JP2019019947A - Underground tank structure - Google Patents

Underground tank structure Download PDF

Info

Publication number
JP2019019947A
JP2019019947A JP2017140924A JP2017140924A JP2019019947A JP 2019019947 A JP2019019947 A JP 2019019947A JP 2017140924 A JP2017140924 A JP 2017140924A JP 2017140924 A JP2017140924 A JP 2017140924A JP 2019019947 A JP2019019947 A JP 2019019947A
Authority
JP
Japan
Prior art keywords
bottom plate
heater
side wall
layer bottom
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140924A
Other languages
Japanese (ja)
Other versions
JP6310604B1 (en
Inventor
安永 正道
Masamichi Yasunaga
正道 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2017140924A priority Critical patent/JP6310604B1/en
Application granted granted Critical
Publication of JP6310604B1 publication Critical patent/JP6310604B1/en
Publication of JP2019019947A publication Critical patent/JP2019019947A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an underground tank structure capable of reducing temperature load applied to a tank skeleton.SOLUTION: An underground tank structure 1 stores low-temperature liquefied gas such as LNG, and has a tank skeleton comprising a bottom slab 5 and a side wall 7, wherein the bottom slab 5 is divided into two layers of an upper layer bottom slab 5a and a lower layer bottom slab 5b. The upper layer bottom slab 5a is connected to the side wall 7, and the thickness of the upper layer bottom slab 5a is substantially identical to that of the side wall 7. The underground tank structure 1 is configured such that a frost line b indicating a position showing 0°C with utilization of a tank is managed at a position so as to become substantially the same separation distance from an inner surface of the tank skeleton at the side part and bottom part of the tank skeleton.SELECTED DRAWING: Figure 1

Description

本発明は、地下タンク構造に関する。   The present invention relates to an underground tank structure.

LNG(液化天然ガス)やLPG(液化石油ガス)等の低温液化ガスを貯留する設備として地下タンクがある。近年の地下タンクは、山留である地中連続壁の内側を掘削した後、図15に示すように地中連続壁9の内側に鉄筋コンクリート製の底版5および側壁7からなるタンク躯体を構築し、その上に鋼製屋根8を設けるのが一般的である。図示は省略するが、タンク躯体の内面では断熱材を介してメンブレンが設けられる。また底版5の下方では砕石等による集水層4が設けられる。   There is an underground tank as a facility for storing low-temperature liquefied gas such as LNG (liquefied natural gas) and LPG (liquefied petroleum gas). In recent underground tanks, after excavating the inside of the underground continuous wall which is a mountain retaining, a tank frame comprising a bottom slab 5 made of reinforced concrete and a side wall 7 is constructed inside the underground continuous wall 9 as shown in FIG. In general, a steel roof 8 is provided thereon. Although illustration is omitted, a membrane is provided on the inner surface of the tank housing via a heat insulating material. A water collecting layer 4 made of crushed stone or the like is provided below the bottom plate 5.

底版5と側壁7は、ピン結合やスライド結合を行う場合もあるが、最近では底版5と側壁7を一体化して剛結合とすることが多い。これは止水面での有利さおよび底版5と側壁7の間の支承構造が不要になることによる。このような構造形式の場合、底版5と側壁7のコーナー部にハンチ6を設け、応力の流れをスムーズにするのが一般的である。   The bottom plate 5 and the side wall 7 may be pin-coupled or slidably coupled, but recently, the bottom plate 5 and the side wall 7 are often integrated to form a rigid connection. This is due to the advantage of the water stop surface and the need for a support structure between the bottom plate 5 and the side wall 7. In the case of such a structure type, it is common to provide a haunch 6 at the corners of the bottom plate 5 and the side wall 7 to smooth the flow of stress.

底版5の厚さは側壁7より大きく、容量20万KLクラスの地下タンクで例えば側壁2.45m、底版8.0m程度となる。この部材寸法は、主に、空液時の地下水圧による浮き上がりを防止できる重量を有するように定められる。   The thickness of the bottom plate 5 is larger than that of the side wall 7 and is, for example, about 2.45 m on the side wall and 8.0 m on the bottom plate in an underground tank having a capacity of 200,000 KL. This member dimension is mainly determined so as to have a weight capable of preventing the floating due to the groundwater pressure at the time of air-liquid.

地下タンクではLNG等の極低温の液化ガスを貯留するので、タンク稼働時の周辺地盤の凍結を抑制するため側部および底部にヒータ設備を設けて温度的な安定を図り、凍結線(0℃となる位置を示す線)の位置を維持管理している(例えば特許文献1−5)。ヒータ設備には面状発熱体を用いるものもあるが、熱媒体をヒータ管に循環させてその熱交換により凍結線の位置を管理するものが多い。   Because underground tanks store liquefied gas such as LNG at low temperatures, heaters are installed on the side and bottom to prevent freezing of the surrounding ground when the tank is operating, and temperature stability is achieved. The position of the line indicating the position is maintained and managed (for example, Patent Documents 1-5). Some heater equipment uses a planar heating element, but many of them control the position of the freezing line by circulating a heat medium through the heater tube and exchanging the heat.

図15の例では、側部ヒータ設備としてヒータ管103を周辺地盤3に埋設している。ヒータ管103は例えば外管内に内管を挿入した二重管タイプのものであり、内管、外管の上端が枝管を介して熱媒体の供給側のヘッダー管101、回収側のヘッダー管105にそれぞれ連結される。側部ヒータ設備では、ヒータ管103内の熱媒体と周辺地盤3との間で熱交換を行うことにより、凍結線を地中連続壁9より外側の周辺地盤3内で管理する。   In the example of FIG. 15, a heater tube 103 is embedded in the surrounding ground 3 as a side heater facility. The heater pipe 103 is, for example, a double pipe type in which an inner pipe is inserted into an outer pipe, and the upper end of the inner pipe and the outer pipe is connected to the header pipe 101 on the heat medium supply side via the branch pipe, and the header pipe on the recovery side. 105, respectively. In the side heater equipment, the freezing line is managed in the peripheral ground 3 outside the underground continuous wall 9 by exchanging heat between the heat medium in the heater tube 103 and the peripheral ground 3.

一方、底部ヒータ設備としては、底版5の下面近傍に埋設したヒータ管201に熱媒体を循環させるブラインヒータを設置しており、凍結線を底版5の下部で管理して底版5下の地盤が凍結するのを防止している。   On the other hand, as the bottom heater equipment, a brine heater for circulating a heat medium is installed in a heater tube 201 embedded in the vicinity of the lower surface of the bottom slab 5, and the freezing line is managed at the bottom of the bottom slab 5 so that the ground below the bottom slab 5 Prevents freezing.

特開平11-182797号公報Japanese Patent Laid-Open No. 11-182797 特公昭61-31360号公報Japanese Patent Publication No.61-31360 特開平8-145297号公報Japanese Unexamined Patent Publication No. 8-145297 特許第2789299号Patent No. 2789299 特公昭58-6118号公報Japanese Patent Publication No.58-6118

地下タンクのタンク躯体には、タンク躯体の温度低下により生じる荷重と、タンク躯体の温度差から生じる荷重が加わる。前者は、常温下で構築されたタンク躯体の温度が、タンク稼働時に低温液化ガスによって低下することで発生する荷重であり、後者はタンク躯体の内外面の温度差によって発生する荷重である。   A load caused by a temperature drop of the tank housing and a load caused by a temperature difference between the tank housings are applied to the tank housing of the underground tank. The former is a load generated when the temperature of the tank housing constructed at normal temperature is lowered by the low-temperature liquefied gas when the tank is operating, and the latter is a load generated by a temperature difference between the inner and outer surfaces of the tank housing.

前者のケースでは、温度低下に伴う底版や側壁の収縮が周辺地盤との摩擦力等により拘束されることで、底版や側壁の断面に軸力(温度荷重)が発生する。また、底版と側壁の間で温度低下量に差ができることも、タンク躯体に温度荷重が発生する原因となる。例えば底版が温度低下しない状態で側壁が温度低下する場合、側壁の収縮が底版によって拘束され、側壁下端にせん断力や曲げモーメント(温度荷重)が発生する。   In the former case, the contraction of the bottom slab and the side wall accompanying the temperature drop is constrained by the frictional force with the surrounding ground and the like, and an axial force (temperature load) is generated in the cross section of the bottom slab and the side wall. In addition, the difference in temperature drop between the bottom plate and the side wall can also cause a temperature load on the tank housing. For example, when the temperature of the side wall decreases while the temperature of the bottom plate does not decrease, the shrinkage of the side wall is constrained by the bottom plate, and a shearing force and a bending moment (temperature load) are generated at the lower end of the side wall.

後者のケースでは、タンク稼働時にタンク躯体の側壁の内面の温度がLNG等の低温液化ガスによって低くなるのに対し、側壁の外面は側部ヒータ設備によって温められることから温度低下せず、側壁の外面と側壁の内面(タンク躯体の内面)との間で温度差が生じる。同様に、ヒータ管が埋設された底版の下面と底版の上面(タンク躯体の内面)との間にも温度差が生じる。この場合、温度の低下する側壁の内面や底版の上面が収縮しようとするが、この収縮を側壁や底版が拘束することで曲げモーメント(温度荷重)が発生する。   In the latter case, the temperature of the inner surface of the side wall of the tank housing is lowered by the low-temperature liquefied gas such as LNG when the tank is operating, whereas the temperature of the outer surface of the side wall is not lowered because it is heated by the side heater equipment. A temperature difference occurs between the outer surface and the inner surface of the side wall (the inner surface of the tank housing). Similarly, a temperature difference also occurs between the lower surface of the bottom plate in which the heater pipe is embedded and the upper surface of the bottom plate (the inner surface of the tank housing). In this case, the inner surface of the side wall and the upper surface of the bottom plate, where the temperature decreases, tend to shrink, but a bending moment (temperature load) is generated by restraining the shrinkage by the side wall and the bottom plate.

このような温度荷重が生じる結果、地下タンクでは底版や側壁の鉄筋量を多くして補強を行う必要があり、地下タンクのコストアップ要因となっている。   As a result of such a temperature load, the underground tank needs to be reinforced by increasing the amount of reinforcing bars on the bottom plate and the side wall, which causes an increase in the cost of the underground tank.

温度荷重が大きくなる原因としては、タンク躯体の構造によるところも大きい。例えば前記したようにタンク躯体の底版は側壁よりも厚く形成されるため、底版と側壁の間でタンク建設時からの温度低下量を同じにする制御は難しく、タンク建設時からの温度低下量に差がつきやすくなる。   The cause of the large temperature load is also due to the structure of the tank housing. For example, as described above, since the bottom plate of the tank casing is formed thicker than the side wall, it is difficult to control the amount of temperature drop between the bottom plate and the side wall from the time of tank construction to be the same. It becomes easy to make a difference.

また、温度低下に伴って生じる前記の軸力や、タンク躯体の内外面の温度差に伴って生じる前記の曲げモーメント等の温度荷重の大きさは、温度低下量あるいは温度差と部材厚をパラメータとして変化し、底版等の部材厚が大きいこと自体も温度荷重を増加させる原因になる。   In addition, the magnitude of the temperature load such as the axial force caused by the temperature drop and the bending moment caused by the temperature difference between the inner and outer surfaces of the tank housing is determined by the amount of temperature drop or the temperature difference and the member thickness as parameters. As the thickness of the member such as the bottom plate is large, the temperature load is also increased.

本発明は上記の問題に鑑みてなされたものであり、タンク躯体に加わる温度荷重を低減可能な地下タンク構造を提供することを目的とする。   This invention is made | formed in view of said problem, and it aims at providing the underground tank structure which can reduce the temperature load added to a tank housing.

前述した課題を解決するための本発明は、地盤に設けられる地下タンク構造であって、底版と側壁を含むタンク躯体を有し、前記底版は、上層底版と下層底版の2層に分けて設けられ、前記上層底版は前記側壁と連結され、前記上層底版と前記側壁の厚さが略同一であることを特徴とする地下タンク構造である。   The present invention for solving the above-mentioned problems is an underground tank structure provided on the ground, and has a tank casing including a bottom plate and a side wall, and the bottom plate is provided in two layers of an upper layer bottom plate and a lower layer bottom plate. The upper layer bottom plate is connected to the side wall, and the thickness of the upper layer bottom plate and the side wall is substantially the same.

本発明では、底版を上層底版と下層底版の2層に分け、薄くした上層底版と側壁を同じ厚さとして連結することで、上層底版と側壁に生じる温度荷重を低減することができる。すなわち、従来のタンク躯体の場合で生じるような底版と側壁のタンク建設時からの温度低下量の違いを容易に小さくすることが可能になり、底版と側壁の温度低下量の違いに起因する温度荷重を低減することができる。また、上層底版等が従来の底版等と比べて薄くなること自体も、温度荷重の低減効果をもたらす。結果、上層底版と側壁に加わる温度荷重を極端に小さくして鉄筋量を減らすことが可能である。また、上層底版と分けて構築された下層底版では拘束が少ないので温度荷重はほとんど発生しない。さらに、下層底版と上層底版の二重スラブにより揚圧力(水圧)に抵抗でき、空液時の地下水圧による浮き上がりにも抵抗できる。   In the present invention, the bottom plate is divided into two layers, the upper layer bottom plate and the lower layer bottom plate, and the thinned upper layer bottom plate and the side wall are connected with the same thickness, whereby the temperature load generated on the upper layer bottom plate and the side wall can be reduced. That is, it becomes possible to easily reduce the difference in temperature drop between the bottom plate and the side wall tank construction as occurs in the case of the conventional tank housing, and the temperature caused by the difference in temperature drop between the bottom plate and the side wall. The load can be reduced. Further, the fact that the upper layer bottom plate is thinner than the conventional bottom plate itself also brings about the effect of reducing the temperature load. As a result, the amount of reinforcing bars can be reduced by extremely reducing the temperature load applied to the upper bottom plate and the side wall. In addition, since the lower layer bottom plate constructed separately from the upper layer bottom plate is less constrained, almost no temperature load is generated. In addition, the double bottom slab of the lower bottom plate and the upper bottom plate can resist the lifting pressure (water pressure), and can also resist lifting due to groundwater pressure during air-liquid.

タンク稼働に伴い0℃となる位置を示す凍結線が、前記タンク躯体の側部と底部において前記タンク躯体の内面から略同一の離間距離となる位置にあることが望ましい。
本発明では、上層底版と側壁を同じ厚さとするとともにタンク躯体の内面からタンク躯体の側部と底部の凍結線までの離間距離を略同一にすることで、定常時の上層底版と側壁の温度分布をほぼ同じ形にして上層底版と側壁の温度低下量の違いを0に近付けることができる。また、タンク躯体にほぼ同じ厚さの凍結コンクリートを形成できることから、信頼性の高い、確実な止水が可能となる。
It is desirable that the freezing line indicating the position at which the temperature is 0 ° C. as the tank operates is at a position where the side and bottom of the tank housing are substantially the same distance from the inner surface of the tank housing.
In the present invention, the upper layer bottom plate and the side wall have the same thickness, and the distance from the inner surface of the tank housing to the freezing line of the side and bottom of the tank housing is substantially the same, so that The difference in temperature drop between the upper bottom plate and the side wall can be brought close to 0 by making the distributions substantially the same. In addition, since the frozen concrete having substantially the same thickness can be formed on the tank housing, a reliable and reliable water stop can be achieved.

前記上層底版と前記下層底版の境界面の外周部の全周に止水部が設けられることが望ましい。また、前記上層底版と前記下層底版の境界面を跨ぐように連結鉄筋が設けられることも望ましい。
上層底版と下層底版の境界面の外周部に止水部を設けることで、上層底版と下層底版の間に水が入ることを防止でき、上層底版に水圧が作用することは無い。また、境界面を跨ぐように連結鉄筋を設けることで、上層底版と下層底版の間の目開きを防いで上層底版と下層底版の間に水が入ることを同じく防止できる。
It is desirable that a water stop portion is provided on the entire outer periphery of the boundary surface between the upper layer bottom plate and the lower layer bottom plate. It is also desirable that a connecting reinforcing bar is provided so as to straddle the boundary surface between the upper layer bottom plate and the lower layer bottom plate.
By providing a water stop portion at the outer peripheral portion of the boundary surface between the upper layer bottom plate and the lower layer bottom plate, water can be prevented from entering between the upper layer bottom plate and the lower layer bottom plate, and water pressure does not act on the upper layer bottom plate. Further, by providing the connecting reinforcing bars so as to straddle the boundary surface, it is possible to prevent water from entering between the upper layer bottom plate and the lower layer bottom plate by preventing the opening between the upper layer bottom plate and the lower layer bottom plate.

前記上層底版と前記側壁は剛結合されていることが望ましい。
温度荷重は剛結タイプのタンク躯体で大きくなることが多いので、そのようなケースで本発明を特に好適に適用することができる。
The upper layer bottom plate and the side wall are preferably rigidly connected.
Since the temperature load is often increased in the rigid tank tank, the present invention can be applied particularly favorably in such a case.

本発明により、タンク躯体に加わる温度荷重を低減可能な地下タンク構造を提供することができる。   The present invention can provide an underground tank structure capable of reducing the temperature load applied to the tank housing.

地下タンク構造1を示す図。The figure which shows the underground tank structure 1. FIG. 上層底版5aと下層底版5bを示す図。The figure which shows the upper layer bottom plate 5a and the lower layer bottom plate 5b. ヒータ管13の配置を示す図。The figure which shows arrangement | positioning of the heater pipe | tube 13. FIG. ヒータ管22の平面を見た図。The figure which looked at the plane of heater pipe 22. FIG. 側壁7と底版5の温度分布の例。An example of temperature distribution of the side wall 7 and the bottom plate 5. ヒータ管13’を示す図。The figure which shows heater pipe | tube 13 '. 地下タンク構造1aを示す図。The figure which shows the underground tank structure 1a. ヒータ管13aを示す図。The figure which shows the heater pipe | tube 13a. ヒータ管13aとヒータ管22を連続させる例を示す図。The figure which shows the example which makes the heater pipe | tube 13a and the heater pipe | tube 22 continue. ヒータ管13a’を示す図。The figure which shows heater pipe | tube 13a '. 地下タンク構造1bを示す図。The figure which shows the underground tank structure 1b. ヒータ管32の平面を示す図。The figure which shows the plane of the heater pipe | tube 32. FIG. ヒータ管32aの平面を示す図。The figure which shows the plane of the heater pipe | tube 32a. ヒータ管32bの平面を示す図。The figure which shows the plane of the heater pipe | tube 32b. 従来の地下タンクの例。An example of a conventional underground tank.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.地下タンク構造1)
図1は本発明の第1の実施形態に係る地下タンク構造1を示す図である。地下タンク構造1は地盤に設けられ、貯留物としてLNGやLPG等の(極)低温の液化ガス(低温液体)をタンク内に貯留する。
[First Embodiment]
(1. Underground tank structure 1)
FIG. 1 is a diagram showing an underground tank structure 1 according to a first embodiment of the present invention. The underground tank structure 1 is provided on the ground and stores (very) low-temperature liquefied gas (low-temperature liquid) such as LNG or LPG in the tank as a storage.

地下タンク構造1は、図15の例と同様、山留である地中連続壁9の内側を掘削した後、鉄筋コンクリート製の底版5および側壁7によるタンク躯体を地中連続壁9の内側に構築し、その上に鋼製屋根8を設けて構成される。特に図示しないが、タンク躯体の内面には断熱材が設けられ、さらにその内側にメンブレン等も設けられる。なお、「内」とはタンク躯体の中心に近い方をいうものとし、「外」とはその反対側をいうものとする。   In the underground tank structure 1, as in the example of FIG. 15, after excavating the inside of the underground continuous wall 9, which is a mountain retaining, a tank frame is constructed inside the underground continuous wall 9 by the bottom slab 5 and the side wall 7 made of reinforced concrete. The steel roof 8 is provided thereon. Although not particularly illustrated, a heat insulating material is provided on the inner surface of the tank housing, and a membrane and the like are further provided on the inner side. “Inside” means the one closer to the center of the tank housing, and “outside” means the opposite side.

ただし本実施形態では、図15の例と異なり、底版5が上層底版5aと下層底版5bの2層に分けて設けられる。底版5の構築時は、下層底版5bのコンクリートを打設して当該コンクリートが硬化した後に上層底版5aのコンクリートを打設するなどして、上層底版5aと下層底版5bが接触しているが縁の切れた状態とする。   However, in this embodiment, unlike the example of FIG. 15, the bottom plate 5 is provided in two layers of an upper layer bottom plate 5a and a lower layer bottom plate 5b. When the bottom plate 5 is constructed, the upper bottom plate 5a and the lower bottom plate 5b are in contact with each other by placing the concrete of the lower layer plate 5b and setting the concrete after the concrete has hardened. It is assumed that the state has expired.

側壁7は上層底版5aの上で筒状に形成され、地中連続壁9は側壁7の外側の周辺地盤3中に筒状に設けられる。側壁7と上層底版5aの厚さは略同一とし、例えば1.75mと薄厚のものとする。地中連続壁9の厚さは例えば1.2mとする。上層底版5aと側壁7は連結して一体化(剛結合)され、そのコーナー部にはハンチ6が設けられる。下層底版5bの厚さは例えば6.25m程度とし、空液時の地下水圧による浮き上がりを防止すべく、底版5全体として8.0m程度の厚さを確保する。下層底版5bの下方には砕石等による集水層4も設けられる。   The side wall 7 is formed in a cylindrical shape on the upper layer bottom plate 5 a, and the underground continuous wall 9 is provided in a cylindrical shape in the peripheral ground 3 outside the side wall 7. The thickness of the side wall 7 and the upper layer bottom plate 5a is substantially the same, for example, as thin as 1.75 m. The thickness of the underground continuous wall 9 is, for example, 1.2 m. The upper bottom plate 5a and the side wall 7 are connected and integrated (rigidly connected), and a haunch 6 is provided at the corner portion. The thickness of the lower bottom plate 5b is, for example, about 6.25m, and the thickness of the entire bottom plate 5 is secured to about 8.0m in order to prevent the bottom plate 5 from being lifted by the groundwater pressure during air-liquid. A water collection layer 4 made of crushed stone or the like is also provided below the lower layer bottom plate 5b.

図2に示すように、上層底版5aと下層底版5bの境界面の外周部では、当該外周部の全周に亘って止水部51が設けられる。止水部51は境界面を跨ぐ止水板等から構成される。また、同じく上層底版5aと下層底版5bの境界面を跨ぐように連結鉄筋52も埋設される。   As shown in FIG. 2, the water stop part 51 is provided over the perimeter of the said outer peripheral part in the outer peripheral part of the boundary surface of the upper layer bottom plate 5a and the lower layer bottom plate 5b. The water stop part 51 is comprised from the water stop board etc. which straddle a boundary surface. Similarly, the connecting rebar 52 is also embedded so as to straddle the boundary surface between the upper layer bottom plate 5a and the lower layer bottom plate 5b.

上層底版5aと下層底版5bの境界面は隙間が無く、また外周部に止水部51が設けられ、連結鉄筋52によって上層底版5aと下層底版5bの目開きも防止されることで、境界面に地下水が入って上層底版5aに水圧が作用することは無い。   The boundary surface between the upper layer bottom plate 5a and the lower layer bottom plate 5b has no gap, and a water stop portion 51 is provided on the outer peripheral portion, and the opening of the upper layer bottom plate 5a and the lower layer bottom plate 5b is prevented by the connecting reinforcing bars 52. The groundwater does not enter and the water pressure does not act on the upper bottom plate 5a.

なお、本実施形態では底版5(上層底版5aと下層底版5b)の外周面が地中連続壁9に接触しているが境界面で縁が切れており、当該境界面を跨ぐように鉄筋等のせん断力伝達機構(不図示)が埋設されることでタンク躯体と地中連続壁9が接続され、浮き上がりに対する抵抗力として地中連続壁9の重量をカウントすることが可能となる。   In this embodiment, the outer peripheral surfaces of the bottom slab 5 (upper layer bottom slab 5a and lower layer bottom slab 5b) are in contact with the underground continuous wall 9, but the edges are cut off at the boundary surface, and reinforcing bars or the like are straddled across the boundary surface. By burying the shearing force transmission mechanism (not shown), the tank housing and the underground continuous wall 9 are connected, and the weight of the underground continuous wall 9 can be counted as a resistance force against lifting.

地下タンクでは0℃未満、特にLNG等の-160℃程度の低温液化ガスを貯留するので、図15の例と同様、タンク稼働に伴い0℃となる位置を示す凍結線を管理するため、側部ヒータ設備と底部ヒータ設備が設けられる。   Since underground tanks store low-temperature liquefied gases of less than 0 ° C, especially about -160 ° C, such as LNG, as in the example of Fig. 15, A partial heater facility and a bottom heater facility are provided.

側部ヒータ設備は、熱媒体を循環させる循環式のヒータ設備であり、加温設備および循環ポンプ(不図示)、ヘッダー管11、15、ヒータ管13等を有する。ヒータ管13はタンク躯体の側部のヒータ管であり、地中連続壁9の外側境界部の近傍に設けることで、周辺地盤3内に設ける場合に比べ側壁7の内面(タンク躯体の内面)に近付けて配置される。側壁7の内面からヒータ管13までの離間距離は例えば2.95mとする。ヘッダー管11、15は、タンク躯体の周方向に沿って環状に設けられる。   The side heater equipment is a circulation type heater equipment that circulates a heat medium, and includes a heating equipment, a circulation pump (not shown), header pipes 11 and 15, a heater pipe 13 and the like. The heater pipe 13 is a heater pipe on the side of the tank housing, and is provided in the vicinity of the outer boundary portion of the underground continuous wall 9 so that the inner surface of the side wall 7 (the inner surface of the tank housing) as compared with the case where it is provided in the peripheral ground 3. It is placed close to. The distance from the inner surface of the side wall 7 to the heater tube 13 is, for example, 2.95 m. The header pipes 11 and 15 are provided in an annular shape along the circumferential direction of the tank housing.

側部ヒータ設備では、加温設備および循環ポンプ、ヘッダー管11、ヒータ管13、ヘッダー管15、加温設備の順に熱媒体を循環させ、地中連続壁9および周辺地盤3とヒータ管13内の熱媒体との間で熱交換を行う。   In the side heater equipment, the heat medium is circulated in the order of the heating equipment and the circulation pump, the header pipe 11, the heater pipe 13, the header pipe 15, and the heating equipment, and the underground continuous wall 9 and the surrounding ground 3 and the heater pipe 13 are circulated. Heat exchange with the other heat medium.

底部ヒータ設備も熱媒体を循環させる循環式のヒータ設備であり、加温設備や循環ポンプ(不図示)を用いて下層底版5bに埋設されたヒータ管22(タンク躯体の底部のヒータ管)に熱媒体を循環させ、下層底版5bのコンクリートとヒータ管22内の熱媒体との間で熱交換を行う。上層底版5aの上面(タンク躯体の内面)からヒータ管22までの離間距離は例えば2.95mとし、前記した側壁7の内面(タンク躯体の内面)からヒータ管13までの離間距離と略同一にする。   The bottom heater is also a circulating heater that circulates the heat medium. The heater pipe 22 (the heater pipe at the bottom of the tank housing) embedded in the lower layer bottom plate 5b is used with a heating equipment or a circulation pump (not shown). The heat medium is circulated to exchange heat between the concrete of the lower bottom slab 5b and the heat medium in the heater tube 22. The distance from the upper surface of the upper bottom plate 5a (the inner surface of the tank housing) to the heater tube 22 is, for example, 2.95 m, and is substantially the same as the distance from the inner surface of the side wall 7 (the inner surface of the tank housing) to the heater tube 13. .

各ヒータ設備は、ヒータ管13、22に熱媒体を循環させ、この熱媒体と地中連続壁9および周辺地盤3や下層底版5bとの間で熱交換を行うことにより、凍結線bの位置を維持管理する。   Each heater facility circulates a heat medium through the heater pipes 13 and 22, and performs heat exchange between the heat medium and the underground continuous wall 9, the surrounding ground 3, and the lower bottom slab 5b. Maintain.

本実施形態では、ヒータ管13、22の管径、配管間隔、熱媒体の温度等を調整することにより、凍結線bが全体としてタンク躯体の内面形状に相似の線分となり、側壁7の内面からタンク躯体の側部の凍結線bまでの離間距離と、上層底版5aの上面からタンク躯体の底部の凍結線bまでの離間距離が略同一となるようにする。例えば上記のようにタンク躯体の内面からヒータ管13、22までの離間距離を略同一とする他、ヒータ管13、22の管径、配管間隔、熱媒体の温度を同じとすることで、タンク躯体の内面からタンク躯体の側部と底部の凍結線bまでの離間距離を容易に揃えることができる。   In the present embodiment, by adjusting the pipe diameters of the heater pipes 13 and 22, the pipe interval, the temperature of the heat medium, etc., the freezing line b as a whole becomes a line segment similar to the inner face shape of the tank housing, and the inner face of the side wall 7. The separation distance from the side of the tank housing to the freezing line b and the separation distance from the upper surface of the upper bottom plate 5a to the freezing line b of the bottom of the tank housing are made substantially the same. For example, as described above, the distance from the inner surface of the tank housing to the heater pipes 13 and 22 is made substantially the same, and the pipe diameters of the heater pipes 13 and 22, the pipe interval, and the temperature of the heat medium are made the same. The separation distance from the inner surface of the housing to the freezing line b on the side and bottom of the tank housing can be easily aligned.

凍結線bの位置は、全体としてタンク躯体の内面に近付け、タンク躯体の側部の凍結線bは地中連続壁9内で、底部の凍結線bは下層底版5b内の上部で管理する。凍結線bの離間距離は例えばタンク躯体の内面から2.0m程度とし、タンク躯体の側壁7および上層底版5a(いずれも厚さ1.75m)の全厚にほぼ同じ温度の凍結コンクリートを形成して信頼性の高い確実な止水を実現する。熱媒体としてはナイブライン(登録商標)等の不凍液を用い、熱媒体の凍結を防止する。   The position of the freezing line b approaches the inner surface of the tank housing as a whole, and the freezing line b on the side of the tank housing is managed in the underground continuous wall 9 and the freezing line b on the bottom is managed in the upper part in the lower layer bottom plate 5b. The separation distance of the freezing line b is, for example, about 2.0 m from the inner surface of the tank casing, and the frozen concrete having the same temperature is formed on the entire thickness of the side wall 7 of the tank casing and the upper bottom slab 5a (both thicknesses of 1.75 m). Realize reliable and reliable water stoppage. As the heat medium, an antifreeze such as Nybrine (registered trademark) is used to prevent the heat medium from freezing.

(2.側部ヒータ設備のヒータ管13)
図3は側部ヒータ設備のヒータ管13の配置を示す図であり、地中連続壁9の周方向断面を示す図である。
(2. Heater pipe 13 of side heater equipment)
FIG. 3 is a view showing the arrangement of the heater tubes 13 of the side heater equipment, and is a view showing a circumferential cross section of the underground continuous wall 9.

ヒータ管13は略鉛直方向の配管であり、図3に示すように、地中連続壁9の外側境界部の近傍において、タンク躯体の周方向に沿って略等間隔で複数配置される。ヒータ管13は地中連続壁9の外側境界部の近傍に埋設されて一体化される。   The heater pipe 13 is a pipe in a substantially vertical direction, and as shown in FIG. 3, a plurality of heater pipes 13 are arranged at substantially equal intervals along the circumferential direction of the tank housing in the vicinity of the outer boundary portion of the underground continuous wall 9. The heater tube 13 is embedded and integrated near the outer boundary of the underground continuous wall 9.

ヒータ管13は、前記と同様二重管タイプのものであり、外管132内に内管131を挿入して構成される。外管132には例えばSTPG管(圧力配管用炭素鋼鋼管)を用いることができる。ヒータ管13は地中連続壁9の外側境界部の近傍に埋設されるので、周辺地盤3にヒータ管を埋設する場合のように防食の観点からPL管(ポリエチレンライニング鋼管)を用いる必要等がなく、安価なSTPG管を用いることでコスト低減が可能である。   The heater tube 13 is of the double tube type as described above, and is configured by inserting the inner tube 131 into the outer tube 132. For the outer tube 132, for example, an STPG tube (carbon steel tube for pressure piping) can be used. Since the heater pipe 13 is embedded in the vicinity of the outer boundary portion of the underground continuous wall 9, it is necessary to use a PL pipe (polyethylene lining steel pipe) from the viewpoint of corrosion prevention as in the case where the heater pipe is embedded in the surrounding ground 3. In addition, the cost can be reduced by using an inexpensive STPG pipe.

ヒータ管13の上端は地中連続壁9の頂部から突出し、内管131の上端は枝管を介して熱媒体の供給側のヘッダー管11に連結される。外管132の上端は、枝管を介して熱媒体の回収側のヘッダー管15に連結される。ヒータ管13内では、ヘッダー管11から供給された熱媒体が内管131を通り、内管131と外管132の間を通ってヘッダー管15に回収される。   The upper end of the heater pipe 13 protrudes from the top of the underground continuous wall 9, and the upper end of the inner pipe 131 is connected to the header pipe 11 on the heat medium supply side via a branch pipe. The upper end of the outer pipe 132 is connected to the header pipe 15 on the heat medium recovery side via a branch pipe. In the heater pipe 13, the heat medium supplied from the header pipe 11 passes through the inner pipe 131, passes between the inner pipe 131 and the outer pipe 132, and is collected in the header pipe 15.

(3.底部ヒータ設備のヒータ管22)
底部ヒータ設備のヒータ管22は、下層底版5bの上部のコンクリートに埋設される。ヒータ管22は、従来のように底版5の下面に埋設される場合に比べ、高い位置に配置される。
(3. Heater tube 22 of bottom heater equipment)
The heater tube 22 of the bottom heater facility is embedded in the concrete on the upper part of the lower bottom slab 5b. The heater tube 22 is disposed at a higher position as compared with the case where the heater tube 22 is embedded in the lower surface of the bottom plate 5 as in the prior art.

図4はヒータ管22の平面を見た図である。図4では、底版5(上層底版5aと下層底版5b)、側壁7、ハンチ6および地中連続壁9の位置を破線で示している。   FIG. 4 is a plan view of the heater tube 22. In FIG. 4, the positions of the bottom plate 5 (upper layer bottom plate 5a and lower layer bottom plate 5b), the side wall 7, the haunch 6, and the underground continuous wall 9 are indicated by broken lines.

ヒータ管22は略渦巻き状に配置される。より具体的には、ヒータ管22は、略等間隔で同心円状に配置された複数の周方向配管222を有する。これらの周方向配管222はタンク躯体の周方向に沿って配置され、内外に隣り合う周方向配管222が、平面において周方向配管222に対し傾斜した斜め配管223によって接続され、一筆書き状に構成される。   The heater tube 22 is arranged in a substantially spiral shape. More specifically, the heater pipe 22 has a plurality of circumferential pipes 222 arranged concentrically at substantially equal intervals. These circumferential pipes 222 are arranged along the circumferential direction of the tank housing, and the circumferential pipes 222 adjacent to each other inside and outside are connected by oblique pipes 223 inclined with respect to the circumferential pipe 222 in a plane, and are configured in a single stroke. Is done.

周方向配管222は下層底版5bの上部で同じ高さに配置される。地中連続壁9のヒータ管13の下端は周方向配管222より下に位置し、コーナー部において凍結線bがヒータ管13、22の外側に抜け出すのを防止する。   The circumferential piping 222 is arranged at the same height above the lower layer bottom plate 5b. The lower end of the heater pipe 13 of the underground continuous wall 9 is located below the circumferential pipe 222 and prevents the freezing line b from coming out of the heater pipes 13 and 22 at the corner.

ただし周方向配管222の配置がこれに限ることはない。例えば後述する図7の例で示すように、外周部の周方向配管222を、外側に行くにつれ高い位置となるようにハンチ6の傾斜に沿って配置してもよい。これにより、ハンチ6のある上層底版5aと側壁7のコーナー部においても、タンク躯体の内面から凍結線bまでの離間距離を他と揃えることが容易になる。   However, the arrangement of the circumferential piping 222 is not limited to this. For example, as shown in the example of FIG. 7 to be described later, the circumferential pipe 222 at the outer peripheral portion may be arranged along the inclination of the haunch 6 so as to become higher as going outward. Thereby, also in the corner part of the upper-layer bottom plate 5a with the haunch 6 and the side wall 7, it becomes easy to align the separation distance from the inner surface of the tank housing to the freezing line b.

最内部の周方向配管222と最外部の周方向配管222は、側壁7内に埋設された略鉛直方向の鉛直配管221、224にそれぞれ接続される。これらの鉛直配管221、224は側壁7の外周面から外側に突出し、閉じた流路を外部で形成する。加温設備や循環ポンプはこの流路に配置される。   The innermost circumferential pipe 222 and the outermost circumferential pipe 222 are respectively connected to substantially vertical vertical pipes 221 and 224 embedded in the side wall 7. These vertical pipes 221 and 224 protrude outward from the outer peripheral surface of the side wall 7 and form a closed flow path outside. Heating equipment and a circulation pump are arranged in this flow path.

(4.側壁7および底版5内の温度分布)
図5(a)、(b)の線Aは、-162℃のLNGを貯留する地下タンクにおいて、図1のように底版5を2層で構成し、タンク躯体の側壁厚を1.75m、上層底版厚を1.75m、下層底版厚を6.25m、地中連続壁厚を1.2mとしてタンク躯体の建設時の平均温度を16℃とした場合の、タンク稼働時の定常状態における側壁7と底版5(上層底版5aと下層底版5b)の温度分布の例である。
(4. Temperature distribution in the side wall 7 and the bottom plate 5)
Lines A in FIGS. 5 (a) and 5 (b) show an underground tank storing LNG at −162 ° C., and the bottom slab 5 is composed of two layers as shown in FIG. Side wall 7 and bottom slab 5 in the steady state when the tank is operating when the bottom plate thickness is 1.75 m, the bottom bottom plate thickness is 6.25 m, the underground continuous wall thickness is 1.2 m, and the average temperature during construction of the tank housing is 16 ° C. It is an example of the temperature distribution of (upper layer bottom plate 5a and lower layer bottom plate 5b).

また、側壁7の内面からヒータ管13までの離間距離は2.95m、上層底版5aの上面からヒータ管22までの離間距離は2.95mとし、タンク稼働時のヒータ管13、22の面平均温度(ヒータ管ライン(ヒータ管13、22の配管の並んだ面)の平均温度)はどちらも5.0℃とする。   The distance from the inner surface of the side wall 7 to the heater tube 13 is 2.95 m, the distance from the upper surface of the upper bottom plate 5 a to the heater tube 22 is 2.95 m, and the surface average temperature of the heater tubes 13 and 22 when the tank is operating ( The heater pipe line (average temperature of the heater pipes 13 and 22 on which the pipes are arranged) is 5.0 ° C. for both.

この場合、タンク躯体の側部と底部の凍結線b(0℃となる位置)のタンク躯体の内面(側壁7の内面、上層底版5aの上面)からの離間距離は、2.5m程度と略同一となる。また側壁7と上層底版5aの厚さは同じであるため、側壁7と上層底版5aの厚さ方向に沿った温度分布がほぼ同じ形になり、タンク躯体の建設時からの側壁7と上層底版5aの温度低下量(厚さ方向の平均値)がほぼ同じ27℃程度となる。なお、側壁7の内外面と上層底版5aの上下面の温度差は14℃程度となる。   In this case, the separation distance from the inner surface of the tank housing (the inner surface of the side wall 7 and the upper surface of the upper bottom plate 5a) of the freezing line b (position at 0 ° C.) of the side and bottom of the tank housing is substantially the same as about 2.5 m. It becomes. Moreover, since the thickness of the side wall 7 and the upper layer bottom plate 5a is the same, the temperature distribution along the thickness direction of the side wall 7 and the upper layer bottom plate 5a is substantially the same, and the side wall 7 and the upper layer bottom plate from the time of construction of the tank casing are formed. The temperature decrease amount (average value in the thickness direction) of 5a is approximately the same at about 27 ° C. The temperature difference between the inner and outer surfaces of the side wall 7 and the upper and lower surfaces of the upper layer bottom plate 5a is about 14 ° C.

一方、図5(a)、(b)の線Bは、同じく-162℃のLNGを貯留する地下タンクにおいて、図15の例のように底版5を一層で構成し、タンク躯体の側壁厚を2.45m、底版厚を8.00m、地中連続壁厚を1.2mとしてタンク躯体の建設時の平均温度を16℃とした場合の、タンク稼働時の定常状態における側壁7と底版5の温度分布の例である。   On the other hand, line B in FIGS. 5 (a) and 5 (b) shows a bottom tank 5 having a single layer as shown in the example of FIG. Temperature distribution of side wall 7 and bottom slab 5 in the steady state when the tank is in operation when the average temperature during construction of the tank is 16 ° C, with 2.45m, bottom plate thickness of 8.00m and underground continuous wall thickness of 1.2m. It is an example.

また、側部ヒータ設備のヒータ管103は周辺地盤3に埋設して側壁7の内面からの離間距離を4.65mとし、底部ヒータ設備のヒータ管201は底版5の下面近傍に埋設して底版5の上面からの離間距離を7.28mとし、タンク稼働時のヒータ管103、201の面平均温度はそれぞれ5.0℃、10.0℃とする。   Further, the heater tube 103 of the side heater equipment is embedded in the peripheral ground 3 so that the distance from the inner surface of the side wall 7 is 4.65 m, and the heater tube 201 of the bottom heater equipment is embedded in the vicinity of the lower surface of the bottom plate 5 and the bottom plate 5 The distance from the upper surface of the heater is 7.28 m, and the surface average temperatures of the heater tubes 103 and 201 when the tank is operating are 5.0 ° C. and 10.0 ° C., respectively.

この場合、凍結線bは、上記した線Aの例よりタンク躯体の内面から遠い位置に形成され、また側部と底部でタンク躯体の内面から凍結線bまでの離間距離が異なる。例えばタンク躯体の底部の凍結線bは底版5の上面から6m程度下方に形成され、線Aの例より低い位置にある。さらに、タンク躯体の建設時からの側壁7と底版5の温度低下量(厚さ方向の平均値)も35.2℃、28.1℃と異なる。なお、側壁7の内外面と底版5の上下面の温度差はそれぞれ18.0℃、56.3℃である。   In this case, the freezing line b is formed at a position farther from the inner surface of the tank housing than the above-described example of the line A, and the distance from the inner surface of the tank housing to the freezing line b is different between the side portion and the bottom portion. For example, the freezing line b at the bottom of the tank casing is formed about 6 m below the upper surface of the bottom plate 5 and is lower than the example of the line A. Furthermore, the temperature drop (average value in the thickness direction) of the side wall 7 and the bottom slab 5 from the time of construction of the tank housing is also different from 35.2 ° C and 28.1 ° C. The temperature difference between the inner and outer surfaces of the side wall 7 and the upper and lower surfaces of the bottom plate 5 is 18.0 ° C. and 56.3 ° C., respectively.

線Aの例からわかるように、本実施形態ではタンク躯体の建設時からの上層底版5aと側壁7の温度低下量の違いを小さくできる。特に、上層底版5aと側壁7の部材厚が同じであり、側部と底部の凍結線bのタンク内面からの離間距離が同じであることから、定常時の上層底版5aと側壁7の温度分布がほぼ同じになり、タンク躯体の建設時からの温度低下量の違いを0に近付けることができる。また凍結線bの位置も全体としてタンク躯体の内面に近付けているので、上層底版5aや側壁7のタンク躯体の建設時からの温度低下量自体も小さくすることができる。   As can be seen from the example of line A, in this embodiment, the difference in the temperature drop between the upper bottom slab 5a and the side wall 7 from the time of construction of the tank housing can be reduced. In particular, since the member thicknesses of the upper layer bottom plate 5a and the side wall 7 are the same, and the distance between the freezing line b of the side portion and the bottom portion from the tank inner surface is the same, the temperature distribution of the upper layer bottom plate 5a and the side wall 7 in the steady state. Are almost the same, and the difference in temperature drop since the construction of the tank housing can be brought close to zero. Further, since the position of the freezing line b as a whole is close to the inner surface of the tank housing, the temperature drop amount itself from the construction of the tank housing of the upper bottom slab 5a and the side wall 7 can also be reduced.

さらに、前記したように温度荷重は部材厚が大きいこと自体によっても増加するが、本実施形態では上層底版5a等を薄くすることにより温度荷重は小さくなる。結果、上層底版5aや側壁7に必要な鉄筋量が大幅に低減され、地下タンクの工事費を低減することが可能である。   Furthermore, as described above, the temperature load increases due to the fact that the member thickness is large, but in this embodiment, the temperature load is reduced by making the upper layer bottom plate 5a thin. As a result, the amount of reinforcing bars required for the upper floor slab 5a and the side wall 7 can be greatly reduced, and the construction cost of the underground tank can be reduced.

例えば、図5とは別の例であるが、側壁厚を1.6m、底版厚を1.6m、側壁の内面と外面の温度をそれぞれ-18.0℃、-3.0℃、底版の上面と下面の温度をそれぞれ-6.0℃、8.0℃とした地下タンクの温度荷重と、側壁厚を2.3m、底版厚を8.0m、側壁の内面と外面の温度をそれぞれ-32.0℃、-5.0℃、底版の上面と下面の温度をそれぞれ-60.0℃、16.0℃とした地下タンクの温度荷重とを比較した場合、前者のケースで底版と側壁に加わる軸力や曲げモーメントが後者のケースに比べて大幅に低減され、側壁下端でのせん断力も小さくなったという試算結果もある。   For example, in another example, the side wall thickness is 1.6 m, the bottom plate thickness is 1.6 m, the side wall inner surface and outer surface temperatures are -18.0 ° C and -3.0 ° C, respectively, and the bottom plate upper and lower surface temperatures are Underground tank temperature load of -6.0 ° C and 8.0 ° C, side wall thickness of 2.3m, bottom plate thickness of 8.0m, side wall inner surface and outer surface temperature of -32.0 ° C, -5.0 ° C, bottom plate upper and lower surface respectively When comparing the temperature load of the underground tank with the temperature of -60.0 ℃ and 16.0 ℃ respectively, the axial force and bending moment applied to the bottom plate and side wall in the former case are significantly reduced compared to the latter case, and the side wall There is also a trial calculation result that the shear force at the lower end is also reduced.

以上説明したように、本実施形態では、底版5を上層底版5aと下層底版5bの2層に分け、薄くした上層底版5aと側壁7を同じ厚さとして連結することで、上層底版5aと側壁7に生じる温度荷重を低減することができる。   As described above, in the present embodiment, the bottom plate 5 is divided into two layers of the upper layer bottom plate 5a and the lower layer bottom plate 5b, and the thinned upper layer plate 5a and the side wall 7 are connected to have the same thickness. 7 can be reduced.

すなわち、従来のタンク躯体のように底版を側壁より厚く形成する場合、底版と側壁のタンク建設時からの温度低下量を同じとする制御は難しいが、本実施形態では上層底版5aと側壁7を同じ厚さとすることで、上層底版5aと側壁7の温度低下量の違いを容易に小さくすることが可能になり、上層底版5aと側壁7の温度低下量の違いに起因する温度荷重を低減することができる。   That is, when the bottom plate is formed thicker than the side wall as in the case of the conventional tank housing, it is difficult to control the bottom plate and the side wall at the same temperature drop from the tank construction, but in this embodiment, the upper layer bottom plate 5a and the side wall 7 are By using the same thickness, the difference in temperature drop between the upper layer bottom plate 5a and the side wall 7 can be easily reduced, and the temperature load caused by the difference in temperature drop between the upper layer bottom plate 5a and the side wall 7 is reduced. be able to.

また上層底版5a等が従来の底版等と比べて薄くなること自体も、温度荷重の低減効果をもたらす。結果、上層底版5aと側壁7に加わる温度荷重を極端に小さくして鉄筋量を減らすことが可能である。   Further, the fact that the upper layer bottom plate 5a and the like are thinner than the conventional bottom plate itself also brings about the effect of reducing the temperature load. As a result, it is possible to extremely reduce the temperature load applied to the upper bottom slab 5a and the side wall 7 to reduce the amount of reinforcing bars.

加えて、底版5を上層底版5aと下層底版5bの2層に分けて各々の部材を薄くすることは、コンクリート部材の寸法効果(部材の寸法が大きくなるに従ってその強度が低下すること)によりせん断強度が低下するのを防ぎ、高いせん断耐力を維持できる点でも有効である。   In addition, the bottom plate 5 is divided into two layers, an upper layer bottom plate 5a and a lower layer bottom plate 5b, so that each member is thinned due to the dimensional effect of the concrete member (its strength decreases as the member size increases). It is also effective in preventing a decrease in strength and maintaining a high shear strength.

さらに、上層底版5aと分けて構築された下層底版5bでは拘束が少なく温度変化もほとんど受けないので温度荷重はほとんど発生しない。また下層底版5bと上層底版5aの二重スラブにより揚圧力(水圧)に抵抗でき、空液時の地下水圧による浮き上がりにも抵抗できる。   Further, the lower layer bottom plate 5b constructed separately from the upper layer bottom plate 5a is hardly restrained and hardly undergoes a temperature change, so that almost no temperature load is generated. Further, the double slab of the lower layer bottom plate 5b and the upper layer bottom plate 5a can resist lifting pressure (water pressure), and can also resist lifting due to groundwater pressure during air-liquid.

特に本実施形態では、上層底版5aと側壁7を同じ厚さとするとともにタンク躯体の内面からタンク躯体の側部と底部の凍結線bまでの離間距離を略同一にすることで、定常時の上層底版5aと側壁7の温度分布をほぼ同じ形にして上層底版5aと側壁7のタンク躯体の建設時からの温度低下量の違いを0に近付けることができる。またタンク躯体にほぼ同じ厚さの凍結コンクリートを形成できることから、信頼性の高い、確実な止水が可能となる。   In particular, in the present embodiment, the upper layer bottom plate 5a and the side wall 7 have the same thickness, and the separation distance from the inner surface of the tank housing to the side wall and bottom freezing line b of the tank housing is substantially the same, so By making the temperature distributions of the bottom plate 5a and the side wall 7 substantially the same, the difference in temperature drop from the construction of the tank housing of the upper layer bottom plate 5a and the side wall 7 can be brought close to zero. In addition, since the frozen concrete having substantially the same thickness can be formed on the tank housing, highly reliable and reliable water stopping is possible.

さらに本実施形態では、上層底版5aと下層底版5bの境界面の外周部に止水部51を設けることで、上層底版5aと下層底版5bの間に水が入ることを防止でき、上層底版5aに水圧が作用することは無い。また、境界面を跨ぐように連結鉄筋52を設けることで、上層底版5aと下層底版5bの間の目開きを防いで上層底版5aと下層底版5bの間に水が入ることを同じく防止できる。ただし、水が入ることの防止方法としては、凍結線bを下層底版5bの上面の下、例えば上面より30cm下付近で管理することも有効である。これにより、上層底版5aと下層底版5bの境界面付近が凍結し、凍結止水が行われて境界面に水は入ってこない。そのため、止水部51や連結鉄筋52を省略することも可能である。   Furthermore, in this embodiment, by providing the water stop part 51 in the outer peripheral part of the interface between the upper layer bottom plate 5a and the lower layer bottom plate 5b, water can be prevented from entering between the upper layer bottom plate 5a and the lower layer bottom plate 5b, and the upper layer bottom plate 5a. Water pressure does not act on the water. Further, by providing the connecting reinforcing bars 52 so as to straddle the boundary surface, it is possible to prevent the water from entering between the upper layer bottom plate 5a and the lower layer bottom plate 5b by preventing the opening between the upper layer bottom plate 5a and the lower layer bottom plate 5b. However, as a method for preventing water from entering, it is also effective to manage the freezing line b below the upper surface of the lower layer bottom plate 5b, for example, near 30 cm below the upper surface. As a result, the vicinity of the boundary surface between the upper layer bottom plate 5a and the lower layer bottom plate 5b is frozen, freeze-stopping is performed, and water does not enter the boundary surface. Therefore, the water stop part 51 and the connecting reinforcing bar 52 can be omitted.

また、温度荷重は剛結タイプのタンク躯体で大きくなることが多いが、温度荷重を低減する本実施形態のタンク躯体等の構成はそのようなケースで特に好適に適用することができる。またハンチ6のある上層底版5aと側壁7のコーナー部(ハンチ6)においても略同じ凍結コンクリート厚を確保することが可能である。   Further, the temperature load is often increased in the rigid type tank housing, but the configuration of the tank housing and the like of the present embodiment that reduces the temperature load can be applied particularly suitably in such a case. In addition, substantially the same frozen concrete thickness can be secured also in the upper bottom plate 5a with the haunch 6 and the corner portion (haunch 6) of the side wall 7.

しかしながら、本発明はこれに限ることはない。例えばヒータ管13、22の具体的位置や熱媒体の温度は、地下タンク構造1の各部材の寸法、断熱材厚や断熱性能、貯蔵液深等に応じて定められ、特に限定されることはない。例えば側壁7や上層底版5aが厚い場合などでは、ヒータ管13、22を側壁7や上層底版5aに埋設することも可能である。さらに、ヒータ管13、22の代わりに面状発熱体を用いて凍結線bの位置を管理することも可能である。   However, the present invention is not limited to this. For example, the specific positions of the heater tubes 13 and 22 and the temperature of the heat medium are determined according to the dimensions of each member of the underground tank structure 1, the thickness of the heat insulating material, the heat insulating performance, the depth of stored liquid, and the like, and are not particularly limited. Absent. For example, when the side wall 7 or the upper layer bottom plate 5a is thick, the heater tubes 13 and 22 can be embedded in the side wall 7 or the upper layer bottom plate 5a. Furthermore, it is also possible to manage the position of the freezing line b by using a planar heating element instead of the heater tubes 13 and 22.

また、凍結線bの位置も前記に限ることはなく、タンク躯体の内面からタンク躯体の側部と底部の凍結線bまでの離間距離に若干の違いがあってもよい。   The position of the freezing line b is not limited to the above, and there may be a slight difference in the distance from the inner surface of the tank housing to the freezing line b on the side and bottom of the tank housing.

またタンク躯体の内面から凍結線bまでの離間距離を更に小さくし、側壁7や上層底版5a内で凍結線bを管理することも可能であり、この場合、側壁7や上層底版5aのタンク躯体の建設時からの温度低下量等が小さくなり温度荷重が更に低減され、凍結線bを上層底版5a内に留めることで下層底版5bの温度荷重も更に小さくなる。例えば、ヒータ管13、22の配管間隔を小さくする等により凍結線bのタンク躯体の内面からの離間距離を1m程度とすることもでき、ヒータ管13、22を側壁7や上層底版5aに埋設することで凍結線bを側壁7や上層底版5a内で管理することもできる。なお、凍結コンクリートの厚さは少なくとも1m〜2m程度確保しておくことが、凍結止水を行って水密性や気密性を確保する観点から望ましい。   It is also possible to further reduce the separation distance from the inner surface of the tank housing to the freezing line b and manage the freezing line b in the side wall 7 or the upper layer bottom plate 5a. In this case, the tank housing of the side wall 7 or the upper layer bottom plate 5a is also possible. The amount of temperature drop from the construction is reduced, the temperature load is further reduced, and the temperature load of the lower layer bottom plate 5b is further reduced by retaining the freezing line b in the upper layer bottom plate 5a. For example, the distance between the freezing line b and the inner surface of the tank housing can be reduced to about 1 m by reducing the piping interval between the heater tubes 13 and 22, and the heater tubes 13 and 22 are embedded in the side wall 7 and the upper bottom plate 5a. Thus, the freezing line b can be managed in the side wall 7 or the upper layer bottom plate 5a. In addition, it is desirable to secure the thickness of frozen concrete at least about 1 to 2 m from the viewpoint of securing watertightness and airtightness by performing freeze-stopping.

またヒータ管13、22の形状等も特に限定されない。例えば本実施形態ではヒータ管13に二重管タイプのものを用いたが、図6のヒータ管13’に示すU字管タイプのものを用いてもよい。この場合、ヒータ管13’の両端部を地中連続壁9の頂部に突出させ、一方の端部を供給側のヘッダー管11、他方の端部を回収側のヘッダー管15に接続する。また、ヒータ管13’は地中連続壁9の周方向(図6の左右方向に対応する)に沿って複数配置し、鉛直管同士の間隔D1が略等しくなるようにする。   The shape of the heater tubes 13 and 22 is not particularly limited. For example, in the present embodiment, a double tube type is used for the heater tube 13, but a U-shaped tube type shown in a heater tube 13 'in FIG. 6 may be used. In this case, both end portions of the heater tube 13 ′ are projected from the top of the underground continuous wall 9, and one end portion is connected to the supply side header tube 11 and the other end portion is connected to the recovery side header tube 15. A plurality of heater tubes 13 'are arranged along the circumferential direction of the underground continuous wall 9 (corresponding to the left-right direction in FIG. 6) so that the distances D1 between the vertical tubes are substantially equal.

以下、本発明の別の例を第2、第3の実施形態として説明する。第2、第3の実施形態はそれまでに説明した実施形態と異なる点について説明し、同様の点については図等で同じ符号を付すなどして説明を省略する。   Hereinafter, another example of the present invention will be described as second and third embodiments. The second and third embodiments will be described with respect to differences from the embodiments described so far, and the same points will be denoted by the same reference numerals in the drawings and the like, and description thereof will be omitted.

[第2の実施形態]
図7は第2の実施形態に係る地下タンク構造1aを示す図であり、図8は側部ヒータ設備のヒータ管13aを示す図である。第2の実施形態は、側部ヒータ設備のヒータ管13aが側壁7に埋設され、タンク躯体の周方向に配置される周方向配管134を有する点で第1の実施形態と異なる。
[Second Embodiment]
FIG. 7 is a view showing an underground tank structure 1a according to the second embodiment, and FIG. 8 is a view showing a heater pipe 13a of a side heater facility. The second embodiment is different from the first embodiment in that the heater pipe 13a of the side heater facility is embedded in the side wall 7 and has a circumferential pipe 134 disposed in the circumferential direction of the tank housing.

ヒータ管13aはタンク躯体の側部のヒータ管であり、側壁7の外側境界部の近傍に埋設されて略螺旋状に配置される。より具体的には、図8(a)に示すように、ヒータ管13aは上下複数段の周方向配管134を有し、上下の周方向配管134が、立面において周方向配管134に対し傾斜した斜め配管135によって一筆書き状に接続される。   The heater tube 13a is a heater tube on the side of the tank housing, and is embedded in the vicinity of the outer boundary portion of the side wall 7 and arranged in a substantially spiral shape. More specifically, as shown in FIG. 8A, the heater pipe 13a has a plurality of upper and lower circumferential pipes 134, and the upper and lower circumferential pipes 134 are inclined with respect to the circumferential pipe 134 at an elevation. Connected in a single stroke by the inclined pipe 135.

ヒータ管13aの最下部、最上部の周方向配管134は、鉛直配管133、136にそれぞれ接続される。これらの鉛直配管133、136は側壁7の外周面から外側に突出し、閉じた流路を外部で形成する。この流路に加温設備や循環ポンプ(不図示)が設けられる。本実施形態では、加温設備や循環ポンプを用いて側壁7内のヒータ管13aに熱媒体を循環させ、側壁7とヒータ管13a内の熱媒体との間で熱交換を行う。   The lowermost and uppermost circumferential pipes 134 of the heater pipe 13a are connected to vertical pipes 133 and 136, respectively. These vertical pipes 133 and 136 protrude outward from the outer peripheral surface of the side wall 7 and form a closed flow path outside. A heating facility and a circulation pump (not shown) are provided in this flow path. In this embodiment, a heat medium is circulated through the heater pipe 13a in the side wall 7 using a heating facility or a circulation pump, and heat exchange is performed between the side wall 7 and the heat medium in the heater pipe 13a.

ヒータ管13aの管径や長さは循環ポンプの能力、流量に従って設計で決められる。本実施形態ではヒータ管13aにJIS規格の2B管を用いてその長さを最大で1500m程度とし、図8(b)に示すように側壁7の高さに応じてヒータ管13aを上下複数段に埋設する。   The pipe diameter and length of the heater pipe 13a are determined by design according to the capacity and flow rate of the circulation pump. In the present embodiment, a JIS standard 2B pipe is used as the heater pipe 13a and the length thereof is about 1500 m at the maximum. As shown in FIG. 8B, the heater pipe 13a has a plurality of upper and lower stages corresponding to the height of the side wall 7. Buried in

なお、本実施形態ではヒータ管22が上層底版5aの下側境界部の近傍に埋設される。また外周部の周方向配管222は、図7に示すように外側のものほど上に位置するようにハンチ6の傾斜に沿って配置される。   In the present embodiment, the heater tube 22 is embedded in the vicinity of the lower boundary portion of the upper layer bottom plate 5a. Further, as shown in FIG. 7, the circumferential pipe 222 in the outer peripheral portion is arranged along the inclination of the haunch 6 so that the outer one is positioned higher.

本実施形態でも、各ヒータ設備において、ヒータ管13a、22に熱媒体を循環させ、この熱媒体と側壁7や上層底版5aとの間で熱交換を行うことにより、凍結線bが全体としてタンク躯体の内面形状に相似の線分となり、タンク躯体の内面からタンク躯体の側部と底部の凍結線bまでの離間距離が略同一となるようにする。本実施形態では上記の離間距離を1.0m程度とし、凍結線bを側壁7内、上層底版5a内に管理する。底版5は上層底版5aと下層底版5bから構成され、上層底版5aと側壁7が同じ厚さであるので、本実施形態でも第1の実施形態と同様の効果が得られる。   Also in this embodiment, in each heater facility, the heat medium is circulated through the heater tubes 13a and 22 and heat exchange is performed between the heat medium and the side wall 7 and the upper layer bottom plate 5a. A line segment similar to the inner surface shape of the casing is formed, and the distance from the inner surface of the tank casing to the freezing line b on the side and bottom of the tank casing is made substantially the same. In the present embodiment, the separation distance is set to about 1.0 m, and the freezing line b is managed in the side wall 7 and the upper layer bottom plate 5a. The bottom plate 5 is composed of the upper layer bottom plate 5a and the lower layer bottom plate 5b, and the upper layer bottom plate 5a and the side wall 7 have the same thickness. Therefore, the same effects as in the first embodiment can be obtained in this embodiment.

また本実施形態では、側部ヒータ設備、底部ヒータ設備のヒータ管13a、22が類似の環状構造を有しており、上層底版5aと側壁7のコーナー部における凍結線bの抜け出しを容易に防止することができる。第1の実施形態ではコーナー部において凍結線bがヒータ管13、22の外側に抜け出すのを防止するため、側部ヒータ設備のヒータ管13の下端を2.0〜3.0m程度、底部ヒータ設備のヒータ管22の上端より下に持ってくることが必要だが、本実施形態ではそのような無駄が無くなる。また第1の実施形態のようなヘッダー管11、15も不要になる。   Further, in this embodiment, the heater tubes 13a and 22 of the side heater equipment and the bottom heater equipment have a similar annular structure, so that the freezing line b can be easily prevented from coming off at the corner portions of the upper bottom plate 5a and the side wall 7. can do. In the first embodiment, in order to prevent the freezing line b from coming out of the heater pipes 13 and 22 at the corner portion, the lower end of the heater pipe 13 of the side heater equipment is about 2.0 to 3.0 m, and the heater of the bottom heater equipment is used. Although it is necessary to bring the pipe 22 below the upper end, such waste is eliminated in this embodiment. Further, the header tubes 11 and 15 as in the first embodiment are not required.

なお、本実施形態では、水平面に沿った周方向配管134を基本とし、斜め配管135で接続することで施工性を高めているが、水平面に対し若干傾斜した周方向配管が上下に連続するコイル状の配置としてもよい。   In the present embodiment, the workability is improved by connecting the pipes 134 in the horizontal direction along the horizontal plane, and the pipes are connected by the diagonal pipe 135. It is good also as a shape arrangement.

また本実施形態では側部ヒータ設備のヒータ管13aを2B管、最大長さを1500mとしたが、これに限ることはなく、循環ポンプの能力、ヒータ管13aの両端部の間での熱媒体の温度降下を考慮して決定される。例えばヒータ管13aをより太くして(例えば3B管として)、最大長さを2000m程度にまですることも可能である。   In this embodiment, the heater pipe 13a of the side heater equipment is a 2B pipe and the maximum length is 1500 m. However, the present invention is not limited to this, and the capacity of the circulation pump and the heat medium between both ends of the heater pipe 13a. It is determined in consideration of the temperature drop. For example, the heater tube 13a can be made thicker (for example, as a 3B tube), and the maximum length can be increased to about 2000 m.

加えて、本実施形態では、上記のヒータ管13aをタンク躯体の底部のヒータ管22と連続させてもよい。すなわち、図9に示すように、ヒータ管22の最外部の周方向配管222を、タンク躯体の側部のヒータ管13aの最下部の周方向配管134に斜め配管135等で接続する。   In addition, in the present embodiment, the heater tube 13a may be continuous with the heater tube 22 at the bottom of the tank housing. That is, as shown in FIG. 9, the outermost circumferential pipe 222 of the heater pipe 22 is connected to the lowermost circumferential pipe 134 of the heater pipe 13a on the side of the tank housing by an oblique pipe 135 or the like.

側部ヒータ設備と底部ヒータ設備は別系統のヒータとして設けられるのが従来一般的であるが、図9の例ではヒータ管13a、22が側壁7と上層底版5aの間で連続することから、タンク躯体の側部と底部において、タンク躯体の内面から凍結線bまでの離間距離を揃えるのがより容易になる。また上層底版5aと側壁7のコーナー部における凍結線bの抜け出しもより容易に防止することができる。   Conventionally, the side heater equipment and the bottom heater equipment are generally provided as separate heaters, but in the example of FIG. 9, the heater tubes 13a and 22 are continuous between the side wall 7 and the upper bottom plate 5a. It is easier to align the distance from the inner surface of the tank housing to the freezing line b on the side and bottom of the tank housing. Further, it is possible to more easily prevent the freezing line b from coming off at the corner portions of the upper layer bottom plate 5a and the side wall 7.

なお、図8(b)、図9の例では流路長の制限からヒータ管13a等を上下複数段にブロック分けして配置しているが、規模の小さいタンクであれば、図8(b)、図9のヒータ管13a等をブロック分けせず、全体を一本のヒータ管として実現することも可能である。   In the examples of FIGS. 8B and 9, the heater tube 13a and the like are divided into a plurality of upper and lower stages due to the restriction of the flow path length. However, in the case of a small scale tank, FIG. 9) The heater tube 13a and the like in FIG. 9 can be realized as a single heater tube without dividing into blocks.

さらに、図10に示すように、タンク躯体の側部のヒータ管13a’の上下複数段の周方向配管138の両端部を、鉛直配管137、139にそれぞれ接続することもできる。前記と同様、鉛直配管137、139は側壁7の外周面から外側に突出し、閉じた流路を外部で形成する。加温設備や循環ポンプはこの流路に配置される。   Furthermore, as shown in FIG. 10, both ends of the circumferential pipes 138 in the upper and lower stages of the heater pipe 13a 'on the side of the tank housing can be connected to the vertical pipes 137 and 139, respectively. As described above, the vertical pipes 137 and 139 protrude outward from the outer peripheral surface of the side wall 7 and form a closed flow path outside. Heating equipment and a circulation pump are arranged in this flow path.

前記のヒータ管13aは流路長が長くなるため、流路長の制限から側壁7内でヒータ管13aを複数段に配置しているが、図10のヒータ管13a’では流路長が長くならないので、必要分の周方向配管138を鉛直配管137、139に取付けておけばヒータ管13a’を複数段に設置する必要は特に無い。また、鉛直配管137、139は第1の実施形態のヘッダー管11、15と同等の機能を有するが、タンク全周に亘って配置する必要があるヘッダー管11、15に比して長さを短くでき、低コストとなる。図9の例のようにタンク躯体の底部のヒータ管をヒータ管13a’に連続させる場合は、鉛直配管137、139の下端部を上層底版5aの平面中心まで延長させ、その延長部分にタンク躯体の底部のヒータ管の各周方向配管の両端部を接続すればよい。   Since the heater pipe 13a has a long flow path length, the heater pipes 13a are arranged in a plurality of stages in the side wall 7 due to the restriction of the flow path length. However, the heater pipe 13a ′ in FIG. Therefore, if the necessary circumferential pipes 138 are attached to the vertical pipes 137 and 139, there is no need to install the heater pipes 13a ′ in a plurality of stages. The vertical pipes 137 and 139 have the same function as the header pipes 11 and 15 of the first embodiment, but have a length longer than that of the header pipes 11 and 15 that need to be arranged over the entire circumference of the tank. It can be shortened and the cost is low. When the heater pipe at the bottom of the tank casing is connected to the heater pipe 13a 'as in the example of FIG. 9, the lower ends of the vertical pipes 137 and 139 are extended to the plane center of the upper-layer bottom slab 5a, and the tank casing is extended to the extended portion. What is necessary is just to connect the both ends of each circumferential piping of the heater pipe | tube of the bottom part.

[第3の実施形態]
図11は第3の実施形態に係る地下タンク構造1bを示す図である。第3の実施形態は、下層底版5bと地中連続壁9の間で連続するヒータ管32を設け、下層底版5bと地中連続壁9とでそれぞれヒータ管32を略水平方向、略鉛直方向に配管する点で第1、第2の実施形態と異なる。
[Third Embodiment]
FIG. 11 is a diagram showing an underground tank structure 1b according to the third embodiment. In the third embodiment, a heater pipe 32 continuous between the lower layer bottom plate 5b and the underground continuous wall 9 is provided, and the heater tube 32 is arranged in a substantially horizontal direction and a substantially vertical direction respectively in the lower layer bottom plate 5b and the underground continuous wall 9. This is different from the first and second embodiments in that piping is performed.

ヒータ管32は、略鉛直方向の鉛直配管321と略水平方向の水平配管322が接続された構成を有し、これらの配管には例えば2B管が用いられる。鉛直配管321はタンク躯体の側部のヒータ管であり、地中連続壁9の外側境界部の近傍に埋設される。水平配管322はタンク躯体の底部のヒータ管であり、下層底版5bの上部に埋設される。   The heater pipe 32 has a configuration in which a substantially vertical vertical pipe 321 and a substantially horizontal horizontal pipe 322 are connected, and for example, 2B pipes are used for these pipes. The vertical pipe 321 is a heater pipe on the side of the tank housing, and is buried near the outer boundary of the underground continuous wall 9. The horizontal pipe 322 is a heater pipe at the bottom of the tank housing, and is embedded in the upper part of the lower layer bottom plate 5b.

図12はヒータ管32の平面を図4と同様に示す図である。なお、図12では底版5(上層底版5aと下層底版5b)の平面の周方向の1/4範囲のみを示しているが、その他の部分も同様の形状となる。   FIG. 12 is a view showing the plane of the heater tube 32 as in FIG. FIG. 12 shows only a quarter range in the circumferential direction of the plane of the bottom plate 5 (upper layer bottom plate 5a and lower layer bottom plate 5b), but the other portions have the same shape.

水平配管322は、図12に示すように平面視で略V字状あるいは略U字状となっており、その両端がそれぞれ接続配管(90°エルボ)を介して鉛直配管321に接続される。両鉛直配管321の上部は地中連続壁9の頂部から出てそれぞれヘッダー管31、33(図11参照)に接続される。ヘッダー管31、33は地中連続壁9の頂部でタンク躯体の周方向に配置される。   As shown in FIG. 12, the horizontal pipe 322 is substantially V-shaped or substantially U-shaped in plan view, and both ends thereof are connected to the vertical pipe 321 via connection pipes (90 ° elbows). The upper parts of both vertical pipes 321 exit from the top of the underground continuous wall 9 and are connected to header pipes 31 and 33 (see FIG. 11), respectively. The header pipes 31 and 33 are arranged in the circumferential direction of the tank housing at the top of the underground continuous wall 9.

本実施形態では、複数のヒータ管32がタンク躯体の周方向に沿って並べられ、鉛直配管321同士の間隔D2を略等間隔とする。水平配管322は下層底版5bの平面中心に向かって延びるが、下層底版5bの平面中心近傍で配管が密になりすぎるのを防ぐため、水平配管322の先端の位置は、下層底版5bの平面中心から異なる距離r1〜r4となるようにずらしている。   In the present embodiment, the plurality of heater pipes 32 are arranged along the circumferential direction of the tank housing, and the intervals D2 between the vertical pipes 321 are substantially equal. The horizontal pipe 322 extends toward the plane center of the lower bottom slab 5b, but in order to prevent the pipe from becoming too dense in the vicinity of the plane center of the lower layer slab 5b, the position of the tip of the horizontal pipe 322 is the plane center of the lower layer slab 5b. Are shifted so as to have different distances r1 to r4.

本実施形態では、加温設備および循環ポンプ(不図示)、ヘッダー管31、ヒータ管32、ヘッダー管33、加温設備の順に熱媒体を循環させ、下層底版5bや地中連続壁9とヒータ管32内の熱媒体との間で熱交換を行うことで、凍結線bが全体としてタンク躯体の内面形状に相似の線分となり、タンク躯体の内面からタンク躯体の側部と底部の凍結線bまでの離間距離が略同一となるようにする。底版5は上層底版5aと下層底版5bから構成され、上層底版5aと側壁7が同じ厚さであるので、本実施形態でも第1の実施形態と同様の効果が得られる。   In the present embodiment, the heating medium and the circulation pump (not shown), the header pipe 31, the heater pipe 32, the header pipe 33, and the heating equipment are circulated in the order, and the lower bottom plate 5b, the underground continuous wall 9 and the heater are circulated. By performing heat exchange with the heat medium in the pipe 32, the freezing line b as a whole becomes a line segment similar to the shape of the inner surface of the tank housing, and the freezing lines between the inner surface of the tank housing and the sides and bottom of the tank housing. The separation distance to b is made substantially the same. The bottom plate 5 is composed of the upper layer bottom plate 5a and the lower layer bottom plate 5b, and the upper layer bottom plate 5a and the side wall 7 have the same thickness. Therefore, the same effects as in the first embodiment can be obtained in this embodiment.

また本実施形態でも、図9の例と同様、下層底版5bと地中連続壁9の間で連続するヒータ管32を用いることで、タンク躯体の内面からタンク躯体の側部と底部の凍結線bまでの離間距離を揃えるのがより容易になる。また、コーナー部において凍結線bがヒータ管の外側に抜け出すのを防止するため、側部ヒータ設備のヒータ管の下端を2.0〜3.0m程度、底部ヒータ設備のヒータ管の上端より下に持ってくる無駄も無くなる。   Also in this embodiment, similarly to the example of FIG. 9, by using the heater tube 32 continuous between the lower bottom plate 5 b and the underground continuous wall 9, the freezing lines on the side and bottom of the tank housing from the inner surface of the tank housing. It becomes easier to align the separation distances up to b. In order to prevent the freezing line b from coming out of the heater pipe at the corner, hold the lower end of the heater pipe of the side heater equipment about 2.0 to 3.0 m below the upper end of the heater pipe of the bottom heater equipment. There is no waste.

さらに、本実施形態ではヒータ管1本あたりの流路長が短く、長い配管が必要無いことから、ヒータ管32として2B管程度のものを採用でき、低コストとなる。   Furthermore, in this embodiment, since the flow path length per heater tube is short and a long pipe is not required, a heater pipe 32 of about 2B pipe can be adopted, resulting in low cost.

なお、本実施形態ではヒータ管32の鉛直配管321を地中連続壁9内に埋設しているが、第1の実施形態と同様、側壁7が厚い場合には鉛直配管321を側壁7に埋設することも可能である。また、ヒータ管32は例えばSTPG管とするが、SUS管(ステンレス管)やPL管とすることも可能である。   In the present embodiment, the vertical pipe 321 of the heater pipe 32 is embedded in the underground continuous wall 9, but the vertical pipe 321 is embedded in the side wall 7 when the side wall 7 is thick, as in the first embodiment. It is also possible to do. The heater pipe 32 is, for example, an STPG pipe, but may be a SUS pipe (stainless steel pipe) or a PL pipe.

また、ヒータ管の形状も上記の例に限らない。例えば図13の例では、各ヒータ管32aの水平配管322aが略L字状になっており、これを下層底版5bの平面中心から所定の径方向(図の例では右上方向)に沿って複数並べ、隣り合う水平配管322aの辺同士の間隔D3を略等間隔とした構成となっている。一方、図14の例では、各ヒータ管32bの水平配管322bが略直線状であり、その間隔D3を略等間隔として複数平行に配置される。   Further, the shape of the heater tube is not limited to the above example. For example, in the example of FIG. 13, the horizontal pipes 322a of the heater pipes 32a are substantially L-shaped, and a plurality of these are arranged along a predetermined radial direction (upper right direction in the example in the figure) from the plane center of the lower layer bottom plate 5b. The intervals D3 between the sides of the horizontal pipes 322a that are arranged side by side are substantially equal. On the other hand, in the example of FIG. 14, the horizontal pipes 322b of the heater pipes 32b are substantially linear, and a plurality of them are arranged in parallel with the intervals D3 being substantially equal.

また、図13、14の例では、隣接するヒータ管32a、32bの熱媒体の流れを矢印f1、f2に示すように相互に対向させることで、ヒータ管32a、32b相互の温度差を小さくすることができる。   In the examples of FIGS. 13 and 14, the temperature difference between the heater tubes 32a and 32b is reduced by making the flow of the heat medium of the adjacent heater tubes 32a and 32b face each other as indicated by arrows f1 and f2. be able to.

なお、図13、14の例では、間隔D3を適当な値に調整し(例えば間隔D3を前記の間隔D2に合わせ)、配管が密になりすぎるのを防ぐため、平面において、水平配管322a、322bのハンチ6に対応する位置がその他の部分に対し折れ曲がった形となっており、また一部のヒータ管32a、32bが略L字状あるいは略直線状の水平配管322a、322bを有さず、鉛直配管321の下端部同士を略U字状に連続させた形となっている(例えば図13の右上のヒータ管32aなど)。   13 and 14, the distance D3 is adjusted to an appropriate value (for example, the distance D3 is adjusted to the distance D2), and in order to prevent the pipe from becoming too dense, the horizontal pipe 322a, The position corresponding to the haunch 6 of 322b is bent with respect to the other portions, and some of the heater pipes 32a and 32b do not have horizontal pipes 322a and 322b that are substantially L-shaped or substantially straight. The lower ends of the vertical pipes 321 are formed in a substantially U shape (for example, the heater pipe 32a at the upper right in FIG. 13).

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

1、1a、1b:地下タンク構造
3:周辺地盤
4:集水層
5:底版
5a:上層底版
5b:下層底版
6:ハンチ
7:側壁
8:鋼製屋根
9:地中連続壁
11、15、31、33、101、105:ヘッダー管
13、13'、13a、13a'、22、32、32a、32b、103、201:ヒータ管
51:止水部
52:連結鉄筋
131:内管
132:外管
133、136、137、139、221、224、321:鉛直配管
134、138、222:周方向配管
135、223:斜め配管
322、322a、322b:水平配管
1, 1a, 1b: Underground tank structure 3: Surrounding ground 4: Catchment layer 5: Bottom plate 5a: Upper layer bottom plate 5b: Lower layer bottom plate 6: Haunch 7: Side wall 8: Steel roof 9: Underground continuous walls 11, 15, 31, 33, 101, 105: Header pipes 13, 13 ′, 13a, 13a ′, 22, 32, 32a, 32b, 103, 201: Heater pipe 51: Water stop portion 52: Connection reinforcing bar 131: Inner pipe 132: Outside Pipes 133, 136, 137, 139, 221, 224, 321: vertical pipes 134, 138, 222: circumferential pipes 135, 223: diagonal pipes 322, 322a, 322b: horizontal pipes

前述した課題を解決するための本発明は、地盤に設けられる地下タンク構造であって、底版と側壁を含むタンク躯体を有し、前記底版は、上層底版と下層底版の2層に分けて設けられ、前記上層底版は前記側壁と連結され、前記上層底版と前記側壁の厚さが略同一であり、前記上層底版と前記側壁は剛結合されていることを特徴とする地下タンク構造である。 The present invention for solving the above-mentioned problems is an underground tank structure provided on the ground, and has a tank casing including a bottom plate and a side wall, and the bottom plate is provided in two layers of an upper layer bottom plate and a lower layer bottom plate. is, the upper layer the bottom plate is connected with the side wall, the upper bottom plate and Ri substantially equal der thickness of the side wall, the upper bottom plate and the side wall is underground tank structure characterized that you have joined rigidly .

本発明では、底版を上層底版と下層底版の2層に分け、薄くした上層底版と側壁を同じ厚さとして連結することで、上層底版と側壁に生じる温度荷重を低減することができる。すなわち、従来のタンク躯体の場合で生じるような底版と側壁のタンク建設時からの温度低下量の違いを容易に小さくすることが可能になり、底版と側壁の温度低下量の違いに起因する温度荷重を低減することができる。また、上層底版等が従来の底版等と比べて薄くなること自体も、温度荷重の低減効果をもたらす。結果、上層底版と側壁に加わる温度荷重を極端に小さくして鉄筋量を減らすことが可能である。また、上層底版と分けて構築された下層底版では拘束が少ないので温度荷重はほとんど発生しない。さらに、下層底版と上層底版の二重スラブにより揚圧力(水圧)に抵抗でき、空液時の地下水圧による浮き上がりにも抵抗できる。温度荷重は剛結タイプのタンク躯体で大きくなることが多いので、そのようなケースで本発明を特に好適に適用することができる。 In the present invention, the bottom plate is divided into two layers, the upper layer bottom plate and the lower layer bottom plate, and the thinned upper layer bottom plate and the side wall are connected with the same thickness, whereby the temperature load generated on the upper layer bottom plate and the side wall can be reduced. That is, it becomes possible to easily reduce the difference in temperature drop between the bottom plate and the side wall tank construction as occurs in the case of the conventional tank housing, and the temperature caused by the difference in temperature drop between the bottom plate and the side wall. The load can be reduced. Further, the fact that the upper layer bottom plate is thinner than the conventional bottom plate itself also brings about the effect of reducing the temperature load. As a result, the amount of reinforcing bars can be reduced by extremely reducing the temperature load applied to the upper bottom plate and the side wall. In addition, since the lower layer bottom plate constructed separately from the upper layer bottom plate is less constrained, almost no temperature load is generated. In addition, the double bottom slab of the lower bottom plate and the upper bottom plate can resist the lifting pressure (water pressure), and can also resist lifting due to groundwater pressure during air-liquid. Since the temperature load is often increased in the rigid tank tank, the present invention can be applied particularly favorably in such a case.

タンク稼働に伴い0℃となる位置を示す凍結線が、前記タンク躯体の側部と底部において前記タンク躯体の内面から略同一の離間距離となる位置にあることが望ましい。さらに、前記タンク躯体の底部において、前記凍結線の位置が前記下層底版の上面の下にあることが望ましい。
本発明では、上層底版と側壁を同じ厚さとするとともにタンク躯体の内面からタンク躯体の側部と底部の凍結線までの離間距離を略同一にすることで、定常時の上層底版と側壁の温度分布をほぼ同じ形にして上層底版と側壁の温度低下量の違いを0に近付けることができる。また、タンク躯体にほぼ同じ厚さの凍結コンクリートを形成できることから、信頼性の高い、確実な止水が可能となる。
It is desirable that the freezing line indicating the position at which the temperature is 0 ° C. as the tank operates is at a position where the side and bottom of the tank housing are substantially the same distance from the inner surface of the tank housing. Furthermore, it is desirable that the position of the freezing line is below the upper surface of the lower layer bottom plate at the bottom of the tank housing.
In the present invention, the upper layer bottom plate and the side wall have the same thickness, and the distance from the inner surface of the tank housing to the freezing line of the side and bottom of the tank housing is substantially the same, so that The difference in temperature drop between the upper bottom plate and the side wall can be brought close to 0 by making the distributions substantially the same. In addition, since the frozen concrete having substantially the same thickness can be formed on the tank housing, a reliable and reliable water stop can be achieved.

前記上層底版と前記下層底版の境界面の外周部の全周に止水部が設けられることが望ましい。また、前記上層底版と前記下層底版の境界面の外周部のみで、前記境界面を跨ぐように連結鉄筋が設けられることも望ましい。
上層底版と下層底版の境界面の外周部に止水部を設けることで、上層底版と下層底版の間に水が入ることを防止でき、上層底版に水圧が作用することは無い。また、境界面を跨ぐように連結鉄筋を設けることで、上層底版と下層底版の間の目開きを防いで上層底版と下層底版の間に水が入ることを同じく防止できる。
It is desirable that a water stop portion is provided on the entire outer periphery of the boundary surface between the upper layer bottom plate and the lower layer bottom plate. Moreover, it is also desirable that a connecting reinforcing bar is provided so as to straddle the boundary surface only at the outer peripheral portion of the boundary surface between the upper layer bottom plate and the lower layer bottom plate.
By providing a water stop portion at the outer peripheral portion of the boundary surface between the upper layer bottom plate and the lower layer bottom plate, water can be prevented from entering between the upper layer bottom plate and the lower layer bottom plate, and water pressure does not act on the upper layer bottom plate. Further, by providing the connecting reinforcing bars so as to straddle the boundary surface, it is possible to prevent water from entering between the upper layer bottom plate and the lower layer bottom plate by preventing the opening between the upper layer bottom plate and the lower layer bottom plate.

Claims (5)

地盤に設けられる地下タンク構造であって、
底版と側壁を含むタンク躯体を有し、
前記底版は、上層底版と下層底版の2層に分けて設けられ、
前記上層底版は前記側壁と連結され、前記上層底版と前記側壁の厚さが略同一であることを特徴とする地下タンク構造。
An underground tank structure provided on the ground,
A tank housing including a bottom plate and side walls;
The bottom plate is provided in two layers, an upper layer bottom plate and a lower layer bottom plate,
The upper tank bottom plate is connected to the side wall, and the thickness of the upper layer bottom plate and the side wall is substantially the same.
タンク稼働に伴い0℃となる位置を示す凍結線が、前記タンク躯体の側部と底部において前記タンク躯体の内面から略同一の離間距離となる位置にあることを特徴とする請求項1記載の地下タンク構造。   The freezing line indicating a position that becomes 0 ° C. as the tank is operated is at a position that is at substantially the same distance from the inner surface of the tank housing at the side and bottom of the tank housing. Underground tank structure. 前記上層底版と前記下層底版の境界面の外周部の全周に止水部が設けられることを特徴とする請求項1または請求項2に記載の地下タンク構造。   The underground tank structure according to claim 1 or 2, wherein a water stop portion is provided on an entire circumference of an outer peripheral portion of a boundary surface between the upper layer bottom plate and the lower layer bottom plate. 前記上層底版と前記下層底版の境界面を跨ぐように連結鉄筋が設けられることを特徴とする請求項1から請求項3のいずれかに記載の地下タンク構造。   The underground tank structure according to any one of claims 1 to 3, wherein a connecting reinforcing bar is provided so as to straddle a boundary surface between the upper layer bottom plate and the lower layer bottom plate. 前記上層底版と前記側壁は剛結合されていることを特徴とする請求項1から請求項4のいずれかに記載の地下タンク構造。   The underground tank structure according to any one of claims 1 to 4, wherein the upper layer bottom plate and the side wall are rigidly coupled.
JP2017140924A 2017-07-20 2017-07-20 Underground tank structure Active JP6310604B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140924A JP6310604B1 (en) 2017-07-20 2017-07-20 Underground tank structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140924A JP6310604B1 (en) 2017-07-20 2017-07-20 Underground tank structure

Publications (2)

Publication Number Publication Date
JP6310604B1 JP6310604B1 (en) 2018-04-11
JP2019019947A true JP2019019947A (en) 2019-02-07

Family

ID=61902033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140924A Active JP6310604B1 (en) 2017-07-20 2017-07-20 Underground tank structure

Country Status (1)

Country Link
JP (1) JP6310604B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604958Y2 (en) * 1980-05-20 1985-02-14 株式会社大林組 Water-stop structure for underground storage tanks
JPS6316959Y2 (en) * 1980-06-18 1988-05-13
JP3227215B2 (en) * 1992-08-20 2001-11-12 東京瓦斯株式会社 Bottom plate structure of underground tank and method of construction
JPH08145297A (en) * 1994-11-17 1996-06-07 Kajima Corp Heater equipment for low temperature liquefied gas tank
JP6484151B2 (en) * 2015-09-15 2019-03-13 鹿島建設株式会社 Underground structure, construction method of underground structure

Also Published As

Publication number Publication date
JP6310604B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP2006038223A (en) Seal for pipe device
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
US20210018274A1 (en) Underground thermal energy storage
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
JP6310604B1 (en) Underground tank structure
KR102000481B1 (en) Greenhouse cooling and heating system
JP6549873B2 (en) Geothermal heat collection tube
JP2017057594A (en) Underground construction and construction method for the same
US20140246167A1 (en) Systems and Methods for Processing Geothermal Liquid Natural Gas (LNG)
JP6310603B1 (en) Underground tank structure
JP2010526256A (en) Unloading pipeline
NO336013B1 (en) Double-walled tubes for transporting fluids equipped with a device for restricting the propagation of a crack in the outer tube, as well as a method for restricting the propagation
JP5914768B2 (en) Thermal energy storage including expansion space
JP2013148256A (en) Panel-type heat exchanger for underground thermal source heat pump
CN108443616A (en) A kind of antidetonation screw-type conduit coupling
JP2013119931A (en) Underground freezing control type storage facility of low-temperature liquefied gas
JPH11182797A (en) Cryogenic storage tank
US11035593B2 (en) Vertical heat exchanger for a geothermal heating and cooling system and method of use
JP5417230B2 (en) Seismic isolation building piping equipment
US20230341078A1 (en) Thermal insulation blanket for undersea lines
JP6650271B2 (en) Low temperature underground tank
JP6567350B2 (en) Ready-made pile with heat exchange pipe
CN204226957U (en) The insulation facility of polyvinyl fuel gas pipeline
KR102268914B1 (en) Heat exchanging file of retaining wall and retaining wall
JP6599671B2 (en) Coil type heat exchanger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6310604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250