JP2019020070A - Evaluation device and evaluation method for air conditioner - Google Patents

Evaluation device and evaluation method for air conditioner Download PDF

Info

Publication number
JP2019020070A
JP2019020070A JP2017140156A JP2017140156A JP2019020070A JP 2019020070 A JP2019020070 A JP 2019020070A JP 2017140156 A JP2017140156 A JP 2017140156A JP 2017140156 A JP2017140156 A JP 2017140156A JP 2019020070 A JP2019020070 A JP 2019020070A
Authority
JP
Japan
Prior art keywords
performance
air conditioner
coefficient
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140156A
Other languages
Japanese (ja)
Other versions
JP6972468B2 (en
Inventor
福太郎 山口
Fukutaro Yamaguchi
福太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2017140156A priority Critical patent/JP6972468B2/en
Publication of JP2019020070A publication Critical patent/JP2019020070A/en
Application granted granted Critical
Publication of JP6972468B2 publication Critical patent/JP6972468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide a technology for accurately evaluating thermal performance of an air conditioner.SOLUTION: An evaluation device for an air conditioner is used. The evaluation device evaluates the air conditioner including a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger and refrigerant piping that is a flow passage of a refrigerant. The evaluation device includes: a performance coefficient acquisition section for acquiring performance coefficients of the air conditioner in a plurality of conditions at least including a normal mode and a high sensible heat mode; and a classification evaluation section for evaluating the performance coefficients. The classification evaluation section classifies the plurality of performance coefficients on the basis of a difference between a dry-bulb temperature of air sucked by the outdoor heat exchanger and a refrigerant evaporation temperature that is a control target of the indoor heat exchanger, and acquires performance characteristics of the air conditioner on the basis of the classified performance coefficients.SELECTED DRAWING: Figure 1

Description

本発明は、空調装置の評価装置および評価方法に関する。   The present invention relates to an evaluation apparatus and an evaluation method for an air conditioner.

空調装置として、ヒートポンプを熱源とする直膨式のビル用マルチパッケージ型エアコン(業務用エアコン)が広く普及している。また近年、省エネ法(エネルギーの使用の合理化等に関する法律)の施行やトップランナー基準の導入、ZEB(ゼロ・エネルギー・ビル)の普及につれて、空調装置の熱出力を取得して、建物の熱性能を評価する機会が増えてきている。空調装置の熱出力を取得する方法としては、(1)空気や冷媒の比エンタルピーを直接測定する方法、(2)空調装置の能力を特定の条件下で実際に測定する方法、(3)消費電力の測定値と事前に用意した機器特性から空調装置の熱出力を予測する方法、などがある。   As an air conditioner, a direct expansion type multi-package air conditioner for buildings (a commercial air conditioner) using a heat pump as a heat source is widely used. In recent years, with the implementation of the Energy Conservation Law (Act on the Rational Use of Energy, etc.), the introduction of Top Runner Standards, and the widespread use of ZEB (Zero Energy Building), the heat output of air conditioners has been acquired to improve the thermal performance of buildings Opportunities to evaluate are increasing. The methods for obtaining the heat output of an air conditioner include (1) a method for directly measuring the specific enthalpy of air or refrigerant, (2) a method for actually measuring the capacity of the air conditioner under specific conditions, and (3) consumption. There is a method of predicting the heat output of the air conditioner from the measured power value and the device characteristics prepared in advance.

(1)空気や冷媒の比エンタルピーを直接計測する方法としては、JIS B 8615で定義される空気エンタルピー法や冷媒エンタルピー法が知られている。   (1) As a method for directly measuring the specific enthalpy of air or refrigerant, an air enthalpy method or a refrigerant enthalpy method defined in JIS B 8615 is known.

空気エンタルピー法では、室内機または室外機の熱交換器へ流入出する空気温湿度と風速(風量)を計測して熱量を求める。しかし、熱交換器周りでは空気温湿度や風速にムラが大きく、適切な計測点の選定が難しい。
この計測点の選定に関して、フラックスサンプラーやプローブセンサを用いて熱交換器周りの温湿度、風速を多点計測する方法が提案されている。また特許文献1(特開2010−038487号公報)では、ファン回転数の計測値から風量を推測する方法が提案されている。しかし、これらの方法では、温湿度や風速の計測に特殊なセンサや多数のセンサが必要となる。また適切な計測点の選定には、事前に分布性状を調査して計測位置の妥当性を確認する必要がある。
In the air enthalpy method, the amount of heat is obtained by measuring the air temperature and humidity and the wind speed (air volume) flowing into and out of the heat exchanger of the indoor unit or outdoor unit. However, the air temperature / humidity and wind speed vary greatly around the heat exchanger, making it difficult to select appropriate measurement points.
Regarding the selection of the measurement points, a method of measuring the temperature and humidity around the heat exchanger and the wind speed at multiple points using a flux sampler and a probe sensor has been proposed. Patent Document 1 (Japanese Patent Laid-Open No. 2010-038487) proposes a method for estimating the air volume from the measured value of the fan rotation speed. However, these methods require special sensors and a large number of sensors for measuring temperature and humidity and wind speed. In order to select an appropriate measurement point, it is necessary to investigate the distribution characteristics in advance and confirm the validity of the measurement position.

冷媒エンタルピー法では、冷媒の圧力や配管温度と冷媒の流量を計測して熱量を求める。しかし、冷媒圧力や配管温度は容易に計測できるが、気液二相流となる冷媒の流量計測は容易ではない。
この冷媒流量の計測方法に関して、特許文献2(特開2008−281255号公報)では、気液二相流の冷媒を強制的に冷却して液化し、超音波流量計で流量を計測し、計測後の再加熱によって気液二相流に戻す方法を提案している。しかしこの方法を実行するためには、気液二相流を操作するための高度な計測・制御技術が必要であり、かつ、外部エネルギーを与えて状態を操作することから冷凍サイクルへの影響が懸念される。
また、圧縮器回転数と冷媒流量特性の関係から冷媒流量を推測するコンプレッサカーブ法や簡易コンプレッサカーブ法がある。しかし冷媒流量特性は一般には非公開であり、かつ、機種ごとに異なるため、必要な情報を入手できない場合もある。
In the refrigerant enthalpy method, the amount of heat is obtained by measuring the refrigerant pressure, piping temperature, and refrigerant flow rate. However, although the refrigerant pressure and the pipe temperature can be easily measured, it is not easy to measure the flow rate of the refrigerant that is a gas-liquid two-phase flow.
With respect to this refrigerant flow rate measuring method, in Patent Document 2 (Japanese Patent Laid-Open No. 2008-281255), a gas-liquid two-phase flow refrigerant is forcibly cooled and liquefied, and the flow rate is measured with an ultrasonic flowmeter. A method of returning to a gas-liquid two-phase flow by reheating later is proposed. However, in order to carry out this method, advanced measurement and control technology for manipulating gas-liquid two-phase flow is necessary, and since the state is manipulated by applying external energy, the effect on the refrigeration cycle is affected. Concerned.
There are also a compressor curve method and a simple compressor curve method for estimating the refrigerant flow rate from the relationship between the compressor rotation speed and the refrigerant flow rate characteristic. However, since the refrigerant flow rate characteristics are generally not disclosed and are different for each model, necessary information may not be available.

(2)空調装置の能力を特定の条件下で実際に計測する方法は、例えば、特許文献3(特開2009−150640号公報)に開示されている。特許文献3では、外部から強制的に熱負荷を与えて圧縮機の動作変化の傾向を把握する試験により、実建物に設置されたエアコンの機器容量の過不足を判定している。しかしこの方法では、試験で与える特定の熱負荷条件下での能力しか計測できない。   (2) A method of actually measuring the capacity of an air conditioner under specific conditions is disclosed in, for example, Patent Document 3 (Japanese Unexamined Patent Application Publication No. 2009-150640). In Patent Document 3, it is determined whether the capacity of the air conditioner installed in the actual building is excessive or insufficient by a test for compulsorily applying a heat load from the outside to grasp the tendency of the operation change of the compressor. However, this method can only measure the ability under specific heat load conditions given in the test.

(3)消費電力の計測値と事前に用意した機器特性から空調装置の熱出力を予測する方法においては、機器特性として成績係数(COP:Coefficient of Performance)が好適に用いられる。成績係数は、空調装置のエネルギー消費効率を表す性能指標であり、消費
電力に対する冷房能力または暖房能力として求められる。成績係数を取得できれば、以下の式(1)によって容易に熱出力を算出できる。
熱出力[kW]=消費電力[kW]×COP …(1)
(3) In the method of predicting the heat output of the air conditioner from the measured power consumption value and the device characteristics prepared in advance, a coefficient of performance (COP) is suitably used as the device characteristics. The coefficient of performance is a performance index representing the energy consumption efficiency of the air conditioner, and is obtained as a cooling capacity or a heating capacity with respect to power consumption. If the coefficient of performance can be acquired, the heat output can be easily calculated by the following equation (1).
Thermal output [kW] = Power consumption [kW] × COP (1)

したがって、成績係数を取得することや、様々な条件における成績係数を適切に分類・評価することは、空調装置の熱性能を把握するための有効な手法だと言える。特に近年、業務用エアコンなどの空調装置において、通常モードに加えて、省エネ性能が高い高顕熱モードでの運転が可能なものが増えている。しかし、空調装置の熱性能を評価するときに、通常モードと高顕熱モードそれぞれで別々の基準を用いなければならないとすると、情報処理の手間が煩雑になる上に、ユーザーが熱性能を直感的に把握できなくなるおそれがある。   Therefore, it can be said that obtaining the coefficient of performance and appropriately classifying and evaluating the coefficient of performance under various conditions are effective techniques for grasping the thermal performance of the air conditioner. In particular, in recent years, there are an increasing number of air conditioners such as commercial air conditioners that can be operated in a high sensible heat mode with high energy saving performance in addition to the normal mode. However, when evaluating the thermal performance of an air conditioner, if separate standards must be used for each of the normal mode and the high sensible heat mode, the information processing becomes cumbersome and the user can intuitively determine the thermal performance. It may be difficult to grasp.

以上のような理由により、空調装置の熱性能を精度良く評価するために、成績係数を適切に分類・評価する方法が求められている。特に、通常モードと高顕熱モードにおける成績係数を統一的な基準により分類・評価する方法が必要とされている。   For the above reasons, a method for appropriately classifying and evaluating the coefficient of performance is required in order to accurately evaluate the thermal performance of the air conditioner. In particular, a method for classifying and evaluating the coefficient of performance in the normal mode and the high sensible heat mode according to a unified standard is required.

特開2010−038487号公報JP 2010-038487 A 特開2008−281255号公報JP 2008-281255 A 特開2009−150640号公報JP 2009-150640 A 特開2007−278618号公報JP 2007-278618 A 特開2017−048958号公報JP 2017-048958 A

本発明は上記の課題に鑑みてなされたものであり、その目的は、空調装置の熱性能を精度良く評価するための技術を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a technique for accurately evaluating the thermal performance of an air conditioner.

上記の目的を達成するため、本発明は以下のような構成を採用する。すなわち、圧縮機、室外熱交換器、膨張弁、室内熱交換器、および、冷媒の流路である冷媒配管を備える空調装置を評価する評価装置であって、前記評価装置は、少なくとも通常モードまたは高顕熱モードを含む複数の条件において前記空調装置の成績係数を取得する成績係数取得部と、前記成績係数を評価する分類評価部とを有しており、前記分類評価部は、前記室外熱交換器の吸い込む空気の乾球温度と、前記室内熱交換器の制御目標である冷媒蒸発温度との差分に基づいて複数の前記成績係数を分類し、分類された前記成績係数に基づいて前記空調装置の性能特性を取得することを特徴とする空調装置の評価装置である。
この構成によれば、空調装置の冷房モードにおける成績係数を、冷媒蒸発温度と乾球温度との差分に基づいて分類できる。その結果、通常モードと高顕熱モードの成績係数を、統一的に精度良く評価できる。
In order to achieve the above object, the present invention adopts the following configuration. That is, an evaluation apparatus that evaluates an air conditioner that includes a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a refrigerant pipe that is a refrigerant flow path, wherein the evaluation apparatus is at least in a normal mode or A coefficient of performance acquisition unit that acquires a coefficient of performance of the air conditioner under a plurality of conditions including a high sensible heat mode; and a classification evaluation unit that evaluates the coefficient of performance, wherein the classification evaluation unit includes the outdoor heat exchange A plurality of the coefficient of performance are classified based on the difference between the dry bulb temperature of the air sucked into the cooler and the refrigerant evaporation temperature which is a control target of the indoor heat exchanger, and the air conditioner is based on the classified coefficient of performance It is the evaluation apparatus of the air conditioner characterized by acquiring the performance characteristic.
According to this configuration, the coefficient of performance in the cooling mode of the air conditioner can be classified based on the difference between the refrigerant evaporation temperature and the dry bulb temperature. As a result, the coefficient of performance in the normal mode and the high sensible heat mode can be uniformly and accurately evaluated.

上記構成において、冷媒蒸発温度は、前記空調装置のカタログ値、前記膨張弁と前記室内熱交換器の間の前記冷媒配管における冷媒の温度を測定した値、および、前記室外熱交換器と前記膨張弁の間の前記冷媒配管における冷媒の圧力から換算された値、のいずれかであるようにできる。
また上記構成において、乾球温度は、前記室外熱交換器の空気吸い込み口において測定された温度、または、前記空調装置が設置された建物の外気温であるようにできる。
また上記構成において、成績係数取得部は、前記空調装置のカタログ値、または、前記冷媒配管の複数の位置において測定された冷媒の圧力および温度から導出された値である
ようにできる。
この構成によれば、本発明の特徴的な分類評価方法に必要なデータを様々な方式で取得できる。その結果、データ取得の柔軟性が増すとともに、異なる方法で取得したデータに基づく評価結果同士を突き合わせることで校正も可能になる。
In the above configuration, the refrigerant evaporation temperature includes a catalog value of the air conditioner, a value obtained by measuring the temperature of the refrigerant in the refrigerant pipe between the expansion valve and the indoor heat exchanger, and the outdoor heat exchanger and the expansion. Any one of the values converted from the refrigerant pressure in the refrigerant pipe between the valves can be used.
Further, in the above configuration, the dry bulb temperature may be a temperature measured at an air inlet of the outdoor heat exchanger or an outside air temperature of a building where the air conditioner is installed.
In the above configuration, the coefficient of performance acquisition unit may be a catalog value of the air conditioner or a value derived from the pressure and temperature of the refrigerant measured at a plurality of positions of the refrigerant pipe.
According to this configuration, data necessary for the characteristic classification evaluation method of the present invention can be acquired by various methods. As a result, the flexibility of data acquisition is increased and calibration is also possible by matching evaluation results based on data acquired by different methods.

本発明はまた、以下の構成を採用することができる。すなわち、圧縮機、室外熱交換器、膨張弁、室内熱交換器、および、冷媒の流路である冷媒配管を備える空調装置を評価する評価方法であって、前記評価方法は、少なくとも通常モードまたは高顕熱モードを含む複数の条件において前記空調装置の成績係数を取得するステップと、前記成績係数を評価するステップとを有しており、前記評価するステップでは、前記室外熱交換器の吸い込む空気の乾球温度と、前記室内熱交換器の制御目標である冷媒蒸発温度との差分に基づいて複数の前記成績係数を分類し、分類された前記成績係数に基づいて前記空調装置の性能特性を取得することを特徴とする空調装置の評価方法である。
この構成によっても、本発明の目的は充分に達成される。
The present invention can also employ the following configurations. That is, an evaluation method for evaluating an air conditioner including a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a refrigerant pipe that is a refrigerant flow path, wherein the evaluation method includes at least a normal mode or Obtaining a coefficient of performance of the air conditioner under a plurality of conditions including a high sensible heat mode, and a step of evaluating the coefficient of performance. In the step of evaluating, the step of evaluating the coefficient of air sucked into the outdoor heat exchanger A plurality of the coefficient of performance is classified based on the difference between the dry bulb temperature and the refrigerant evaporation temperature that is the control target of the indoor heat exchanger, and the performance characteristics of the air conditioner are obtained based on the classified performance coefficient This is a method for evaluating an air conditioner.
Even with this configuration, the object of the present invention is sufficiently achieved.

本発明によれば、空調装置の熱性能を精度良く評価するための技術を提供できる。   According to the present invention, a technique for accurately evaluating the thermal performance of an air conditioner can be provided.

本発明の空調装置の概略構成図である。It is a schematic block diagram of the air conditioner of this invention. 本発明の評価装置の構成を示すブロック図である。It is a block diagram which shows the structure of the evaluation apparatus of this invention. 本発明の処理の手順を示すフロー図である。It is a flowchart which shows the procedure of the process of this invention. 本発明による評価方法を説明する図である。It is a figure explaining the evaluation method by this invention. 本発明による評価方法を説明する別の図である。It is another figure explaining the evaluation method by this invention. 従来の評価方法を説明するためのモリエル線図である。It is a Mollier diagram for demonstrating the conventional evaluation method. 従来の評価方法を説明する図である。It is a figure explaining the conventional evaluation method. 従来の評価方法を説明する別の図である。It is another figure explaining the conventional evaluation method.

以下に図面を参照しつつ、本発明の好適な実施の形態を説明する。ただし、以下に記載されている構成ブロックやそれらの相対配置などは、発明が適用されるシステムの各種条件により適宜変更されるべきものであり、この発明の範囲を以下の記載に限定する趣旨のものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the constituent blocks described below and their relative arrangements should be appropriately changed according to various conditions of the system to which the invention is applied, and the scope of the present invention is limited to the following description. It is not a thing.

本発明は、空調装置、空調装置の制御装置または評価装置、空調装置の制御方法または評価方法などに好ましく適用できる。本発明はまた、情報処理装置の演算資源を利用して動作し、空調装置の制御方法または評価方法の各工程を情報処理装置に実行させ、当該情報処理装置を空調装置またはその制御装置もしくは評価装置として機能させるプログラムや、かかるプログラムが格納されたコンピュータにより読み取り可能な記憶媒体としても捉えられる。記憶媒体は、非一時的な記憶媒体であっても良い。   The present invention can be preferably applied to an air conditioner, an air conditioner control device or an evaluation device, an air conditioner control method or an evaluation method, and the like. The present invention also operates using the computing resources of the information processing device, causes the information processing device to execute each step of the control method or evaluation method of the air conditioning device, and the information processing device is operated by the air conditioning device or its control device or evaluation. It can also be understood as a program that functions as a device or a computer-readable storage medium that stores such a program. The storage medium may be a non-transitory storage medium.

<成績係数の具体的な取得方法>
上述の式(1)中、消費電力については電力計による計測等、比較的簡単かつ高精度に測定する技術が存在する。一方、成績係数(機器特性)については、近似式やデータベースの形でメーカーから入手できる場合はその値を用いればよい。ただし、それらの値は一般的には非公開であるため、入手できない場合もある。そこで、本発明の実施形態を説明する上での前提として、空調装置の成績係数を取得する具体的な方法を説明する。
<Specific method of obtaining coefficient of performance>
In the above formula (1), there is a technique for measuring power consumption relatively easily and with high accuracy, such as measurement with a power meter. On the other hand, the coefficient of performance (apparatus characteristics) may be used if it can be obtained from the manufacturer in the form of an approximate expression or database. However, these values are generally private and may not be available. Therefore, as a premise for explaining the embodiment of the present invention, a specific method for obtaining the coefficient of performance of the air conditioner will be explained.

(空調装置の構成)
まず、空調装置の実機についての測定結果から成績係数を算出・推定する方法を示す。
図1は、ヒートポンプ型の空調装置の概略構成図である。空調装置1は概略、室内機10、室外機20、膨張弁(電子リニア膨張弁:LEV)40、圧縮機(Comp)50、冷媒が通過する冷媒配管60を備える。空調装置1が冷房モードで稼働するときは、室内機10が室内から熱を奪い、室外機20が室内から取り除いた熱を外部に排出する。
(Configuration of air conditioner)
First, a method for calculating / estimating the coefficient of performance from the measurement result of the actual air conditioner will be described.
FIG. 1 is a schematic configuration diagram of a heat pump type air conditioner. The air conditioner 1 generally includes an indoor unit 10, an outdoor unit 20, an expansion valve (electronic linear expansion valve: LEV) 40, a compressor (Comp) 50, and a refrigerant pipe 60 through which the refrigerant passes. When the air conditioner 1 operates in the cooling mode, the indoor unit 10 takes heat from the room, and the outdoor unit 20 discharges the heat removed from the room to the outside.

室内機10は、冷媒と室内空気の間で熱をやり取りするための室内熱交換器(HEX)101を備えている。室内熱交換器101は、冷房モードの場合には蒸発器とも呼ばれ、典型的には冷媒が通過する金属製の管の外側に、アルミ等でできた伝熱面積を広げるためのフィンが多数取り付けられた構造であるが、これに限定されない。また室内機筐体には、空気の吸い込み口111・吹き出し口112が設けられている。室内機10は、他にも、冷気や暖気を送るためのファン、フィルター、吸込み温度センサ、吹き出し温度センサ、室内機制御回路、リモコンなどを備えていてよい(不図示)。   The indoor unit 10 includes an indoor heat exchanger (HEX) 101 for exchanging heat between the refrigerant and room air. The indoor heat exchanger 101 is also called an evaporator in the cooling mode, and typically has many fins for expanding the heat transfer area made of aluminum or the like outside the metal pipe through which the refrigerant passes. Although it is an attached structure, it is not limited to this. The indoor unit housing is provided with an air inlet 111 and a blower 112. The indoor unit 10 may further include a fan, a filter, a suction temperature sensor, a blowing temperature sensor, an indoor unit control circuit, a remote controller, and the like (not shown) for sending cool air or warm air.

室外機20は、冷媒と室外空気との間で熱をやり取りするための、冷房モードの場合には凝縮器とも呼ばれる室外熱交換器(HEX)201を備えており、室内熱交換器101と同様の構成をとることができる。また室外機筐体には、空気の吸い込み口211・吹き出し口212が設けられている。室外機20は他にも、室外ファン、空気の吸い込み口・吹き出し口が設けられた筐体、吸込み温度センサ、吹き出し温度センサ、室外機制御回路、アキュムレータなどを備えていてよい(不図示)。   The outdoor unit 20 includes an outdoor heat exchanger (HEX) 201 that is also referred to as a condenser in the cooling mode for exchanging heat between the refrigerant and the outdoor air, and is similar to the indoor heat exchanger 101. The configuration can be taken. The outdoor unit housing is provided with an air inlet 211 and an outlet 212. The outdoor unit 20 may further include an outdoor fan, a housing provided with an air inlet / outlet, an intake temperature sensor, an outlet temperature sensor, an outdoor unit control circuit, an accumulator, and the like (not shown).

膨張弁40は、室内熱交換器101と室外熱交換器201の冷媒圧力差を保ちつつ、必要な量の冷媒を供給するために設けられており、開度が調整可能な電子リニア膨張弁などが好適に利用されるが、これに限定されない。冷房モードの場合、膨張弁40から室内熱交換器101に冷媒が流れる。圧縮機50は、冷媒を吸入して圧縮し、吐出する。圧縮機50として例えば、インバータ制御によって回転数が変化する駆動用モータを用いた能力可変圧縮機が好適であるが、これに限定されない。   The expansion valve 40 is provided to supply a necessary amount of refrigerant while maintaining a refrigerant pressure difference between the indoor heat exchanger 101 and the outdoor heat exchanger 201, and an electronic linear expansion valve whose opening degree can be adjusted. Is preferably used, but is not limited thereto. In the cooling mode, the refrigerant flows from the expansion valve 40 to the indoor heat exchanger 101. The compressor 50 draws in refrigerant, compresses it, and discharges it. As the compressor 50, for example, a variable capacity compressor using a driving motor whose rotation speed is changed by inverter control is suitable, but the compressor 50 is not limited to this.

冷媒配管60は、冷媒が通過する流路となる配管であり、上述した各構成要素の間で冷媒を流通させる冷媒配管601〜606の総称である。また、四路切替弁610は、稼動状態を冷房モードと暖房モードとの間で変更する際に、冷媒の流れの方向を切り替える。   The refrigerant pipe 60 is a pipe serving as a flow path through which the refrigerant passes, and is a generic name for the refrigerant pipes 601 to 606 that distribute the refrigerant between the above-described components. The four-way switching valve 610 switches the direction of the refrigerant flow when the operating state is changed between the cooling mode and the heating mode.

空調装置1の運用においては、室内機空気吸い込み口111における空気温度が、リモコン等により設定された目標値になるように、室内機10が運転制御される。その際、冷媒温度(冷房モードでは冷媒蒸発温度)が目標値になるように、膨張弁40の絞り開度や圧縮機50の回転周波数が制御される。   In the operation of the air conditioner 1, the indoor unit 10 is operation-controlled so that the air temperature at the indoor unit air suction port 111 becomes a target value set by a remote controller or the like. At that time, the throttle opening degree of the expansion valve 40 and the rotation frequency of the compressor 50 are controlled so that the refrigerant temperature (the refrigerant evaporation temperature in the cooling mode) becomes the target value.

図1中、符号T1〜T3は、冷媒配管60における冷媒温度の測定位置を示す。また符号P1,P2は、冷媒圧力の測定位置を示す。符号T4も冷媒温度の測定位置であり、測定した温度の使用方法については後述する。また、符号T5は空気の温度の測定位置であり、これも後述する。   In FIG. 1, reference signs T <b> 1 to T <b> 3 indicate measurement positions of the refrigerant temperature in the refrigerant pipe 60. Reference numerals P1 and P2 indicate measurement positions of the refrigerant pressure. Reference numeral T4 is also a refrigerant temperature measurement position, and a method of using the measured temperature will be described later. Reference numeral T5 is an air temperature measurement position, which will also be described later.

(成績係数の導出)
図6は冷凍サイクルを表すモリエル線図(P−h線図)であり、横軸は比エンタルピーh(kJ/kg´)を示し、縦軸は圧力P(MPa)を示す。冷媒が状態点1にあるときを出発点とする。冷媒が圧縮機50に吸入されると、圧縮されて状態点2に移行し、高温高圧になる。次いで、冷媒が凝縮器(室外熱交換器201)で放熱して凝縮し、状態点3に移行する。次いで、冷媒が膨張弁40で減圧されて状態点4に移行する。次いで、減圧された冷媒が蒸発器(室内熱交換器101)で吸熱して蒸発し、状態点1に移行する。
(Derivation of coefficient of performance)
FIG. 6 is a Mollier diagram (Ph diagram) representing the refrigeration cycle, the horizontal axis indicates the specific enthalpy h (kJ / kg ′), and the vertical axis indicates the pressure P (MPa). The starting point is when the refrigerant is at state point 1. When the refrigerant is sucked into the compressor 50, it is compressed and moves to the state point 2, and becomes high temperature and pressure. Next, the refrigerant dissipates heat in the condenser (outdoor heat exchanger 201), condenses, and shifts to state point 3. Next, the refrigerant is depressurized by the expansion valve 40 and moves to the state point 4. Next, the decompressed refrigerant absorbs heat in the evaporator (indoor heat exchanger 101) and evaporates, and the state shifts to state 1.

図6のモリエル線図の各状態点1〜4は、空調装置の冷媒配管60における温度と圧力
の測定結果に基づき、以下のようにプロットできる。
・状態点1:低圧側の冷媒圧力(P1)と、圧縮機入口温度(T1)よりプロット
・状態点2:高圧側の冷媒圧力(P2)と、圧縮機出口温度(T2)よりプロット
・状態点3:高圧側の冷媒圧力(P2)と、凝縮器出口温度(T3)よりプロット
・状態点4:低圧側の冷媒圧力(P1)と、蒸発温度計算値よりプロット
なお、状態点4における蒸発温度計算値は、市販の冷凍サイクル計算プログラム(圧力−蒸発温度の換算に用いるデータベース)を用いて算出できる。
The state points 1 to 4 in the Mollier diagram of FIG. 6 can be plotted as follows based on the measurement results of the temperature and pressure in the refrigerant pipe 60 of the air conditioner.
State point 1: Plotted from low pressure side refrigerant pressure (P1) and compressor inlet temperature (T1) State point 2: Plotted from high pressure side refrigerant pressure (P2) and compressor outlet temperature (T2) State Point 3: Plotted from high-pressure side refrigerant pressure (P2) and condenser outlet temperature (T3). State point 4: Plotted from low-pressure side refrigerant pressure (P1) and calculated evaporation temperature. Evaporation at state point 4 The calculated temperature value can be calculated using a commercially available refrigeration cycle calculation program (database used for pressure-evaporation temperature conversion).

次いで、下記の換算式(2)〜(4)に上記のプロット結果を適用することで、冷房モード時の成績係数を取得できる。
冷房エネルギー[kJ/kg´]=(状態点4−状態点1) …(2)
投入エネルギー[kJ/kg´]=(状態点2−状態点1) …(3)
成績係数[-]=冷房エネルギー[kJ/kg´]/投入エネルギー[kJ/kg´] …(4
Next, the coefficient of performance in the cooling mode can be acquired by applying the plot results to the following conversion equations (2) to (4).
Cooling energy [kJ / kg ′] = (state point 4−state point 1) (2)
Input energy [kJ / kg ′] = (state point 2−state point 1) (3)
Coefficient of performance [-] = cooling energy [kJ / kg '] / input energy [kJ / kg'] ... (4
)

このような冷媒圧力・温度の測定と成績係数の導出を様々な試験条件下で行うことにより、成績係数の評価に必要なデータを取得できる。例えば、JIS(日本工業規格)の定める条件や(一社)日本冷凍空調工業会の定めるガイドラインなどに従って、外気条件や負荷条件などの試験条件を定めることが好ましいが、これに限定されない。   By performing the measurement of the refrigerant pressure / temperature and the derivation of the coefficient of performance under various test conditions, data necessary for evaluation of the coefficient of performance can be acquired. For example, it is preferable to define test conditions such as outside air conditions and load conditions in accordance with conditions defined by JIS (Japanese Industrial Standards), guidelines established by the Japan Refrigeration and Air Conditioning Industry Association, but it is not limited thereto.

また、上記の方法以外にも、特許文献4(特開2007−278618号公報)では、圧縮機に吸入される吸入冷媒、圧縮機から吐出された吐出冷媒、熱交換器に流入する冷媒、熱交換器から流出した冷媒のそれぞれについてエンタルピーを検出し、各冷媒のエンタルピーに基づいて成績係数を算出している。なお、特許文献5の方法では、空調装置の稼働中に連続的に成績係数を求めるためには、冷媒圧力を常時測定しておく必要がある。冷媒圧力の測定には冷媒経路に圧力計を設置する必要がある点に注意を要する。   In addition to the above method, in Patent Document 4 (Japanese Patent Laid-Open No. 2007-278618), the refrigerant sucked into the compressor, the refrigerant discharged from the compressor, the refrigerant flowing into the heat exchanger, the heat The enthalpy is detected for each refrigerant flowing out of the exchanger, and the coefficient of performance is calculated based on the enthalpy of each refrigerant. In the method of Patent Document 5, it is necessary to constantly measure the refrigerant pressure in order to obtain the coefficient of performance continuously during the operation of the air conditioner. It should be noted that a pressure gauge must be installed in the refrigerant path to measure the refrigerant pressure.

また、実測値を用いる以外の方法として、特許文献5(特開2017−048958号公報)では、メーカーから提供された不連続的な成績係数データを使用して、統計的な手法に従って代表的な冷却水温以外の水温における機器特性値を推計し、冷却水温と負荷率の関数として表現する方法を開示している。   Further, as a method other than using the actual measurement value, in Patent Document 5 (Japanese Patent Laid-Open No. 2017-048958), a discontinuous coefficient of performance data provided by a manufacturer is used and a representative method is used according to a statistical method. An apparatus characteristic value at a water temperature other than the cooling water temperature is estimated and expressed as a function of the cooling water temperature and the load factor.

<従来の成績係数の分類と評価における問題点>
ここで、従来用いられてきた成績係数の分類および評価の方法と、その問題点について、出願人が鋭意検討を行った結果について説明する。
<Problems in conventional classification and evaluation of coefficient of performance>
Here, the results of the earnest examination by the applicant regarding the methods of classifying and evaluating the coefficient of performance used conventionally and the problems thereof will be described.

図7および図8は、成績係数を分類・評価して空調装置の性能特性を表現するための一般的な手法を説明するグラフである。図7において、横軸は負荷率を、縦軸は成績係数(COP)を示す。図7では、負荷率と成績係数の相関関係が示される。負荷率は定格能力に対する出力の割合として求められる。グラフにおいて、通常モードと高顕熱モードそれぞれで取得されたデータを区別して示す。また、空調装置の定格成績係数(定格COP)を星印で示す。また、各モードのデータごとに、近似式(次数=3)と、決定係数R^2を求めた結果についても、図7に示す。   7 and 8 are graphs illustrating a general method for classifying and evaluating the coefficient of performance to express the performance characteristics of the air conditioner. In FIG. 7, the horizontal axis represents the load factor, and the vertical axis represents the coefficient of performance (COP). FIG. 7 shows the correlation between the load factor and the coefficient of performance. The load factor is obtained as a ratio of output to rated capacity. In the graph, data acquired in each of the normal mode and the high sensible heat mode are shown separately. The rated coefficient of performance (rated COP) of the air conditioner is indicated by an asterisk. FIG. 7 also shows the result of obtaining the approximate expression (order = 3) and the determination coefficient R ^ 2 for each mode of data.

まず、各モードでの決定係数を検討する。一般的には、「R^2=0.5〜0.8」であれば近似式の精度が良好であり、「R^2=0.8〜1.0」であれば精度が非常に良いとされている。しかし図7では、通常モードで「R^2=0.20」、高顕熱モードで「R^2=0.10」であり、近似式の精度は低い。   First, the coefficient of determination in each mode is examined. In general, if “R ^ 2 = 0.5 to 0.8”, the accuracy of the approximate expression is good, and if “R ^ 2 = 0.8 to 1.0”, the accuracy is very high. It is good. However, in FIG. 7, “R ^ 2 = 0.20” in the normal mode and “R ^ 2 = 0.10” in the high sensible heat mode, and the accuracy of the approximate expression is low.

また、通常モードと高顕熱モードの近似式を比較すると、双方の式がほとんど重なって
おらず、両者の類似性が低い。したがって、図7のデータ分類法では、通常モードと高顕熱モードを統一的な基準で評価することは難しい。
In addition, when comparing the approximate expressions of the normal mode and the high sensible heat mode, the expressions of both are hardly overlapped, and the similarity between the two is low. Therefore, in the data classification method of FIG. 7, it is difficult to evaluate the normal mode and the high sensible heat mode with a unified standard.

図8において、横軸は室外機吸込み乾球温度を、縦軸は成績係数(COP)を示す。室外機吸込み乾球温度は、室外機に流入する空気の温度を測定することで求められる。図8では、室外機吸込み乾球温度と成績係数の相関関係が示される。図7と同様、通常モードと高顕熱モードそれぞれで取得されたデータを区別し、また、定格COPを星印で示す。   In FIG. 8, the horizontal axis represents the outdoor unit suction dry bulb temperature, and the vertical axis represents the coefficient of performance (COP). The outdoor unit suction dry bulb temperature is obtained by measuring the temperature of the air flowing into the outdoor unit. FIG. 8 shows the correlation between the outdoor unit suction dry bulb temperature and the coefficient of performance. As in FIG. 7, the data acquired in the normal mode and the high sensible heat mode are distinguished from each other, and the rated COP is indicated by an asterisk.

図8においても、モードごとに近似式(次数=1)と決定係数R^2を求めた。各モードでの決定係数を検討すると、通常モードで「R^2=0.65」、高顕熱モードで「R^2=0.40」である。通常モードにおいてはやや良好な近似が行われているが、高顕熱モードでは近似の精度が低い。さらに、通常モードと高顕熱モードの近似式が離隔しているため、両者を統一的な基準で評価することは難しい。   Also in FIG. 8, the approximate expression (order = 1) and the determination coefficient R ^ 2 were obtained for each mode. Examining the coefficient of determination in each mode, “R ^ 2 = 0.65” in the normal mode and “R ^ 2 = 0.40” in the high sensible heat mode. Although a somewhat good approximation is performed in the normal mode, the accuracy of the approximation is low in the high sensible heat mode. Furthermore, since the approximate expressions of the normal mode and the high sensible heat mode are separated from each other, it is difficult to evaluate both with a uniform standard.

<実施の形態>
本発明にかかる空調装置、空調装置の評価装置、該評価装置を用いた評価方法について説明する。本実施形態でも、図1に示した空調装置1を対象とする。
<Embodiment>
An air conditioner according to the present invention, an evaluation apparatus for an air conditioner, and an evaluation method using the evaluation apparatus will be described. Also in this embodiment, the air conditioner 1 shown in FIG. 1 is targeted.

(評価装置の構成)
図2は、本発明にかかる評価装置80の構成例を示すブロック図である。評価装置80は、情報処理装置81、記憶装置82、表示装置83、入力装置84を備える。情報処理装置81は、データ取得部811、成績係数取得部812、分類評価部813を有する。評価装置80としては、CPUやメモリなどの演算資源や、通信手段、入力手段や表示手段などのインタフェースを備える、PCやワークステーションなどが好適である。PCが備えるハードディスクやSSD等を記憶装置82として、ディスプレイ等の表示手段を表示装置83として、マウスやキーボードなどユーザーの要求を受け付け可能な入力手段を入力装置として、それぞれ利用できる。ただし、各ブロックの機能を果たせるものであれば、これに限定されない。情報処理装置81に含まれる各ブロックは、図示したようにそれぞれ実体のある回路として構成され、バスにより相互接続されても良いし、それぞれがプログラムモジュールとして仮想的に実現されても良い。後者の場合、各プログラムモジュールがPCの演算資源を利用することにより、PCを評価装置80として動作させる。また、複数のPCが協働して評価装置80の機能を実現しても良い。
(Configuration of evaluation device)
FIG. 2 is a block diagram showing a configuration example of the evaluation apparatus 80 according to the present invention. The evaluation device 80 includes an information processing device 81, a storage device 82, a display device 83, and an input device 84. The information processing apparatus 81 includes a data acquisition unit 811, a coefficient of performance acquisition unit 812, and a classification evaluation unit 813. As the evaluation device 80, a PC, a workstation, or the like provided with computing resources such as a CPU and a memory, an interface such as a communication unit, an input unit, and a display unit is preferable. A hard disk, SSD, or the like included in the PC can be used as the storage device 82, display means such as a display can be used as the display device 83, and input means such as a mouse or keyboard that can accept user requests can be used as the input device. However, the present invention is not limited to this as long as the function of each block can be achieved. Each block included in the information processing apparatus 81 is configured as a substantial circuit as illustrated, and may be interconnected by a bus, or each may be virtually realized as a program module. In the latter case, each program module uses the computing resources of the PC to operate the PC as the evaluation device 80. A plurality of PCs may cooperate to implement the function of the evaluation device 80.

図中の情報処理装置81内のサブブロック構成はあくまでも例示であり、必要な情報処理が行われるのであれば、これに限定されない。評価装置80と空調装置1を合わせて、評価機能を有する空調装置だと考えてもよい。   The sub-block configuration in the information processing apparatus 81 in the drawing is merely an example, and is not limited to this as long as necessary information processing is performed. The evaluation device 80 and the air conditioner 1 may be combined to be considered as an air conditioner having an evaluation function.

情報処理装置81の成績係数取得部812は、データ取得部811が取得したデータに基づいて、複数の条件下での成績係数を取得する。データ取得部811は、PCの通信機能を利用して温度センサや圧力センサの制御回路と通信を行ったり、予め記憶装置82に保存されているセンシングデータ等を取得したりして、データを取得する。導出された値などは、分類評価部813によって分類・評価される。記憶装置82には、データ取得部811が取得したデータや、算出された成績係数、分類や評価の結果など、各種のデータが保存される。表示装置83には情報処理装置81からの出力が表示され、出力結果を確認したユーザーが入力装置84を用いて操作を行うことで、数値解析のような所望の情報処理が実行される。   The coefficient of performance acquisition unit 812 of the information processing apparatus 81 acquires the coefficient of performance under a plurality of conditions based on the data acquired by the data acquisition unit 811. The data acquisition unit 811 acquires data by communicating with the control circuit of the temperature sensor or pressure sensor using the communication function of the PC, or acquiring sensing data or the like previously stored in the storage device 82. To do. The derived values and the like are classified and evaluated by the classification evaluation unit 813. The storage device 82 stores various data such as data acquired by the data acquisition unit 811, calculated performance coefficients, classification and evaluation results. An output from the information processing device 81 is displayed on the display device 83, and a user who confirms the output result performs an operation using the input device 84, thereby executing desired information processing such as numerical analysis.

(処理フロー)
図3は、本実施形態の処理の手順を示すためのフロー図である。空調装置の評価装置80による評価方法が開始すると、ステップS301において、データ取得部811が、メ
ーカー提供の成績係数が有るかどうかを判断する。判断結果がYesの場合、ステップS302に進み、記憶装置82に保存された成績係数を取得する。一方、実機の測定により成績係数を求める場合はステップS303に進み、圧力センサによって冷媒圧力測定位置P1,P2の圧力を取得するとともに、温度センサによって冷媒温度測定位置T1〜T3の温度を取得する。データ取得部811はセンサとの通信により温度データを取得する。続いてステップS304にて、成績係数取得部812が、測定値から求められる各状態点1〜4のプロット結果と、換算式(2)〜(4)に基づいて、成績係数を導出する。なお、成績係数取得には、上述した他の方法を用いても構わない。
(Processing flow)
FIG. 3 is a flowchart for illustrating a processing procedure of the present embodiment. When the evaluation method by the air conditioner evaluation device 80 is started, in step S301, the data acquisition unit 811 determines whether there is a coefficient of performance provided by the manufacturer. If the determination result is Yes, the process proceeds to step S302, and the coefficient of performance stored in the storage device 82 is acquired. On the other hand, when the coefficient of performance is obtained by actual measurement, the process proceeds to step S303, and the pressures at the refrigerant pressure measurement positions P1 and P2 are acquired by the pressure sensor, and the temperatures at the refrigerant temperature measurement positions T1 to T3 are acquired by the temperature sensor. The data acquisition unit 811 acquires temperature data through communication with the sensor. Subsequently, in step S304, the coefficient of performance acquisition unit 812 derives a coefficient of performance based on the plot results of the respective state points 1 to 4 obtained from the measured values and the conversion equations (2) to (4). In addition, you may use the other method mentioned above for acquisition of a performance coefficient.

一方、ステップS311〜S312では、本発明の評価方法に用いるための分類用データが取得される。まずステップS311では、室外機の空気吸い込み口211(図1の符号T5)に設置された温度センサによる測定値に基づいて、室外機の吸込み乾球温度(Tdry[°C])が測定される。なお、室外機の設置状況等により吸込み乾球温度の測定が難しい場合は、気象庁の発表データ等に基づいて、空調装置が設置された建物付近の外気温データを取得してもよい。データ取得部811はセンサとの通信により温度データを取得する。   On the other hand, in steps S311 to S312, classification data for use in the evaluation method of the present invention is acquired. First, in step S311, the outdoor unit's suction dry bulb temperature (Tdry [° C]) is measured based on the measured value by the temperature sensor installed in the air suction port 211 (reference numeral T5 in FIG. 1) of the outdoor unit. . In addition, when it is difficult to measure the suction dry bulb temperature due to the installation status of the outdoor unit, the outside air temperature data in the vicinity of the building where the air conditioner is installed may be acquired based on the announcement data of the Japan Meteorological Agency. The data acquisition unit 811 acquires temperature data through communication with the sensor.

続いて、ステップS312では、室内機における冷媒蒸発温度(Teva[°C])が取得される。冷媒蒸発温度は空調装置の制御目標の一種であり、メーカーのカタログ等にJIS試験値などの形式で記載されている場合は、そのデータを利用してもよい。また、何らかの実測を行って冷媒蒸発温度を求めてもよい。実測結果から求める方法の一つに、直接冷媒温度を測定する方法がある。この場合、膨張弁40と室内熱交換器101の間の冷媒配管605(図1の符号T4)に設置された温度センサによって、冷媒の温度を測定する。また、別の方法として、圧力センサで求めた冷媒圧力を、換算式を用いて冷媒蒸発温度に変換してもよい。このとき、冷房モードであれば低圧側(図1の符号P2)での圧力を測定する。また別の方法として、冷媒蒸発温度などの制御目標値が固定されている旧式の空調装置においては、一度だけ測定を行って得られた値を用いてもよい。   Subsequently, in step S312, the refrigerant evaporation temperature (Teva [° C]) in the indoor unit is acquired. The refrigerant evaporating temperature is a kind of control target of the air conditioner, and when it is described in a format such as a JIS test value in a manufacturer's catalog or the like, the data may be used. Further, some actual measurement may be performed to obtain the refrigerant evaporation temperature. One of the methods obtained from the actual measurement result is a method of directly measuring the refrigerant temperature. In this case, the temperature of the refrigerant is measured by a temperature sensor installed in the refrigerant pipe 605 (reference numeral T4 in FIG. 1) between the expansion valve 40 and the indoor heat exchanger 101. As another method, the refrigerant pressure obtained by the pressure sensor may be converted into the refrigerant evaporation temperature using a conversion formula. At this time, in the cooling mode, the pressure on the low pressure side (reference P2 in FIG. 1) is measured. As another method, in an old-type air conditioner in which a control target value such as a refrigerant evaporation temperature is fixed, a value obtained by performing measurement only once may be used.

続いて、ステップS331では、分類評価部813が、出願人が見出した本発明に特徴的な方法により、成績係数を分類・評価する。図4を用いて詳しく説明する。   Subsequently, in step S331, the classification evaluation unit 813 classifies and evaluates the coefficient of performance by a method characteristic of the present invention found by the applicant. This will be described in detail with reference to FIG.

図4は、本実施形態における、成績係数を分類・評価して空調装置の性能特性を表現する手法を説明するグラフである。縦軸は、図7、図8と同様に成績係数(COP)を示す。横軸は、S311で取得した室外機の吸込み乾球温度Tdryと、S312で取得した冷媒蒸発温度Tevaの差分である。したがって図8では、該差分値と成績係数の相関関係が示される。グラフにおいて、通常モードと高顕熱モードそれぞれでのデータは区別して示す。また、定格COPは星印で示す。   FIG. 4 is a graph illustrating a method for classifying and evaluating the coefficient of performance and expressing the performance characteristics of the air conditioner in the present embodiment. The vertical axis indicates the coefficient of performance (COP) as in FIGS. The horizontal axis represents the difference between the outdoor unit suction dry bulb temperature Tdry acquired in S311 and the refrigerant evaporation temperature Teva acquired in S312. Therefore, FIG. 8 shows the correlation between the difference value and the coefficient of performance. In the graph, the data in the normal mode and the high sensible heat mode are shown separately. The rated COP is indicated by an asterisk.

まず、通常モードと高顕熱モードのデータ群を比較すると、両者がグラフ上で同じ傾向を持っている。そこで図4では、両モードで共通の近似式を求めた。その決定係数は、「R^2=0.71」という良好な値を示しており、精度が高いことが分かる。すなわち、横軸に図4のようなデータを用いることにより、通常モードと高顕熱モードで得られた成績係数を、統一的に、しかも精度よく分類・評価できる。特に、成績係数が空調装置の性能に関連することに鑑みると、外気温度を示す乾球温度や、制御目標値である冷媒蒸発温度が成績係数に与える影響を評価しやすくなることには意義がある。このように本実施形態によれば、空調装置の性能特性を良好に取得して評価できる。   First, comparing the data groups of the normal mode and the high sensible heat mode, both have the same tendency on the graph. Therefore, in FIG. 4, an approximate expression common to both modes is obtained. The determination coefficient shows a good value of “R ^ 2 = 0.71”, which indicates that the accuracy is high. That is, by using data as shown in FIG. 4 on the horizontal axis, the coefficient of performance obtained in the normal mode and the high sensible heat mode can be classified and evaluated uniformly and accurately. In particular, considering that the coefficient of performance relates to the performance of the air conditioner, it is meaningful that it becomes easier to evaluate the influence of the dry bulb temperature indicating the outside air temperature and the refrigerant evaporation temperature, which is the control target value, on the coefficient of performance. is there. Thus, according to the present embodiment, the performance characteristics of the air conditioner can be acquired and evaluated satisfactorily.

一方図5は、実測値ではなく、メーカー提供の情報から理論的に導き出した近似式を示したグラフである。この場合、成績係数はカタログ値を、乾球温度はJIS試験の条件値を、冷媒蒸発温度はメーカーから得たJIS試験値をそれぞれ用いる。この場合でも、提
供を受ける情報は限定的であり、例えば冷房モードの場合は、定格冷房標準試験と中間冷房中温試験の2条件における冷媒蒸発温度のみで済む。図5のグラフ上には、校正の観点から、複数の条件での試験により取得された試験値をプロットしている。試験値はほぼ近似式上にプロットされており、式の精度が良好であることが分かる。
On the other hand, FIG. 5 is a graph showing not an actual measurement value but an approximate expression theoretically derived from information provided by the manufacturer. In this case, the performance coefficient is a catalog value, the dry bulb temperature is a JIS test condition value, and the refrigerant evaporation temperature is a JIS test value obtained from a manufacturer. Even in this case, the information to be provided is limited. For example, in the cooling mode, only the refrigerant evaporation temperature under the two conditions of the rated cooling standard test and the intermediate cooling intermediate temperature test is sufficient. On the graph of FIG. 5, from the viewpoint of calibration, test values obtained by tests under a plurality of conditions are plotted. The test values are almost plotted on the approximate expression, which shows that the accuracy of the expression is good.

図3に戻って説明を続ける。ステップS321では、データ取得部811が、電力計により測定された空調装置の消費電力を取得する。さらに必要に応じて、ステップS341において、分類評価部813が成績係数と消費電力に基づいて熱出力を連続的に算出・評価してもよい。これにより、ユーザーが空調装置の熱性能を連続的に把握可能となる。なお、分類・評価された成績係数や熱性能は、表示装置83に表示されてユーザーに提示されてもよいし、記憶装置82に保存されてもよい。また、情報処理装置81において数値解析などの用に供されてもよい。   Returning to FIG. 3, the description will be continued. In step S321, the data acquisition unit 811 acquires the power consumption of the air conditioner measured by the power meter. Further, if necessary, in step S341, the classification evaluation unit 813 may continuously calculate and evaluate the heat output based on the coefficient of performance and the power consumption. As a result, the user can continuously grasp the thermal performance of the air conditioner. Note that the performance coefficient and thermal performance classified and evaluated may be displayed on the display device 83 and presented to the user, or may be stored in the storage device 82. Further, the information processing apparatus 81 may be used for numerical analysis or the like.

なお、冷媒蒸発温度や成績係数などの本発明に必要なデータについて、カタログ値を使うのではなく、実測結果に基づいて導出することは、初期不良や経年劣化による空調装置の性能のカタログ値からの乖離を防ぐ効果がある。また、カタログ値から求めたデータや近似式を、実測値を用いて校正することも好ましい。校正タイミングとしては、空調装置の出荷時、建物への設置時、定期的なメンテナンス時などが好適である。   Note that the data required for the present invention such as the refrigerant evaporation temperature and the coefficient of performance is not derived from the catalog value, but is derived based on the actual measurement result from the catalog value of the performance of the air conditioner due to initial failure or aging deterioration. There is an effect to prevent the divergence. It is also preferable to calibrate the data or approximate expression obtained from the catalog value using the actual measurement value. As the calibration timing, it is preferable to ship the air conditioner, install it in a building, or perform regular maintenance.

以上のように、本実施形態の評価装置および評価方法によれば、空調装置の成績係数を、制御目標でもある冷媒蒸発温度と、室外機吸込み空気の乾球温度との差分に基づいて分類できる。その結果、通常モードと高顕熱モードの成績係数を、統一的に、しかも精度良い近似式で評価可能になる。また、成績係数に基づいて熱出力や熱性能を精度よく評価可能になる。さらに、本発明に必要なデータは少ない時間と少ない労力で取得可能であるため、機器の導入や、連続的な測定が容易である。本実施形態の評価装置を用いた評価方法は、空調装置の性能測定、定期的なメンテナンス、機能の維持管理などに有効である。また、本発明で得られたデータは、数値解析や高効率運用のための基礎データとして利用できる。例えば、年間シミュレーション等で対象空間の空調負荷を予測し、これを本発明で得られた近似式から求めた成績係数で除すことで、室内の負荷条件と室外機の流入空気条件、目標蒸発温度の3つが考慮された業務用エアコンの消費電力の予測が可能になる。   As described above, according to the evaluation apparatus and the evaluation method of the present embodiment, the coefficient of performance of the air conditioner can be classified based on the difference between the refrigerant evaporation temperature, which is also a control target, and the dry bulb temperature of the outdoor unit intake air. . As a result, the coefficient of performance in the normal mode and the high sensible heat mode can be evaluated in a unified and accurate approximation formula. Further, it becomes possible to accurately evaluate the heat output and the thermal performance based on the coefficient of performance. Furthermore, since the data necessary for the present invention can be acquired with less time and less effort, it is easy to introduce equipment and perform continuous measurement. The evaluation method using the evaluation apparatus of the present embodiment is effective for performance measurement of air conditioners, periodic maintenance, function maintenance management, and the like. The data obtained by the present invention can be used as basic data for numerical analysis and high-efficiency operation. For example, by predicting the air conditioning load in the target space by annual simulation etc. and dividing this by the coefficient of performance obtained from the approximate expression obtained in the present invention, the indoor load condition, the outdoor air inflow condition, the target evaporation It is possible to predict the power consumption of commercial air conditioners that take into account three of the temperatures.

1:空調装置、40:膨張弁、50:圧縮機、80:評価装置、101:室内熱交換器、600:冷媒配管   1: air conditioner, 40: expansion valve, 50: compressor, 80: evaluation device, 101: indoor heat exchanger, 600: refrigerant piping

Claims (8)

圧縮機、室外熱交換器、膨張弁、室内熱交換器、および、冷媒の流路である冷媒配管を備える空調装置を評価する評価装置であって、
前記評価装置は、少なくとも通常モードまたは高顕熱モードを含む複数の条件において前記空調装置の成績係数を取得する成績係数取得部と、前記成績係数を評価する分類評価部とを有しており、
前記分類評価部は、前記室外熱交換器の吸い込む空気の乾球温度と、前記室内熱交換器の制御目標である冷媒蒸発温度との差分に基いて複数の前記成績係数を分類し、分類された前記成績係数に基づいて前記空調装置の性能特性を取得する
ことを特徴とする空調装置の評価装置。
An evaluation apparatus for evaluating an air conditioner including a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a refrigerant pipe that is a refrigerant flow path,
The evaluation device has a coefficient of performance acquisition unit that acquires a coefficient of performance of the air conditioner under a plurality of conditions including at least a normal mode or a high sensible heat mode, and a classification evaluation unit that evaluates the coefficient of performance,
The classification evaluation unit classifies a plurality of coefficient of performance based on a difference between a dry bulb temperature of air sucked into the outdoor heat exchanger and a refrigerant evaporation temperature which is a control target of the indoor heat exchanger. An air conditioner evaluation apparatus that acquires performance characteristics of the air conditioner based on the coefficient of performance.
前記冷媒蒸発温度は、前記空調装置のカタログ値、前記膨張弁と前記室内熱交換器の間の前記冷媒配管における冷媒の温度を測定した値、および、前記室外熱交換器と前記膨張弁の間の前記冷媒配管における冷媒の圧力から換算された値、のいずれかである
ことを特徴とする請求項1に記載の空調装置の評価装置。
The refrigerant evaporating temperature is a catalog value of the air conditioner, a value obtained by measuring the temperature of the refrigerant in the refrigerant pipe between the expansion valve and the indoor heat exchanger, and between the outdoor heat exchanger and the expansion valve. 2. The air conditioner evaluation apparatus according to claim 1, wherein the air conditioner is a value converted from a refrigerant pressure in the refrigerant pipe.
前記乾球温度は、前記室外熱交換器の空気吸い込み口において測定された温度、または、前記空調装置が設置された建物の外気温である
ことを特徴とする請求項1または2に記載の空調装置の評価装置。
The air conditioning according to claim 1 or 2, wherein the dry bulb temperature is a temperature measured at an air inlet of the outdoor heat exchanger or an outside air temperature of a building in which the air conditioner is installed. Equipment evaluation device.
前記成績係数取得部は、前記空調装置のカタログ値、または、前記冷媒配管の複数の位置において測定された冷媒の圧力および温度から導出された値である
ことを特徴とする請求項1ないし3のいずれか1項に記載の空調装置の評価装置。
The said coefficient of performance acquisition part is a value derived | led-out from the catalog value of the said air conditioner, or the pressure and temperature of the refrigerant | coolant measured in the several position of the said refrigerant | coolant piping. The evaluation apparatus of the air conditioning apparatus of any one of Claims.
前記分類評価部は、分類された前記成績係数と前記差分との相関関係に基づいて前記性能特性を取得する
ことを特徴とする請求項1ないし4のいずれか1項に記載の空調装置の評価装置。
5. The air conditioner evaluation according to claim 1, wherein the classification evaluation unit acquires the performance characteristics based on a correlation between the classified coefficient of performance and the difference. 6. apparatus.
前記分類評価部は、前記成績係数と前記差分の間の決定係数を取得し、前記決定係数に基づいて前記性能特性を評価する
ことを特徴とする請求項5に記載の空調装置の評価装置。
6. The air conditioner evaluation apparatus according to claim 5, wherein the classification evaluation unit acquires a determination coefficient between the coefficient of performance and the difference, and evaluates the performance characteristic based on the determination coefficient.
前記空調装置は、当該空調装置の消費電力を測定する電力計をさらに備えており、
前記分類評価部は、前記成績係数と前記消費電力に基づいて、前記空調装置の熱出力をさらに取得する
ことを特徴とする請求項1ないし6のいずれか1項に記載の空調装置の評価装置。
The air conditioner further includes a power meter for measuring power consumption of the air conditioner,
The said classification | category evaluation part further acquires the heat output of the said air conditioning apparatus based on the said coefficient of performance and the said power consumption, The evaluation apparatus of the air conditioning apparatus of any one of Claim 1 thru | or 6 characterized by the above-mentioned. .
圧縮機、室外熱交換器、膨張弁、室内熱交換器、および、冷媒の流路である冷媒配管を備える空調装置を評価する評価方法であって、
前記評価方法は、少なくとも通常モードまたは高顕熱モードを含む複数の条件において前記空調装置の成績係数を取得するステップと、前記成績係数を評価するステップとを有しており、
前記評価するステップでは、前記室外熱交換器の吸い込む空気の乾球温度と、前記室内熱交換器の制御目標である冷媒蒸発温度との差分に基づいて複数の前記成績係数を分類し、分類された前記成績係数に基づいて前記空調装置の性能特性を取得する
ことを特徴とする空調装置の評価方法。
An evaluation method for evaluating an air conditioner including a compressor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and a refrigerant pipe that is a refrigerant flow path,
The evaluation method includes a step of obtaining a coefficient of performance of the air conditioner under a plurality of conditions including at least a normal mode or a high sensible heat mode, and a step of evaluating the coefficient of performance,
In the step of evaluating, a plurality of the coefficient of performance is classified and classified based on a difference between a dry bulb temperature of air sucked into the outdoor heat exchanger and a refrigerant evaporation temperature which is a control target of the indoor heat exchanger. And obtaining the performance characteristics of the air conditioner based on the coefficient of performance.
JP2017140156A 2017-07-19 2017-07-19 Evaluation device and evaluation method for air conditioners Active JP6972468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140156A JP6972468B2 (en) 2017-07-19 2017-07-19 Evaluation device and evaluation method for air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140156A JP6972468B2 (en) 2017-07-19 2017-07-19 Evaluation device and evaluation method for air conditioners

Publications (2)

Publication Number Publication Date
JP2019020070A true JP2019020070A (en) 2019-02-07
JP6972468B2 JP6972468B2 (en) 2021-11-24

Family

ID=65355278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140156A Active JP6972468B2 (en) 2017-07-19 2017-07-19 Evaluation device and evaluation method for air conditioners

Country Status (1)

Country Link
JP (1) JP6972468B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984422A (en) * 2021-10-29 2022-01-28 上海板换机械设备有限公司 Heat exchanger operation performance evaluation method and device and electronic equipment
CN115183389A (en) * 2022-08-09 2022-10-14 南京亚派软件技术有限公司 Intelligent diagnosis method based on full life cycle of air conditioner room
CN115218347A (en) * 2022-07-25 2022-10-21 珠海格力电器股份有限公司 APF (active Power Filter) matching method and device of air conditioner, air conditioner and storage medium
WO2022231246A1 (en) * 2021-04-27 2022-11-03 한온시스템 주식회사 Air conditioning apparatus for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289532A (en) * 2000-02-02 2001-10-19 Mitsubishi Electric Corp Chiller/air-conditioner and its operation method
JP2002022245A (en) * 2000-07-13 2002-01-23 Daikin Ind Ltd Air conditioning system
JP2015028391A (en) * 2013-07-30 2015-02-12 パナソニック株式会社 Air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289532A (en) * 2000-02-02 2001-10-19 Mitsubishi Electric Corp Chiller/air-conditioner and its operation method
JP2002022245A (en) * 2000-07-13 2002-01-23 Daikin Ind Ltd Air conditioning system
JP2015028391A (en) * 2013-07-30 2015-02-12 パナソニック株式会社 Air conditioning system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231246A1 (en) * 2021-04-27 2022-11-03 한온시스템 주식회사 Air conditioning apparatus for vehicle
CN113984422A (en) * 2021-10-29 2022-01-28 上海板换机械设备有限公司 Heat exchanger operation performance evaluation method and device and electronic equipment
CN113984422B (en) * 2021-10-29 2024-04-19 上海板换机械设备有限公司 Heat exchanger operation performance evaluation method and device and electronic equipment
CN115218347A (en) * 2022-07-25 2022-10-21 珠海格力电器股份有限公司 APF (active Power Filter) matching method and device of air conditioner, air conditioner and storage medium
CN115218347B (en) * 2022-07-25 2024-01-26 珠海格力电器股份有限公司 APF matching method and device for air conditioner, air conditioner and storage medium
CN115183389A (en) * 2022-08-09 2022-10-14 南京亚派软件技术有限公司 Intelligent diagnosis method based on full life cycle of air conditioner room

Also Published As

Publication number Publication date
JP6972468B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US9115921B2 (en) Performance evaluation device for variable-speed centrifugal chiller
JP6972468B2 (en) Evaluation device and evaluation method for air conditioners
Romero et al. A simplified black-box model oriented to chilled water temperature control in a variable speed vapour compression system
US9696073B2 (en) Fault detection and diagnostic system for a refrigeration circuit
Kim et al. Extension of a virtual refrigerant charge sensor
CN102353403B (en) Methods for measuring chilled water flow and cooling medium flow of central air-conditioning host machine
CN109543221B (en) On-site fault diagnosis method for air conditioner water chilling unit
CN108344528B (en) Heat exchange quantity measuring method and device for multi-connected air conditioning system
Cecchinato et al. A simplified method to evaluate the seasonal energy performance of water chillers
WO2018188520A1 (en) Online detection method for refrigeration energy efficiency ratio and refrigeration capacity of air conditioner
Chen et al. Development of a steady-state physical-based mathematical model for a direct expansion based enhanced dehumidification air conditioning system
JP2007240036A (en) Diagnosing method and system of air conditioner
CN113175738B (en) Method for calculating capacity energy efficiency of air conditioner, computer storage medium and air conditioner
Giannetti et al. Experimental implementation of artificial neural network for cost effective and non-intrusive performance estimation of air conditioning systems
Liu et al. A robust gray-box modeling methodology for variable-speed direct-expansion systems with limited training data
CN107560258A (en) Performance evaluation method of water chilling unit and water chilling unit
Yan et al. Operating characteristics of a three-evaporator air conditioning (TEAC) system
JP7445533B2 (en) Abnormality detection equipment, programs and electrical equipment systems
Padilla Exergy analysis of the performance of a variable refrigerant flow (VRF) air conditioning system
Lee Thermodynamic Modeling and Experimental Validation of Screw Liquid Chillers.
Cheung et al. Virtual power consumption and cooling capacity virtual sensors for rooftop units
CN115754513A (en) Building air conditioner energy efficiency diagnosis system based on power consumption data
TWI432686B (en) Monitoring system and method of refrigeration equipment
KR100489560B1 (en) Method and apparatus of in-situ performance test for air-source heat pump
CN106196444B (en) The detection method and system of air conditioner evaporating temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6972468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150