地上座標を設置した位置が認識しやすくなる。  As described above, in the present invention, in addition to the top plate of the anti-aircraft sign, a side plate is provided, and the side plate can be provided with a color or a pattern different from the top plate, The shape of the top plate of the anti-air sign becomes clear, and it becomes easy to recognize the position where the ground coordinates are installed.

また、対空標識の天板に加え、天板上に錐体を備えることにより、レーザ測距で得られた標高点群での対空標識の形状が明瞭となり、地上座標を設置した位置が認識しやすくなる。
航空機を違う方向から飛行して得られたレーザ測距による標高点群を比較することにより、直接定位装置とレーザ測距儀の位置関係を較正できるようになる。
In addition to the top plate of the anti-aircraft sign, a pyramid is provided on the top plate, so that the shape of the anti-air sign at the elevation point group obtained by laser ranging becomes clear and the position where the ground coordinates are installed is recognized. It becomes easy.
By comparing the altitude point groups obtained by flying the aircraft from different directions by laser ranging, the positional relationship between the localization device and the laser ranging probe can be calibrated directly.

対空標識上の地上座標を設置する位置に反射板を取り付けることによって、その部分のみ他より明るく写るため自動処理での検出を容易にする。  By attaching a reflector at the position where the ground coordinates on the anti-air sign are installed, only that part is brighter than the others, so detection by automatic processing is facilitated.

足を設置して地面から離れて天板のみの三枚羽根形状の対空標識を設置した図である。  It is the figure which installed the three-blade-shaped anti-air sign only of a top plate away from the ground by installing a foot. 側板を取り付けた円、四角形、四枚羽根形状の対空標識の図である。  It is a figure of the anti-air sign of a circle, a rectangle, and a four-blade shape to which a side plate is attached. 円錐を円形状の天板に、四角錐を四角形状の天板に、それぞれ設置した図である。  It is the figure which respectively installed the cone on the circular top plate and the quadrangular pyramid on the quadrangular top plate. 反射板を、円形状の天板中央に、円錐状の頂点に、それぞれ設置した図である。  It is the figure which installed the reflecting plate in the center of a circular top plate, and the conical vertex, respectively.

1 天板
2 足
3 地上座標を取り付けた位置
4 側板
5 錐体
6 反射板
1 Top plate 2 Feet 3 Position where ground coordinates are attached 4 Side plate 5 Cone 6 Reflector

Claims (3)

天板に側板を取り付けたことを特徴とする対空標識。  An anti-air sign characterized by attaching a side plate to the top plate. 天板に錐体を取り付けたことを特徴とする対空標識。  An anti-air sign characterized by attaching a cone to the top plate. 地上座標を取り付ける位置に反射板を取り付けたことを特徴とする対空標識。  An anti-air sign, characterized in that a reflector is attached to the position where the ground coordinates are attached.
JP2017147186A 2017-07-11 2017-07-11 Aircraft indicator for orientation and calibration of aircraft-mounted camera and laser range finder Pending JP2019020371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147186A JP2019020371A (en) 2017-07-11 2017-07-11 Aircraft indicator for orientation and calibration of aircraft-mounted camera and laser range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147186A JP2019020371A (en) 2017-07-11 2017-07-11 Aircraft indicator for orientation and calibration of aircraft-mounted camera and laser range finder

Publications (1)

Publication Number Publication Date
JP2019020371A true JP2019020371A (en) 2019-02-07

Family

ID=65355203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147186A Pending JP2019020371A (en) 2017-07-11 2017-07-11 Aircraft indicator for orientation and calibration of aircraft-mounted camera and laser range finder

Country Status (1)

Country Link
JP (1) JP2019020371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360375B1 (en) 2020-03-10 2022-06-14 Rockwell Collins, Inc. Stereoscopic camera alignment via laser projection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148046A (en) * 2000-11-07 2002-05-22 Tsuruga:Kk Method for installing antiaircraft beacon
JP2014048163A (en) * 2012-08-31 2014-03-17 Pasco Corp Aerial marking
JP2016017931A (en) * 2014-07-11 2016-02-01 株式会社パスコ Measurement marker and measurement method
JP2016156778A (en) * 2015-02-26 2016-09-01 株式会社テクノスヤシマ Three-dimensional marker water gauge for aerial photography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148046A (en) * 2000-11-07 2002-05-22 Tsuruga:Kk Method for installing antiaircraft beacon
JP2014048163A (en) * 2012-08-31 2014-03-17 Pasco Corp Aerial marking
JP2016017931A (en) * 2014-07-11 2016-02-01 株式会社パスコ Measurement marker and measurement method
JP2016156778A (en) * 2015-02-26 2016-09-01 株式会社テクノスヤシマ Three-dimensional marker water gauge for aerial photography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360375B1 (en) 2020-03-10 2022-06-14 Rockwell Collins, Inc. Stereoscopic camera alignment via laser projection

Similar Documents

Publication Publication Date Title
CN110737007B (en) Portable positioning device and method for obtaining geospatial position
CN110108984B (en) Spatial relationship synchronization method for multiple sensors of power line patrol laser radar system
CN110779498A (en) Shallow river water depth mapping method and system based on unmanned aerial vehicle multi-viewpoint photography
US8300096B2 (en) Apparatus for measurement of vertical obstructions
US20050273254A1 (en) Passive target data acquisition method and system
US8649917B1 (en) Apparatus for measurement of vertical obstructions
US11719536B2 (en) Apparatus, system, and method for aerial surveying
JP6745169B2 (en) Laser measuring system and laser measuring method
JP2016080572A (en) Laser measurement system
Moser et al. Comparison of different survey methods data accuracy for road design and construction
JPWO2021020569A1 (en) How to perform forest measurement, forest measurement system, how to determine the flight path of an unmanned aerial vehicle, shooting method, spraying method and computer program
Dinkov et al. Advantages, disadvantages and applicability of GNSS post-processing kinematic (PPK) method for direct georeferencing of UAV images
JP7161298B2 (en) target device, surveying system
CN108415459A (en) A kind of unmanned plane is around the circumvolant control method and device of target point
JP2019020371A (en) Aircraft indicator for orientation and calibration of aircraft-mounted camera and laser range finder
KR101144200B1 (en) Map data collecting system for plotting instrument
JP7123366B2 (en) Evaluation method for standing trees in a forest area and boundary survey method suitable for identifying the evaluation target area in this evaluation method
US3709607A (en) Aerial survey
Hlotov et al. Accuracy investigation of creating orthophotomaps based on images obtained by applying Trimble-UX5 UAV
Pepe Survey by Airborne Laser Scanner of open large structure: A case study of Pompeii Amphitheatre
CN108180821A (en) A kind of machine-carried type laser radar 3-D measuring apparatus
US3765770A (en) Aerial survey
Rick et al. Total station
KR101220232B1 (en) Image pictureing and mapping system for point with photophore for stone mark and methods thereof
JPWO2021020570A1 (en) Forest Inventory Methods, Forest Inventory Systems and Computer Programs

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130