JPH11182797A - Cryogenic storage tank - Google Patents

Cryogenic storage tank

Info

Publication number
JPH11182797A
JPH11182797A JP36569697A JP36569697A JPH11182797A JP H11182797 A JPH11182797 A JP H11182797A JP 36569697 A JP36569697 A JP 36569697A JP 36569697 A JP36569697 A JP 36569697A JP H11182797 A JPH11182797 A JP H11182797A
Authority
JP
Japan
Prior art keywords
bottom plate
storage tank
heater
temperature
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36569697A
Other languages
Japanese (ja)
Inventor
Masanobu Kuroda
正信 黒田
Tomosaburo Fujinaga
友三郎 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP36569697A priority Critical patent/JPH11182797A/en
Publication of JPH11182797A publication Critical patent/JPH11182797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cross-sectional force generated in a bottom plate by a temperature load, and to provide an economical structure by embedding a piping heater in concrete in the vicinity of the upper surface of the bottom plate, and holding an upper surface temperature of the bottom plate close to a freezing temperature by circulating a heating medium in the piping heater. SOLUTION: In a cryogenic storage tank 10, the peripheral edge of a bottom plate 1 and the lower end of a storage tank side wall 2 are formed as a rigidly joined structure. Plane spiral brine heater piping is arranged as a piping heater along a plane in the depth of D=1.5 m from the upper surface 1a of the bottom plate 1 so as to cover the whole surface of the bottom plate 1. A side part heater 20 is executed in the outside ground of the storage tank side wall 2, and the a side part heater 20 is arranged at installation intervals of about 5 deg. around the storage tank 10. In the cryogenic storage tank 10, as a result of heating the bottom plate upper part of the storage tank 10 by bottom surface heaters 11 and 12 laid in the vicinity of the bottom plate upper surface 1a, a freezing wire in a bottom plate position is smaller than a temperature load of the bottom plate 1 without the possibility of freezing the lower surface ground by pssing through a part between the bottom plate upper surface 1a and the heater 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低温貯槽に係り、特
にLNG地下式貯槽等の地下式低温貯槽の底版部分に配
管ヒーターを設けるようにした低温貯槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature storage tank, and more particularly to a low-temperature storage tank provided with a pipe heater in a bottom plate of an underground low-temperature storage tank such as an LNG underground storage tank.

【0002】[0002]

【従来の技術】従来、LNG(液化天然ガス)を貯蔵す
る貯槽は、防災安全面や周辺環境との調和のために鉄筋
コンクリート製の円筒形地下式貯槽としたものが多い。
また、この種の地下式貯槽では貯槽底面が深さ約20〜
60mにも達するため、底版は地下水による大きな揚水
圧を受けることが多い。このような条件下において、底
版がこの揚水圧に耐えられるように、底版の厚さを十分
大きくし、曲げに抵抗するようにした強度版構造の貯槽
が多く設計されている。
2. Description of the Related Art Conventionally, a storage tank for storing LNG (liquefied natural gas) is often a cylindrical underground storage tank made of reinforced concrete for disaster prevention and safety and harmony with the surrounding environment.
In this type of underground storage tank, the bottom of the storage tank is about 20 to
Since it reaches 60 m, the bottom plate is often subjected to a large pumping pressure due to groundwater. Under such conditions, many storage tanks having a strength plate structure in which the thickness of the bottom plate is sufficiently large so that the bottom plate can withstand this pumping pressure and resist bending.

【0003】また、LNGは冷却され液化した状態の温
度が−162℃に達するため、LNGの冷熱によって周
辺の地盤が凍結しないように、貯槽躯体内または貯槽周
囲の地盤内にヒーターが設けられている。これらのヒー
ターは大きく分けて底版全体を暖める底部ヒーターと、
貯槽の側壁外周を暖める側部ヒーターとからなる。前述
の強度版型式の構造の貯槽の場合にも厚さ約5〜10m
程度の強度版の底版の下面側に配管ヒーターや砕石層ヒ
ーターが設けられることが多い。配管ヒーターはコンク
リート底版内に埋設され、配管内に加熱媒体を流通させ
てコンクリート躯体の温度低下の防止を図るヒーターで
ある。一方、砕石層ヒーターは、コンクリート底版の下
面と地盤との間に砕石を積層し、この砕石層内に温水を
通水してコンクリート底版を間接的に採暖するヒーター
である。
[0003] Further, since the temperature of LNG in a cooled and liquefied state reaches -162 ° C, a heater is provided in the storage tank body or in the ground around the storage tank so as to prevent the surrounding ground from freezing due to the cold heat of the LNG. I have. These heaters are roughly divided into a bottom heater that warms the entire bottom plate,
And a side heater for warming the outer periphery of the side wall of the storage tank. In the case of the storage tank of the above-mentioned strength plate type structure, the thickness is about 5 to 10 m.
A piping heater and a crushed stone layer heater are often provided on the lower surface side of the bottom plate of a moderate strength plate. The piping heater is a heater buried in the concrete bottom slab and circulating a heating medium in the piping to prevent a temperature drop of the concrete body. On the other hand, a crushed stone layer heater is a heater in which crushed stones are stacked between the lower surface of a concrete bottom slab and the ground, and hot water flows through the crushed stone layer to indirectly heat the concrete slab.

【0004】図5は、従来のLNG地下式貯槽50の一
例を示した断面図である。同図に示したように、底版に
は地下水による揚水圧Wpが作用する。同図の貯槽50
は揚水圧Wpに抵抗できるように底版厚を十分大きくし
た強度版構造となっている。また底版51の下部には砕
石を敷き詰めて構築された砕石層ヒーター52が設けら
れ、さらに下面近くの底版コンクリート内には配管ヒー
ター53が配管されている。これらのヒーター52、5
3により貯槽50下方の地盤凍結の防止が図られてい
る。たとえばこの構造の低温貯槽50では底版51の上
面位置のコンクリート面温度は−40℃まで下がり、砕
石層ヒーター52の温度は約15℃に保持されている。
この状態では底版51下方の地盤は凍結しない。また、
貯槽側壁54の外周地盤には所定間隔をあけて削孔され
た竪穴内に側部ヒーター55が収容されている。この側
部ヒーター55の運転により貯槽側壁54の周囲の地盤
の凍結を制御している。
FIG. 5 is a sectional view showing an example of a conventional LNG underground storage tank 50. As shown in FIG. As shown in the figure, a pumping pressure Wp by groundwater acts on the bottom plate. Storage tank 50 in FIG.
Has a strength plate structure in which the thickness of the bottom plate is large enough to resist the pumping pressure Wp. A crushed stone layer heater 52 constructed by laying crushed stones is provided below the bottom slab 51, and a piping heater 53 is provided in the bottom slab concrete near the lower surface. These heaters 52, 5
3 prevents the ground from freezing below the storage tank 50. For example, in the low-temperature storage tank 50 having this structure, the concrete surface temperature at the upper surface of the bottom slab 51 drops to -40 ° C, and the temperature of the crushed stone layer heater 52 is maintained at about 15 ° C.
In this state, the ground below the bottom slab 51 does not freeze. Also,
A side heater 55 is accommodated in a vertical hole drilled at a predetermined interval on the outer peripheral ground of the storage tank side wall 54. The operation of the side heater 55 controls the freezing of the ground around the storage tank side wall 54.

【0005】[0005]

【発明が解決しようとする課題】ところで、図5に示し
たように、底版51の下面側に配管ヒーター53あるい
は砕石層ヒーター52を設置した場合、底版51の上下
面側の温度差は55℃(−40℃と15℃との差)程度
になり、地盤拘束を受けている底版51には温度差に起
因する曲げ断面力が発生する。すなわち、この曲げ断面
力に抵抗できるように配筋設計を行う必要がある。この
とき底版51と底版51の周縁51aと連結する側壁下
端54aとを剛接結合(剛結)にすれば底版51中央で
の鉄筋量を少なくできるが、底版周縁51a及び側壁下
端54aでは過大な鉄筋量が必要となる。特に壁厚の小
さい側壁54では所定の配筋ができないおそれもある。
そこで、通常の強度版構造では図5に示したように、底
版周縁51aと側壁下端54aとの間に目地部60を設
け、両者をピン結合にするような設計としている。この
場合においても、底版51には周辺単純支持の曲げ版と
しての多量の鉄筋を配筋する必要があった。また、目地
部60における支承及び漏水防止ための止水板(図示せ
ず)の据え付け作業が必要となり、施工コスト増につな
がっていた。
As shown in FIG. 5, when a pipe heater 53 or a crushed stone heater 52 is installed on the lower surface of the bottom plate 51, the temperature difference between the upper and lower surfaces of the bottom plate 51 is 55.degree. (Difference between −40 ° C. and 15 ° C.), and a bending section force due to the temperature difference is generated in the bottom slab 51 that is constrained by the ground. That is, it is necessary to design a reinforcement arrangement so as to be able to resist the bending section force. At this time, if the bottom plate 51 and the lower end 54a of the side wall connected to the peripheral edge 51a of the bottom plate 51 are rigidly connected (rigidly connected), the amount of rebar at the center of the bottom plate 51 can be reduced. Reinforcing volume is required. In particular, there is a possibility that predetermined reinforcing bars cannot be formed on the side wall 54 having a small wall thickness.
Therefore, in the normal strength plate structure, as shown in FIG. 5, a joint portion 60 is provided between the bottom plate peripheral edge 51a and the side wall lower end 54a, and the both are pin-connected. Also in this case, it is necessary to arrange a large amount of reinforcing bars on the bottom slab 51 as a bending slab of simple peripheral support. In addition, installation work of a water stop plate (not shown) for supporting the joint and preventing water leakage at the joint 60 is required, leading to an increase in construction cost.

【0006】そこで、本発明の目的は上述した従来の技
術が有する問題点を解消し、温度荷重によて底版に発生
する断面力を減少させ、経済的な構造を実現した低温貯
槽を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a low-temperature storage tank which solves the above-mentioned problems of the prior art, reduces the sectional force generated on the bottom plate by a temperature load, and realizes an economical structure. It is in.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は底版が強度版構造からなる地下式低温貯槽
であって、前記底版の上面近傍のコンクリート内に配管
ヒーターを埋設し、該配管ヒーター内に加熱媒体を循環
させて前記底版の上面温度を凍結温度近くに保持させた
ことを特徴とする。
In order to achieve the above object, the present invention provides an underground low-temperature storage tank in which a bottom plate has a strength plate structure, wherein a pipe heater is buried in concrete near an upper surface of the bottom plate. A heating medium is circulated in the pipe heater to keep the upper surface temperature of the bottom plate close to the freezing temperature.

【0008】[0008]

【発明の実施の形態】以下、本発明の低温貯槽の一実施
の形態について、添付図面を参照して説明する。図1
は、本発明の低温貯槽10の断面図を示している。本発
明の低温貯槽10では底版1の周縁と貯槽側壁2の下端
とは剛結構造となっている。また底版1の上面1aから
D=1.5mの深さに平面に沿って配管ヒーターとして
の平面渦巻状のブラインヒーター配管が底版1の全面を
覆うように設置されている。詳しくは、ブラインヒータ
ー配管11、12は図2に示した概略平面図にあるよう
に平面渦巻状に配管された2系統の配管11、12から
構成されている。本実施の形態では、図2中に実線で示
した第1系統のブラインヒーター配管11の一端11a
は経路入口15から外周を半周した後、中心位置まで直
線状に延び、さらに中心から外周縁近傍まで渦巻状に、
隣り合う配管と約3mの離れをとりながら配管され、経
路出口16に至る。一方、破線で示した第2系統のブラ
インヒーター配管12は第1系統の配管間隔の中間位置
にくるように同じ形状をしている。このように2系統の
平面渦巻状のブラインヒーター配管11、12を底版1
内の所定深さに設置することにより底版上面1a近傍の
コンクリート温度を十分に上昇させることができる。こ
れらのブラインヒーター配管11、12の加熱媒体とし
ては温水、エチレングリコール水溶液等が好適である。
一般にこのブラインヒーター配管11、12の設置深さ
は、底版厚に応じて設定するが、通常、底版上面1aか
ら0.5m〜2mの範囲に設定することが好ましい。ま
たこのブラインヒーター配管11、12の温度は底版上
面1aの温度が−2〜−10℃となるように設定するこ
とが好ましい。配管形状としては上述の平面渦巻状の
他、平行配管の端部に折り返し部を設けた配管形状等が
可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the low-temperature storage tank according to the present invention will be described below with reference to the accompanying drawings. FIG.
Shows a sectional view of the low-temperature storage tank 10 of the present invention. In the low-temperature storage tank 10 of the present invention, the periphery of the bottom plate 1 and the lower end of the storage tank side wall 2 have a rigid structure. Further, a flat spiral spiral heater pipe as a pipe heater is installed along the plane to a depth of D = 1.5 m from the upper surface 1a of the bottom plate 1 so as to cover the entire surface of the bottom plate 1. More specifically, the brine heater pipes 11 and 12 are composed of two systems of pipes 11 and 12 which are arranged in a plane spiral as shown in the schematic plan view shown in FIG. In the present embodiment, one end 11a of a first-system brine heater pipe 11 indicated by a solid line in FIG.
After a half circle around the outer circumference from the path entrance 15, it extends linearly to the center position, and further spirally from the center to the vicinity of the outer periphery,
The pipe is formed with a distance of about 3 m from the adjacent pipe, and reaches the route outlet 16. On the other hand, the second-system brine heater piping 12 shown by the broken line has the same shape so as to be located at an intermediate position between the piping intervals of the first system. As described above, the two systems of the spiral spiral brine heater pipes 11 and 12 are connected to the bottom plate 1.
The concrete temperature near the upper surface 1a of the bottom slab can be sufficiently increased by installing the slab at a predetermined depth. As a heating medium for the brine heater pipes 11 and 12, warm water, an ethylene glycol aqueous solution, or the like is preferable.
Generally, the installation depth of the brine heater pipes 11 and 12 is set according to the thickness of the slab. However, it is usually preferable to set the depth to 0.5 m to 2 m from the upper surface 1a of the slab. The temperatures of the brine heater pipes 11 and 12 are preferably set so that the temperature of the bottom plate upper surface 1a is -2 to -10C. As the pipe shape, in addition to the flat spiral shape described above, a pipe shape in which a folded portion is provided at an end of a parallel pipe, or the like can be used.

【0009】一方、側部ヒーター20は、図1に示した
ように貯槽側壁2の外側の地盤内にに施工されている。
本実施の形態では貯槽10の周囲には側部ヒーター20
が約5°の設置間隔をあけて配置されている。
On the other hand, the side heater 20 is installed in the ground outside the storage tank side wall 2 as shown in FIG.
In the present embodiment, a side heater 20 is provided around the storage tank 10.
Are arranged at intervals of about 5 °.

【0010】ここで、本発明の低温貯槽10と従来の低
温貯槽50におけるLNG満液時の温度分布について説
明する。図4には比較例として図1に示した低温貯槽1
0と同じ規模で底版下面に底部温水ヒーター52を設け
た低温貯槽50の構成と、この低温貯槽50での温度解
析によって得られた凍結線(0℃等温線)とが示されて
いる。同図に示したように底面温水ヒーター52の運転
により底版下方の地盤は凍結温度以上に保持できるが、
LNGの冷熱の影響により底版上面51aの温度は−4
0℃程度まで低下し、底版上下面での温度差は約55℃
となる。このため底版51に大きな温度荷重が作用す
る。これに対して図1に示した低温貯槽10では、底版
上面1a近傍に配管された底面ヒーター11、12によ
り貯槽10の底版上部を加熱した結果の凍結線が示され
ている。底版位置での凍結線は底版上面1aとヒーター
11との間を通っており、このとき下面地盤の凍結のお
それはない。また、底版1の上下面の温度差は20℃程
度となり、底版1に作用する温度荷重も小さく抑えられ
る。
Here, the temperature distribution of the low-temperature storage tank 10 of the present invention and the conventional low-temperature storage tank 50 when LNG is full will be described. FIG. 4 shows a low-temperature storage tank 1 shown in FIG. 1 as a comparative example.
The configuration of the low-temperature storage tank 50 having the same scale as that of the bottom plate and the bottom hot water heater 52 provided on the lower surface of the bottom plate, and a freezing line (0 ° C. isotherm) obtained by temperature analysis in the low-temperature storage tank 50 are shown. As shown in the figure, the ground below the bottom slab can be maintained at a temperature equal to or higher than the freezing temperature by operating the bottom surface hot water heater 52.
The temperature of the bottom plate upper surface 51a is -4 due to the influence of the cold heat of LNG.
0 ℃, the temperature difference between the top and bottom of the bottom plate is about 55 ℃
Becomes For this reason, a large temperature load acts on the bottom plate 51. On the other hand, in the low-temperature storage tank 10 shown in FIG. 1, a freezing line as a result of heating the upper part of the bottom plate of the storage tank 10 by the bottom heaters 11 and 12 arranged near the bottom plate upper surface 1a is shown. The freezing line at the bottom slab position passes between the top surface 1a of the bottom slab and the heater 11, and there is no risk of freezing of the lower ground at this time. In addition, the temperature difference between the upper and lower surfaces of the bottom plate 1 is about 20 ° C., and the temperature load acting on the bottom plate 1 can be reduced.

【0011】以上に述べた位置に底版ヒーターを敷設す
ることにより、強度版構造からなる低温貯槽の設計にお
いて底版の温度応力を低減することができ、底版配筋量
を大幅に減らすことができる。また、底版と側壁下端と
を剛結構造とした場合に増加する底版配筋量も、以上に
述べた位置に底版ヒーターを敷設することにより大幅に
減らすことができる。さらに、剛結構造とすることによ
り目地部がなくなるので、支承、止水板等の付帯設備は
不要となり、経済的な低温貯槽を提供することができ
る。なお、以上の説明では各ヒーターには液体の加熱媒
体を循環させる加熱方式が示されているが、電熱線等の
抵抗加熱方式や他の種々の加熱手段を選択できることは
いうまでもない。
By laying the bottom plate heater at the above-mentioned position, the temperature stress of the bottom plate can be reduced in the design of a low-temperature storage tank having a strength plate structure, and the amount of reinforcement in the bottom plate can be greatly reduced. In addition, the amount of reinforcement of the bottom plate, which is increased when the bottom plate and the lower end of the side wall are rigidly connected, can be greatly reduced by laying the bottom plate heater at the above-described position. Further, since the joint is eliminated by adopting the rigid connection structure, ancillary equipment such as a bearing and a water stop plate becomes unnecessary, and an economical low-temperature storage tank can be provided. In the above description, a heating method of circulating a liquid heating medium is shown for each heater, but it goes without saying that a resistance heating method such as a heating wire or other various heating means can be selected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による低温貯槽の一実施の形態の構成及
び凍結線を示した断面図。
FIG. 1 is a cross-sectional view showing a configuration and a freezing line of an embodiment of a low-temperature storage tank according to the present invention.

【図2】低温貯槽の底部ヒーターの配置例を示した概略
平面図。
FIG. 2 is a schematic plan view showing an arrangement example of a bottom heater of the low-temperature storage tank.

【図3】従来の低温貯槽の構成及び凍結線を示した断面
図。
FIG. 3 is a cross-sectional view showing a configuration of a conventional low-temperature storage tank and a freezing line.

【図4】従来の低温貯槽の構成の一例を示した断面図。FIG. 4 is a sectional view showing an example of the configuration of a conventional low-temperature storage tank.

【符号の説明】[Explanation of symbols]

1 底版 2 貯槽側壁 10 低温貯槽 11,12 配管ヒーター 20 側部ヒーター DESCRIPTION OF SYMBOLS 1 Bottom plate 2 Storage tank side wall 10 Low temperature storage tank 11 and 12 Piping heater 20 Side heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】底版が強度版構造からなる地下式低温貯槽
であって、前記底版の上面近傍のコンクリート内に配管
ヒーターを埋設し、該配管ヒーター内に加熱媒体を循環
させて前記底版の上面温度を凍結温度近くに保持させた
ことを特徴とする低温貯槽。
An underground low-temperature storage tank in which a bottom plate has a strength plate structure, wherein a pipe heater is buried in concrete near an upper surface of the bottom plate, and a heating medium is circulated in the pipe heater to circulate a heating medium. A low-temperature storage tank characterized in that the temperature is kept close to the freezing temperature.
JP36569697A 1997-12-22 1997-12-22 Cryogenic storage tank Pending JPH11182797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36569697A JPH11182797A (en) 1997-12-22 1997-12-22 Cryogenic storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36569697A JPH11182797A (en) 1997-12-22 1997-12-22 Cryogenic storage tank

Publications (1)

Publication Number Publication Date
JPH11182797A true JPH11182797A (en) 1999-07-06

Family

ID=18484887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36569697A Pending JPH11182797A (en) 1997-12-22 1997-12-22 Cryogenic storage tank

Country Status (1)

Country Link
JP (1) JPH11182797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299749A (en) * 2008-06-12 2009-12-24 Shimizu Corp Heat reserving structure of anchor part of aboveground low temperature tank
JP2011032633A (en) * 2009-07-29 2011-02-17 Shimizu Corp Base structure of underground tank for storing low-temperature liquid
CN115717681A (en) * 2022-11-18 2023-02-28 浙江陶特半导体材料有限公司 Steel cylinder for precursor solid source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299749A (en) * 2008-06-12 2009-12-24 Shimizu Corp Heat reserving structure of anchor part of aboveground low temperature tank
JP2011032633A (en) * 2009-07-29 2011-02-17 Shimizu Corp Base structure of underground tank for storing low-temperature liquid
CN115717681A (en) * 2022-11-18 2023-02-28 浙江陶特半导体材料有限公司 Steel cylinder for precursor solid source
CN115717681B (en) * 2022-11-18 2023-12-29 浙江陶特半导体材料有限公司 Steel cylinder for precursor solid source

Similar Documents

Publication Publication Date Title
US20110168159A1 (en) Dual thermal energy storage tank
US6932121B1 (en) Method for offloading and storage of liquefied compressed natural gas
WO2006046872A1 (en) Tank for storage of lng or other cryogenic fluids
JPH11182797A (en) Cryogenic storage tank
JP2017057594A (en) Underground construction and construction method for the same
JP5158643B2 (en) Thermal insulation structure of anchor part of above-ground cryogenic tank
EP2487400A1 (en) LNG storage tank
EP1718901A1 (en) Thermal energy distribution system
JP6310604B1 (en) Underground tank structure
EP2279300B1 (en) Device for preventing ice formation on a surface layer
JP6310603B1 (en) Underground tank structure
JP2002267099A (en) Low-temperature tank and storage method for low- temperature liquid
JPS6283599A (en) Underground tank of assembled continuous wall type having freezing pipe
JP5429537B2 (en) Bottom plate structure of underground tank for cryogenic liquid storage
JP4161669B2 (en) Water heater
JPH0412308Y2 (en)
JP2010144532A (en) Water tank for cooling-warming up engine
JPS58187697A (en) Heat insulated structure of construction buried underground
JPS60559Y2 (en) low temperature underground tank
JPH08285198A (en) Cryogenic liquid underground storage tank
JPH10101191A (en) Low temperature tank
JPS6133357Y2 (en)
JP2810326B2 (en) Equipment to prevent freezing of the ground around cryogenic storage
JPH084350A (en) Foundation pile serving as storage tank
JPH0539277Y2 (en)