JP2019019686A - Diagnostic device for air-fuel ratio sensor of internal combustion engine - Google Patents

Diagnostic device for air-fuel ratio sensor of internal combustion engine Download PDF

Info

Publication number
JP2019019686A
JP2019019686A JP2017136033A JP2017136033A JP2019019686A JP 2019019686 A JP2019019686 A JP 2019019686A JP 2017136033 A JP2017136033 A JP 2017136033A JP 2017136033 A JP2017136033 A JP 2017136033A JP 2019019686 A JP2019019686 A JP 2019019686A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ratio sensor
time
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017136033A
Other languages
Japanese (ja)
Other versions
JP6764377B2 (en
Inventor
福地 栄作
Eisaku Fukuchi
栄作 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017136033A priority Critical patent/JP6764377B2/en
Publication of JP2019019686A publication Critical patent/JP2019019686A/en
Application granted granted Critical
Publication of JP6764377B2 publication Critical patent/JP6764377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To enable accurate diagnosis of the response characteristic of an air-fuel ratio sensor with respect to six deterioration modes of the OBD (On-Board Diagnostics) regulation.SOLUTION: Target air-fuel ratio change means 103 changes a target air-fuel ratio of feedback control to a rectangular wave shape. Response time constant detection means 104, 105 calculate a first time constant at the time when the target air-fuel ratio rises up on the basis of the output signal of an air-fuel ratio sensor 205, and a second time constant at the time when the target air-fuel ratio falls down, respectively. Dead time detection means 106, 107 calculate a first dead time at the time when the target air-fuel ratio rises up on the basis of the output signal, and a second dead time at the time when the target air-fuel ratio falls down, respectively. First to sixth response deterioration determination means 108-113 determine existence or nonexistence of response deterioration of the air-fuel ratio sensor 205 on the basis of at least one of the first and second time constants or at least one of the first and second dead times.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の空燃比センサ診断装置に関する。   The present invention relates to an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine.

自動車の有害排気ガスを減少させ、かつ燃費や運転性を向上させるための手段として、エンジン等内燃機関の排気ガス成分に関する情報によって、空燃比を制御するフィードバック方式の空燃比制御装置が実用化されている。   As a means for reducing harmful exhaust gas of automobiles and improving fuel economy and drivability, a feedback type air-fuel ratio control device that controls the air-fuel ratio by information on exhaust gas components of an internal combustion engine such as an engine has been put into practical use. ing.

上記の空燃比制御装置において、排気ガス成分の異常や、制御システム上での異常は、使用される空燃比センサ自身の故障や劣化により、制御を適正に行うことができない場合が生じる。特に上記の空燃比センサは、エンジン排気直後に設置されるため、高温、高圧や振動の影響、粗悪燃料等の影響を受けるため、劣化し易い傾向がある。   In the above air-fuel ratio control apparatus, abnormalities in exhaust gas components and abnormalities in the control system may occur when control cannot be performed properly due to failure or deterioration of the air-fuel ratio sensor itself used. In particular, the air-fuel ratio sensor described above is installed immediately after exhausting the engine, and therefore is susceptible to deterioration due to the influence of high temperature, high pressure, vibration, and bad fuel.

特に北米向けの自動車は、OBDII規制(車載自己診断装置の装着を義務付けた法律)に対応する必要があり、上記空燃比センサに排気規制値の1.5倍を超えるような故障が発生した場合、速やかに運転者に異常を警告し、修理を促す必要がある。   In particular, automobiles for North America need to comply with OBDII regulations (laws that require the installation of on-board self-diagnosis devices), and if the air / fuel ratio sensor fails more than 1.5 times the exhaust emission control value. It is necessary to promptly warn the driver of the abnormality and prompt repair.

したがって、空燃比センサの検出精度が何らかの原因で低下した時には、センサの交換等の適切な処置を施す必要がある。   Therefore, when the detection accuracy of the air-fuel ratio sensor decreases for some reason, it is necessary to take appropriate measures such as sensor replacement.

空燃比センサの応答特性は、該空燃比フィードバック制御によって、三元触媒の三元点に、実空燃比を良好に制御するため、正常な状態を保つ必要があり、この応答異常を検出することは、該OBDII規制において、必須な技術である。   The response characteristic of the air-fuel ratio sensor is that it is necessary to maintain a normal state in order to satisfactorily control the actual air-fuel ratio at the three-way point of the three-way catalyst by the air-fuel ratio feedback control. Is an essential technology in the OBDII regulations.

そこで、該空燃比センサ応答特性の診断に対し、6つの劣化モードを検出することが該OBDII規制で義務付けられた。この6つの劣化モードを検出するための方策が求められている。   Therefore, for the diagnosis of the response characteristic of the air-fuel ratio sensor, it is required by the OBDII regulation to detect six deterioration modes. A measure for detecting these six deterioration modes is required.

ここで、応答特性の診断に関し、空燃比センサの応答特性を無駄時間とn次遅れ特性とに分けて検出できる技術が知られている(例えば、特許文献1参照)。   Here, regarding the diagnosis of the response characteristic, a technique is known that can detect the response characteristic of the air-fuel ratio sensor by dividing it into a dead time and an n-th order lag characteristic (see, for example, Patent Document 1).

特開2005-307961号公報JP 2005-307961 A

該空燃比センサの応答特性を異常には、図4に示す6つの劣化モードがある。これはOBDII規制の法規要求であり、必ず検出しなくてはならない。6つの劣化モード(1)〜(6)の詳細は、以下の通りである。   There are six deterioration modes shown in FIG. 4 for abnormal response characteristics of the air-fuel ratio sensor. This is a legal requirement for OBDII regulations and must be detected. Details of the six deterioration modes (1) to (6) are as follows.

(1)リッチ→リーン応答時間異常
(2)リーン→リッチ応答時間異常
(3)リッチ→リーン/リーン→リッチ両側応答時間異常
(4)リッチ→リーン無駄時間異常
(5)リーン→リッチ無駄時間異常
(6)リッチ→リーン/リーン→リッチ両側無駄時間異常
これらを的確に検出する手段が求められているが、特許文献1に開示されるような技術では、OBDII(On-Board Diagnostics II)規制の6つの劣化モードについて空燃比センサの応答特性を的確に診断することは考慮されていない。
(1) Rich → Lean response time error (2) Lean → Rich response time error (3) Rich → Lean / Lean → Rich both-side response time error (4) Rich → Lean dead time error (5) Lean → Rich dead time error (6) Rich → Lean / Lean → Rich both-side dead time abnormality There is a need for a means for accurately detecting these, but the technology disclosed in Patent Document 1 requires OBDII (On-Board Diagnostics II) regulation. It is not considered to accurately diagnose the response characteristics of the air-fuel ratio sensor for the six deterioration modes.

本発明の目的は、OBD規制の6つの劣化モードについて空燃比センサの応答特性を的確に診断することができる内燃機関の空燃比センサ診断装置を提供することにある。   An object of the present invention is to provide an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine capable of accurately diagnosing the response characteristics of an air-fuel ratio sensor for six deterioration modes of OBD regulation.

上記目的を達成するために、本発明の内燃機関の空燃比センサ診断装置は、フィードバック制御の目標空燃比を矩形波状に変更する目標空燃比変更部と、空燃比センサの出力信号に基づいて目標空燃比が立ち上がるときの第1の時定数を計算する第1の時定数計算部と、前記空燃比センサの出力信号に基づいて目標空燃比が立ち下がるときの第2の時定数を計算する第2の時定数計算部と、前記空燃比センサの出力信号に基づいて目標空燃比が立ち上がるときの第1の無駄時間を計算する第1の無駄時間計算部と、前記空燃比センサの出力信号に基づいて目標空燃比が立ち下がるときの第2の無駄時間を計算する第2の無駄時間計算部と、前記第1の時定数及び前記第2の時定数のうちの少なくとも1つ、又は前記第1の無駄時間及び前記第2の無駄時間のうちの少なくとも1つに基づいて、前記空燃比センサの応答劣化の有無を判定する応答劣化判定部と、備える。   In order to achieve the above object, an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention includes a target air-fuel ratio changing unit that changes a target air-fuel ratio of feedback control into a rectangular waveform, and a target based on an output signal of the air-fuel ratio sensor. A first time constant calculating section for calculating a first time constant when the air-fuel ratio rises; and a second time constant for calculating a second time constant when the target air-fuel ratio falls based on an output signal of the air-fuel ratio sensor. 2 a time constant calculator, a first dead time calculator for calculating a first dead time when the target air-fuel ratio rises based on an output signal of the air-fuel ratio sensor, and an output signal of the air-fuel ratio sensor. A second dead time calculation unit for calculating a second dead time when the target air-fuel ratio falls based on at least one of the first time constant and the second time constant, or the second 1 dead time and the first Based on at least one of the dead time of the response deterioration determination unit determines the presence or absence of response deterioration of the air-fuel ratio sensor provided.

本発明によれば、OBD規制の6つの劣化モードについて空燃比センサの応答特性を的確に診断することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to accurately diagnose the response characteristics of the air-fuel ratio sensor for the six deterioration modes of OBD regulation. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の実施形態による内燃機関の空燃比センサ診断装置のブロック図である。1 is a block diagram of an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to an embodiment of the present invention. 本発明の実施形態による空燃比センサ診断装置と内燃機関システムの構成の一例を示す図である。It is a figure which shows an example of the structure of the air-fuel ratio sensor diagnostic apparatus and internal combustion engine system by embodiment of this invention. 既存のLAFセンサ応答劣化診断の動作を示す図である。It is a figure which shows the operation | movement of the existing LAF sensor response degradation diagnosis. LAFセンサの6つの劣化モードを示す図である。It is a figure which shows six deterioration modes of a LAF sensor. 仮応答劣化指標及び応答劣化指標を説明するための図である。It is a figure for demonstrating a temporary response degradation parameter | index and a response degradation parameter | index. 図5の式(3)の加工過程を示す図である。It is a figure which shows the process of Formula (3) of FIG. 応答劣化指標と時定数との関係である。This is the relationship between the response deterioration index and the time constant. LAFセンサの無駄時間を検出するタイミングチャートである。It is a timing chart which detects the dead time of a LAF sensor. 本発明の実施形態による空燃比センサ診断装置のフローチャート(1)である。It is a flowchart (1) of the air-fuel ratio sensor diagnostic apparatus by embodiment of this invention. 本発明の実施形態による空燃比センサ診断装置のフローチャート(2)である。It is a flowchart (2) of the air fuel ratio sensor diagnostic apparatus by embodiment of this invention. 本発明の実施形態による空燃比センサ診断装置のフローチャート(3)である。It is a flowchart (3) of the air-fuel ratio sensor diagnostic apparatus by embodiment of this invention. 本発明の実施形態による空燃比センサ診断装置のフローチャート(4)である。It is a flowchart (4) of the air-fuel ratio sensor diagnostic apparatus by embodiment of this invention. 本発明の実施形態による空燃比センサ診断装置のフローチャート(5)である。It is a flowchart (5) of the air fuel ratio sensor diagnostic apparatus by embodiment of this invention. 本発明の実施形態による空燃比センサ診断装置のフローチャート(6)である。It is a flowchart (6) of the air fuel ratio sensor diagnostic apparatus by embodiment of this invention. 本発明の実施形態による空燃比センサ診断装置のフローチャート(7)である。It is a flowchart (7) of the air fuel ratio sensor diagnostic apparatus by embodiment of this invention. 本発明の実施形態による空燃比センサ診断装置のフローチャート(8)である。It is a flowchart (8) of the air-fuel ratio sensor diagnostic apparatus by embodiment of this invention.

以下、図面を用いて、本発明の実施形態による内燃機関の空燃比センサ診断装置の構成及び動作について説明する。なお、本実施形態による空燃比センサ診断装置は、内燃機関に取り付けられた空燃比センサの応答劣化診断において、前述した6つの劣化モードを的確に診断する診断装置であり、車両自己診断規制強化に対して、必須の技術である。   Hereinafter, the configuration and operation of an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. The air-fuel ratio sensor diagnostic apparatus according to the present embodiment is a diagnostic apparatus for accurately diagnosing the above-described six deterioration modes in response deterioration diagnosis of an air-fuel ratio sensor attached to an internal combustion engine. In contrast, it is an essential technology.

図1に本発明の実施形態による内燃機関の空燃比センサ診断装置のブロック図を示す。ブロック101の空燃比検出手段により、空燃比を検出する。ブロック102の診断領域判定手段により、診断領域を判定する。なお、診断領域判定手段は、診断領域判定手段は、例えば、内燃機関の回転数、内燃機関の負荷等の運転状態が所定範囲内にあるか否かを判定する。診断領域判定手段の動作は、図9を用いて詳述される。   FIG. 1 shows a block diagram of an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to an embodiment of the present invention. The air-fuel ratio is detected by the air-fuel ratio detection means of block 101. The diagnosis area is determined by the diagnosis area determination means in block 102. The diagnostic region determination unit determines whether or not the operation state such as the rotational speed of the internal combustion engine and the load of the internal combustion engine is within a predetermined range. The operation of the diagnostic area determination means will be described in detail with reference to FIG.

ブロック103の目標空燃比変更手段により、空燃比をリッチまたはリーンに変更する。ブロック104のリッチ→リーン応答時定数検出手段により、目標のリーン空燃比までに到達するまでの時定数を検出する。ブロック105のリーン→リッチ応答時定数検出手段により、目標のリッチ空燃比までに到達するまでの時定数を検出する。ブロック106のリッチ→リーン無駄時間検出手段により、目標のリーン空燃比に動き出すまでの無駄時間を検出する。ブロック107のリーン→リッチ無駄時間検出手段により、目標のリッチ空燃比に動き出すまでの無駄時間を検出する。   The air / fuel ratio is changed to rich or lean by the target air / fuel ratio changing means in block 103. The time constant until the target lean air-fuel ratio is reached is detected by the rich-to-lean response time constant detecting means in block 104. The time constant until the target rich air-fuel ratio is reached is detected by the lean → rich response time constant detecting means of block 105. The dead time until the target lean air-fuel ratio is started is detected by the rich-to-lean dead time detection means in block 106. The lean → rich dead time detecting means in block 107 detects the dead time until the target rich air-fuel ratio is started.

ブロック108の空燃比センサ応答劣化判定手段1により、リッチ→リーン応答時定数を所定値と比較することでリッチ→リーン応答異常を判定する。ブロック109の空燃比センサ応答劣化判定手段2により、リーン→リッチ応答時定数を所定値と比較することでリーン→リッチ応答異常を判定する。ブロック110の空燃比センサ応答劣化判定手段3により、リッチ→リーン応答時間およびリーン→リッチ応答時定数を所定値と比較することでリッチ→リーン/リーン→リッチ両側応答異常を判定する。   The air-fuel ratio sensor response deterioration determining means 1 in block 108 determines the rich → lean response abnormality by comparing the rich → lean response time constant with a predetermined value. The lean-to-rich response abnormality is determined by comparing the lean-to-rich response time constant with a predetermined value by the air-fuel ratio sensor response deterioration determining means 2 in block 109. By comparing the rich → lean response time and the lean → rich response time constant with predetermined values, the air / fuel ratio sensor response deterioration determining means 3 of block 110 determines rich → lean / lean → rich both-side response abnormality.

ブロック111の空燃比センサ応答劣化判定手段4により、リッチ→リーン無駄時間を所定値と比較することでリッチ→リーン無駄時間異常を判定する。ブロック112の空燃比センサ応答劣化判定手段5により、リーン→リッチ無駄時間を所定値と比較することでリーン→リッチ無駄時間異常を判定する。ブロック113の空燃比センサ応答劣化判定手段6により、リッチ→リーン無駄時間およびリーン→リッチ無駄時間を所定値と比較することでリッチ→リーン/リーン→リッチ両側無駄時間異常を判定する。   The rich-to-lean dead time abnormality is determined by comparing the rich-to-lean dead time with a predetermined value by the air-fuel ratio sensor response deterioration determining means 4 in block 111. The air-fuel ratio sensor response deterioration determining means 5 of the block 112 compares the lean → rich wasted time with a predetermined value to determine lean → rich wasted time abnormality. By comparing the rich → lean dead time and lean → rich dead time with a predetermined value, the air / fuel ratio sensor response deterioration judging means 6 of block 113 judges rich → lean / lean → rich both-side dead time abnormality.

以上が、本発明の実施形態の概要であり、以下本発明の実施形態の対象となる内燃機関システムから説明する。   The above is the outline of the embodiment of the present invention, and the internal combustion engine system that is the object of the embodiment of the present invention will be described below.

図2に本発明の実施形態による空燃比センサ診断装置と内燃機関システムの構成を示す。内燃機関システムは、内燃機関、吸気系、排気系からなり、該内燃機関には点火装置201、燃料噴射装置202および回転数検出装置203が取り付けられている。   FIG. 2 shows the configuration of an air-fuel ratio sensor diagnostic apparatus and an internal combustion engine system according to an embodiment of the present invention. The internal combustion engine system includes an internal combustion engine, an intake system, and an exhaust system, and an ignition device 201, a fuel injection device 202, and a rotation speed detection device 203 are attached to the internal combustion engine.

エアークリーナ200から流入される空気は、スロットルバルブ213で流量を調節された後、流量検出装置204(流量検出手段)で流量を計り、該燃料噴射装置202から所定の角度で噴射される燃料と混合されて各気筒214に供給される。また、該排気系にはLAFセンサ(Linear Air-Fuel ratio sensor)などの空燃比センサ205、三元触媒206が取り付けられており、排気ガスは該三元触媒206で浄化された後に、大気に排出される。内燃機関制御装置207は該流量検出装置204の出力信号Qaと該回転数検出装置203(回転数検出手段)によってリングギアまたはプレート208の回転数Neを取り込み、燃料噴射量Tiを計算し、燃料噴射装置の噴射量を制御する。   The air flowing in from the air cleaner 200 is adjusted in flow rate by the throttle valve 213, then measured in flow rate by a flow rate detection device 204 (flow rate detection means), and fuel injected from the fuel injection device 202 at a predetermined angle. It is mixed and supplied to each cylinder 214. In addition, an air-fuel ratio sensor 205 such as an LAF sensor (Linear Air-Fuel ratio sensor) and a three-way catalyst 206 are attached to the exhaust system, and the exhaust gas is purified by the three-way catalyst 206 and is then released into the atmosphere. Discharged. The internal combustion engine controller 207 takes in the rotational speed Ne of the ring gear or the plate 208 by the output signal Qa of the flow rate detector 204 and the rotational speed detector 203 (the rotational speed detector), calculates the fuel injection amount Ti, and calculates the fuel injection amount Ti. Controls the injection amount of the injection device.

また、内燃機関制御装置207は、内燃機関内の空燃比(A/F)を空燃比センサ205から検出し、該内燃機関内の空燃比を理論空燃比になるように燃料噴射量Tiを補正する空燃比フィードバック制御を行う。また、触媒後の空燃比を酸素センサ215で検出する。   Further, the internal combustion engine control device 207 detects the air-fuel ratio (A / F) in the internal combustion engine from the air-fuel ratio sensor 205 and corrects the fuel injection amount Ti so that the air-fuel ratio in the internal combustion engine becomes the stoichiometric air-fuel ratio. Air-fuel ratio feedback control is performed. Further, the air-fuel ratio after the catalyst is detected by the oxygen sensor 215.

一方、燃料タンク209内の燃料は、燃料ポンプ210によって、吸引・加圧された後、プレッシャーレギュレータ211を備えた燃料管212を通って該燃料噴射装置202の燃料入口に導かれ、余分な燃料は、該燃料タンク209に戻される。以上が、対象となる内燃機関システムである。   On the other hand, the fuel in the fuel tank 209 is sucked and pressurized by the fuel pump 210, and then led to the fuel inlet of the fuel injection device 202 through the fuel pipe 212 provided with the pressure regulator 211. Is returned to the fuel tank 209. The above is the target internal combustion engine system.

なお、図2の内燃機関制御装置207は、クロック、マイコン(MPU: Micro Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、タイマ/カウンタ、インターフェースI/O、A/D変換器、出力回路、デジタル入力(ポート)、アナログ入力(ポート)等から構成される。   2 includes a clock, a microcomputer (MPU: Micro Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a timer / counter, an interface I / O, and an A / D conversion. Device, output circuit, digital input (port), analog input (port), etc.

次に、本発明を具体的に説明する。図3に、既存のLAFセンサ応答劣化診断の動作を示す。本診断は、診断領域が成立してからの時間を計測し、その間のリッチリーン反転回数を計測する。診断領域が成立してから所定の判定時間経過時に、該リッチリーン反転回数のカウンタ値が、判定値(NG判定値)以上の場合は、正常と判定し、判定値未満の場合は、NGと判定する。図3の場合は、正常時の動作を示す。   Next, the present invention will be specifically described. FIG. 3 shows the operation of the existing LAF sensor response deterioration diagnosis. In this diagnosis, the time after the diagnosis region is established is measured, and the number of rich lean inversions during that time is measured. If the counter value of the rich lean inversion count is equal to or greater than a determination value (NG determination value) after a predetermined determination time has elapsed after the diagnosis region is established, it is determined to be normal, and if it is less than the determination value, NG judge. In the case of FIG. 3, the operation at the normal time is shown.

しかし、この方法では、OBDII規制対応として、図4に示す6モードの劣化を判別することができない。本発明の実施形態による内燃機関の空燃比センサ診断装置は、図4に示す6モードの劣化を判別し、異常を検出することを目的とする。   However, this method cannot determine the deterioration of the 6 modes shown in FIG. 4 in response to the OBDII regulation. An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to an embodiment of the present invention aims to discriminate 6-mode degradation shown in FIG. 4 and detect an abnormality.

まず、図4に示す応答時間遅れの(1)、(2)、(3)の検出方法について説明する。   First, a method for detecting response time delays (1), (2), and (3) shown in FIG. 4 will be described.

図5にその原理を示す。目標空燃比を所定時間間隔でリッチ→リーン、リーン→リッチに振る。その際、式(1)をたて、整理すると、仮応答劣化指標IDXtmpは以下のようになる。   FIG. 5 shows the principle. The target air-fuel ratio is changed from rich to lean and from lean to rich at predetermined time intervals. At this time, when formula (1) is established and arranged, the provisional response deterioration index IDXtmp is as follows.

Figure 2019019686
Figure 2019019686

式(1)において、T>τが成立するため、式(2)が成り立つ。   In Formula (1), since T> τ holds, Formula (2) holds.

Figure 2019019686
Figure 2019019686

よって、該仮応答劣化指標IDXtmpは、応答速度の時定数τに反比例するパラメータであることが分かる。そこで、式(2)の逆数を取ることで、時定数τに比例する応答劣化指標IDXを得ることができる(式(3)参照)。   Therefore, it can be seen that the temporary response deterioration index IDXtmp is a parameter that is inversely proportional to the time constant τ of the response speed. Therefore, by taking the reciprocal of equation (2), it is possible to obtain a response deterioration index IDX proportional to the time constant τ (see equation (3)).

Figure 2019019686
Figure 2019019686

次に図6について説明する。図6は、図5で説明した式(3)の加工過程を示したものである。微分し、負側をカットし2乗し積分した最終値の逆数がリッチ→リーン応答時の時定数τpに比例する応答劣化指標となる。なお、図6中のAは、積分によって得られた最終値を表す。   Next, FIG. 6 will be described. FIG. 6 shows a process of the expression (3) described in FIG. The inverse of the final value obtained by differentiating, cutting the negative side, squaring and integrating becomes a response deterioration index proportional to the time constant τp at the time of rich → lean response. Note that A in FIG. 6 represents the final value obtained by integration.

また、微分し、正側をカットし2乗し積分した最終値の逆数がリーン→リッチ応答時の時定数τmに比例する応答劣化指標となる。   Further, the reciprocal of the final value obtained by differentiating, cutting off the positive side, squaring and integrating becomes a response deterioration index proportional to the time constant τm at the time of lean → rich response.

次に図7について説明する。図7は、実際にLAFセンサ信号を応答劣化させた時の仮応答劣化指標と応答劣化指標である。左の図は、仮応答劣化指標であり、時定数に対し、反比例の関係であることが分かる。これより、その逆数をとれば、時定数に比例した応答劣化指標を算出できることになる(右図参照)。   Next, FIG. 7 will be described. FIG. 7 shows a temporary response deterioration index and a response deterioration index when the LAF sensor signal is actually subjected to response deterioration. The figure on the left is a provisional response deterioration index, and it can be seen that it is inversely proportional to the time constant. Thus, if the inverse is taken, it is possible to calculate a response deterioration index proportional to the time constant (see the right figure).

リッチ→リーン応答劣化指標が所定のNG閾値より大きくなった場合、リッチ→リーン応答異常と判定する。また、リーン→リッチ応答劣化指標が所定のNG閾値より大きくなった場合、リーン→リッチ応答異常と判定する。   When the rich → lean response deterioration index becomes larger than a predetermined NG threshold, it is determined that the rich → lean response is abnormal. Further, when the lean → rich response deterioration index becomes larger than a predetermined NG threshold, it is determined that the lean → rich response abnormality.

次に図8について説明する。図8は、図4に示す無駄時間遅れの(4)、(5)、(6)の検出方法である。目標空燃比がリッチ→リーン変化時に、LAFセンサ信号がいっこうに変化しない状態、または目標空燃比がリーン→リッチ変化時に、LAFセンサ信号がいっこうに変化しない状態を検出する。   Next, FIG. 8 will be described. FIG. 8 shows a method of detecting (4), (5), and (6) of the dead time delay shown in FIG. A state in which the LAF sensor signal does not change when the target air-fuel ratio changes from rich to lean is detected, or a state in which the LAF sensor signal does not change further when the target air-fuel ratio changes from lean to rich.

目標空燃比がリッチ→リーンに変化した時点からリッチ→リーン無駄時間タイマDpをインクリメントし、所定値αpを超えるまでの時間を計測する。これを所定周期毎に積算し、所定の閾値を超えた場合、リッチ→リーン無駄時間異常と判定する。また、目標空燃比がリーン→リッチに変化した時点からリーン→リッチ無駄時間タイマDmをインクリメントし、所定値αmを下回るまでの時間を計測する。これを所定周期毎に積算し、所定の閾値を超えた場合、リーン→リッチ無駄時間異常と判定する。   The rich-to-lean dead time timer Dp is incremented from the time when the target air-fuel ratio changes from rich to lean, and the time until it exceeds a predetermined value αp is measured. When this is integrated every predetermined period and exceeds a predetermined threshold, it is determined that the rich → lean dead time abnormality. Further, the lean-to-rich dead time timer Dm is incremented from the time when the target air-fuel ratio changes from lean to rich, and the time until the target air-fuel ratio falls below the predetermined value αm is measured. When this is integrated for every predetermined period and exceeds a predetermined threshold value, it is determined that lean → rich wasted time abnormality.

以降、本発明のフローチャートを説明していく。   Hereinafter, the flowchart of the present invention will be described.

図9に、本実施形態のフローチャートを示す。図9は診断領域判定のフローチャートである。   FIG. 9 shows a flowchart of the present embodiment. FIG. 9 is a flowchart of diagnosis area determination.

ステップ901で内燃機関の回転数が所定範囲内にあるかチェックする。ステップ902で内燃機関の負荷が所定範囲内であるかチェックする。ステップ903で水温が所定範囲内かチェックする。ステップ904で車速が所定範囲内であるかチェックする。ステップ905で吸気温が所定範囲内かチェックする。   In step 901, it is checked whether the rotational speed of the internal combustion engine is within a predetermined range. In step 902, it is checked whether the load of the internal combustion engine is within a predetermined range. In step 903, it is checked whether the water temperature is within a predetermined range. In step 904, it is checked whether the vehicle speed is within a predetermined range. In step 905, it is checked whether the intake air temperature is within a predetermined range.

ステップ906で大気圧が所定値以上かチェックする。ステップ907でバッテリ電圧が所定範囲内かチェックする。ステップ908で燃料カット中でないかチェックする。ステップ909で空燃比制御フィードバック中かチェックする。ステップ910で用いられるセンサに故障がないかチェックする。   In step 906, it is checked whether the atmospheric pressure is equal to or higher than a predetermined value. In step 907, it is checked whether the battery voltage is within a predetermined range. In step 908, it is checked whether the fuel is being cut. In step 909, it is checked whether air-fuel ratio control feedback is being performed. In step 910, the sensor used is checked for failure.

ステップ911でステップ901〜910の条件が全て成立していれば、診断領域内と判定する。一つでも外れていれば、ステップ912で診断領域外と判定する。   If all the conditions of Steps 901 to 910 are satisfied in Step 911, it is determined that it is in the diagnosis region. If even one is off, it is determined in step 912 that it is outside the diagnostic area.

次に図10のフローチャートを説明する。図10はLAFセンサ信号をマイコンのRAMにストアする処理である。ここでは10ms毎にLAFセンサ信号を入力する。例えば、内燃機関制御装置207のMPUは、LAFセンサ信号が示す空燃比(A/F)を変数LAFとしてRAMに記憶する。本実施形態では、10msタスクで動作させた例を示すが、その限りではない。   Next, the flowchart of FIG. 10 will be described. FIG. 10 shows processing for storing the LAF sensor signal in the RAM of the microcomputer. Here, the LAF sensor signal is input every 10 ms. For example, the MPU of the internal combustion engine controller 207 stores the air / fuel ratio (A / F) indicated by the LAF sensor signal in the RAM as a variable LAF. In this embodiment, an example in which a 10 ms task is used is shown, but this is not a limitation.

次に図11のフローチャートを説明する。図11は、リッチ→リーン応答劣化を検出するフローチャートである(図4の(1)の検出)。   Next, the flowchart of FIG. 11 will be described. FIG. 11 is a flowchart for detecting rich → lean response deterioration (detection of (1) in FIG. 4).

ステップ1101で、診断領域が成立しているかを判定する。診断領域でなければ、ステップ1102で2乗値積算値Ipをクリアする。診断領域であれば、ステップ1103以降のステップに進み、ステップ1103でLAFの差分値を演算する。ステップ1104で、該LAFの差分値が負の値を示した場合は、ゼロにする処理を実行する。ステップ1105で、2乗値を演算する。   In step 1101, it is determined whether a diagnostic area is established. If it is not the diagnostic region, the square value integrated value Ip is cleared in step 1102. If it is a diagnostic region, the process proceeds to step 1103 and subsequent steps, and the difference value of LAF is calculated in step 1103. If the difference value of the LAF shows a negative value in step 1104, a process of setting it to zero is executed. In step 1105, the square value is calculated.

ステップ1106で、該2乗値を2乗値積算値Ipに加算する。ステップ1107で、Nが所定周期になったら、ステップ1108に進み、Nが所定周期に至らなかったら、その後の処理を実行せずに終了する(Nは図14で算出)。ステップ1108では、所定値をIpで割り、時定数に比例する診断指標τpを演算する。ステップ1109で、該τpをNG閾値と比較し大きければ、ステップ1110で異常と判定し、以下であれば、ステップ1111で正常と判定する。   In step 1106, the square value is added to the square value integrated value Ip. If N reaches a predetermined period in step 1107, the process proceeds to step 1108. If N does not reach a predetermined period, the process is terminated without executing the subsequent processes (N is calculated in FIG. 14). In step 1108, a predetermined value is divided by Ip, and a diagnostic index τp proportional to the time constant is calculated. If it is determined in step 1109 that τp is larger than the NG threshold, it is determined as abnormal in step 1110, and if it is less than that, it is determined normal in step 1111.

換言すれば、内燃機関制御装置207のMPUは、空燃比センサ205(LAFセンサ)の出力信号(LAFセンサ信号)に基づいて目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(第1の時定数)を計算するリッチ→リーン応答時定数検出手段104(第1の時定数計算部)として機能する。なお、本実施形態では、時定数に比例する診断指標τpを計算しているが、比例定数が1のときのτpは、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数そのものとなる。   In other words, the MPU of the internal combustion engine control device 207 determines the time constant (first time) when the target air-fuel ratio rises (rich → lean) based on the output signal (LAF sensor signal) of the air-fuel ratio sensor 205 (LAF sensor). It functions as rich → lean response time constant detecting means 104 (first time constant calculation unit) for calculating (time constant). In the present embodiment, the diagnostic index τp proportional to the time constant is calculated. However, τp when the proportionality constant is 1 is the time constant when the target air-fuel ratio rises (rich → lean).

詳細には、リッチ→リーン応答時定数検出手段104(第1の時定数計算部)は、空燃比センサ205(LAFセンサ)の出力信号(LAFセンサ信号)を微分し、ゼロ以下をカットし、2乗し、積分し、かつ、逆数をとることにより、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(第1の時定数)を計算する。   Specifically, the rich-to-lean response time constant detection means 104 (first time constant calculation unit) differentiates the output signal (LAF sensor signal) of the air-fuel ratio sensor 205 (LAF sensor) and cuts zero or less, The time constant (first time constant) when the target air-fuel ratio rises (rich → lean) is calculated by squaring, integrating, and taking the reciprocal.

時定数を1次遅れで近似するためロジックが簡易となる。そのため、高速に計算をすることができる。   Since the time constant is approximated by a first-order lag, the logic becomes simple. Therefore, calculation can be performed at high speed.

次に図12のフローチャートを説明する。図12は、リーン→リッチ応答劣化を検出するフローチャートである(図4の(2)の検出)。   Next, the flowchart of FIG. 12 will be described. FIG. 12 is a flowchart for detecting lean → rich response deterioration (detection (2) in FIG. 4).

ステップ1201で、診断領域が成立しているかを判定する。診断領域でなければ、ステップ1202で2乗値積算値Imをクリアする。診断領域であれば、ステップ1203以降のステップに進み、ステップ1203でLAFの差分値を演算する。ステップ1204で、該LAFの差分値が正の値を示した場合は、ゼロにする処理を実行する。ステップ1205で、2乗値を演算する。   In step 1201, it is determined whether a diagnostic area is established. If it is not the diagnosis region, the square value integrated value Im is cleared in step 1202. If it is a diagnosis region, the process proceeds to steps after step 1203, and the difference value of LAF is calculated in step 1203. If the difference value of the LAF shows a positive value in step 1204, a process of setting it to zero is executed. In step 1205, the square value is calculated.

ステップ1206で、該2乗値を2乗値積算値Imに加算する。ステップ1207で、Nが所定周期になったら、ステップ1208に進み、Nが所定周期に至らなかったら、その後の処理を実行せずに終了する(Nは図14で算出)。ステップ1208では、所定値をImで割り、時定数に比例する診断指標τmを演算する。ステップ1209で、該τmをNG閾値と比較し大きければ、ステップ1210で異常と判定し、以下であれば、ステップ1211で正常と判定する。   In step 1206, the square value is added to the square value integrated value Im. If N reaches a predetermined period in step 1207, the process proceeds to step 1208. If N does not reach the predetermined period, the process is terminated without executing the subsequent processes (N is calculated in FIG. 14). In step 1208, a predetermined value is divided by Im, and a diagnostic index τm proportional to the time constant is calculated. In step 1209, if the τm is larger than the NG threshold, it is determined as abnormal in step 1210, and if it is below, it is determined as normal in step 1211.

換言すれば、内燃機関制御装置207のMPUは、空燃比センサ205(LAFセンサ)の出力信号(LAFセンサ信号)に基づいて目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(第2の時定数)を計算するリーン→リッチ応答時定数検出手段105(第2の時定数計算部)として機能する。なお、本実施形態では、時定数に比例する診断指標τmを計算しているが、比例定数が1のときのτmは、目標空燃比が立ち下がる(リーン→リッチ)ときの時定数そのものとなる。   In other words, the MPU of the internal combustion engine control device 207 determines the time constant (second) when the target air-fuel ratio falls (lean to rich) based on the output signal (LAF sensor signal) of the air-fuel ratio sensor 205 (LAF sensor). Function as a lean → rich response time constant detection means 105 (second time constant calculation unit). In this embodiment, the diagnostic index τm proportional to the time constant is calculated. However, τm when the proportionality constant is 1 is the time constant itself when the target air-fuel ratio falls (lean to rich). .

詳細には、リーン→リッチ応答時定数検出手段105(第2の時定数計算部)は、空燃比センサ205(LAFセンサ)の出力信号(LAFセンサ信号)を微分し、ゼロ以上をカットし、2乗し、積分し、かつ、逆数をとることにより、目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(第2の時定数)を計算する。   Specifically, the lean → rich response time constant detection means 105 (second time constant calculation unit) differentiates the output signal (LAF sensor signal) of the air-fuel ratio sensor 205 (LAF sensor), cuts zero or more, The time constant (second time constant) when the target air-fuel ratio falls (lean to rich) is calculated by squaring, integrating, and taking the reciprocal.

なお、図4の(3)の検出は、図11のステップ1110で異常判定し、なおかつ図12のステップ1210で異常判定した時、異常とする。   The detection of (3) in FIG. 4 is determined to be abnormal when an abnormality is determined at step 1110 in FIG. 11 and an abnormality is determined at step 1210 in FIG.

次に図13のフローチャートを説明する。図13は、目標空燃比を所定時間毎に振る制御のフローチャートである。   Next, the flowchart of FIG. 13 will be described. FIG. 13 is a flowchart of control for changing the target air-fuel ratio every predetermined time.

ステップ1301で、診断領域が成立しているかを判定する。診断領域でなければ、ステップ1303で目標空燃比を通常に空燃比フィードバック制御で演算する。診断領域であれば、ステップ1302以降のステップに進み、ステップ1302で、目標空燃比をリーン値にセットする。次にステップ1304でタイマTaが所定時間に達したかチェックし、達していなければ、ステップ1306で該Taに10msを加算する。達していれば、ステップ1305で目標空燃比をリッチ値にセットする。次にステップ1307で、タイマTbが所定時間に達したかチェックし、達していなければ、ステップ1308で該Tbに10msを加算する。達していれば、ステップ1309で該Ta、Tbをゼロクリアする。   In step 1301, it is determined whether a diagnostic area is established. If it is not in the diagnosis region, the target air-fuel ratio is normally calculated in step 1303 by air-fuel ratio feedback control. If it is in the diagnosis region, the process proceeds to step 1302 and the subsequent steps. In step 1302, the target air-fuel ratio is set to a lean value. In step 1304, it is checked whether the timer Ta has reached a predetermined time. If not, in step 1306, 10 ms is added to the Ta. If so, the target air-fuel ratio is set to a rich value in step 1305. Next, in step 1307, it is checked whether the timer Tb has reached a predetermined time. If not, in step 1308, 10 ms is added to Tb. If it has reached, in step 1309, the Ta and Tb are cleared to zero.

換言すれば、内燃機関制御装置207のMPUは、フィードバック制御の目標空燃比を矩形波状に変更する目標空燃比変更手段103(目標空燃比変更部)として機能する。   In other words, the MPU of the internal combustion engine control device 207 functions as target air-fuel ratio changing means 103 (target air-fuel ratio changing unit) that changes the target air-fuel ratio of feedback control into a rectangular wave shape.

次に図14のフローチャートを説明する。図14は、Nを演算するフローチャートである。Nは、目標空燃比が1周期変化するたびにインクリメントされる変数である。ステップ1401で診断領域が成立しているかを判定する。診断領域でなければ、ステップ1404でNをゼロクリアする。診断領域であれば、ステップ1402で目標空燃比の立ち上がりエッジをチェックする。立ち上がりエッジであれば、Nをインクリメントする。立ち上がりエッジでなければ、Nに対し無処理とする。   Next, the flowchart of FIG. 14 will be described. FIG. 14 is a flowchart for calculating N. N is a variable that is incremented every time the target air-fuel ratio changes by one cycle. In step 1401, it is determined whether a diagnosis area is established. If it is not a diagnostic region, N is cleared to zero in step 1404. If it is in the diagnosis region, the rising edge of the target air-fuel ratio is checked in step 1402. If it is a rising edge, increment N. If it is not a rising edge, N is not processed.

次に図15のフローチャートを説明する。図15は、リッチ→リーン無駄時間劣化を検出するフローチャートである(図4の(4)の検出)。   Next, the flowchart of FIG. 15 will be described. FIG. 15 is a flowchart for detecting rich → lean dead time deterioration (detection of (4) in FIG. 4).

まず、ステップ1501で診断領域が成立しているかを判定する。診断領域であれば、ステップ1502でフラグRpが1であるかチェックする。診断領域でなければ、ステップ1508でフラグRpをゼロにする。ステップ1502で、フラグRpがゼロであれば、ステップ1505で、目標空燃比の立ち上がりエッジをチェックし、成立していれば、ステップ1506でフラグRpを1とする。   First, in step 1501, it is determined whether a diagnosis area is established. If it is the diagnosis area, it is checked in step 1502 whether the flag Rp is 1. If it is not the diagnostic region, the flag Rp is set to zero in step 1508. If the flag Rp is zero in step 1502, the rising edge of the target air-fuel ratio is checked in step 1505. If it is established, the flag Rp is set to 1 in step 1506.

戻って、ステップ1502でフラグRpが1であれば、ステップ1503でLAFとリッチ値+αp値(無駄時間と判定する閾値)とを比較する。比較の結果、LAFが小さければ、無駄時間状態と判断し、ステップ1504で無駄時間タイマDpに10msを加算する。   Returning to step 1502, if the flag Rp is 1, then in step 1503 the LAF is compared with the rich value + αp value (threshold value for determining dead time). As a result of the comparison, if LAF is small, it is determined that it is in a dead time state, and in step 1504, 10 ms is added to the dead time timer Dp.

次に、ステップ1507で目標空燃比の立下りエッジをチェックし、成立していれば、ステップ1508でRpをゼロとする。不成立の場合は、ステップ1509でNが所定周期に到達したかをチェックし、到達していれば、ステップ1510で無駄時間タイマDpをNG閾値と比較する。比較の結果、無駄時間タイマDpがNG閾値より大きい場合、ステップ1511で異常と判定する。NG閾値以下であれば、ステップ1512で正常と判定する。   Next, the falling edge of the target air-fuel ratio is checked at step 1507, and if it is established, Rp is set to zero at step 1508. If not, it is checked in step 1509 whether N has reached a predetermined period. If it has reached, a dead time timer Dp is compared with an NG threshold value in step 1510. If the dead time timer Dp is larger than the NG threshold value as a result of the comparison, it is determined in step 1511 that there is an abnormality. If it is equal to or less than the NG threshold, it is determined as normal in step 1512.

換言すれば、内燃機関制御装置207のMPUは、空燃比センサ205(LAFセンサ)の出力信号(LAFセンサ信号)に基づいて目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(第1の無駄時間)を計算するリッチ→リーン無駄時間検出手段106(第1の無駄時間計算部)として機能する。なお、本実施形態では、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間の所定の期間Nにおける総和(積算値)を計算しているが、N=1のときの無駄時間の総和は、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間そのものとなる。   In other words, the MPU of the internal combustion engine control device 207 uses the dead time (first time) when the target air-fuel ratio rises (rich → lean) based on the output signal (LAF sensor signal) of the air-fuel ratio sensor 205 (LAF sensor). It functions as rich → lean dead time detection means 106 (first dead time calculation unit) for calculating (dead time). In this embodiment, the total sum (integrated value) of the dead time when the target air-fuel ratio rises (rich → lean) in a predetermined period N is calculated, but the total dead time when N = 1 is This is the dead time when the target air-fuel ratio rises (from rich to lean).

詳細には、リッチ→リーン無駄時間検出手段106(第1の無駄時間計算部)は、目標空燃比が立ち上がってから、空燃比がリッチ値とαp値の和(第1の閾値)になるまでの時間を無駄時間(第1の無駄時間)として計測する。具体的には、リッチ→リーン無駄時間検出手段106(第1の無駄時間計算部)は、所定の期間Nにおける無駄時間(第1の無駄時間)の総和を計算する。これにより、ノイズとしての無駄時間が総和に入り込んでもその影響を抑制することができる。   Specifically, the rich → lean dead time detection means 106 (first dead time calculation unit) starts from the rise of the target air-fuel ratio until the air-fuel ratio becomes the sum of the rich value and the αp value (first threshold). Is measured as a dead time (first dead time). Specifically, the rich → lean dead time detecting means 106 (first dead time calculation unit) calculates the sum of dead times (first dead time) in a predetermined period N. Thereby, even if the dead time as noise enters the sum, the influence can be suppressed.

次に図16のフローチャートを説明する。図16は、リーン→リッチ無駄時間劣化を検出するフローチャートである(図4の(5)の検出)。   Next, the flowchart of FIG. 16 will be described. FIG. 16 is a flowchart for detecting lean → rich dead time deterioration (detection (5) in FIG. 4).

まず、ステップ1601で診断領域が成立しているかを判定する。診断領域であれば、ステップ1602でフラグRmが1であるかチェックする。診断領域でなければ、ステップ1608でフラグRmをゼロにする。ステップ1602で、フラグRmがゼロであれば、ステップ1605で、目標空燃比の立ち下がりエッジをチェックし、成立していれば、ステップ1606でフラグRmを1とする。   First, in step 1601, it is determined whether a diagnostic area is established. If it is the diagnosis area, it is checked in step 1602 whether the flag Rm is 1. If it is not the diagnostic region, the flag Rm is set to zero in step 1608. If the flag Rm is zero in step 1602, the falling edge of the target air-fuel ratio is checked in step 1605. If it is satisfied, the flag Rm is set to 1 in step 1606.

戻って、ステップ1602でフラグRmが1であれば、ステップ1603でLAFとリーン値−αm値(無駄時間と判定する閾値)とを比較する。比較の結果、LAFが小さければ、無駄時間状態と判断し、ステップ1604で無駄時間タイマDmに10msを加算する。   Returning to step 1602, if the flag Rm is 1, the LAF is compared with the lean value−αm value (threshold value for determining the dead time) in step 1603. As a result of the comparison, if LAF is small, it is determined that there is a dead time state, and in step 1604, 10 ms is added to the dead time timer Dm.

次に、ステップ1607で目標空燃比の立ち上がりエッジをチェックし、成立していれば、ステップ1608でRmをゼロとする。不成立の場合は、ステップ1609でNが所定周期に到達したかをチェックし、到達していれば、ステップ1610で無駄時間タイマDmをNG閾値と比較する。比較の結果、無駄時間タイマDmがNG閾値より大きい場合、ステップ1611で異常と判定する。NG閾値以下であれば、ステップ1612で正常と判定する。   Next, the rising edge of the target air-fuel ratio is checked at step 1607, and if it is established, Rm is set to zero at step 1608. If not, it is checked in step 1609 whether N has reached a predetermined period. If it has reached, the dead time timer Dm is compared with an NG threshold value in step 1610. If the dead time timer Dm is larger than the NG threshold value as a result of the comparison, it is determined in step 1611 that there is an abnormality. If it is equal to or less than the NG threshold, it is determined as normal in step 1612.

なお、図4の(6)の検出は、図15のステップ1511で異常判定し、なおかつ図16のステップ1611で異常判定した時、異常とする。   The detection of (6) in FIG. 4 is determined to be abnormal when an abnormality is determined in step 1511 in FIG. 15 and an abnormality is determined in step 1611 in FIG.

換言すれば、内燃機関制御装置207のMPUは、空燃比センサ205(LAFセンサ)の出力信号(LAFセンサ信号)に基づいて目標空燃比が立ち下がるときの無駄時間(第2の無駄時間)を計算するリーン→リッチ無駄時間検出手段107(第2の無駄時間計算部)として機能する。なお、本実施形態では、目標空燃比が立ち下がる(リーン→リッチ)ときの無駄時間の所定の期間Nにおける総和を計算しているが、N=1のときの無駄時間の総和は目標空燃比が立ち下がる(リーン→リッチ)ときの無駄時間そのものとなる。   In other words, the MPU of the internal combustion engine control device 207 determines the dead time (second dead time) when the target air-fuel ratio falls based on the output signal (LAF sensor signal) of the air-fuel ratio sensor 205 (LAF sensor). It functions as lean to rich dead time detection means 107 (second dead time calculation unit) to calculate. In this embodiment, the sum of the dead time when the target air-fuel ratio falls (lean → rich) in a predetermined period N is calculated, but the sum of the dead time when N = 1 is calculated as the target air-fuel ratio. Is the dead time itself when falling (lean → rich).

詳細には、リーン→リッチ無駄時間検出手段107(第2の無駄時間計算部)は、目標空燃比が立ち下がってから、空燃比がリーン値と−αp値の和(第2の閾値)になるまでの時間を無駄時間(第2の無駄時間)として計測する。具体的には、リーン→リッチ無駄時間検出手段107(第2の無駄時間計算部)は、所定の期間Nにおける無駄時間(第2の無駄時間)の総和を計算する。   Specifically, the lean → rich dead time detection means 107 (second dead time calculation unit) sets the air / fuel ratio to the sum of the lean value and the −αp value (second threshold) after the target air / fuel ratio falls. The time until this is measured as a dead time (second dead time). Specifically, the lean → rich wasted time detection unit 107 (second wasted time calculation unit) calculates the sum of the wasted time (second wasted time) in a predetermined period N.

そして、内燃機関制御装置207のMPUは、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(第1の時定数)及び目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(第2の時定数)のうちの少なくとも1つ、又は目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(第1の無駄時間)及び目標空燃比が立ち下がるときの無駄時間(第2の無駄時間)のうちの少なくとも1つに基づいて、空燃比センサ205の応答劣化の有無を判定する応答劣化判定部(空燃比センサ応答劣化判定手段1(108)〜空燃比センサ応答劣化判定手段6(113))として機能する。   The MPU of the internal combustion engine control device 207 has a time constant (first time constant) when the target air-fuel ratio rises (rich → lean) and a time constant (first time constant) when the target air-fuel ratio falls (lean → rich). 2 or a dead time when the target air-fuel ratio rises (rich → lean) (first wasted time) and a dead time when the target air-fuel ratio falls (second wasted time). Based on at least one of (time), a response deterioration determining unit (air-fuel ratio sensor response deterioration determining means 1 (108) to air-fuel ratio sensor response deterioration determining means 6 ( 113)).

これにより、OBD規制の6つの劣化モードについて空燃比センサの応答特性を的確に診断することができる。   This makes it possible to accurately diagnose the response characteristics of the air-fuel ratio sensor for the six deterioration modes of OBD regulation.

詳細には、第1の応答劣化判定部としての空燃比センサ応答劣化判定手段1(108)は、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(第1の時定数)に基づいて、空燃比センサ205の応答劣化(第1の応答劣化)の有無を判定する。具体的には、空燃比センサ応答劣化判定手段1(108)は、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(第1の時定数)が閾値(第3の閾値)より大きい場合、空燃比センサ205の応答劣化(第1の応答劣化)が有ると判定する。   Specifically, the air-fuel ratio sensor response deterioration determination means 1 (108) as the first response deterioration determination unit is based on the time constant (first time constant) when the target air-fuel ratio rises (rich to lean). Then, the presence / absence of response deterioration (first response deterioration) of the air-fuel ratio sensor 205 is determined. Specifically, the air-fuel ratio sensor response deterioration determining means 1 (108) determines that the time constant (first time constant) when the target air-fuel ratio rises (rich → lean) is greater than the threshold (third threshold). The air-fuel ratio sensor 205 is determined to have a response deterioration (first response deterioration).

これにより、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(応答時間遅れ)から空燃比センサ205の応答劣化を的確に検出することができる。   Thereby, it is possible to accurately detect the response deterioration of the air-fuel ratio sensor 205 from the time constant (response time delay) when the target air-fuel ratio rises (rich → lean).

第2の応答劣化判定部としての空燃比センサ応答劣化判定手段2(109)は、目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(第2の時定数)に基づいて空燃比センサ205の応答劣化(第2の応答劣化)の有無を判定する。具体的には、空燃比センサ応答劣化判定手段2(109)は、目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(第2の時定数)が閾値(第4の閾値)より大きい場合、空燃比センサ205の応答劣化(第2の応答劣化)が有ると判定する。   The air-fuel ratio sensor response deterioration determination means 2 (109) as the second response deterioration determination unit is based on the time constant (second time constant) when the target air-fuel ratio falls (lean → rich). The presence / absence of the 205 response deterioration (second response deterioration) is determined. Specifically, the air-fuel ratio sensor response deterioration determining means 2 (109) has a time constant (second time constant) when the target air-fuel ratio falls (lean → rich) larger than a threshold value (fourth threshold value). In this case, the air-fuel ratio sensor 205 is determined to have a response deterioration (second response deterioration).

これにより、目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(応答時間遅れ)から空燃比センサ205の応答劣化を的確に検出することができる。   Thereby, it is possible to accurately detect the response deterioration of the air-fuel ratio sensor 205 from the time constant (response time delay) when the target air-fuel ratio falls (from lean to rich).

第3の応答劣化判定部としての空燃比センサ応答劣化判定手段3(110)は、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(第1の時定数)及び目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(第2の時定数)に基づいて空燃比センサ205の応答劣化(第3の応答劣化)の有無を判定する。具体的には、空燃比センサ応答劣化判定手段3(110)は、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(第1の時定数)が閾値(第3の閾値)より大きく、かつ、目標空燃比が立ち下がる(リーン→リッチ)ときの時定数(第2の時定数)が閾値(第4の閾値)より大きい場合、空燃比センサ205の応答劣化(第3の応答劣化)が有ると判定する。   The air-fuel ratio sensor response deterioration determination means 3 (110) as the third response deterioration determination unit decreases the time constant (first time constant) and the target air-fuel ratio when the target air-fuel ratio rises (rich → lean). The presence or absence of response deterioration (third response deterioration) of the air-fuel ratio sensor 205 is determined based on the time constant (second time constant) at the time of (lean → rich). Specifically, the air-fuel ratio sensor response deterioration determining means 3 (110) has a time constant (first time constant) when the target air-fuel ratio rises (rich → lean) greater than a threshold (third threshold), In addition, when the time constant (second time constant) when the target air-fuel ratio falls (lean to rich) is larger than the threshold value (fourth threshold value), the response deterioration of the air-fuel ratio sensor 205 (third response deterioration) It is determined that there is.

これにより、目標空燃比が立ち上がる(リッチ→リーン)ときの時定数(応答時間遅れ)及び目標空燃比が立ち下がる(リーン→リッチ)ときの時定数から空燃比センサ205の応答劣化を的確に検出することができる。   As a result, it is possible to accurately detect the response deterioration of the air-fuel ratio sensor 205 from the time constant (response time delay) when the target air-fuel ratio rises (rich → lean) and the time constant when the target air-fuel ratio falls (lean → rich). can do.

第4の応答劣化判定部としての空燃比センサ応答劣化判定手段4(111)は、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(第1の無駄時間)に基づいて空燃比センサ205の応答劣化(第4の応答劣化)の有無を判定する。具体的には、空燃比センサ応答劣化判定手段4(111)は、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(第1の無駄時間)の総和が閾値(第5の閾値)より大きい場合、空燃比センサ205の応答劣化(第4の応答劣化)が有ると判定する。   The air-fuel ratio sensor response deterioration determination means 4 (111) as the fourth response deterioration determination unit is based on the dead time (first dead time) when the target air-fuel ratio rises (rich → lean). The presence or absence of the response deterioration (fourth response deterioration) is determined. Specifically, in the air-fuel ratio sensor response deterioration determination means 4 (111), the sum of the dead time (first dead time) when the target air-fuel ratio rises (rich → lean) is greater than the threshold (fifth threshold). If larger, it is determined that there is a response deterioration (fourth response deterioration) of the air-fuel ratio sensor 205.

これにより、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(無駄時間遅れ)から空燃比センサ205の応答劣化を的確に検出することができる。   Thereby, it is possible to accurately detect the response deterioration of the air-fuel ratio sensor 205 from the dead time (dead time delay) when the target air-fuel ratio rises (rich → lean).

第5の応答劣化判定部としての空燃比センサ応答劣化判定手段5(112)は、目標空燃比が立ち下がるときの無駄時間(第2の無駄時間)に基づいて空燃比センサ205の応答劣化(第5の応答劣化)の有無を判定する。具体的には、空燃比センサ応答劣化判定手段5(112)は、目標空燃比が立ち下がるときの無駄時間(第2の無駄時間)の総和が閾値(第6の閾値)より大きい場合、空燃比センサ205の応答劣化(第5の応答劣化)が有ると判定する。   The air-fuel ratio sensor response deterioration determination means 5 (112) as the fifth response deterioration determination unit is based on the dead time (second dead time) when the target air-fuel ratio falls (second dead time). The presence / absence of fifth response deterioration) is determined. Specifically, the air-fuel ratio sensor response deterioration determining means 5 (112) determines that the empty time (second waste time) when the target air-fuel ratio falls is greater than the threshold value (sixth threshold value). It is determined that there is response deterioration (fifth response deterioration) of the fuel ratio sensor 205.

これにより、目標空燃比が立ち下がる(リーン→リッチ)ときの無駄時間(無駄時間遅れ)から空燃比センサ205の応答劣化を的確に検出することができる。   Thereby, it is possible to accurately detect the response deterioration of the air-fuel ratio sensor 205 from the dead time (dead time delay) when the target air-fuel ratio falls (from lean to rich).

第6の応答劣化判定部としての空燃比センサ応答劣化判定手段6(113)は、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(第1の無駄時間)及び目標空燃比が立ち下がるときの無駄時間(第2の無駄時間)に基づいて空燃比センサ205の応答劣化(第6の応答劣化)の有無を判定する。具体的には、空燃比センサ応答劣化判定手段6(113)は、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(第1の無駄時間)の総和が閾値(第5の閾値)より大きく、かつ、目標空燃比が立ち下がるときの無駄時間(第2の無駄時間)の総和が閾値(第6の閾値)より大きい場合、空燃比センサ205の応答劣化(第6の応答劣化)が有ると判定する。   The air-fuel ratio sensor response deterioration determining means 6 (113) as the sixth response deterioration determining unit decreases the dead time (first dead time) and the target air-fuel ratio when the target air-fuel ratio rises (rich → lean). The presence / absence of response deterioration (sixth response deterioration) of the air-fuel ratio sensor 205 is determined based on the dead time (second dead time). Specifically, in the air-fuel ratio sensor response deterioration determining means 6 (113), the sum of dead time (first dead time) when the target air-fuel ratio rises (rich → lean) is greater than a threshold (fifth threshold). If the sum of the dead time (second dead time) when the target air-fuel ratio falls is larger than the threshold (sixth threshold), the response deterioration (sixth response deterioration) of the air-fuel ratio sensor 205 is caused. It is determined that there is.

これにより、目標空燃比が立ち上がる(リッチ→リーン)ときの無駄時間(無駄時間遅れ)及び目標空燃比が立ち下がる(リーン→リッチ)ときの無駄時間(無駄時間遅れ)から空燃比センサ205の応答劣化を的確に検出することができる。   Accordingly, the response of the air-fuel ratio sensor 205 from the dead time (dead time delay) when the target air-fuel ratio rises (rich → lean) and the dead time (dead time delay) when the target air-fuel ratio falls (lean → rich). Degradation can be accurately detected.

以上説明したように、本実施形態によれば、OBD規制の6つの劣化モードについて空燃比センサの応答特性を的確に診断することができる。   As described above, according to the present embodiment, it is possible to accurately diagnose the response characteristics of the air-fuel ratio sensor for the six deterioration modes of the OBD regulation.

なお、上記の各構成、機能(手段)等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能(手段)等は、プロセッサ(MPU)がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。   In addition, you may implement | achieve part or all of each said structure, a function (means), etc. with hardware, for example by designing with an integrated circuit. Each of the above-described configurations, functions (means), and the like may be realized by software by interpreting and executing a program that realizes each function by the processor (MPU). Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

内燃機関制御装置207のMPUは、空燃比センサの6つの劣化モード空燃比センサの応答劣化を検出した場合、警告ランプ等を点灯し、運転者に警告を報知するようにしてもよい。例えば、第1〜第6の応答劣化を知らせる6つのランプを備えてもよいし、1つのランプを備え、第1〜第6の応答劣化の有無の組合せに応じてその点灯状態(色、点滅)を変更してもよい。   When the MPU of the internal combustion engine control device 207 detects response deterioration of the six deterioration mode air-fuel ratio sensors of the air-fuel ratio sensor, a warning lamp or the like may be turned on to notify the driver of the warning. For example, six lamps for notifying the first to sixth response deteriorations may be provided, or one lamp may be provided, and the lighting state (color, blinking) depending on the combination of the presence or absence of the first to sixth response deteriorations ) May be changed.

また、本発明の実施形態は、以下の態様であってもよい。   Moreover, the following aspects may be sufficient as embodiment of this invention.

(11)内燃機関の排気系に設けられた触媒と、排気ガス中の特定の成分濃度を検出するための該触媒前空燃比センサの信号に基づいて、空燃比補正係数を算出し、基準燃料供給量を補正する空燃比フィードバック制御手段を有する内燃機関の制御装置において、目標空燃比変更手段と、該触媒前空燃比センサのリッチ→リーンの応答時定数を検出する手段と、該触媒前空燃比センサのリーン→リッチの応答時定数を検出する手段と、該触媒前空燃比センサのリッチ→リーンの無駄時間を検出する手段と、該触媒前空燃比センサのリーン→リッチの無駄時間を検出する手段と、診断領域を検出する診断領域判定手段と、該応答時定数検出手段と該無駄時間検出手段の結果に基づき、空燃比センサの応答劣化を検出する空燃比センサ応答劣化判定手段と、を有することを特徴とする内燃機関の空燃比センサ診断装置。   (11) An air-fuel ratio correction coefficient is calculated based on a catalyst provided in the exhaust system of the internal combustion engine and a signal from the pre-catalyst air-fuel ratio sensor for detecting a specific component concentration in the exhaust gas, and a reference fuel In a control apparatus for an internal combustion engine having an air-fuel ratio feedback control means for correcting a supply amount, a target air-fuel ratio changing means, a means for detecting a rich-to-lean response time constant of the pre-catalyst air-fuel ratio sensor, Means for detecting the lean-to-rich response time constant of the fuel ratio sensor, means for detecting the rich-to-lean dead time of the pre-catalyst air-fuel ratio sensor, and detecting the lean-to-rich dead time of the pre-catalyst air-fuel ratio sensor Means for detecting a diagnosis area, a response time constant detection means for detecting a response deterioration of the air-fuel ratio sensor based on the results of the response time constant detection means and the dead time detection means. Air-fuel ratio sensor diagnostic apparatus for an internal combustion engine and having a means.

(12)該目標空燃比変更手段は、リッチ→リーンに変更して所定時間経過したら、リーン→リッチに変更し、所定時間経過したら、再度、リッチ→リーンに変更することを繰り返すことを特徴とする(11)に記載の内燃機関の空燃比センサ診断装置。   (12) The target air-fuel ratio changing means is characterized in that when a predetermined time elapses after the change from rich to lean, the change from lean to rich is repeated, and when the predetermined time elapses, the change from rich to lean is repeated again. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (11).

(13)該触媒前空燃比センサのリッチ→リーンの応答時定数を検出する手段は、該目標空燃比変更手段を実行中に、該触媒前空燃比センサ信号を微分し、ゼロ以下はカットし、2乗後、積算し、その逆数からリッチ→リーン応答時定数を検出することを特徴とする(11)に記載の内燃機関の空燃比センサ診断装置。   (13) The means for detecting the rich-to-lean response time constant of the pre-catalyst air-fuel ratio sensor differentiates the pre-catalyst air-fuel ratio sensor signal while executing the target air-fuel ratio changing means, and cuts below zero. 2. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (11), wherein the integration is performed after squaring and the rich to lean response time constant is detected from the inverse thereof.

(14)該触媒前空燃比センサのリーン→リッチの応答時定数を検出する手段は、該目標空燃比変更手段を実行中に、該触媒前空燃比センサ信号を微分し、ゼロ以上はカットし、2乗後、積算し、その逆数からリーン→リッチ応答時定数を検出することを特徴とする(11)に記載の内燃機関の空燃比センサ診断装置。   (14) The means for detecting the lean to rich response time constant of the pre-catalyst air-fuel ratio sensor differentiates the pre-catalyst air-fuel ratio sensor signal while executing the target air-fuel ratio changing means, and cuts zero or more. 2. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (11), wherein the air-fuel ratio sensor diagnostic apparatus for internal combustion engine according to (11), which is integrated after squaring and detects a lean → rich response time constant from the inverse thereof.

(15)該触媒前空燃比センサのリッチ→リーンの無駄時間を検出する手段は、該目標空燃比変更手段を実行中に、リーンに変更した時点を起点に所定値に到達するまでの時間を計測し、リッチ→リーン無駄時間を検出することを特徴とする(11)に記載の内燃機関の空燃比センサ診断装置。   (15) The means for detecting the rich-to-lean dead time of the pre-catalyst air-fuel ratio sensor is the time until the predetermined air-fuel ratio changing means is reached while starting the target air-fuel ratio changing means. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (11), which measures and detects a rich → lean dead time.

(16)該触媒前空燃比センサのリーン→リッチの無駄時間を検出する手段は、該目標空燃比変更手段を実行中に、リッチに変更した時点を起点に所定値に到達するまでの時間を計測し、リーン→リッチ無駄時間を検出することを特徴とする(11)に記載の内燃機関の空燃比センサ診断装置。   (16) The means for detecting the lean-to-rich dead time of the pre-catalyst air-fuel ratio sensor is the time until the predetermined air-fuel ratio change means is reached while the target air-fuel ratio change means is being executed. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (11), which measures and detects a lean → rich dead time.

(17)該診断領域判定手段は、回転数が所定範囲内、エンジン負荷が所定範囲内、水温が所定範囲内、車速が所定範囲内、吸気温が所定範囲内、大気圧が所定値以上、バッテリ電圧が所定範囲内、燃料カット中でない、空燃比フィードバック中、用いられるセンサが故障していない時、診断領域とすることを特徴とする(11)に記載の内燃機関の空燃比センサ診断装置。   (17) The diagnostic region determination means includes a rotation speed within a predetermined range, an engine load within a predetermined range, a water temperature within a predetermined range, a vehicle speed within a predetermined range, an intake air temperature within a predetermined range, and an atmospheric pressure greater than or equal to a predetermined value, The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (11), characterized in that a diagnosis region is set when the battery voltage is within a predetermined range, the fuel is not cut, the air-fuel ratio feedback is in progress, and the sensor used does not fail. .

(18)該空燃比センサ応答劣化判定手段は、(13)の応答時定数がNG閾値より長い場合、リッチ→リーン応答を異常と判定することを特徴とする(13)に記載の内燃機関の空燃比センサ診断装置。   (18) The internal combustion engine according to (13), wherein the air-fuel ratio sensor response deterioration determining means determines that the rich → lean response is abnormal when the response time constant of (13) is longer than an NG threshold. Air-fuel ratio sensor diagnostic device.

(19)該空燃比センサ応答劣化判定手段は、(14)の応答時間がNG閾値より長い場合、リーン→リッチ応答を異常と判定することを特徴とする(14)に記載の内燃機関の空燃比センサ診断装置。   (19) The air-fuel ratio sensor response deterioration determining means determines that the lean → rich response is abnormal when the response time of (14) is longer than the NG threshold value. Fuel ratio sensor diagnostic device.

(20)該空燃比センサ応答劣化判定手段は、(13)と(14)の応答時間が供にNG閾値より長い場合、リッチ→リーン/リーン→リッチ両側応答を異常と判定することを特徴とする(13)、(14)に記載の内燃機関の空燃比センサ診断装置。   (20) The air-fuel ratio sensor response deterioration determining means determines that the rich → lean / lean → rich both-side response is abnormal when the response times of (13) and (14) are both longer than the NG threshold. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (13) or (14).

(21)該空燃比センサ応答劣化判定手段は、(15)の無駄時間がNG閾値より長い場合、リッチ→リーン無駄時間を異常と判定することを特徴とする(15)に記載の内燃機関の空燃比センサ診断装置。   (21) The internal combustion engine according to (15), wherein the air-fuel ratio sensor response deterioration determining means determines that the rich → lean dead time is abnormal when the dead time of (15) is longer than an NG threshold. Air-fuel ratio sensor diagnostic device.

(22)該空燃比センサ応答劣化判定手段は、(16)の無駄時間がNG閾値より長い場合、リーン→リッチ無駄時間を異常と判定することを特徴とする(16)に記載の内燃機関の空燃比センサ診断装置。   (22) The internal combustion engine according to (16), wherein the air-fuel ratio sensor response deterioration determining means determines that the lean → rich waste time is abnormal when the waste time in (16) is longer than an NG threshold. Air-fuel ratio sensor diagnostic device.

(23)該空燃比センサ応答劣化判定手段は、(15)と(16)の無駄時間が供にNG閾値より長い場合、リッチ→リーン/リーン→リッチ両側無駄時間を異常と判定することを特徴とする(15)、(16)に記載の内燃機関の空燃比センサ診断装置。   (23) The air-fuel ratio sensor response deterioration determining means determines that the rich → lean / lean → rich both-side dead time is abnormal when the dead time of (15) and (16) is longer than the NG threshold. (15) The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to (16).

例えば、目標空燃比をリッチからリーン又はリーンからリッチに振り、その時に、空燃比センサ信号を微分し、2乗後、積算し、その逆数から応答時定数を検出する。また、リッチまたはリーンにした時に、その時点を起点に所定値に到達するまでの時間を計測する。こうすることで、図4に示す6つの劣化モードを的確に診断することができる。   For example, the target air-fuel ratio is swung from rich to lean or from lean to rich, and at that time, the air-fuel ratio sensor signal is differentiated, squared and integrated, and the response time constant is detected from the reciprocal thereof. When rich or lean, the time until reaching a predetermined value is measured from that point. By doing so, the six deterioration modes shown in FIG. 4 can be accurately diagnosed.

101:空燃比検出手段
102:診断領域判定手段
103:目標空燃比変更手段
104:リッチ→リーン応答時定数検出手段
105:リーン→リッチ応答時定数検出手段
106:リッチ→リーン無駄時間検出手段
107:リーン→リッチ無駄時間検出手段
108:空燃比センサ応答劣化判定手段1
109:空燃比センサ応答劣化判定手段2
110:空燃比センサ応答劣化判定手段3
111:空燃比センサ応答劣化判定手段4
112:空燃比センサ応答劣化判定手段5
113:空燃比センサ応答劣化判定手段6
200:エアークリーナ
201:点火装置
202:燃料噴射装置
203:回転数検出装置
204:流量検出装置
205:触媒前酸素センサ
206:触媒
207:内燃機関制御装置
208:プレートまたはリングギア
209:燃料タンク
210:燃料ポンプ
211:プレッシャーレギュレータ
212:燃料管
213:スロットルバルブ
214:気筒
215:触媒後酸素センサ
101: Air-fuel ratio detecting means 102: Diagnosis region determining means 103: Target air-fuel ratio changing means 104: Rich → lean response time constant detecting means 105: Lean → rich response time constant detecting means 106: Rich → lean dead time detecting means 107: Lean → rich dead time detecting means 108: air-fuel ratio sensor response deterioration determining means 1
109: Air-fuel ratio sensor response deterioration judging means 2
110: Air-fuel ratio sensor response deterioration determining means 3
111: Air-fuel ratio sensor response deterioration determining means 4
112: Air-fuel ratio sensor response deterioration determining means 5
113: Air-fuel ratio sensor response deterioration judging means 6
200: Air cleaner 201: Ignition device 202: Fuel injection device 203: Revolution detection device 204: Flow rate detection device 205: Pre-catalyst oxygen sensor 206: Catalyst 207: Internal combustion engine control device 208: Plate or ring gear 209: Fuel tank 210 : Fuel pump 211: Pressure regulator 212: Fuel pipe 213: Throttle valve 214: Cylinder 215: Oxygen sensor after catalyst

Claims (7)

フィードバック制御の目標空燃比を矩形波状に変更する目標空燃比変更部と、
空燃比センサの出力信号に基づいて目標空燃比が立ち上がるときの第1の時定数を計算する第1の時定数計算部と、
前記空燃比センサの出力信号に基づいて目標空燃比が立ち下がるときの第2の時定数を計算する第2の時定数計算部と、
前記空燃比センサの出力信号に基づいて目標空燃比が立ち上がるときの第1の無駄時間を計算する第1の無駄時間計算部と、
前記空燃比センサの出力信号に基づいて目標空燃比が立ち下がるときの第2の無駄時間を計算する第2の無駄時間計算部と、
前記第1の時定数及び前記第2の時定数のうちの少なくとも1つ、又は前記第1の無駄時間及び前記第2の無駄時間のうちの少なくとも1つに基づいて、前記空燃比センサの応答劣化の有無を判定する応答劣化判定部と、
備えることを特徴とする内燃機関の空燃比センサ診断装置。
A target air-fuel ratio changing unit that changes the target air-fuel ratio of the feedback control into a rectangular waveform;
A first time constant calculating unit for calculating a first time constant when the target air-fuel ratio rises based on an output signal of the air-fuel ratio sensor;
A second time constant calculation unit for calculating a second time constant when the target air-fuel ratio falls based on an output signal of the air-fuel ratio sensor;
A first dead time calculation unit for calculating a first dead time when the target air-fuel ratio rises based on an output signal of the air-fuel ratio sensor;
A second dead time calculation unit for calculating a second dead time when the target air / fuel ratio falls based on an output signal of the air / fuel ratio sensor;
The response of the air-fuel ratio sensor based on at least one of the first time constant and the second time constant, or at least one of the first dead time and the second dead time. A response deterioration determination unit that determines presence or absence of deterioration;
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine, comprising:
請求項1に記載の内燃機関の空燃比センサ診断装置であって、
前記応答劣化判定部は、
前記第1の時定数に基づいて前記空燃比センサの第1の応答劣化の有無を判定する第1の応答劣化判定部と、
前記第2の時定数に基づいて前記空燃比センサの第2の応答劣化の有無を判定する第2の応答劣化判定部と、
前記第1の時定数及び前記第2の時定数に基づいて前記空燃比センサの第3の応答劣化の有無を判定する第3の応答劣化判定部と、
前記第1の無駄時間に基づいて前記空燃比センサの第4の応答劣化の有無を判定する第4の応答劣化判定部と、
前記第2の無駄時間に基づいて前記空燃比センサの第5の応答劣化の有無を判定する第5の応答劣化判定部と、
前記第1の無駄時間及び前記第2の無駄時間に基づいて前記空燃比センサの第6の応答劣化の有無を判定する第6の応答劣化判定部と、から構成される
ことを特徴とする内燃機関の空燃比センサ診断装置。
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1,
The response deterioration determination unit
A first response deterioration determination unit that determines the presence or absence of the first response deterioration of the air-fuel ratio sensor based on the first time constant;
A second response deterioration determination unit that determines presence or absence of second response deterioration of the air-fuel ratio sensor based on the second time constant;
A third response deterioration determining unit that determines presence or absence of a third response deterioration of the air-fuel ratio sensor based on the first time constant and the second time constant;
A fourth response deterioration determining unit that determines presence or absence of a fourth response deterioration of the air-fuel ratio sensor based on the first dead time;
A fifth response deterioration determination unit that determines presence or absence of a fifth response deterioration of the air-fuel ratio sensor based on the second dead time;
An internal combustion engine comprising: a sixth response deterioration determining unit that determines whether or not the air-fuel ratio sensor has a sixth response deterioration based on the first dead time and the second dead time. Engine air-fuel ratio sensor diagnostic device.
請求項1に記載の内燃機関の空燃比センサ診断装置であって、
前記第1の時定数計算部は、
前記空燃比センサの出力信号を微分し、ゼロ以下をカットし、2乗し、積分し、かつ、逆数をとることにより、前記第1の時定数を計算する
ことを特徴とする内燃機関の空燃比センサ診断装置。
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1,
The first time constant calculator is
The first time constant is calculated by differentiating the output signal of the air-fuel ratio sensor, cutting zero or less, squaring, integrating, and taking the reciprocal. Fuel ratio sensor diagnostic device.
請求項1に記載の内燃機関の空燃比センサ診断装置であって、
前記第2の時定数計算部は、
前記空燃比センサの出力信号を微分し、ゼロ以上をカットし、2乗し、積分し、かつ、逆数をとることにより、前記第2の時定数を計算する
ことを特徴とする内燃機関の空燃比センサ診断装置。
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1,
The second time constant calculator is
The second time constant is calculated by differentiating the output signal of the air-fuel ratio sensor, cutting zero or more, squaring, integrating, and taking the reciprocal. Fuel ratio sensor diagnostic device.
請求項1に記載の内燃機関の空燃比センサ診断装置であって、
前記第1の無駄時間計算部は、
前記目標空燃比が立ち上がってから、空燃比が第1の閾値になるまでの時間を前記第1の無駄時間として計測する
ことを特徴とする内燃機関の空燃比センサ診断装置。
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1,
The first dead time calculation unit is:
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine, wherein a time from when the target air-fuel ratio rises until the air-fuel ratio reaches a first threshold is measured as the first dead time.
請求項1に記載の内燃機関の空燃比センサ診断装置であって、
前記第2の無駄時間計算部は、
前記目標空燃比が立ち下がってから、空燃比が第2の閾値になるまでの時間を前記第2の無駄時間として計測する
ことを特徴とする内燃機関の空燃比センサ診断装置。
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1,
The second dead time calculator is
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine, wherein a time from when the target air-fuel ratio falls until the air-fuel ratio reaches a second threshold is measured as the second dead time.
請求項2に記載の内燃機関の空燃比センサ診断装置であって、
前記第1の時定数計算部は、
前記空燃比センサの出力信号を微分し、ゼロ以下をカットし、2乗し、積分し、かつ、逆数をとることにより、前記第1の時定数を計算し、
前記第2の時定数計算部は、
前記空燃比センサの出力信号を微分し、ゼロ以上をカットし、2乗し、積分し、かつ、逆数をとることにより、前記第2の時定数を計算し、
前記第1の無駄時間計算部は、
前記目標空燃比が立ち上がってから、空燃比が第1の閾値になるまでの時間を前記第1の無駄時間として計測し、所定の期間における前記第1の無駄時間の総和を計算し、
前記第2の無駄時間計算部は、
前記目標空燃比が立ち下がってから、空燃比が第2の閾値になるまでの時間を前記第2の無駄時間として計測し、所定の期間における前記第2の無駄時間の総和を計算し、
前記第1の応答劣化判定部は、
前記第1の時定数が第3の閾値より大きい場合、前記空燃比センサの第1の応答劣化が有ると判定し、
前記第2の応答劣化判定部は、
前記第2の時定数が第4の閾値より大きい場合、前記空燃比センサの第2の応答劣化が有ると判定し、
前記第3の応答劣化判定部は、
前記第1の時定数が第3の閾値より大きく、かつ、前記第2の時定数が第4の閾値より大きい場合、前記空燃比センサの第3の応答劣化が有ると判定し、
前記第4の応答劣化判定部は、
前記第1の無駄時間の総和が第5の閾値より大きい場合、前記空燃比センサの第4の応答劣化が有ると判定し、
前記第5の応答劣化判定部は、
前記第2の無駄時間の総和が第6の閾値より大きい場合、前記空燃比センサの第5の応答劣化が有ると判定し、
前記第6の応答劣化判定部は、
前記第1の無駄時間の総和が第5の閾値より大きく、かつ、前記第2の無駄時間の総和が第6の閾値より大きい場合、前記空燃比センサの第6の応答劣化が有ると判定する
ことを特徴とする内燃機関の空燃比センサ診断装置。
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 2,
The first time constant calculator is
The first time constant is calculated by differentiating the output signal of the air-fuel ratio sensor, cutting zero or less, squaring, integrating, and taking the reciprocal,
The second time constant calculator is
The second time constant is calculated by differentiating the output signal of the air-fuel ratio sensor, cutting zero or more, squaring, integrating, and taking the reciprocal,
The first dead time calculation unit is:
The time from when the target air-fuel ratio rises to the time when the air-fuel ratio becomes the first threshold is measured as the first dead time, and the sum of the first dead times in a predetermined period is calculated.
The second dead time calculator is
A time from when the target air-fuel ratio falls until the air-fuel ratio reaches the second threshold is measured as the second dead time, and the sum of the second dead times in a predetermined period is calculated;
The first response deterioration determination unit is
If the first time constant is greater than a third threshold, it is determined that there is a first response deterioration of the air-fuel ratio sensor;
The second response deterioration determining unit is
If the second time constant is greater than a fourth threshold, it is determined that there is a second response deterioration of the air-fuel ratio sensor;
The third response deterioration determination unit is
If the first time constant is greater than a third threshold value and the second time constant is greater than a fourth threshold value, it is determined that there is a third response deterioration of the air-fuel ratio sensor;
The fourth response deterioration determination unit is
If the sum of the first dead times is greater than a fifth threshold, it is determined that there is a fourth response deterioration of the air-fuel ratio sensor;
The fifth response deterioration determination unit
If the sum of the second dead times is greater than a sixth threshold, it is determined that there is a fifth response deterioration of the air-fuel ratio sensor;
The sixth response deterioration determination unit
When the sum of the first dead times is larger than a fifth threshold and the sum of the second dead times is larger than a sixth threshold, it is determined that there is a sixth response deterioration of the air-fuel ratio sensor. An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine.
JP2017136033A 2017-07-12 2017-07-12 Air-fuel ratio sensor diagnostic device for internal combustion engine Active JP6764377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017136033A JP6764377B2 (en) 2017-07-12 2017-07-12 Air-fuel ratio sensor diagnostic device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017136033A JP6764377B2 (en) 2017-07-12 2017-07-12 Air-fuel ratio sensor diagnostic device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2019019686A true JP2019019686A (en) 2019-02-07
JP6764377B2 JP6764377B2 (en) 2020-09-30

Family

ID=65353538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136033A Active JP6764377B2 (en) 2017-07-12 2017-07-12 Air-fuel ratio sensor diagnostic device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6764377B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307961A (en) * 2004-03-25 2005-11-04 Denso Corp Sensor response characteristic detecting device
JP2006057587A (en) * 2004-08-23 2006-03-02 Denso Corp Malfunction diagnosing device for air/fuel ratio sensor
JP2007009712A (en) * 2005-06-28 2007-01-18 Mazda Motor Corp Degradation diagnostic device of linear air-fuel ratio sensor
JP2007009710A (en) * 2005-06-28 2007-01-18 Mazda Motor Corp Deterioration diagnostic device for linear air-fuel ratio sensor
JP2009299545A (en) * 2008-06-11 2009-12-24 Fujitsu Ten Ltd Electronic control system and control method
JP2012127356A (en) * 2012-03-22 2012-07-05 Toyota Motor Corp Failure diagnostic device for air-fuel ratio sensor
US20140345584A1 (en) * 2013-05-23 2014-11-27 Ford Global Technologies, Llc Exhaust gas sensor controls adaptation for asymmetric degradation responses
JP2017180116A (en) * 2016-03-28 2017-10-05 三菱自動車工業株式会社 Failure determination device for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307961A (en) * 2004-03-25 2005-11-04 Denso Corp Sensor response characteristic detecting device
JP2006057587A (en) * 2004-08-23 2006-03-02 Denso Corp Malfunction diagnosing device for air/fuel ratio sensor
JP2007009712A (en) * 2005-06-28 2007-01-18 Mazda Motor Corp Degradation diagnostic device of linear air-fuel ratio sensor
JP2007009710A (en) * 2005-06-28 2007-01-18 Mazda Motor Corp Deterioration diagnostic device for linear air-fuel ratio sensor
JP2009299545A (en) * 2008-06-11 2009-12-24 Fujitsu Ten Ltd Electronic control system and control method
JP2012127356A (en) * 2012-03-22 2012-07-05 Toyota Motor Corp Failure diagnostic device for air-fuel ratio sensor
US20140345584A1 (en) * 2013-05-23 2014-11-27 Ford Global Technologies, Llc Exhaust gas sensor controls adaptation for asymmetric degradation responses
JP2017180116A (en) * 2016-03-28 2017-10-05 三菱自動車工業株式会社 Failure determination device for internal combustion engine

Also Published As

Publication number Publication date
JP6764377B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
US6908225B2 (en) Failure diagnosing apparatus for an engine cooling water temperature sensor
CN101245750B (en) Throttle inlet absolute air pressure sensor for dirty air filter detection
EP1748173A2 (en) Internal combustion engine controller
JP2005307961A (en) Sensor response characteristic detecting device
JP2005163696A (en) Misfire detection device of internal combustion engine
US7389683B2 (en) Method and device for detecting a combustion misfire
JP2008144639A (en) Control device for internal combustion engine
JP4747156B2 (en) Exhaust purification device diagnostic device
CN101387234A (en) Intake air temperature rationality diagnostic
US6655357B2 (en) Abnormality detection apparatus for intake system of internal combustion engine
US9441567B2 (en) Method and device for detecting different exhaust gas probe errors during the operation of an internal combustion engine
JP5112382B2 (en) Oxygen sensor diagnostic device for internal combustion engine
JP7110345B2 (en) Control device
JP5381763B2 (en) Air-fuel ratio detection sensor abnormality diagnosis device
JP2006057523A (en) Failure diagnosis device for engine control system
JP2004019629A (en) Controller for internal combustion engine
JP6764377B2 (en) Air-fuel ratio sensor diagnostic device for internal combustion engine
JP5603825B2 (en) Air-fuel ratio sensor diagnostic device
JP2016223415A (en) Control device for internal combustion engine
WO2020217642A1 (en) Diagnostic apparatus
JP4262221B2 (en) Combustion state diagnosis device for internal combustion engine
KR100802268B1 (en) Oxygen signal diagonsising method for car
JP5836816B2 (en) Control device for internal combustion engine
US20120143466A1 (en) Method and device for controlling an internal combustion engine
JP5851361B2 (en) Diagnostic device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6764377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350