JP5417230B2 - Seismic isolation building piping equipment - Google Patents

Seismic isolation building piping equipment Download PDF

Info

Publication number
JP5417230B2
JP5417230B2 JP2010060103A JP2010060103A JP5417230B2 JP 5417230 B2 JP5417230 B2 JP 5417230B2 JP 2010060103 A JP2010060103 A JP 2010060103A JP 2010060103 A JP2010060103 A JP 2010060103A JP 5417230 B2 JP5417230 B2 JP 5417230B2
Authority
JP
Japan
Prior art keywords
piping
relative displacement
circulating water
building
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010060103A
Other languages
Japanese (ja)
Other versions
JP2011190919A (en
Inventor
慎司 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010060103A priority Critical patent/JP5417230B2/en
Publication of JP2011190919A publication Critical patent/JP2011190919A/en
Application granted granted Critical
Publication of JP5417230B2 publication Critical patent/JP5417230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Joints Allowing Movement (AREA)

Description

本発明は、免震化した建屋の配管設備に関するものである。例えば、原子力発電プラント或いは火力発電プラントのタービン建屋内の蒸気タービンから排気された蒸気を海水で冷却し、復水する同建屋内の復水器に冷却源としての海水を供給及び排水する循環水取放水設備の敷設に際して利用されるものに係る。   The present invention relates to a piping facility for a building that has been seismically isolated. For example, circulating water that supplies and drains seawater as a cooling source to a condenser in the same building where the steam exhausted from the steam turbine in the turbine building of a nuclear power plant or thermal power plant is cooled with seawater and condensed. It relates to what is used when laying out discharge facilities.

原子力発電プラントでは、図7および図8のように、タービン建屋4内の復水器5に冷却源としての海水を供給する循環水取水管3及び排水する循環水放水管6とを有する循環水取放水設備が敷設されている。その循環水取放水設備の循環水取水管3,循環水放水管6は地下深く掘削して確保されたタービン建屋の真下箇所に充填コンクリート11で埋設して敷設されている。   In the nuclear power plant, as shown in FIGS. 7 and 8, circulating water having a circulating water intake pipe 3 for supplying seawater as a cooling source to a condenser 5 in the turbine building 4 and a circulating water discharge pipe 6 for draining. Intake and discharge facilities are laid. The circulating water intake pipe 3 and the circulating water discharge pipe 6 of the circulating water intake and discharge facility are laid and filled with filled concrete 11 directly below the turbine building secured by excavation deep underground.

従来の循環水取放水配管の設置例を図7および図8を用いて説明する。図7に、循環水取水管3,循環水放水管6に主眼を置いた実際の取放水ルートを示す。図7では、循環水ポンプ2−循環水取水管3−循環水放水管6が同じ構成で3系列存在しているが2系列の場合も存在している。   An installation example of a conventional circulating water intake / discharge pipe will be described with reference to FIGS. 7 and 8. FIG. 7 shows an actual water intake / discharge route focusing on the circulating water intake pipe 3 and the circulating water discharge pipe 6. In FIG. 7, the circulating water pump 2, the circulating water intake pipe 3, and the circulating water discharge pipe 6 exist in the same configuration in three series, but there are also two series.

海水ポンプ室1に設置された循環水ポンプ2によって海水をくみ上げ、くみ上げられた海水が循環水取水管3を通って、復水器5に送られて、タービン建屋4内のタービン9から排気される蒸気を冷却して復水化する復水器5の熱交換に用いられ、熱交換後の海水は循環水放水管6から放水庭7,放水路8を通り海へと放水される。   Seawater is pumped up by the circulating water pump 2 installed in the seawater pump chamber 1, and the pumped seawater is sent to the condenser 5 through the circulating water intake pipe 3 and exhausted from the turbine 9 in the turbine building 4. It is used for heat exchange of the condenser 5 that cools and condenses the steam, and the seawater after the heat exchange is discharged from the circulating water discharge pipe 6 through the discharge garden 7 and the discharge channel 8 into the sea.

図8に、図7の取放水ルートを備えたタービン建屋4の立断面図を示す。図8のように、タービン建屋4内にはタービン9と、タービン9から排気される蒸気を冷却する復水器5が設置されており、復水器5は循環水取水管3より供給される海水により蒸気を冷却し、冷却に用いられた海水は、循環水放水管6を通って排出される。   FIG. 8 is an elevational sectional view of the turbine building 4 provided with the intake / discharge route of FIG. As shown in FIG. 8, a turbine 9 and a condenser 5 that cools steam exhausted from the turbine 9 are installed in the turbine building 4, and the condenser 5 is supplied from the circulating water intake pipe 3. Steam is cooled by seawater, and the seawater used for cooling is discharged through the circulating water discharge pipe 6.

また、循環水取水管3と循環水放水管6はタービン建屋基礎10の下方で上下に交差するルートをとっており、配管の周辺は充填コンクリート11となっている。   The circulating water intake pipe 3 and the circulating water discharge pipe 6 take a route that intersects vertically below the turbine building foundation 10, and the periphery of the piping is filled concrete 11.

従来、原子力発電プラントは、複数の建物に機能別にプラント設備を分割収納し、それぞれの建屋について地震時の影響を少なくするために、建物本体を耐震構造とする構成が採用されている。   2. Description of the Related Art Conventionally, a nuclear power plant employs a structure in which a building body has an earthquake-resistant structure in order to divide and store plant facilities by function in a plurality of buildings and reduce the influence of each building upon an earthquake.

特に、原子力発電所等の放射性物質取扱施設における耐震構造の建物では、収納する設備の耐震重要度に応じて建物の耐震クラスが規定され、地震に対する耐力が異なる。重要度の高い設備を収納する建物は耐震クラスSとして頑丈に設計され、耐震クラスB,Cと重要度の低い設備を収納する建物になるにしたがって、それぞれ頑丈さを比較的低減した設計がなされる。   In particular, in an earthquake-resistant building in a radioactive material handling facility such as a nuclear power plant, the earthquake resistance class of the building is defined according to the importance of earthquake resistance of the equipment to be stored, and the earthquake resistance differs. Buildings that store facilities with high importance are designed ruggedly as seismic class S, and as buildings that contain seismic classes B and C and less important equipment, each is designed with relatively reduced ruggedness. The

一方、近年では、建屋への地震動による入力エネルギーを低減する手段として、建屋の免震構造が考案されている。   On the other hand, in recent years, a seismic isolation structure for a building has been devised as a means for reducing input energy due to earthquake motion to the building.

建屋の免震構造では、上部構造と下部構造とに分割されており、建屋本体となる上部構造の一部である上基礎と、地盤に埋設される下部構造である下基礎との間に、積層ゴム支承などの免震装置が設置される。   In the seismic isolation structure of the building, it is divided into an upper structure and a lower structure, and between the upper foundation that is part of the upper structure that becomes the building body and the lower foundation that is the lower structure embedded in the ground, Seismic isolation devices such as laminated rubber bearings will be installed.

その一例が特許文献2に掲載されている。即ち、特許文献2のように、原子炉建屋とタービン建屋を共通基礎上に配置し免震構造を適用することで、耐震性の向上と原子炉建屋とタービン建屋の間を渡る配管の相対変位吸収施策を省略可能とし、タービン建屋の免震側と非免震側を渡る循環水取放水配管については、非免震側に地震時に発生する相対変位分のクリアランスを有した取水用と放水用の水槽を設け、ポンプ室を免震側に設置し、ポンプ室から伸びる管路先端を非免震側の水槽に接続することで、相対変位を吸収する方法が提案されている。   One example is disclosed in Patent Document 2. In other words, as disclosed in Patent Document 2, the reactor building and the turbine building are arranged on a common foundation and the seismic isolation structure is applied, thereby improving the seismic resistance and the relative displacement of the piping between the reactor building and the turbine building. Absorption measures can be omitted, and for the circulating water intake and discharge piping that crosses the seismic isolation side and non-isolation side of the turbine building, the non-isolation side has clearance for the relative displacement that occurs during an earthquake and for water discharge There has been proposed a method of absorbing relative displacement by providing a water tank, installing the pump chamber on the seismic isolation side, and connecting the tip of the pipeline extending from the pump chamber to the non-seismic isolation water tank.

このようにすれば、共通基礎を免震構造として、その上の建屋に地震力が入力されようとしても、免震装置の変形によって地震力が吸収されることで、共通基礎の上部構造への地震力の入力が低減される。   In this way, the seismic force is absorbed by the deformation of the seismic isolation device even if the seismic force is input to the building above the common base as a seismic isolation structure. Seismic force input is reduced.

免震構造の建屋を採用した原子力プラントでは、地震力を大幅に低減させることが可能となるが、地震時には免震構造の建屋と非免震構造の建屋との間で大きな相対変位が生じることになるので、免震構造の建屋と非免震構造の建屋を接続している建屋間の配管(たとえば、主蒸気配管や循環水取放水配管)では、フレキシブルジョイントを用いるなど、相対変位に対して追従可能な施策が必要となる。   In a nuclear power plant that uses a base-isolated building, the seismic force can be greatly reduced, but a large relative displacement occurs between the base-isolated and non-base-isolated building during an earthquake. Therefore, pipes between buildings that have seismic isolation structures and non-base isolation structures (for example, main steam pipes and circulating water intake / drainage pipes) use flexible joints to prevent relative displacement. Measures that can be followed are necessary.

配管の相対変位吸収策として、例えば、特許文献3のように蛇腹状のフレキシブル配管を配管途中に採用する例や、そのフレキシブル配管では、小さな地震力でも管路が座屈しやすいことを考慮して、特許文献1のように、免震装置である、積層ゴム支承の中央部に液体を流す流路を設定して、建屋を支えることのできるほどに座屈しにくい積層ゴム支承の中央部を配管につながる流路として利用することが提案されている。   As a measure for absorbing relative displacement of piping, for example, an example of adopting an accordion-shaped flexible piping in the middle of the piping as in Patent Document 3 or considering that the flexible piping easily buckles even with a small seismic force. As in Patent Document 1, a flow path for flowing liquid is set in the central part of the laminated rubber support, which is a seismic isolation device, and the central part of the laminated rubber bearing is not buckled enough to support the building. It has been proposed to be used as a flow path leading to

また、特許文献2では、さらに、原子炉建屋とタービン建屋を共通基礎上に配置し、その共通基礎に免震構造を適用することで、耐震性の向上と原子炉建屋とタービン建屋の間を渡る配管の相対変位吸収施策を省略可能とする際に、冷却水循環設備の配管を共通基礎とその下基礎との間の空間に共通基礎の下面と一体に敷設する技術が示されている。   Further, in Patent Document 2, the reactor building and the turbine building are arranged on a common foundation, and the seismic isolation structure is applied to the common foundation, thereby improving the seismic resistance and the space between the reactor building and the turbine building. A technique for laying the piping of the cooling water circulation facility integrally with the lower surface of the common foundation in the space between the common foundation and the lower foundation when making it possible to omit the relative displacement absorption measure of the crossing pipe is shown.

特開2001−49895号公報JP 2001-49895 A 特開2006−145392号公報JP 2006-145392 A 特開2008−25930号公報JP 2008-25930 A

上記のように、非免震側から免震側に渡される渡り配管途中で積層ゴム支承の中央部を配管につながる流路として利用することは流路の安易な座屈を抑制する上で有利であるが、その積層ゴム支承は、免震装置でもあるので、建屋応答となる免震周期,建屋及び地震荷重の支持荷重にて設計される。そのため、そのような設計の制約がない場合に比べて、構造が大型化し、設置するための地盤掘削量やコストを不利にする。   As described above, it is advantageous to use the central part of the laminated rubber support as a flow path connected to the pipe in the middle of the transition pipe passed from the non-isolation side to the seismic isolation side in order to suppress easy buckling of the flow path. However, since the laminated rubber bearing is also a seismic isolation device, it is designed with a seismic isolation cycle that is a building response, a building and a supporting load of seismic load. Therefore, compared with the case where there is no such design restriction, the structure becomes large, and the ground excavation amount and cost for installation are disadvantageous.

特に循環水取水管3,循環水放水管6は、原子力発電プラントの配管の中でも大口径であるので、その大口径に合わせて積層ゴム支承の中央部に配管につながる大口径の流路を設けると、免震機能も担保せねばならないので、積層ゴム支承が大型化し、それに伴って、設置スペースを確保するための掘削量が増大し、大幅なコストアップが懸念される。   In particular, since the circulating water intake pipe 3 and the circulating water discharge pipe 6 have a large diameter among the pipes of the nuclear power plant, a large-diameter flow path connected to the pipe is provided at the center of the laminated rubber support in accordance with the large diameter. In addition, since the seismic isolation function must be secured, the size of the laminated rubber bearing becomes larger, and accordingly, the amount of excavation for securing the installation space increases, and there is a concern about a significant cost increase.

地盤の掘削量は復水器でのサイフォン運転実施、或いはダムアップの揚程量を低減するために、海面と復水器上部の高さの関係から決まるが、免震構造を用いる場合には、積層ゴム支承の高さと、上基礎と下基礎に設ける積層ゴム支承の設置のためのペデスタルの高さ分の掘削量が増大する。   The excavation amount of the ground is determined by the relationship between the sea level and the height of the condenser upper part in order to reduce the amount of lifting of the dam-up or the siphon operation in the condenser. The amount of excavation increases by the height of the laminated rubber bearing and the height of the pedestal for installing the laminated rubber bearing provided on the upper foundation and the lower foundation.

また、特許文献2に示される免震構造では、循環水取放水設備について相対変位を吸収することが可能となるが、非免震側で取水用と排水用の水槽までの海水の引き込みを行う施設が必要となること、免震側では重要度の低いポンプ室を免震化することによって大幅なコスト増加につながる。   Moreover, in the seismic isolation structure shown in Patent Document 2, it becomes possible to absorb the relative displacement of the circulating water intake and discharge equipment, but seawater is drawn into the water tank for intake and drainage on the non-base isolation side. The need for facilities and the isolation of the pump room, which is less important on the seismic isolation side, will lead to significant cost increases.

免震化した建屋の床下配管設備、或いは発電プラントの免震化されたタービン建屋内の復水器の循環水取放水設備においては、地震時に免震側と非免震側を渡る配管に免震側と非免震側との間で相対変位が生じるので、その相対変位を吸収するとともに、その設備の施工や床下や周辺の掘削量の増大の抑制やメンテナンス性の向上に有利な構造が望まれていた。   In the seismically isolated building underfloor piping equipment or the circulating water intake and drainage equipment of the condenser in the turbine building that has been seismically isolated, the piping that crosses the seismic isolation side and the non-isolation side is exempted during an earthquake. A relative displacement occurs between the seismic side and the non-seismic side, so that the relative displacement is absorbed, and a structure that is advantageous for construction of the equipment, suppression of an increase in the amount of excavation under the floor and in the vicinity, and improvement of maintainability. It was desired.

本発明の目的は、免震化した建屋の免震側と非免震側を渡る配管の相対変位を吸収するとともに、配管設備の施工や掘削量の増大の抑制やメンテナンス性の向上に有利な構造を提供することにある。   The object of the present invention is to absorb the relative displacement of the piping across the seismic isolation side and the non-seismic isolation side of the seismically isolated building, and is advantageous for the suppression of the construction of piping facilities and the increase in excavation amount and the improvement of maintenance. To provide a structure.

本発明の目的を達成する手段は、建屋の上基礎を下基礎から積層ゴム支承で支持し、前記上基礎に支承された配管と前記上基礎以外に支承された配管とを、前記積層ゴム支承とは別に用意した相対変位吸収配管設備を介して接続して成る免震化した建屋の配管設備において、前記相対変位吸収配管設備は、補強板とゴム層とを積層した積層構造物に、前記積層の方向に貫通した流路を設け、前記流路が前記接続される両配管に連通接続されている構造を有することを特徴とした免震化した建屋の配管設備である。   Means for achieving the object of the present invention is to support an upper foundation of a building from a lower foundation with a laminated rubber bearing, and connect the pipe supported by the upper foundation and the pipe supported by other than the upper foundation to the laminated rubber bearing. In the seismic isolation building piping facility connected via a relative displacement absorbing piping facility prepared separately from the above, the relative displacement absorbing piping facility includes a laminated structure in which a reinforcing plate and a rubber layer are stacked, A seismic-isolated building piping facility characterized in that a flow path penetrating in the direction of stacking is provided, and the flow path is connected to both the connected pipes.

本発明によれば、免震側と非免震側の基礎間の流路を構成する相対変位吸収配管設備は、建屋応答となる免震周期,支持荷重にて設定され免震装置の設計条件の制約から解放されて、主に相対変位量と内圧によって設定される設計条件にて構成でき、且つ座屈しにくい補強板とゴム層とを積層した積層構造物で渡り部分の流路接続を達成できるので、免震装置に渡り部分の流路を兼ねさせるものに比べて、相対変位を吸収するために必要な構造が小さくなる。   According to the present invention, the relative displacement absorbing piping equipment that constitutes the flow path between the base on the seismic isolation side and the non-base isolation side is set by the base isolation cycle and the support load that are the building response, and the design conditions of the base isolation device The flow path connection at the crossing part is achieved with a laminated structure in which a reinforcing plate and a rubber layer that are difficult to buckle are laminated, and can be configured with design conditions set mainly by relative displacement and internal pressure. As a result, the structure required to absorb the relative displacement is smaller than that of the seismic isolation device that also serves as the flow path of the portion.

また、その構造が小さくなることで、相対変位を吸収するための構造を採用する場合に必要となるスペースが小さくなるため、建設時の物量を低減することが可能である。   Further, since the structure becomes small, a space required when a structure for absorbing relative displacement is adopted becomes small, so that it is possible to reduce the amount of material at the time of construction.

さらには、前記積層ゴム支承とは別に用意した相対変位吸収配管設備は、上基礎を支持する強度の確保を必要としないので、補強板とゴム層とを積層した積層構造物で相対変位吸収配管設備を構成した際に、その積層構造物の内側の流路について大径に設計でき、流路を広く取ることが可能となり、大口径の配管へも適用可能となる。   Furthermore, since the relative displacement absorbing piping equipment prepared separately from the laminated rubber bearing does not require the strength to support the upper foundation, the relative displacement absorbing piping is a laminated structure in which a reinforcing plate and a rubber layer are laminated. When the equipment is configured, the flow path inside the laminated structure can be designed to have a large diameter, so that the flow path can be widened and can be applied to a large-diameter pipe.

さらには、建屋基礎下に配管を埋設する場合と比べて、掘削量を削減でき、建屋基礎下の配管周辺の充填コンクリートが不要となるため、施工が簡易となる。   Furthermore, the amount of excavation can be reduced as compared with the case where the piping is buried under the building foundation, and the filling concrete around the piping under the building foundation is unnecessary, so that the construction is simplified.

また、上基礎と下基礎の間に配置する配管や相対変位吸収配管設備についてのメンテナンスが上基礎と下基礎の間の空間を利用して可能となるため、基礎下に埋設した場合に比べてメンテナンス性が向上する。   In addition, since maintenance on the piping placed between the upper foundation and the lower foundation and relative displacement absorbing piping equipment is possible using the space between the upper foundation and the lower foundation, compared to the case where it is buried under the foundation. Maintainability is improved.

本発明の実施例1による取放水ルートを備えたタービン建屋の縦断面図である。It is a longitudinal cross-sectional view of the turbine building provided with the water intake / discharge route by Example 1 of this invention. 本発明の実施例1による取放水ルートを備えたタービン建屋の下基礎平面図である。It is a lower basic top view of the turbine building provided with the intake / discharge route by Example 1 of the present invention. 本発明の実施例1による取放水ルートを備えたタービン建屋の上基礎平面および放水ルート図である。It is the upper basic plane of a turbine building provided with the water intake / discharge route by Example 1 of this invention, and a water discharge route figure. 本発明の実施例1の相対変位吸収配管設備の接続方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection method of the relative displacement absorption piping equipment of Example 1 of this invention. 本発明の相対変位吸収配管設備と積層ゴム支承の比較図である。It is a comparison figure of the relative displacement absorption piping installation of this invention, and a laminated rubber bearing. 本発明の実施例2による相対変位吸収配管設備の接続方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection method of the relative displacement absorption piping installation by Example 2 of this invention. 従来技術による取放水ルートの全体ルート図である。It is the whole route figure of the intake / discharge route by a prior art. 図7の取放水ルートを備えたタービン建屋の縦断面図である。It is a longitudinal cross-sectional view of the turbine building provided with the water intake / discharge route of FIG.

以下に本発明の各実施例を説明する。   Examples of the present invention will be described below.

この発明の実施例における原子力発電所のタービン建屋4内の機器に接続される循環水取放水配管の設置例につては既述の図7および図8とおなじである。その循環水取放水配管の系統は、図1や図2に示すように、循環水ポンプ2−循環水取水管3−循環水放水管6が同じ構成で3系列存在している。   An example of the installation of circulating water intake / drainage pipes connected to the equipment in the turbine building 4 of the nuclear power plant in the embodiment of the present invention is the same as that shown in FIGS. As shown in FIG. 1 and FIG. 2, the circulating water intake / discharge piping system includes three series of circulating water pumps 2-circulating water intake pipes 3-circulating water discharge pipes 6 with the same configuration.

循環水取放水配管の系統は、従来通り、海水ポンプ室に設置された循環水ポンプ2によって海水をくみ上げ、くみ上げられた海水が循環水取水管3を通って、タービン建屋内の復水器5に送られて、復水器5の熱交換に用いられ、熱交換後の海水は、図3に示す循環水放水管6から放水庭7,放水路8を通り海へと放水される。   The circulating water intake / drainage piping system, as before, pumps up seawater by the circulating water pump 2 installed in the seawater pump room, and the pumped seawater passes through the circulating water intake pipe 3 to the condenser 5 in the turbine building. The seawater after the heat exchange is discharged from the circulating water discharge pipe 6 shown in FIG. 3 to the sea through the discharge garden 7 and the discharge channel 8.

図1のように、タービン建屋4内にはタービン9と、タービン9から排気される蒸気を冷却する復水器5が設置されており、復水器5は循環水取水管3より供給される海水により蒸気を冷却し、冷却に用いられた海水は、循環水放水管6を通って排出される。   As shown in FIG. 1, a turbine 9 and a condenser 5 for cooling steam exhausted from the turbine 9 are installed in the turbine building 4, and the condenser 5 is supplied from a circulating water intake pipe 3. Steam is cooled by seawater, and the seawater used for cooling is discharged through the circulating water discharge pipe 6.

また、循環水取水管3と循環水放水管6はタービン建屋4の床下で上下に交差するルートをとっている。   In addition, the circulating water intake pipe 3 and the circulating water discharge pipe 6 take a route that intersects vertically below the floor of the turbine building 4.

図1のように、タービン建屋4は免震建屋となっており、上方が床とされた上基礎12と、その下側の下基礎13とには、互いに対向し合うようにペデスタル14が構築されている。そのペデスタル14間には、積層ゴム支承15が設置されている。   As shown in FIG. 1, the turbine building 4 is a seismic isolation building, and a pedestal 14 is constructed so that the upper foundation 12 whose upper side is a floor and the lower foundation 13 on the lower side face each other. Has been. A laminated rubber bearing 15 is installed between the pedestals 14.

さらに循環水取水管3および循環水放水管6の引廻しが上基礎12と下基礎13の間で行われており、相対変位吸収配管設備16により上基礎12側の配管と下基礎13側の配管が接続されていることで、免震建屋への地震動入力時に発生する上基礎12と下基礎13の間での相対変位は、相対変位吸収配管設備16の変形性能によって吸収されて、循環水取放水配管は破断しない。   Further, the circulating water intake pipe 3 and the circulating water discharge pipe 6 are routed between the upper foundation 12 and the lower foundation 13, and the relative displacement absorbing piping facility 16 is used to connect the piping on the upper foundation 12 side and the lower foundation 13 side. By connecting the pipes, the relative displacement between the upper foundation 12 and the lower foundation 13 that is generated when the ground motion is input to the seismic isolation building is absorbed by the deformation performance of the relative displacement absorbing piping equipment 16, and the circulating water The intake and discharge pipe will not break.

積層ゴム支承15の高さおよび、上基礎12および下基礎13に設置されるペデスタル14の高さ(上下方向の寸法)の合計を高さの上限とし、ペデスタル14設置間の幅から相対変位分を除いた幅を循環水取放水配管の敷設用の空間として用いる事ができる。   The sum of the height of the laminated rubber support 15 and the height (vertical dimension) of the pedestal 14 installed on the upper foundation 12 and the lower foundation 13 is the upper limit of the height, and the relative displacement from the width between the pedestal 14 installations. The width excluding can be used as a space for laying the circulating water intake / discharge pipe.

高さ方向については、ペデスタル14高さを調整することにより、循環水取放水配管の設置に必要な高さを確保することが可能となる。   About a height direction, it becomes possible to ensure the height required for installation of circulating water intake / drainage piping by adjusting pedestal 14 height.

なお、上基礎12および下基礎13の間の空間は積層ゴム支承15の管理や交換を考慮して高さを確保する設計となるため、同じ空間に設置する循環水取放水配管についても同様に作業員がアクセスできることとなり、メンテナンス性が向上する。   In addition, since the space between the upper foundation 12 and the lower foundation 13 is designed to ensure the height in consideration of management and replacement of the laminated rubber bearing 15, the same applies to the circulating water intake and discharge pipes installed in the same space. Maintenance will be improved because workers can access.

図2は本発明の実施例1による取放水ルートを備えたタービン建屋の下基礎平面図であって、循環水取水管3は、循環水ポンプ2から復水器5の下まで、タービン建屋4の下基礎13に並ぶペデスタル14の間を通って下基礎に支承されて配置され、相対変位吸収配管設備16を介して上基礎12に支承された循環水取水管3に接続している。   FIG. 2 is a bottom plan view of the turbine building having the intake / discharge route according to the first embodiment of the present invention. The circulating water intake pipe 3 extends from the circulating water pump 2 to the bottom of the condenser 5 and is connected to the turbine building 4. The pedestal 14 arranged on the lower foundation 13 passes between the pedestals 14 and is supported by the lower foundation, and is connected to the circulating water intake pipe 3 supported by the upper foundation 12 via the relative displacement absorbing piping facility 16.

循環水取水管3は復水器5下から上向きに立ち上がったところで、相対変位吸収配管設備16へ接続している。   The circulating water intake pipe 3 is connected to the relative displacement absorbing piping facility 16 when it rises upward from below the condenser 5.

図3は本発明の実施例1による取放水ルートを備えたタービン建屋の上基礎平面および放水ルート図である。   FIG. 3 is an upper basic plane and a water discharge route diagram of the turbine building having the water intake / discharge route according to the first embodiment of the present invention.

循環水放水管6は、復水器5下から、上基礎12下面を這ってタービン建屋4外まで接続し、上基礎12より相対的に高い位置に設置される放水庭7へ接続するために立ち上がった位置で、相対変位吸収配管設備16へ接続している。   The circulating water discharge pipe 6 is connected from the bottom of the condenser 5 to the outside of the turbine building 4 over the lower surface of the upper foundation 12 and to the discharge garden 7 installed at a position relatively higher than the upper foundation 12. At the raised position, it is connected to the relative displacement absorbing piping facility 16.

図4は図1および図2で説明している循環水取水管3における相対変位吸収配管設備16の接続箇所の縦断面を示している。復水器5の下まで導かれた下基礎13の循環水取水管3は立ち上がって、相対変位吸収配管設備16に接続し、相対変位吸収配管設備16は上基礎12の循環水取水管3に接続され、上基礎12の循環水取水管3は上基礎12を貫通し、復水器5へ接続されている。   FIG. 4 shows a longitudinal section of the connection location of the relative displacement absorbing piping facility 16 in the circulating water intake pipe 3 described in FIGS. 1 and 2. The circulating water intake pipe 3 of the lower foundation 13 led to the bottom of the condenser 5 stands up and is connected to the relative displacement absorbing piping equipment 16. The relative displacement absorbing piping equipment 16 is connected to the circulating water intake pipe 3 of the upper foundation 12. The circulating water intake pipe 3 of the upper foundation 12 passes through the upper foundation 12 and is connected to the condenser 5.

図5は本発明の実施例1にかかる(a)図の積層ゴム支承15と(b)図の相対変位吸収配管設備16を比較した図である。相対変位吸収配管設備16と積層ゴム支承15はともに円筒形状であり、ゴム層19と補強板20とを交互に重ね合わせて座屈しにくい構造の集合体とされ、その集合体の上下端にフランジ18を設けてあり、ゴム層19と補強板20とフランジ18とが一体化された構造である。   FIG. 5 is a diagram comparing the laminated rubber support 15 in FIG. 5A and the relative displacement absorbing piping facility 16 in FIG. 5B according to the first embodiment of the present invention. The relative displacement absorbing piping facility 16 and the laminated rubber support 15 are both cylindrical, and are formed as an assembly having a structure in which the rubber layers 19 and the reinforcing plates 20 are alternately overlapped to prevent buckling, and flanges are provided at the upper and lower ends of the assembly. 18 is provided, and the rubber layer 19, the reinforcing plate 20, and the flange 18 are integrated.

積層ゴム支承15と相対変位吸収配管設備16とは、ゴム層19と補強板20とを交互に積層することで、大きな変異を吸収すると共に座屈しにくい構造を有している。しかし、積層ゴム支承15と相対変位吸収配管設備16とでは、ゴム層19と補強板20の設計条件がことなる。即ち、タービン建屋に対する免震装置の機能を司る積層ゴム支承15は、地震に係る建屋応答となる免震周期,支持荷重にて設計条件が設定されるのに対して、相対変位吸収配管設備16の設計条件は、タービン建屋に対する免震機能を司らないので、建屋応答となる免震周期や支持荷重の制約がなく、相対変位量と内圧によって設計条件が設定され、積層ゴム支承15に建屋の免震機能と流路の機能を複合させて構成するものに比べて、機能分散による構造の小型化が達成されている。   The laminated rubber support 15 and the relative displacement absorbing piping facility 16 have a structure in which the rubber layers 19 and the reinforcing plates 20 are alternately laminated to absorb a large variation and hardly buckle. However, the design conditions for the rubber layer 19 and the reinforcing plate 20 differ between the laminated rubber support 15 and the relative displacement absorbing piping facility 16. That is, for the laminated rubber bearing 15 that controls the function of the seismic isolation device for the turbine building, the design conditions are set by the seismic isolation cycle and the supporting load that are the building response related to the earthquake, whereas the relative displacement absorbing piping facility 16 The design conditions of the turbine building do not control the seismic isolation function for the turbine building, so there is no restriction on the seismic isolation cycle and support load that will be the response of the building, and the design conditions are set according to the relative displacement and internal pressure. Compared to the structure that combines the seismic isolation function and the flow path function, the size reduction of the structure by function distribution has been achieved.

相対変位吸収配管設備16は、中央部に耐食性に優れた被覆を有した流路17がゴム層19と補強板20の積層方向に貫通して設けられている。相対変位吸収配管設備16のゴム層19のゴムの材料は、積層ゴム支承15と同じゴム材料を用いるが、積層ゴム支承15に比較してゴム層19の総厚を厚く、補強板20の総厚を薄くすることで、積層ゴム支承15よりも変形性能を向上させて、積層ゴム支承15に先んじて破損する危険性を回避している。   In the relative displacement absorbing piping facility 16, a flow path 17 having a coating with excellent corrosion resistance is provided in the center portion so as to penetrate in the stacking direction of the rubber layer 19 and the reinforcing plate 20. The rubber material of the rubber layer 19 of the relative displacement absorbing piping facility 16 is the same rubber material as that of the laminated rubber support 15, but the total thickness of the rubber layer 19 is thicker than that of the laminated rubber support 15, and the total thickness of the reinforcing plate 20 is increased. By reducing the thickness, the deformation performance is improved as compared with the laminated rubber support 15, and the risk of breakage prior to the laminated rubber support 15 is avoided.

相対変位吸収配管設備16は、積層ゴム支承15と違ってタービン建屋の鉛直荷重を支持する必要がないため、補強板20の厚さを薄くできるので、積層ゴム支承15より高さの低い部材とすることが可能となる。   Unlike the laminated rubber support 15, the relative displacement absorbing piping facility 16 does not need to support the vertical load of the turbine building, so the thickness of the reinforcing plate 20 can be reduced. It becomes possible to do.

相対変位吸収配管設備16は、フランジ18の部分が、図4のように、循環水取水管3の端部に設けた配管フランジ部分に固定され、上下の各循環水取水管3の渡り部分の接続流路として用いられる。図1,図3に示す循環水放水管6についても、同様に上下基礎間の循環水放水管6の部分が免震支持されたタービン建屋4外にて敷設されている非免震側の循環水放水管6の部分と相対変位吸収配管設備16で接続されている。   As shown in FIG. 4, the relative displacement absorbing piping facility 16 is fixed to a pipe flange portion provided at the end of the circulating water intake pipe 3 as shown in FIG. Used as a connection channel. For the circulating water discharge pipe 6 shown in FIGS. 1 and 3, similarly, the portion of the circulating water discharge pipe 6 between the upper and lower foundations is laid outside the turbine building 4 that is supported by the base isolation. The portion of the water discharge pipe 6 is connected by a relative displacement absorption piping facility 16.

以上により、上基礎12および下基礎13の間に循環水取放水配管を敷設することが可能となり、タービン建屋基礎10の下に埋設する場合に必要になる掘削量,充填コンクリート11、又は埋設の場合の埋め戻しが不要となるので、土木工事の簡略化,工期短縮を計ることが可能となる。   As described above, the circulating water intake / discharge pipe can be laid between the upper foundation 12 and the lower foundation 13, and the amount of excavation, the filling concrete 11, or the buried concrete required when burying under the turbine building foundation 10. Since no backfilling is required, it is possible to simplify the civil engineering work and shorten the construction period.

図6は、本発明の実施例2による相対変位吸収配管設備の接続状態を示す縦断面図である。図6では、上基礎12側の循環水取水管3と下基礎側の循環水取水管3とを接続する例として、相対変位吸収配管設備16を複数個並列に用いて接続している例を示している。   FIG. 6 is a longitudinal sectional view showing a connection state of the relative displacement absorbing piping facility according to the second embodiment of the present invention. In FIG. 6, as an example of connecting the circulating water intake pipe 3 on the upper foundation 12 side and the circulating water intake pipe 3 on the lower foundation side, an example in which a plurality of relative displacement absorption piping facilities 16 are connected in parallel is used. Show.

この接続に際しては、上基礎12の循環水取水管3と下基礎13の循環水取水管3とを上下に間隔をあけて且つ互いに水平方向へ平行に配置し、それらの管端を閉鎖する。平行配置にされた各循環水取水管3の部分の間に、実施例1で示した相対変位吸収配管設備16を3個並列に配置して、3個の相対変位吸収配管設備16で上基礎12の循環水取水管3と下基礎13の循環水取水管3との平行配置部分を接続する。   In this connection, the circulating water intake pipe 3 of the upper foundation 12 and the circulating water intake pipe 3 of the lower foundation 13 are arranged in parallel with each other at an interval in the vertical direction and their pipe ends are closed. Between the parts of the circulating water intake pipes 3 arranged in parallel, the three relative displacement absorption piping facilities 16 shown in the first embodiment are arranged in parallel, and the upper foundation is formed by the three relative displacement absorption piping facilities 16. The parallel arrangement part of 12 circulating water intake pipes 3 and the circulating water intake pipe 3 of the lower foundation 13 is connected.

この接続のために、上基礎12の循環水取水管3と下基礎13の循環水取水管3とには、その平行配置部分に相対変位吸収配管設備16のフランジ18が接続される配管フランジが設けられている。循環水放水管についても同様に接続する。   For this connection, the circulating water intake pipe 3 of the upper foundation 12 and the circulating water intake pipe 3 of the lower foundation 13 have pipe flanges to which the flanges 18 of the relative displacement absorbing piping equipment 16 are connected in parallel arrangement portions. Is provided. Connect the circulating water discharge pipe in the same way.

このように、製造の制約などで相対変位吸収配管設備16の流路17の径が必要とする流路口径に満たない場合でも、相対変位吸収配管設備16による循環水取放水配管の敷設形態の適用が可能となる。   Thus, even when the diameter of the flow path 17 of the relative displacement absorption piping facility 16 is less than the required flow path diameter due to manufacturing restrictions or the like, the laying configuration of the circulating water intake / discharge pipe by the relative displacement absorption piping facility 16 is Applicable.

以上のように、本発明の各実施例の構成は、以下のような特徴を備える。即ち、循環水取放水配管が免震側の上基礎と非免震側の下基礎の間を渡る場合に、それらの配管を免震側で上基礎下面に配置し、非免震側で下基礎上面に配置することで、免震化で必要となる建屋下の空間に配管を集約させている。   As described above, the configuration of each embodiment of the present invention has the following features. In other words, when the circulating water intake / drainage pipe crosses between the upper foundation on the seismic isolation side and the lower foundation on the non-isolation side, these pipes are placed on the lower surface of the upper base on the seismic isolation side and lowered on the non-isolation side. By placing it on the upper surface of the foundation, piping is concentrated in the space under the building, which is required for seismic isolation.

また、原子力プラントの免震化に用いられる積層ゴム支承と同じゴム材料を用いてゴム総厚を厚くしたゴム層と補強板とを交互に積層し上下端面にフランジ部材を接合し、耐食性に優れた被覆を有した上下方向に貫通する流路を中央部に設けた構造の相対変位吸収配管設備によって上基礎の配管と下基礎の配管を接続している。   In addition, the rubber material and the reinforcing plate which are made of the same rubber material as the laminated rubber bearing used for seismic isolation of the nuclear power plant are alternately laminated, and the flange members are joined to the upper and lower end surfaces, resulting in excellent corrosion resistance. The upper foundation pipe and the lower foundation pipe are connected to each other by a relative displacement absorbing piping facility having a structure in which a flow path extending in the vertical direction and having a coating is provided in the center.

また、実施例2だけが有する特徴として、上記の相対変位吸収配管設備の流路の口径が製造能力による制限のために、必要とする径に満たない場合には、配管部材を複数個並列に配置することで、必要流量を確保している。   Further, as a feature of only the second embodiment, when the diameter of the flow path of the above-mentioned relative displacement absorbing piping facility is less than the required diameter due to a limitation due to the manufacturing capacity, a plurality of piping members are arranged in parallel. By arranging it, the necessary flow rate is secured.

このような特徴的構成を有する本発明の各実施例によれば、免震化で必要となる建屋下の空間に配管を集約させることにより、タービン建屋基礎下に循環水取放水配管を埋設する場合と比べて、掘削量を削減でき、タービン建屋基礎下の配管周辺の充填コンクリートが不要となるため、施工が簡易となる。   According to each embodiment of the present invention having such a characteristic configuration, the circulating water intake / drainage pipe is embedded under the turbine building foundation by consolidating the pipe in the space under the building required for seismic isolation. Compared to the case, the amount of excavation can be reduced, and the filling concrete around the piping under the turbine building foundation becomes unnecessary, so that the construction is simplified.

さらに、免震建屋では、免震装置のメンテナンスのために、上基礎と下基礎の間を作業員が立ち入れるような構成として設計されるため、上基礎と下基礎の間に配置する循環水取放水配管についても同様にメンテナンスが可能となるため、基礎下に埋設した場合に比べてメンテナンス性が向上する。   Furthermore, since the seismic isolation building is designed to allow workers to enter between the upper foundation and the lower foundation for the maintenance of the seismic isolation device, circulating water placed between the upper foundation and the lower foundation. Similarly, maintenance is possible for the intake and discharge pipes, so that maintainability is improved as compared with the case where the pipe is buried under the foundation.

また、循環水取放水配管で相対変位を吸収するために配置する相対変位吸収配管設備は免震化によって発生する相対変位に対して、相対変位量を決定づける積層ゴム支承と同じ材料で、積層ゴム支承よりゴム総厚を厚くすることで、積層ゴム支承よりも許容できる変位量を大きくとることが可能となるため、循環水取放水配管が積層ゴム支承よりも先に破断することを回避できる。   Also, the relative displacement absorption piping equipment arranged to absorb the relative displacement in the circulating water intake / discharge pipe is made of the same material as the laminated rubber bearing that determines the relative displacement with respect to the relative displacement generated by seismic isolation. By making the total rubber thickness thicker than the bearing, it is possible to take a larger allowable displacement than the laminated rubber bearing, and therefore it is possible to avoid the circulating water intake / drainage pipe breaking before the laminated rubber bearing.

相対変位吸収配管設備は積層ゴム支承とは異なり軸力を保持する必要はないため、相対変位吸収配管設備の補強板の板厚を積層ゴム支承よりも薄くすることができ、相対変位吸収配管設備はゴム総厚を積層ゴム支承より厚くした場合でも、部材高さを積層ゴム支承より低くすることが可能である。   Unlike the laminated rubber bearing, the relative displacement absorbing piping equipment does not need to maintain the axial force. Therefore, the thickness of the reinforcing plate of the relative displacement absorbing piping equipment can be made thinner than that of the laminated rubber bearing. Even when the total rubber thickness is made thicker than the laminated rubber bearing, the member height can be made lower than that of the laminated rubber bearing.

実施例2だけが奏する効果であるが、相対変位吸収配管設備の流路が必要とする循環水取放水配管の径に満たない場合でも、相対変位吸収配管設備を複数個設置することで、必要流量を確保することができる。   Although only the effect of Example 2 is achieved, it is necessary to install a plurality of relative displacement absorption piping facilities even when the flow path of the relative displacement absorption piping facility is less than the diameter of the circulating water intake / drainage piping required. A flow rate can be secured.

このように、本発明を原子力発電所の循環水取放水設備の敷設技術に適用した例示では、免震構造としたタービン建屋の免震側の上基礎と非免震側の下基礎の間を渡る配管で、免震側と非免震側の相対変位に追従可能で、さらに掘削量の削減や、相対変位吸収配管設備の小型化及び座屈の抑制、並びにメンテナンス性の向上に好適な復水器の循環水取放水設備が提供できる。   As described above, in the example in which the present invention is applied to the laying technology of the circulating water intake and discharge facility of the nuclear power plant, the space between the upper foundation on the seismic isolation side and the lower foundation on the non-seismic isolation side of the turbine building having the seismic isolation structure is provided. It is possible to follow the relative displacement between the seismic isolation side and the non-seismic isolation side with crossing piping, and it is suitable for reduction of excavation amount, miniaturization of relative displacement absorbing piping equipment, suppression of buckling, and improvement of maintenance. Can provide circulating water intake and discharge equipment for water tanks.

本発明は、例えば、原子力発電所のタービン建屋下の循環水取放水設備の配管敷設に利用される。   The present invention is used, for example, for laying piping of circulating water intake and discharge equipment under a turbine building of a nuclear power plant.

1 海水ポンプ室
2 循環水ポンプ
3 循環水取水管
4 タービン建屋
5 復水器
6 循環水放水管
7 放水庭
8 放水路
9 タービン
10 タービン建屋基礎
11 充填コンクリート
12 上基礎
13 下基礎
14 ペデスタル
15 積層ゴム支承
16 相対変位吸収配管設備
17 流路
18 フランジ
19 ゴム層
20 補強板
DESCRIPTION OF SYMBOLS 1 Seawater pump room 2 Circulating water pump 3 Circulating water intake pipe 4 Turbine building 5 Condenser 6 Circulating water drain pipe 7 Discharge garden 8 Discharge channel 9 Turbine 10 Turbine building foundation 11 Filled concrete 12 Upper foundation 13 Lower foundation 14 Pedestal 15 Lamination Rubber bearing 16 Relative displacement absorbing piping equipment 17 Flow path 18 Flange 19 Rubber layer 20 Reinforcing plate

Claims (3)

建屋の上基礎を下基礎から、ゴム層と補強板を交互に重ね合わせた積層ゴム支承で支持し、前記上基礎に支承された配管と前記上基礎以外に支承された配管とを、前記積層ゴム支承とは別に用意した相対変位吸収配管設備を介して接続して成る免震化した建屋の配管設備において、
前記相対変位吸収配管設備は、補強板とゴム層とを積層した積層構造物に、前記積層の方向に貫通した流路を設け、前記流路が前記接続される両配管に連通接続されているとともに、前記積層ゴム支承に比較して前記ゴム層の総厚を厚く、前記補強板の総厚を薄くする構造を有することを特徴とした免震化した建屋の配管設備。
The upper foundation of the building is supported from the lower foundation by a laminated rubber bearing in which rubber layers and reinforcing plates are alternately stacked, and the pipe supported by the upper foundation and the pipe supported by other than the upper foundation are laminated. In the seismic isolation building piping facility connected via the relative displacement absorbing piping facility prepared separately from the rubber bearing,
The relative displacement absorbing piping facility is provided with a flow passage penetrating in the direction of the lamination in a laminated structure in which a reinforcing plate and a rubber layer are laminated, and the flow passage is connected to both pipes to be connected. In addition, a seismic isolation building piping system characterized by having a structure in which the total thickness of the rubber layer is increased and the total thickness of the reinforcing plate is reduced compared to the laminated rubber support .
請求項1において、相対変位吸収配管設備として、ゴム層と補強板とを交互に積層し、その積層構造物の上下端に、前記配管側と接続するフランジを一体に装備し、前記積層構造物とフランジとの一体構造物に設けた前記流路の内面に耐食性の被覆を施して流路を構成してあることを特徴とした免震化した建屋の配管設備。   2. The laminated structure according to claim 1, wherein as relative displacement absorbing piping equipment, rubber layers and reinforcing plates are alternately laminated, and flanges connected to the piping side are integrally provided at upper and lower ends of the laminated structure. A seismic-isolated building piping facility, characterized in that a flow path is formed by applying an anticorrosive coating to the inner surface of the flow path provided in an integral structure of a flange and a flange. 請求項1から請求項2までのいずれか一項において、前記相対変位吸収配管設備を複数個並列に用いて前記両配管を接続した構成を有することを特徴とした免震化した建屋の配管設備。  The piping equipment for a seismic isolation building according to any one of claims 1 to 2, wherein a plurality of the relative displacement absorbing piping equipments are used in parallel to connect the two pipes. .
JP2010060103A 2010-03-17 2010-03-17 Seismic isolation building piping equipment Active JP5417230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060103A JP5417230B2 (en) 2010-03-17 2010-03-17 Seismic isolation building piping equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060103A JP5417230B2 (en) 2010-03-17 2010-03-17 Seismic isolation building piping equipment

Publications (2)

Publication Number Publication Date
JP2011190919A JP2011190919A (en) 2011-09-29
JP5417230B2 true JP5417230B2 (en) 2014-02-12

Family

ID=44796051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060103A Active JP5417230B2 (en) 2010-03-17 2010-03-17 Seismic isolation building piping equipment

Country Status (1)

Country Link
JP (1) JP5417230B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013186085A (en) * 2012-03-09 2013-09-19 Toshiba Corp Nuclear power plant and construction method for the same
JP2016090005A (en) * 2014-11-10 2016-05-23 日立Geニュークリア・エナジー株式会社 Pipe connection structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643261Y2 (en) * 1989-03-16 1994-11-09 鹿島建設株式会社 Piping facilities for seismically isolated buildings
JPH10231971A (en) * 1997-02-24 1998-09-02 Tokyu Constr Co Ltd Displacement absorbing pipe fitting
JP2000179765A (en) * 1998-12-15 2000-06-27 Togawa Rubber Co Ltd Vibration control pipe joint
JP2001049895A (en) * 1999-08-10 2001-02-20 Bridgestone Corp Laminated rubber supporter for vibration isolation building
JP2006145392A (en) * 2004-11-19 2006-06-08 Shimizu Corp Nuclear power plant

Also Published As

Publication number Publication date
JP2011190919A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
WO2021012860A1 (en) Pile-bucket composite truss type offshore wind turbine foundation and construction process thereof
US4080256A (en) Nuclear reactor apparatus
JP5417230B2 (en) Seismic isolation building piping equipment
KR101397311B1 (en) Foundation for a building in a nuclear facility and nuclear facility
KR102196538B1 (en) Earthquake-resistant valve room for prevention of water accumulation
JP2013249711A (en) Building foundation structure
JP2012230061A (en) Atomic power plant with seismic isolation structure
JP2009235784A (en) Underground water storage facility
WO2014031767A2 (en) Component cooling water system for nuclear power plant
US20170016201A1 (en) Heat exchange structure of power generation facility
JP5822201B2 (en) Basic structure of the structure
JP2013155559A (en) Liquefaction damage reducing structure for construction
JP5839278B2 (en) Liquefaction countermeasure material and liquefaction countermeasure structure
JP2003193701A (en) Base isolation structure
JP3480899B2 (en) Turbine building
KR20100128371A (en) Individual lead-in equipment in machine room of earth tube heat exchanger
JP2010248894A (en) Construction method and device for earthquake avoidance sliding foundation
CN214949909U (en) Lithium bromide absorption heat pump waste heat recovery factory building
KR101473994B1 (en) drain unit for in a structure
JP6567350B2 (en) Ready-made pile with heat exchange pipe
CN218374513U (en) Shock insulation and energy dissipation sliding support system for large-scale slope structure
JP2012021702A (en) Installation structure of outdoor equipment
US11913678B2 (en) Ground heat-exchange system with water-filled boreholes
JP3234191U (en) Houses and other buildings that do not surface and flood
KR102672819B1 (en) Geothermal system using direct coupling of underwater pumps and outlets in geothermal holes and closed circulation structure of groundwater, and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5417230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150