JP2019017887A - 遊技機 - Google Patents

遊技機 Download PDF

Info

Publication number
JP2019017887A
JP2019017887A JP2017141498A JP2017141498A JP2019017887A JP 2019017887 A JP2019017887 A JP 2019017887A JP 2017141498 A JP2017141498 A JP 2017141498A JP 2017141498 A JP2017141498 A JP 2017141498A JP 2019017887 A JP2019017887 A JP 2019017887A
Authority
JP
Japan
Prior art keywords
power supply
wiring
signal
supply voltage
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017141498A
Other languages
English (en)
Inventor
小倉 敏男
Toshio Ogura
敏男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP2017141498A priority Critical patent/JP2019017887A/ja
Publication of JP2019017887A publication Critical patent/JP2019017887A/ja
Priority to JP2020103452A priority patent/JP6982136B2/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pinball Game Machines (AREA)

Abstract

【課題】適切な基板構成を可能にする。【解決手段】配線のパターンが構成する複数の信号配線により、RAM102やCPU103などの複数の電気部品が接続される。配線のパターンは、複数の信号配線が平行または略平行な形状となる部分と、複数の信号配線のうち少なくとも1の信号配線が、他の信号配線と平行ではない形状となる部分とが含まれるように形成されている。複数の信号配線に含まれる各信号配線の配線長は、同一または略同一となる。他の信号配線と平行ではない形状を含まない信号配線は、複数の電気部品における接続端子間の距離が、他の信号配線と平行ではない形状を含む信号配線よりも長い。【選択図】図17

Description

本発明は、パチンコ遊技機等の遊技が可能な遊技機に関する。
パチンコ遊技機等の遊技機において、CPUやROMなどの電気部品を接続する信号線に関する技術が提案されている(例えば特許文献1)。
特開2014−223336号公報
上記特許文献1に記載の技術によると、例えば信号の同期が乱れやすくなるなど、適切な基板構成が得られなくなるおそれがある。
この発明は、上記実状に鑑みてなされたものであり、適切な基板構成が可能な遊技機の提供を目的とする。
(1)上記目的を達成するため、本願の請求項に係る遊技機は、遊技が可能な遊技機(例えばパチンコ遊技機1など)であって、複数の信号配線を構成するパターンが形成され(例えば図17を参照)、前記複数の信号配線により複数の電気部品(例えばRAM102とCPU103など)が接続された基板(例えば主基板11など)を備え、前記パターンは、前記複数の信号配線が平行または略平行な第1形状となる平行配線部(例えば領域30AK10Rなど)と、前記複数の信号配線のうち少なくとも1の信号配線が、他の信号配線と平行ではない第2形状となる特定配線部(例えば領域30AK11Rなど)とを含み、前記複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となる。
このような構成によれば、適切な基板構成が可能になる。
(2)上記(1)の遊技機において、前記第2形状を含まない信号配線(例えば配線のパターン30AK10Dが構成する信号配線など)は、前記複数の電気部品における接続端子間の距離が、前記第2形状を含む信号配線(例えば配線のパターン30AK11D〜30AK13Dが構成する信号配線など)よりも長くてもよい。
このような構成においては、適切な基板構成が可能になる。
(3)上記(1)または(2)の遊技機において、前記第2形状となる信号配線に近接する所定領域(例えばスペース領域30AK0SPなど)には、導体が設けられていなくてもよい。
このような構成においては、適切な基板構成が可能になる。
(4)上記(1)から(3)のいずれかの遊技機において、前記基板には、該基板の一面に設けられた信号配線と該基板の他面に設けられた信号配線とを電気的に接続可能なスルーホール(例えばスルーホール30AK1H、30AK2Hなど)が設けられ、前記複数の信号配線に含まれる各信号配線の配線長は、前記スルーホールにより接続された信号配線について、該スルーホールの長さを含めて同一または略同一となってもよい。
このような構成においては、適切な基板構成が可能になる。
(5)上記(1)から(4)のいずれかの遊技機において、前記基板は、複数の層(例えば表面層30AK1S、グランド層30AK1L、電源層30AK2L、配線層30AK3L、電源層30AK4L、裏面層30AK2Sなど)を含み、前記複数の層のうち前記第2形状となる信号配線が設けられる層に隣接する導体層(例えばグランド層30AK1Lなど)では、信号の伝送が行われなくてもよい。
このような構成においては、適切な基板構成が可能になる。
(6)上記(1)から(5)のいずれかの遊技機において、前記複数の電気部品として、所定の処理を実行可能な処理手段(例えばCPU103など)と、前記処理の実行に関する情報を記憶可能な記憶手段(例えばRAM102など)とが接続されてもよい。
このような構成においては、適切な基板構成が可能になる。
(7)あるいは、遊技が可能な遊技機(例えばパチンコ遊技機1など)であって、複数の信号配線を構成するパターンが形成され(例えば図17を参照)、前記複数の信号配線により複数の電気部品(例えばRAM102とCPU103など)が接続された基板(例えば主基板11など)を備え、前記パターンは、前記複数の信号配線が平行または略平行な第1形状となる平行配線部(例えば領域30AK10Rなど)と、前記複数の信号配線のうち少なくとも1の信号配線が、前記第1形状とは異なる第2形状となる特定配線部(例えば領域30AK11Rなど)とを含み、前記複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となってもよい。
このような構成によっても、適切な基板構成が可能になる。
(8)あるいは、遊技が可能な遊技機(例えばパチンコ遊技機1など)であって、複数の信号配線を構成するパターンが形成され(例えば図17を参照)、前記複数の信号配線により複数の電気部品(例えばRAM102とCPU103など)が接続された基板(例えば主基板11など)を備え、前記パターンは、前記複数の信号配線のうち少なくとも1の信号配線が、直線形状または略直線形状を含む第1形状となる第1パターン(例えば配線のパターン30AK10Dなど)と、前記複数の信号配線のうち前記第1パターンに含まれない他の信号配線が、前記第1形状とは異なる第2形状となる第2パターン(例えば配線のパターン30AK11D〜30AK13Dなど)とを含み、前記第1パターンおよび前記第2パターンは、前記複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となってもよい。
このような構成によっても、適切な基板構成が可能になる。
(9)あるいは、遊技が可能な遊技機(例えばパチンコ遊技機1など)であって、複数の信号配線を構成するパターンが形成され(例えば図17を参照)、前記複数の信号配線により複数の電気部品(例えばRAM102とCPU103など)が接続された基板(例えば主基板11など)を備え、前記パターンは、前記複数の信号配線のうち少なくとも1の信号配線が、所定区間(例えば区間30AK0SCなど)を最短または略最短の距離で接続する第1パターン(例えば配線のパターン30AK10D、30AK11Dなど)と、前記複数の信号配線のうち前記第1パターンに含まれない他の信号配線が、前記所定区間を前記第1パターンよりも長い距離で接続する第2パターン(例えば配線のパターン30AK12D、30AK13Dなど)とを含み、前記第1パターンおよび前記第2パターンは、前記複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となってもよい。
このような構成によっても、適切な基板構成が可能になる。
(10)上記(8)または(9)の遊技機において、前記第1パターンは、前記複数の電気部品における接続端子間の距離が、前記第2パターンよりも長くてもよい。
このような構成においては、適切な基板構成が可能になる。
(11)上記(8)から(10)のいずれかの遊技機において、前記第2パターンに近接する所定領域(例えばスペース領域30AK0SPなど)には、導体が設けられていなくてもよい。
このような構成においては、適切な基板構成が可能になる。
(12)上記(8)から(11)のいずれかの遊技機において、前記基板は、複数の層(例えば表面層30AK1S、グランド層30AK1L、電源層30AK2L、配線層30AK3L、電源層30AK4L、裏面層30AK2Sなど)を含み、前記複数の層のうち前記第2パターンに含まれる信号配線が設けられる層に隣接する導体層(例えばグランド層30AK1Lなど)では、信号の伝送が行われなくてもよい。
このような構成においては、適切な基板構成が可能になる。
この実施の形態におけるパチンコ遊技機の正面図である。 パチンコ遊技機に搭載された各種の制御基板などを示す構成図である。 遊技機用枠の背面図である。 基板ケースを見た状態の分解斜視図である。 基板ケースを見た状態の分解斜視図である。 ベース部材を示す6面図である。 カバー部材を示す6面図である。 レセプタクルを見た状態の斜視図である。 レセプタクルを見た状態の背面図である。 レセプタクルを見た状態の断面図である。 配線に対応する伝送経路を示す図である。 電源電圧の伝送経路を示す図である。 配線長の関係などを示す図である。 フィルタ回路の構成例を示す図である。 ノイズ防止回路の構成例を示す図である。 電源監視回路を示す図である。 配線のパターンが形成された部分の構成例を示す図である。 配線のパターンを説明するための領域や区間を示す図である。 図18に示された領域の拡大図である。 配線のパターンに対応する設定例を示す図である。 図18に示された領域の拡大図である。 図18に示された領域の拡大図である。 主基板の構成例を示す断面図である。 配線のパターンについて他の構成例を示す図である。
図1は、この実施の形態に係るパチンコ遊技機1の正面図である。パチンコ遊技機1は、遊技盤2と、遊技機用枠3とを備えている。その他、パチンコ遊技機1は、遊技機用枠3を回動可能に支持する外枠などを備えている。遊技盤2は、遊技盤面を構成するゲージ盤である。遊技機用枠3は、遊技盤2を固定する台枠である。遊技盤2には、ガイドレールなどによって囲まれた遊技領域が形成されている。発射装置から発射された遊技球(遊技媒体)は、発射通路を通過して、遊技領域に打ち込まれる。遊技機用枠3には、ガラス窓を有するガラス扉枠が回動可能に設けられている。
遊技盤2の所定位置には、第1特別図柄表示装置4A、第2特別図柄表示装置4B、画像表示装置5、普通入賞球装置6A、普通可変入賞球装置6B、特別可変入賞球装置7、普通図柄表示器20、第1保留表示器25A、第2保留表示器25B、普図保留表示器25C、通過ゲート41などが設けられている。その他、遊技領域における遊技盤面には、風車や多数の障害釘、一般入賞口、アウト口などが設けられていればよい。遊技領域の周辺部には遊技効果ランプ9が設けられている。遊技機用枠3の左右上部位置にはスピーカ8L、8Rが設けられている。
遊技機用枠3の右下部位置には、打球操作ハンドル(操作ノブ)が設けられている。打球操作ハンドルは、遊技球を遊技領域に向けて発射するために遊技者等によって操作され、その操作量(回転量)に応じて遊技球の弾発力が調整される。遊技領域の下方における遊技機用枠3の所定位置には、遊技球を保持(貯留)する上皿(打球供給皿)と、上皿からの余剰球などを保持(貯留)する下皿が設けられている。下皿を形成する部材にはスティックコントローラ31Aが取り付けられ、上皿を形成する部材にはプッシュボタン31Bが設けられている。
第1特別図柄表示装置4A、第2特別図柄表示装置4B、画像表示装置5の画面上などでは、特別図柄や飾り図柄の可変表示が行われる。これらの可変表示は、普通入賞球装置6Aに形成された第1始動入賞口を遊技球が通過(進入)したことによる第1始動入賞の発生に基づいて、あるいは、普通可変入賞球装置6Bに形成された第2始動入賞口を遊技球が通過(進入)したことによる第2始動入賞の発生に基づいて、実行可能となる。第1特別図柄表示装置4Aと第2特別図柄表示装置4Bはそれぞれ、例えば7セグメントやドットマトリクスのLED(発光ダイオード)などを用いて構成され、可変表示ゲームの一例となる特図ゲームにおいて、識別情報(特別識別情報)である特別図柄(特図)が、変動可能に表示(可変表示)される。画像表示装置5は、例えばLCD(液晶表示装置)などを用いて構成され、各種の演出画像を表示する表示領域を形成している。画像表示装置5の画面上では、特図ゲームにおける第1特別図柄表示装置4Aによる特別図柄(第1特図)の可変表示や第2特別図柄表示装置4Bによる特別図柄(第2特図)の可変表示のそれぞれに対応して、例えば3つといった複数の可変表示部となる飾り図柄表示エリアにて、識別情報(装飾識別情報)である飾り図柄が可変表示される。この飾り図柄の可変表示も、可変表示ゲームに含まれる。一例として、画像表示装置5の画面上には、「左」、「中」、「右」の飾り図柄表示エリア5L、5C、5Rが配置されている。
画像表示装置5の画面上には、保留記憶表示エリア5Hが配置されている。保留記憶表示エリア5Hでは、特図ゲームに対応した可変表示の保留数(特図保留記憶数)を特定可能に表示する保留表示が行われる。保留表示は、可変表示に関する情報の保留記憶に対応して表示可能なものであればよい。保留記憶表示エリア5Hとともに、あるいは、保留記憶表示エリア5Hに代えて、第1保留表示器25Aと第2保留表示器25Bとを用いた保留表示が行われてもよい。
図2は、各種基板や周辺装置などの構成例を示すブロック図である。パチンコ遊技機1には、例えば図2に示すような主基板11、演出制御基板12、音声制御基板13、ランプ制御基板14といった、各種制御基板が搭載されている。また、パチンコ遊技機1には、中継基板15、ドライバ基板19、電源基板92なども搭載されている。その他にも、例えば払出制御基板、情報端子基板、発射制御基板、インタフェース基板、タッチセンサ基板などといった、各種の基板が搭載されてもよい。各種制御基板は、導体パターンが形成されて電気部品が実装されるプリント配線板などの電子回路基板だけではなく、電子回路基板に電気部品が実装(搭載)されて特定の電気的機能を実現するように構成された電子回路実装基板を含む概念である。
電源基板92は、外部電源(商用電源)である交流電源からの電力を、主基板11や演出制御基板12などの各種制御基板を含めた電気部品に供給可能となるように構成されている。電源基板92は、例えば交流(AC)を直流(DC)に変換するための整流回路、所定の直流電圧を特定の直流電圧(例えば直流12Vや直流5Vなど)に変換するための電源回路などを、備えている。電源基板92にて生成された電圧は、ドロア中継基板を介して主基板11や演出制御基板12などに供給されてもよい。
主基板11には、遊技制御用マイクロコンピュータ100、スイッチ回路110、ソレノイド回路111などが搭載されている。主基板11では、ゲートスイッチ21、始動口スイッチ(第1始動口スイッチ22Aおよび第2始動口スイッチ22B)、カウントスイッチ23といった、各種検出用のスイッチから取り込んだ信号が、スイッチ回路110を介して遊技制御用マイクロコンピュータ100に伝送される。ゲートスイッチ21は、通過ゲート41を通過した遊技球(ゲート通過球)を検出する。ゲートスイッチ21によるゲート通過球の検出に基づいて、普通図柄表示器20による普通図柄の可変表示が実行可能となる。第1始動口スイッチ22Aは、第1始動入賞口を通過(進入)した遊技球を検出する。第2始動口スイッチ22Bは、第2始動入賞口を通過(進入)した遊技球を検出する。カウントスイッチ23は、大入賞口を通過(進入)した遊技球を検出する。第1始動入賞口や第2始動入賞口、大入賞口といった、各種の入賞口を通過した遊技球が検出された場合には、それぞれの入賞口に対応して予め個数が定められた賞球としての遊技球が払い出される。
主基板11では、遊技制御用マイクロコンピュータ100からのソレノイド駆動信号が、ソレノイド回路111を介して普通電動役物用のソレノイド81や大入賞口扉用のソレノイド82に伝送される。普通電動役物用のソレノイド81は、普通可変入賞球装置6Bに形成された第2始動入賞口を遊技球が通過しにくい状態(または通過しない状態)と通過しやすい状態(または通過する状態)とに変化可能にする。大入賞口扉用のソレノイド82は、特別可変入賞球装置7に形成された大入賞口を遊技球が通過不可能な状態と通過可能な状態とに変化可能にする。主基板11からは、第1特別図柄表示装置4A、第2特別図柄表示装置4B、普通図柄表示器20などの表示制御を行うための指令信号が伝送される。
主基板11に搭載された遊技制御用マイクロコンピュータ100は、例えば1チップのマイクロコンピュータであり、遊技制御用のプログラムや固定データ等を記憶するROM101と、遊技制御用のワークエリアを提供するRAM102と、遊技制御用のプログラムを実行して制御動作を行うCPU103と、CPU103とは独立して乱数値を示す数値データの更新を行う乱数回路104と、I/O(Input/Output port)105とを備えて構成される。一例として、遊技制御用マイクロコンピュータ100では、CPU103がROM101から読み出したプログラムを実行することにより、パチンコ遊技機1における遊技の進行を制御するための処理が実行される。主基板11に搭載された遊技制御用マイクロコンピュータ100では、例えば乱数回路104やRAM102の所定領域に設けられた遊技用ランダムカウンタなどにより、遊技の進行を制御するために用いられる各種の乱数値を示す数値データが更新可能にカウント(生成)される。遊技の進行を制御するために用いられる乱数は、遊技用乱数ともいう。
演出制御基板12は、中継基板15を介して主基板11から伝送された制御信号(演出制御コマンド)の受信に基づいて、画像表示装置5、スピーカ8L、8R、遊技効果ランプ9、演出用モータ60および演出用LED61といった演出用の電気部品による演出動作を制御可能とする。演出制御基板12には、演出制御用CPU120やROM121、RAM122、表示制御部123、乱数回路124、I/O125などが搭載されている。
演出制御基板12に搭載された演出制御用CPU120は、ROM121から読み出した演出制御用のプログラムや固定データ等を用いて、演出用の電気部品による演出動作を制御するための処理を実行する。演出制御基板12に搭載された表示制御部123は、演出制御用CPU120からの表示制御指令などに基づき、画像表示装置5における表示動作の制御内容を決定する。例えば、表示制御部123は、画像表示装置5の表示画面内に表示させる演出画像の切換タイミングを決定することなどにより、飾り図柄の可変表示や各種の演出表示を実行させるための制御を行う。
演出制御基板12には、コントローラセンサユニット35Aと、プッシュセンサ35Bとが接続されている。コントローラセンサユニット35Aは、傾倒方向センサと、トリガセンサとを含んでいる。傾倒方向センサは、スティックコントローラ31Aの操作桿に対する傾倒操作が行われたときに、複数のセンサを用いて操作桿の傾倒方向を検出可能にする。トリガセンサは、スティックコントローラ31Aの操作桿に設けられたトリガボタンに対する押引操作の有無を検出可能にする。すなわち、コントローラセンサユニット35Aにより、スティックコントローラ31Aの操作桿に対する傾倒動作やトリガボタンに対する押引動作といった、スティックコントローラ31Aを用いた遊技者の動作を検出することができる。プッシュセンサ35Bにより、プッシュボタン31Bに対する押下動作といった、プッシュボタン31Bを用いた遊技者の動作を検出することができる。演出制御基板12では、例えば乱数回路124やRAM122の所定領域に設けられた演出用ランダムカウンタなどにより、演出の実行を制御するために用いられる各種の乱数値を示す数値データが更新可能にカウント(生成)される。演出の実行を制御するために用いられる乱数は、演出用乱数ともいう。
演出制御基板12は、第1基板12Aと、該第1基板12Aに対し基板対基板接続される第2基板12Bとを有する。第1基板12Aには、演出制御用CPU120や表示制御部123のグラフィックスプロセッサなどが搭載され、第2基板12Bには、ROM121や画像データメモリといった機種に固有なデータなどが記憶された電気部品が搭載されている。表示制御部123のグラフィックスプロセッサは、演出制御用CPU120の機能を統合したマイクロプロセッサであってもよいし、演出制御用CPU120とは別個のチップとして構成されたマイクロプロセッサであってもよい。
音声制御基板13は、演出制御基板12とは別個に設けられた音声出力制御用の制御基板であり、演出制御基板12からの指令や制御データなどに基づいて、スピーカ8L、8Rから音声を出力させるための音声信号処理を実行する処理回路などが搭載されている。なお、演出制御基板12に搭載された表示制御部123を構成するグラフィックスコントローラなどが音声信号処理を実行可能であれば、音声制御基板13に帯域フィルタや増幅回路などを搭載すればよい。あるいは、音声制御基板13を省略して、演出制御基板12の基板上に帯域フィルタや増幅回路などを搭載してもよい。ランプ制御基板14は、演出制御基板12とは別個に設けられたランプ出力制御用の制御基板であり、演出制御基板12からの指令や制御データなどに基づいて、遊技効果ランプ9などにおける点灯や消灯を行うランプドライバ回路などが搭載されている。ドライバ基板19は、演出制御基板12とは別個に設けられた電気部品駆動用の制御基板であり、演出制御基板12からの指令や制御データなどに基づいて、演出用モータ60に含まれる各種モータの回動制御や演出用LED61に含まれる各種LEDの点灯制御などを行うためのドライバ回路などが搭載されている。ドライバ基板19からの出力信号は、演出用モータ60に含まれる各モータと、演出用LED61に含まれる各LEDとに向けて伝送される。
パチンコ遊技機1においては、遊技媒体としての遊技球を用いた所定の遊技が行われ、その遊技結果に基づいて所定の遊技価値が付与可能となる。遊技球を用いた遊技の一例として、パチンコ遊技機1における遊技機用枠3の右下部位置に設けられた打球操作ハンドルが遊技者によって所定操作(例えば回転操作)されたことに基づいて、所定の打球発射装置が備える発射モータなどにより、遊技媒体としての遊技球が遊技領域に向けて発射される。遊技領域を流下した遊技球が、各種の入賞口を通過(進入)した場合に、賞球としての遊技球が払い出される。特別図柄や飾り図柄の可変表示結果が「大当り」となった場合には、大入賞口が開放されて遊技球が通過(進入)しやすい状態となることで、遊技者にとって有利な有利状態としての大当り遊技状態となる。
有利状態は大当り遊技状態に限定されず、時短状態や確変状態といった特別遊技状態が含まれてもよい。その他、大当り遊技状態にて実行可能なラウンド遊技の上限回数が第2ラウンド数(例えば「7」)よりも多い第1ラウンド数(例えば「15」)となること、時短状態にて実行可能な可変表示の上限回数が第2回数(例えば「50」)よりも多い第1回数(例えば「100」)となること、確変状態における大当り確率が第2確率(例えば1/50)よりも高い第1確率(例えば1/20)となること、通常状態に制御されることなく大当り遊技状態に繰り返し制御される回数である連チャン回数が第2連チャン数(例えば「5」)よりも多い第1連チャン数(例えば「10」)となることの一部または全部といった、遊技者にとってより有利な遊技状況となることが含まれていてもよい。
主基板11では、電源基板92からの電力供給が開始されると、遊技制御用マイクロコンピュータ100のCPU103が起動し、CPU103によって遊技制御メイン処理の実行が開始される。遊技制御メイン処理において、CPU103は、割込み禁止に設定した後、必要な初期設定を行う。初期設定が終了すると、割込み許可とした後、ループ処理に入る。以後、所定時間(例えば2ミリ秒)ごとにCTCから割込み要求信号がCPU103へ送出され、CPU103は定期的に遊技制御用タイマ割込み処理を実行する。
遊技制御用タイマ割込み処理は、スイッチ処理、メイン側エラー処理、情報出力処理、遊技用乱数更新処理、特別図柄プロセス処理、普通図柄プロセス処理、コマンド制御処理などを含んでいる。スイッチ処理では、各種スイッチから入力される検出信号の状態を判定する。メイン側エラー処理では、パチンコ遊技機1の異常診断を行い、必要ならば警告を発生可能とする。情報出力処理では、ホール管理コンピュータに供給される所定のデータを出力する。遊技用乱数更新処理では、遊技用乱数の少なくとも一部をソフトウェアにより更新する。特別図柄プロセス処理では、特別図柄の表示制御や大入賞口の開閉動作設定などを、所定の手順で行うために、各種の処理が選択されて実行される。普通図柄プロセス処理では、普通図柄の表示制御や普通可変入賞球装置6Bにおける可動翼片の傾動動作設定などを、所定の手順で行うために、各種の処理が選択されて実行される。
特別図柄プロセス処理では、まず、始動入賞判定処理が実行される。始動入賞判定処理を実行した後には、特図プロセスフラグの値に応じて選択した処理が実行される。このとき選択可能な処理は、特別図柄通常処理、変動パターン設定処理、特別図柄変動処理、特別図柄停止処理、大当り開放前処理、大当り開放中処理、大当り開放後処理、大当り終了処理などを含んでいればよい。
始動入賞判定処理では、第1始動入賞や第2始動入賞が発生したか否かを判定し、発生した場合には特図保留記憶数を更新するための設定などが行われる。特別図柄通常処理では、特図ゲームの実行を開始するか否かの判定が行われる。また、特別図柄通常処理では、特別図柄や飾り図柄の可変表示結果を「大当り」とするか否かの判定が行われる。さらに、特別図柄通常処理では、可変表示結果に対応して、特図ゲームにおける確定特別図柄の設定などが行われる。変動パターン設定処理では、可変表示結果などに基づいて、変動パターンの決定などが行われる。特別図柄変動処理では、特別図柄を変動させるための設定や、変動開始からの経過時間を計測するための設定などが行われる。特別図柄停止処理では、特別図柄の変動を停止させ、可変表示結果となる確定特別図柄を停止表示(導出)させるための設定などが行われる。
大当り開放前処理では、可変表示結果が「大当り」に対応して、大当り遊技状態において大入賞口を開放状態とするための設定などが行われる。大当り開放中処理では、大入賞口を開放状態から閉鎖状態に戻すか否かの判定などが行われる。大当り開放後処理では、大入賞口を閉鎖状態に戻した後、ラウンドの実行回数が上限値に達したか否かを判定し、達していなければ次回のラウンドを実行可能とし、達していれば大当り遊技状態を終了させるための設定などが行われる。大当り終了処理では、大当り遊技状態の終了を報知するエンディング演出の実行期間に対応した待ち時間が経過するまで待機した後、確変制御や時短制御を開始するための設定などが行われる。
演出制御基板12では、電源基板92からの電力供給が開始されると、演出制御用CPU120が演出制御メイン処理の実行を開始する。演出制御メイン処理では、所定の初期化が行われた後、タイマ割込みが発生する毎に、コマンド解析処理、演出制御プロセス処理、演出用乱数更新処理が実行される。コマンド解析処理では、主基板11から伝送された演出制御コマンドを解析し、解析結果に応じたフラグがセットされる。演出制御プロセス処理では、演出用の電気部品を所定の手順に従って制御するために、各種の処理が選択されて実行される。演出用乱数更新処理では、演出用乱数を生成するためのカウント値などをソフトウェアにより更新する。
演出制御プロセス処理では、まず、保留表示更新処理が実行される。保留表示更新処理を実行した後には、演出プロセスフラグの値に応じて選択した処理が実行される。このとき選択可能な処理は、可変表示開始待ち処理、可変表示開始設定処理、可変表示中演出処理、可変表示停止処理、大当り表示処理、大当り中演出処理、エンディング演出処理などを含んでいればよい。
保留表示更新処理では、保留記憶表示エリア5Hの表示を、特図保留記憶数に応じて更新するための設定などが行われる。可変表示開始待ち処理では、特別図柄や飾り図柄の可変表示を開始するか否かの判定などが行われる。可変表示開始設定処理では、飾り図柄の可変表示を開始するための設定などが行われる。可変表示中演出処理では、飾り図柄の可変表示に対応して、演出用の電気部品を演出制御パターンに従って制御するための設定などが行われる。可変表示停止処理では、飾り図柄の可変表示を停止して可変表示結果となる確定飾り図柄を導出する制御などが行われる。
大当り表示処理では、可変表示結果が「大当り」に対応して、大当りの発生を報知する演出(ファンファーレ演出)を実行するための制御などが行われる。大当り中演出処理では、大当り遊技状態に対応して、演出用の電気部品を演出制御パターンに従って制御するための設定などが行われる。エンディング演出処理では、大当り遊技状態の終了に対応して、エンディング演出の実行を制御するための設定などが行われる。
図3は、パチンコ遊技機1が備える遊技機用枠3の背面図である。遊技機用枠3の背面上部には、球タンク150、ターミナル基板154が設けられている。また、補給通路151、払出装置152、賞球通路153も設けられている。遊技盤2の背面には、遊技制御基板用の基板ケース400、演出制御基板用の基板ケース800、カバー体301が設けられている。基板ケース400は、主基板11を収納する。基板ケース800は、演出制御基板12を収納する。カバー体301は、透明な合成樹脂などを用いて構成され、基板ケース800と基板ケース400の上部とを覆っている。遊技制御基板用の基板ケース400の下方位置には、払出制御基板91と、電源基板92とが、前後に重畳するように設けられている。
図4〜図7を参照して、演出制御基板用の基板ケース800の構造を説明する。図4は、基板ケース800を左後部の斜め上方から見た状態を示す分解斜視図である。図5は、基板ケース800を右前部の斜め上方から見た状態を示す分解斜視図である。図6は、ベース部材801を示す6面図である。図7は、カバー部材802を示す6面図である。基板ケース800は、ベース部材801と、カバー部材802とから構成され、演出制御基板12を前後から挟持するように組み付けられる。ベース部材801は演出制御基板12の前面側を覆い、カバー部材802は演出制御基板12の背面側を覆う。
ベース部材801は、透明な熱可塑性合成樹脂からなり、縦長略長方形状に形成されるベース板801aと、上下及び左右側辺に背面側に向けて立設される側壁801b〜801eとから構成され、背面側に向けて開口する箱状に形成されている。ベース板801aには、ボス803、804、係止バー805、係止フック806、係止孔807、被係止部808、ワンウェイネジ809のネジ穴810、取付孔811、基板支持用リブ812、813、段部814a、814b、リブ815が設けられている。
カバー部材802は、透明な熱可塑性合成樹脂からなり、縦長略長方形状に形成されるベース板821aと、上下及び左右側辺に背面側に向けて立設される側壁821b〜811eとから構成され、背面側に向けて開口する箱状に形成されている。ベース板821aには、ネジ822が螺入されるネジ穴823、位置決め凸部824、ネジ825が螺入されるネジ穴826、位置決め凸部827、係止フック831、係止片832、係止部833、ワンウェイネジ809の取付孔834aが形成された取付片834、音量調整用スイッチ835aを外部に臨ませるスイッチ用開口835、コネクタ用開口836、837が設けられている。
コネクタ用開口836は、ベース板821aの上部右側にて、第1基板12Aに搭載された各種基板側コネクタKCN10を外部に臨ませるために、縦長形状となるように形成されている。各種基板側コネクタKCN10は、レセプタクルKRE1〜KRE4を含んでいればよい。レセプタクルKRE1は、主基板配線用のコネクタポートである。レセプタクルKRE2は、電源基板配線用のコネクタポートである。レセプタクルKRE3は、ドライバ基板配線用のコネクタポートである。レセプタクルKRE4は、音声制御基板配線用のコネクタポートである。なお、レセプタクルの配置や接続される配線は、パチンコ遊技機1の仕様に応じて任意に変更されたものであってもよい。
主基板配線用のレセプタクルKRE1は、主基板11との間で電気的に接続される信号配線(主基板配線)を着脱自在に接続可能な配線接続装置の構成を有している。電源基板配線用のレセプタクルKRE2は、電源基板92との間で電気的に接続される信号配線(電源基板配線)を着脱自在に接続可能な配線接続装置の構成を有している。ドライバ基板配線用のレセプタクルKRE3は、ドライバ基板19との間で電気的に接続される信号配線(ドライバ基板配線)を着脱自在に接続可能な配線接続装置の構成を有している。音声制御基板配線用のレセプタクルKRE4は、音声制御基板13との間で電気的に接続される信号配線(音声制御基板配線)を着脱自在に接続可能な配線接続装置の構成を有している。
図8〜図10は、レセプタクルKRE1の構成例を示している。図8(A)は、左後部の斜め下方から見た状態を示す斜視図である。図8(B)は、左後部の斜め上方から見た状態を示す斜視図である。図9は、カバー部材802の外部にてレセプタクルKRE1の付近を背面側(後部側)から見た状態を示す背面図である。図10は、レセプタクルKRE1の付近を下方側から見た状態を示す断面図である。レセプタクルKRE1は、差込口OP1が形成されたハウジングと、端子TA01〜TA03とを備えている。
差込口OP1は、主基板配線に設けられたコネクタプラグを差し込んで装着可能な開口部である。端子TA01〜TA03は、例えば銅などの金属を用いて構成され、差込口OP1に主基板配線のコネクタプラグが差し込まれたときに、コネクタプラグに設けられた複数の端子のうちで、対応する位置に配置された端子と接触して電気的に導通する金属部材である。レセプタクルKRE1では、信号端子となる端子TA02の両側を挟む位置で、一対の接地端子となる端子TA01、TA03が演出制御基板12の基板上に表面実装されている。主基板配線では、信号伝送線となる信号ラインの両側を挟む位置で、一対の接地電圧線となる接地ラインが設けられていてもよい。あるいは、主基板配線として同軸ケーブルを用いて、同軸ケーブルの内部導体が端子TA02と電気的に接続され、同軸ケーブルの外部導体が端子TA01、TA03と電気的に接続されるように構成してもよい。
レセプタクルKRE1は、端子配置面となる側面PL1にて、端子TA01〜TA03が外部に引き出され、演出制御基板12(第1基板12A)の基板上に設けられた接続パッドに接合させることができる。端子を接続パッドに接合させる方式は、はんだなどを用いた金属接合方式であってもよいし、導電性樹脂接合や異方性導電部材接合などの接着接合方式であってもよい。側面PL1の背面側となる側面PL2の側には、固定用金具SS01、SS02が設けられている。
基板ケース800のカバー部材802において、コネクタ用開口836のうちで、レセプタクルKRE1に対応して形成された開口領域836aは、他のレセプタクルに対応して形成された開口領域に比べて開口幅が狭くなるように形成されてもよい。レセプタクルKRE1の端子TA01〜TA03は、それぞれ開口領域836aにて基板ケース800から露出する露出部と基板ケース800に被覆されて露出しない被覆部とを有するように形成されている。例えば、端子TA01〜TA03において、対応する接続パッドに接合する先端部は、基板ケース800のカバー部材802に被覆されて露出しない被覆部に含まれていればよい。
基板ケース800のカバー部材802には、部品収容部802aと、開口領域836aにおける内側端面となる内周壁面836bを形成する開口周縁部840とが、勾配部821e1を介して一体形成されていればよい。部品収容部802aは、演出制御基板12の基板上に実装された電気部品の少なくとも一部を収容可能に形成されている。開口領域836aにおいて、内周壁面836bとレセプタクルKRE1との間隔は、部品収容部802aに遠い側の内周壁面836bとレセプタクルKRE1の側面PL2との間隔が開口幅W1であり、部品収容部802aに近い側の内周壁面836bとレセプタクルKRE1の端子配置面となる側面PL1との間隔が開口幅W2である。そして、開口幅W2は、開口幅W1よりも広くなるように、開口領域836aやレセプタクルKRE1の配置が調整されていればよい。レセプタクルKRE1の端子TA01〜TA03において、対応する接続パッドに接合されて表面実装された実装位置となる先端部は、開口領域836aにおける内周壁面836bを形成する開口周縁部840により被覆される。カバー部材802における開口周縁部840と演出制御基板12の基板面とにより、レセプタクルKRE1の実装位置に近接して、空間としてのスペースSP1が形成されている。
端子TA01は、演出制御基板12の基板上に設けられたダミーパッドDP1に接合される。端子TA03は、演出制御基板12の基板上に設けられたダミーパッドDP2に接合される。また、端子TA01、TA03は、接続パッドGPA1に接合される。接続パッドGPA1は、演出制御基板12に設けられたスルーホールを介して、接地用の配線パターンが形成された配線層LY4に接続されていればよい。図10に示す演出制御基板12の基板断面は、絶縁層LY1と絶縁層LY3との間に配線層LY2が形成され、レセプタクルKRE1が表面実装される側には、例えばポリイミドなどを用いて、保護層LY0が形成されていればよい。このように、演出制御基板12における配線パターンは、演出制御基板12の基板内にて内層部となる絶縁層LY1と絶縁層LY3との間に設けられた配線層LY2に形成されてもよい。あるいは、演出制御基板12における配線パターンは、演出制御基板12の基板上にて表面形成されてもよい。端子TA02は、信号伝送用の配線パターンと電気的に接続された接続パッドに接合される。
レセプタクルKRE1が備える固定用金具SS01は、演出制御基板12の基板上に設けられたダミーパッドDP3に接合される。レセプタクルKRE1が備える固定用金具SS02は、演出制御基板12の基板上に設けられたダミーパッドDP4に接合される。このように、端子TA01〜TA03が配置される側面PL1の背面側となる側面PL2の側にて、固定用金具SS01、SS02が、演出制御基板12の基板上に設けられたダミーパッドDP3、DP4に接合されるようにすればよい。
主基板11から演出制御基板12に対しては、演出制御コマンドが送信されるところ、そのコマンドを伝送するための主基板配線では、信号伝送線となる信号ラインが1本のみとなる場合がある。これに対応して、演出制御基板12の基板上に表面実装されるレセプタクルKRE1では、信号端子となる端子TA02のみを設ける場合も考えられる。この場合には、レセプタクルKRE1の高さに応じた演出制御基板12の基板表面からの突出量に対して、レセプタクルKRE1の横幅や奥行きに応じた演出制御基板12の基板上における接合面の面積が減少しやすくなるので、レセプタクルKRE1の表面実装による接合強度を十分に確保できなくなるおそれがある。そこで、レセプタクルKRE1では、信号端子となる端子TA02の両側を挟む位置で、一対の接地端子となる端子TA01、TA03が演出制御基板12の基板上に表面実装されるようにする。これにより、レセプタクルKRE1の表面実装による接合強度を十分に確保できる適切な基板構成が可能になる。また、信号端子となる端子TA02の両側が一対の接地端子となる端子TA01、TA03で挟まれているので、ノイズの影響を受けにくい適切な基板構成が可能になる。
レセプタクルKRE1において、端子TA01は演出制御基板12の基板上に設けられたダミーパッドDP1に接合され、端子TA03は演出制御基板12の基板上に設けられたダミーパッドDP2に接合される。また、端子TA01〜TA03の先端部は、基板ケース800のカバー部材802に被覆されるように配置する。このように、端子TA01、TA03がダミーパッドDP1、DP2に接合されているので、レセプタクルKRE1の表面実装による接合強度を十分に確保できる適切な基板構成が可能になる。端子TA01〜TA03の先端部が基板ケース800のカバー部材802に被覆されるので、端子と基板面との接合部分といった、表面実装における重要な部位を保護できる適切な基板構成が可能になる。なお、信号端子となる端子TA02については、ダミーパッドに接合されてもよいし、ダミーパッドには接合されないようにしてもよい。信号端子となる端子TA02をダミーパッドには接合されないようにすることで、導体形状の影響による信号劣化を防止してもよい。
レセプタクルKRE1において、端子TA01〜TA03が配置される側面PL1の背面側となる側面PL2の側にて、固定用金具SS01は演出制御基板12の基板上に設けられたダミーパッドDP3に接合され、固定用金具SS02は演出制御基板12の基板上に設けられたダミーパッドDP4に接合される。このように、固定用金具SS01、SS02がダミーパッドDP3、DP4に接合されているので、レセプタクルKRE1の表面実装による接合強度を十分に確保できる適切な基板構成が可能になる。なお、固定用金具SS01、SS02などの金属部材を基板上に接合する方法によらず、例えばレセプタクルKRE1のハウジングと同様の合成樹脂などを用いた固定部材を基板上に接着させるといった、任意の固定部材を基板上に接合できるものであればよい。
基板ケース800のカバー部材802における部品収容部802aは、演出制御基板12の基板上に実装された電気部品の少なくとも一部を収容可能に形成され、開口領域836aにおける内周壁面836bとレセプタクルKRE1との間隔は、部品収容部802aに近い側の開口幅W2が遠い側の開口幅W1よりも広く形成されている。部品収容部802aに近い側は、レセプタクルKRE1において端子TA01〜TA03が外部に引き出される端子配置面となる側面PL1の側となる。これに対し、部品収容部802aに遠い側は、レセプタクルKRE1において端子配置面の背面側となる側面PL2の側となる。したがって、開口領域836aにおける内周壁面836bとレセプタクルKRE1との間隔は、端子配置面となる側面PL1に対応する側の開口幅W2が端子配置面の背面となる側面PL2に対応する側の開口幅W1よりも広く形成されている。このように開口幅が調整されているので、例えばカバー部材802を容易に取り付けたり取り外したり位置合わせができる適切な基板構成が可能になる。また、カバー部材802の取付け時や取外し時にレセプタクルKRE1の端子配置面とカバー部材802とが衝突することによる破損を抑制できる適切な基板構成が可能になる。
レセプタクルKRE1の端子TA01〜TA03は、それぞれ開口領域836aにて基板ケース800のカバー部材802により被覆されず露出する露出部と基板ケース800のカバー部材802により被覆されて露出しない被覆部とが形成される。このように、各端子TA01〜TA03には、露出部とは異なり、被覆されて露出しない被覆部が形成されるので、端子と基板面との接合部分といった、表面実装における重要な部位を保護できる適切な基板構成が可能になる。
レセプタクルKRE1の端子TA01〜TA03において、演出制御基板12の基板上で対応する接続パッドに接合するように表面実装された実装位置は、開口領域836aにおける内周壁面836bを形成するカバー部材802の開口周縁部840により被覆される。そして、カバー部材802の開口周縁部840と演出制御基板12の基板面とにより、レセプタクルKRE1の実装位置に近接するスペースSP1が形成される。このように、カバー部材802の開口周縁部840と演出制御基板12の基板面とが位置調整可能に配置されるので、レセプタクルKRE1の実装位置を保護できる適切な基板構成が可能になる。
図11(A)は、主基板配線に対応する伝送経路を示している。図11(A)に示すように、主基板配線用のレセプタクルKRE1にて、端子TA02に供給された信号SCDは、入力ドライバ回路130を介して、演出制御用CPU120に入力される。レセプタクルKRE1の端子TA01、TA03は、接地(グランドラインに接続)されている。
図11(B)は、電源基板配線に対応する伝送経路を示している。電源基板配線用のレセプタクルKRE2は、端子TA11〜TA30を備えている。このうち、レセプタクルKRE2において外側に対応する端子TA11、TA12と端子TA29、TA30とは、いずれも接地(グランドラインに接続)されている。また、端子TA11、TA12、TA29、TA30の他にも、端子TA25、TA26は、接地(グランドラインに接続)されている。レセプタクルKRE2の端子TA13、TA14には、直流34Vの電源電圧VSL2が供給される。レセプタクルKRE2の端子TA15〜TA20には、直流12Vの電源電圧VDD2が供給される。レセプタクルKRE2の端子TA21〜TA24には、直流5Vの電源電圧VCC2が供給される。レセプタクルKRE2の端子TA27、TA28には、直流12Vの電源電圧VDD3が供給される。
電源基板配線用のレセプタクルKRE2に接続された電源基板配線を経由して電源基板92から演出制御基板12に供給された直流34Vの電源電圧VSL2は、そのまま電源電圧VSLとして演出制御基板12から出力され、ドライバ基板配線用のレセプタクルKRE3に接続されたドライバ基板配線を経由して、ドライバ基板19に供給される。例えば、電源基板配線用のレセプタクルKRE2において、電源電圧VSL2の供給を受ける端子TA13、TA14は、電源ラインLSLに接続され、電源ラインLSLがドライバ基板配線用のレセプタクルKRE3における所定端子に接続されている。図4に示すように、電源基板配線用のレセプタクルKRE2はドライバ基板配線用のレセプタクルKRE3と隣接して設けられ、電源ラインLSLは演出制御基板12における主要な電気回路や電気部品に接近しない演出制御基板12の端部を通過するように配置されていればよい。
図12は、電源電圧VSLの伝送経路を示している。電源基板92では、変圧回路501、直流電圧生成回路502などを用いて、外部電源である商用電源から直流34Vの電源電圧VSL2が生成される。例えば変圧回路501では、交流24Vの電源電圧が生成される。直流電圧生成回路502は、整流回路や平滑回路を含み、交流24Vの電源電圧を整流、平滑して直流34Vの電源電圧VSL2を生成する。直流34Vの電源電圧VSL2は、フィードバック制御などによる電圧制御が行われていないので、交流24Vの電源電圧の変動により、直流34Vの電源電圧VSL2も変動する。このように、レセプタクルKRE2の端子TA13、TA14に供給される直流34Vの電源電圧VSL2は、電圧制御が行われていない変動幅(リップル成分)が大きい直流電圧である。これに対し、レセプタクルKRE2の端子TA15〜TA20に供給される直流12Vの電源電圧VDD2、レセプタクルKRE2の端子TA21〜TA24に供給される直流5Vの電源電圧VCC2、レセプタクルKRE2の端子TA27、TA28に供給される直流12Vの電源電圧VDD3は、いずれも電源基板92において、フィードバック制御による電圧制御が行われ、直流34Vの電源電圧VSLと比較して、変動幅(リップル成分)が少ない直流電圧であればよい。
演出制御基板12において、直流34Vの電源電圧VSLに対応する電源ラインLSLにはフィルタ回路などの電圧を安定化する安定化回路が介在しない。その一方で、ドライバ基板19では、直流34Vの電源電圧VSLをフィルタ回路511に入力して、電圧を安定化する。また、演出制御基板12において、直流34Vの電源電圧VSLとは異なる電源電圧に対応する電源ラインにはフィルタ回路などにより電圧を安定化する安定化回路が介在する。
例えば電源基板配線用のレセプタクルKRE2において、直流12Vの電源電圧VDD2が供給される端子TA15〜TA20は、フィルタ回路131aに接続され、直流5Vの電源電圧VCC2が供給される端子TA21〜TA24は、フィルタ回路131bに接続され、直流12Vの電源電圧VDD3が供給される端子TA27、TA28は、フィルタ回路131cに接続されている。フィルタ回路131aの出力部は直流12Vの電源電圧VDSを供給する電源ラインLDSに接続され、フィルタ回路131bの出力部は直流5Vの電源電圧VCCを供給する電源ラインLCCに接続され、フィルタ回路131cの出力部は直流12Vの電源電圧VDCを供給する電源ラインLDCに接続されている。こうして、フィルタ回路131aはレセプタクルKRE2の端子TA15〜TA20と直流12Vの電源電圧VDSに対応する電源ラインLDSとの間に介在し、フィルタ回路131bはレセプタクルKRE2の端子TA21〜TA24と直流5Vの電源電圧VCCに対応する電源ラインLCCとの間に介在し、フィルタ回路131cはレセプタクルKRE2の端子TA27、TA28と直流12Vの電源電圧VDCに対応する電源ラインLDCとの間に介在する。
電源ラインLSLは、直流34Vの電源電圧VSLを供給するために設けられている。電源ラインLDSは、直流12Vの電源電圧VDSを供給するために設けられている。電源ラインLCCは、直流5Vの電源電圧VCCを供給するために設けられている。電源ラインLDCは、直流12Vの電源電圧VDCを供給するために設けられている。したがって、フィルタ回路が介在しない電源ラインLSLは、フィルタ回路が介在する電源ラインLDS、LCC、LDCのいずれと比較しても、高い電源電圧を供給するために設けられている。
レセプタクルKRE2では、直流12Vの電源電圧VDD2が供給される6つの端子TA15〜TA20、直流5Vの電源電圧VCC2が供給される4つの端子TA21〜TA24、直流12Vの電源電圧VDD3が供給される2つの端子TA27、TA28が設けられる一方で、直流34Vの電源電圧VSL2が供給される2つの端子TA13、TA14が設けられる。そのため、レセプタクルKRE2では、電源電圧が供給される端子のうちで、フィルタ回路に接続された端子TA15〜TA20、TA21〜TA24、TA27、TA28の端子数が、フィルタ回路に接続されていない端子TA13、TA14の端子数よりも多くなる。なお、それぞれの電源電圧に対応した端子数は、電源容量や負荷電流に応じて設定したものであればよい。
レセプタクルKRE2では、端子TA15〜TA20に直流12Vの電源電圧VDD2が供給され、端子TA21〜TA24に直流5Vの電源電圧VCC2が供給され、端子TA27、TA28に直流12Vの電源電圧VDD3が供給される一方で、端子TA13、TA14に直流34Vの電源電圧VSL2が供給される。そして、レセプタクルKRE2の端子TA15〜TA20と直流12Vの電源電圧VDSを供給する電源ラインLDSとの間にはフィルタ回路131aが介在し、レセプタクルKRE2の端子TA21〜TA24と直流5Vの電源電圧VCCを供給する電源ラインLCCとの間にはフィルタ回路131bが介在し、レセプタクルKRE2の端子TA27、TA28と直流12Vの電源電圧VDCを供給する電源ラインLDCとの間にはフィルタ回路131cが介在する。これに対し、レセプタクルKRE2の端子TA13、TA14と直流34Vの電源電圧VSLを供給する電源ラインLSLとの間にはフィルタ回路が介在しない。このように、フィルタ回路が介在する電源ラインLDS、LCC、LDCは、直流12Vあるいは直流5Vといった複数種類の電源電圧を供給可能であり、フィルタ回路が介在しない電源ラインLSLは、直流34Vという一種類の電源電圧を供給可能である。レセプタクルKRE2では、端子TA13、TA14が端子TA15〜TA24などよりも外側に配置されている。あるいは、レセプタクルKRE2では、端子TA15〜TA24、TA27、TA28のうちで、例えば端子TA15〜TA24のように、端子TA13、TA14よりも内側に配置された端子が含まれている。
レセプタクルKRE2では、端子TA11、TA12と、端子TA29、TA30との間に、端子TA13〜TA24、TA27、TA28が配置される。端子TA13〜TA24、TA27、TA28は、いずれも電源電圧が供給される端子であり、各種の電源電圧に接続される電源電圧端子となる。これに対し、端子TA11、TA12と、端子TA29、TA30とは、いずれも電源電圧が供給されない端子であり、接地電圧に接続される接地端子となる。したがって、レセプタクルKRE2では、接地端子となる端子TA11、TA12と端子TA29、TA30との間に、電源電圧端子となる端子TA13〜TA24、TA27、TA28が配置される。
レセプタクルKRE2では、端子TA11、TA12と、端子TA25、TA26との間に、端子TA13、TA14と、端子TA15〜TA24とが配置され、端子TA25、TA26と、端子TA29、TA30との間に、端子TA27、TA28が配置される。端子TA13、TA14は、直流34Vの電源電圧VSL2が供給される端子であり、電源電圧VSL2に接続される電源電圧端子である。端子TA15〜TA20は、直流12Vの電源電圧VDD2が供給される端子であり、電源電圧VDD2に接続される電源電圧端子である。端子TA21〜TA24は、直流5Vの電源電圧VCC2が供給される端子であり、電源電圧VCC2に接続される電源電圧端子である。端子TA27、TA28は、直流12Vの電源電圧VDD3が供給される端子であり、電源電圧VDD3に接続される電源電圧端子である。そのため、直流34Vの電源電圧VSL2に接続される電源電圧端子としての端子TA13、TA14と、直流34Vの電源電圧VSL2以外の電源電圧に接続される電源電圧端子としての端子TA15〜TA24、TA27、TA28のうちの一部である端子TA15〜TA24とが、接地端子となる端子TA11、TA12と端子TA25、TA26との間に配置される。また、直流34Vの電源電圧VSL2以外の電源電圧に接続される電源電圧端子としての端子TA15〜TA24、TA27、TA28のうちで、他の一部である端子TA27、TA28が、接地端子となる端子TA25、TA26と端子TA29、TA30との間に配置される。
端子TA27、TA28に供給される直流12Vの電源電圧VDD3は、降圧コンバータ回路132により直流1.05Vの電源電圧を生成するために用いられる。直流1.05Vの電源電圧は、例えば表示制御部123のグラフィックスプロセッサといった、特定のマイクロプロセッサに供給される。したがって、レセプタクルKRE2では、電源電圧に接続される端子TA13〜TA24、TA27、TA28のうちで、変動幅(リップル成分)が比較的に大きい直流34Vの電源電圧VSL2に接続される端子TA13、TA14は、表示制御部123のグラフィックスプロセッサといった特定のマイクロプロセッサに供給する電源電圧の生成に用いられる直流12Vの電源電圧VDD3に接続されるTA27、TA28から最も離れて配置される。
演出制御基板12では、直流34Vの電源電圧VSL2を安定化してから電源電圧VSLとして出力する場合も考えられる。しかしながら、演出制御基板12では直接的な用途のない直流34Vの電源電圧VSL2を安定化する回路素子の設置は、部品点数や基板容積の増大を招き、電力損失や製造コストも増加する。また、特別な回路素子の設置により、演出制御基板12のリユースや共通化が困難になるおそれもある。そこで、電圧制御が行われていない直流34Vの電源電圧VSL2は、そのまま電源電圧VSLとして演出制御基板12から出力され、ドライバ基板19にてフィルタ回路511に入力して電圧を安定化する。これにより、部品点数や基板容積の増大、電力損失や製造コストの増加を防止する適切な基板構成が可能になる。また、演出制御基板12のリユースや共通化が容易に行われる適切な基板構成が可能になる。また、電源ラインLSLは、演出制御基板12における主要な電気回路や電気部品から離れて配置されることにより、変動幅(リップル成分)が大きい直流電圧によるノイズの悪影響を防止する適切な基板構成が可能になる。
演出制御基板12において、直流34Vの電源電圧VSLを供給する電源ラインLSLは、直流12Vの電源電圧VDSを供給する電源ラインLDS、直流5Vの電源電圧VCCを供給する電源ラインLCC、直流12Vの電源電圧VDSを供給する電源ラインLDSのいずれと比較しても、高い電源電圧となる直流34Vを供給する。一般的に、高い電源電圧を安定化する安定化回路は、低い電源電圧を安定化する安定化回路よりも、回路素子の容積や電力損失が大きなものになりやすく、回路素子の値段が高価なものになりやすい。そこで、高い電源電圧となる直流34Vの電源電圧VSLを供給する電源ラインLSLにはフィルタ回路が介在しないことにより、基板容積の増大、電力損失や製造コストの増加を防止する適切な基板構成が可能になる。
レセプタクルKRE2において、2つの端子TA13、TA14には直流34Vの電源電圧VSLが供給される。これに対し、レセプタクルKRE2において、6つの端子TA15〜TA20には直流12Vの電源電圧VDD2が供給され、4つの端子TA21〜TA24には直流5Vの電源電圧VCC2が供給され、2つの端子TA27、TA28には直流12Vの電源電圧VDD3が供給される。したがって、演出制御基板12では、レセプタクルKRE2にて電源電圧が供給される端子のうちで、フィルタ回路131a〜131cのいずれかに接続される端子TA15〜TA24、TA27、TA28の端子数が、フィルタ回路に接続されない端子TA13、TA14の端子数よりも多くなる。このように端子数が設定されているので、例えば演出制御基板12にて電圧を安定化する対象となる電源電圧の用途や電源容量などに応じて、配線設計の自由度を向上させる適切な基板構成が可能になる。
レセプタクルKRE2において、電源電圧が供給される端子のうちで、演出制御基板12にてフィルタ回路131a〜131cのいずれかに接続される端子TA15〜TA24、TA27、TA28は、直流12Vの電源電圧VDD2を供給可能な端子TA15〜TA20と、直流5Vの電源電圧VCC2を供給可能な端子TA21〜TA24と、直流12Vの電源電圧VDD3を供給可能な端子TA27、TA28とを、含んでいる。これに対し、レセプタクルKRE2において、電源電圧が供給される端子のうちで、演出制御基板12ではフィルタ回路に接続されない端子TA13、TA14は、直流34Vの電源電圧VSL2を供給可能であり、他の種類の電源電圧は供給しない。そのため、フィルタ回路が介在する電源ラインであるか、フィルタ回路が介在しない電源ラインであるかに応じて、供給可能な電源電圧の種類数が異なっている。より具体的には、フィルタ回路が介在する電源ラインは、直流12Vの電源電圧VDD2、直流5Vの電源電圧VCC2、直流12Vの電源電圧VDD2といった、複数種類の電源電圧を供給可能であり、フィルタ回路が介在しない電源ラインは、直流34Vの電源電圧VSLという一種類の電源電圧を供給可能である。このように、電源ラインに対応して供給可能な電源電圧の種類数が異なるので、例えば演出制御基板12にて電圧を安定化する対象となる電源電圧の用途などに応じて、配線設計の自由度を向上させる適切な基板構成が可能になる。
また、フィルタ回路が介在しない電源ラインに接続された端子TA13、TA14は、フィルタ回路が介在する電源ラインに接続された端子TA15〜TA24などよりも外側に配置されている。このような端子の配置により、例えば演出制御基板12にて電圧を安定化する対象となる電源電圧の用途などに応じて、配線設計の自由度を向上させる適切な基板構成が可能になる。加えて、端子TA13、TA14に供給された直流34Vの電源電圧VSL2を、そのまま電源電圧VSLとしてドライバ基板19に対して出力するための配線長を短縮する適切な基板構成が可能になる。
レセプタクルKRE2において、端子TA13〜TA24、TA27、TA28は、各種の電源電圧に接続される電源電圧端子となる。これに対し、レセプタクルKRE2において、端子TA11、TA12と、端子TA29、TA30とは、いずれも接地電圧に接続される接地端子となる。そして、端子TA13〜TA24、TA27、TA28は、端子TA11、TA12と、端子TA29、TA30との間に配置されている。このような端子の配置により、ノイズの影響を受けにくい適切な基板構成が可能になる。また、電源電圧を遮蔽して、ノイズの発生を防止する適切な基板構成が可能になる。
レセプタクルKRE2において、端子TA15〜TA24、TA27、TA28は、直流34Vの電源電圧VSL2とは異なる電源電圧に接続される第1電源電圧端子となる。その一方で、レセプタクルKRE2において、端子TA13、TA14は、直流34Vの電源電圧VSL2に接続される第2電源電圧端子となる。また、レセプタクルKRE2において、端子TA11、TA12は接地電圧に接続される第1接地端子となり、端子TA25、TA26は接地電圧に接続される第2接地端子となり、端子TA29、TA30は接地電圧に接続される第3接地端子となる。そして、レセプタクルKRE2では、第2電源電圧端子に含まれる端子TA13、TA14と、第1電源電圧端子に含まれる端子TA15〜TA24とが、第1接地端子に含まれる端子TA11、TA12と、第2接地端子に含まれる端子TA25、TA26との間に配置され、第1電源電圧端子に含まれる端子TA27、TA28が、第2接地端子に含まれる端子TA25、TA26と、第3接地端子に含まれる端子TA29、TA30との間に配置される。このような端子の配置により、ノイズの影響を受けにくい適切な基板構成が可能になる。特に、第2接地端子に含まれる端子TA25、TA26を、第2電源電圧端子に含まれる端子TA13、TA14および第1電源電圧端子に含まれる端子TA15〜TA24と、第1電源電圧端子に含まれるTA27、TA28との間に配置させることで、さらにノイズの影響を受けにくい適切な基板構成が可能になる。また、電源電圧を効率よく遮蔽して、さらにノイズの発生を防止する適切な基板構成が可能になる。加えて、直流34Vの電源電圧VSL2に接続される端子TA13、TA14は、表示制御部123のグラフィックスプロセッサといった特定のマイクロプロセッサに供給する電源電圧の生成に用いられる直流12Vの電源電圧VDD3に接続されるTA27、TA28から離れて配置されるので、特定のマイクロプロセッサがノイズの影響を受けにくい適切な基板構成が可能になる。
演出制御基板12では、レセプタクルKRE2の端子TA15〜TA20にて供給された電源電圧VDD2から、分岐点DB1にて電源電圧VDLが分岐される。このような分岐点DB1にて電源電圧VDLが分岐された後に、フィルタ回路131aにより電源電圧VDSを安定化する。電源電圧VDLは、例えば演出用LED61に含まれる特定のLEDといった、特定の電気部品を駆動するために用いられる直流12Vの電源電圧である。電源電圧VDSは、増幅回路521に供給され、音声信号を出力するために用いられる直流12Vの電源電圧である。このように、フィルタ回路131aは、1の電源電圧VDD2を、電源電圧VDLと電源電圧VDSとに分岐した後に、電源電圧VDSを安定化する。演出制御基板12には、増幅回路521が設けられ、スピーカ8L、8Rに供給される音声信号を出力可能としてもよい。
図13(A)は、電源電圧VDSを供給するための配線における配線長の関係を示している。演出制御基板12において、電源電圧VDSを増幅回路521に供給するための電源ラインLDSは、分岐点DB1からフィルタ回路131aの入力部までの配線長LL1を有する配線と、フィルタ回路131aの出力部から増幅回路521の入力部までの配線長LL2を有する配線とを、含んでいればよい。そして、配線長LL2は、配線長LL1よりも短くなるように、演出制御基板12における配線や回路の配置が調整されていればよい。このように、フィルタ回路131aから増幅回路521までの配線長LL2は、電源電圧VDSを分岐点DB1にて分岐させてからフィルタ回路131aまでの配線長LL1よりも短くなる。なお、増幅回路521やフィルタ回路131aは、演出制御基板12に設置されるものに限定されず、音声制御基板13に設置されてもよい。
図13(B)は、増幅回路521やフィルタ回路131aを音声制御基板13に設置した場合における電源電圧VDSの伝送経路を示している。電源基板92では、変圧回路501、直流電圧生成回路502などを用いて、外部電源である商用電源から直流12Vの電源電圧VDD2が生成される。直流12Vの電源電圧VDD2は、電源基板配線用のレセプタクルKRE2において、端子TA15〜TA20に供給される。演出制御基板12では、レセプタクルKRE2の端子TA15〜TA20にて供給された電源電圧VDD2から、分岐点DB1にて電源電圧VDLが分岐された後、そのまま電源電圧VDSとして演出制御基板12から出力され、音声基板配線用のレセプタクルKRE4に接続された音声制御基板配線を経由して、音声制御基板13に供給されてもよい。例えば、電源基板配線用のレセプタクルKRE2において、電源電圧VDD2の供給を受ける端子TA15〜TA20は、電源ラインLDSに接続され、電源ラインLDSが音声制御基板配線用のレセプタクルKRE4における所定端子に接続されていればよい。演出制御基板12において、直流12Vの電源電圧VDSに対応する電源ラインLDSにはフィルタ回路などの電圧を安定化する安定化回路が介在しなくてもよい。その一方で、音声制御基板13では、直流12Vの電源電圧VDSをフィルタ回路131aに入力して、電圧を安定化する。こうして安定化された電源電圧VDSを増幅回路521に供給すればよい。
音声制御基板13には、音声制御用IC522、音声データROM523などが設けられてもよい。音声制御用IC522は、演出制御基板12の演出制御用CPU120などから出力された指令(音番号データなど)に応じて、音声や効果音を生成するための信号処理を実行する。音声データROM523は、音番号データに応じた制御データを記憶している。音番号データに応じた制御データは、所定期間(例えば飾り図柄の可変表示期間)における音声や効果音の出力態様を時系列的に示すデータの集まりである。なお、音声制御基板13に設けられる各種の構成を、演出制御基板12に設けられるように構成し、音声制御基板13を備えないものであってもよい。
音声制御用IC522などにより生成された音声信号を増幅して、スピーカ8L、8Rなどに出力可能な増幅回路521は、電源電圧に変動が生じると、出力される音声信号に歪みが生じるといった、音質に悪影響が及ぶおそれがある。そこで、直流12Vの電源電圧VDSは、フィルタ回路131aにより安定化した後に、増幅回路521に供給される。演出制御基板12において、1の電源電圧VDD2を、特定の電気部品を駆動するための電源電圧VDLと、増幅回路521に供給するための電源電圧VDSとに分岐した後に、フィルタ回路131aを用いて安定化した電源電圧VDSを増幅回路521に供給する。このように、フィルタ回路131aを用いて安定化した電源電圧VDSを増幅回路521に供給することで、増幅回路521を安定して動作させる適切な基板構成が可能になる。
増幅回路521に供給するための電源電圧VDSに対応する電源ラインLDSにおいて、フィルタ回路131aから増幅回路521までの配線長LL2は、分岐点DB1にて電源電圧VDLが分岐されてからフィルタ回路131aに入力するまでの配線長LL1よりも短くなる。このように、フィルタ回路131aを用いて安定化した電源電圧VDSを増幅回路521に供給するまでの配線長を短くすることで、ノイズの影響を受けにくく、増幅回路521を安定して動作させる適切な基板構成が可能になる。
演出制御基板12では、レセプタクルKRE2の端子TA21〜TA24にて供給された電源電圧VCC2から、電源電圧VCLが分岐される。電源電圧VCLが分岐された後に、フィルタ回路131bにより電源電圧VCCを安定化する。電源電圧VCLは、例えば演出用モータ60に含まれる特定のモータや演出用LED61に含まれる特定のLEDといった、特定の電気部品を駆動するために用いられる直流5Vの電源電圧である。電源電圧VCCは、例えば演出制御用CPU120といった、所定の電気回路を駆動するために用いられる直流5Vの直流電源である。このように、フィルタ回路131bは、1の電源電圧VCC2を、電源電圧VCLと電源電圧VDDとに分岐した後の電源電圧VDDを安定化する。
演出制御基板12では、レセプタクルKRE2の端子TA27、TA28にて供給された電源電圧VDD3を、フィルタ回路131cにより安定化した後に、電源電圧VDCを供給可能に分岐させる。電源電圧VDCは、電源断の発生を監視するために用いられる直流12Vの電源電圧である。また、電源電圧VDD3は、フィルタ回路131cにより安定化した後に、降圧コンバータ回路132に入力される。降圧コンバータ回路132は、1入力2出力の直流電圧を変換する回路である。図11に示す降圧コンバータ回路132は、直流12Vの電源電圧VDD3をフィルタ回路131cにより安定化した電圧が入力されて、直流1.05Vの電源電圧と、直流3.3Vの電源電圧とに変換して出力する。降圧コンバータ回路132の出力部は、直流1.05Vの電源電圧を供給する電源ラインL10と、直流3.3Vの電源電圧を供給する電源ラインL33とに接続されている。直流1.05Vの電源電圧は、例えば表示制御部123に含まれるグラフィックスプロセッサといった、所定の電気回路を駆動するために用いられる。直流3.3Vの電源電圧は、例えばROM121や表示制御部123に含まれる画像データメモリといった、所定の電気回路を駆動するために用いられる。直流3.3Vの電源電圧は、レギュレータ回路133にも入力される。レギュレータ回路133は、例えばLDO(Low Drop-Out)レギュレータなどのシリーズレギュレータといったリニア方式の安定化電源回路であればよく、直流3.3Vの電源電圧が入力されて、直流1.5Vの電源電圧に変換して出力する。レギュレータ回路133の出力部は、直流1.5Vの電源電圧を供給する電源ラインL15に接続されている。直流1.5Vの電源電圧は、例えばRAM122といった、所定の電気回路を駆動するために用いられる。
図14は、フィルタ回路131a〜131cの構成例を示している。図14(A)は、電源電圧VDSに対応するフィルタ回路131aの構成例を示している。図14(B)は、電源電圧VCCに対応するフィルタ回路131bの構成例を示している。図14(C)は、電源電圧VDCに対応するフィルタ回路131cの構成例を示している。
図14(A)に示すフィルタ回路131aは、三端子コンデンサ85a、バイパスコンデンサC10、C11、電解コンデンサC1を用いて構成されていればよい。バイパスコンデンサC10、C11は、電解コンデンサC1と比較して、高周波のノイズを防止するノイズ対策用の電気部品であり、デカップリングコンデンサともいう。電解コンデンサC1は、バイパスコンデンサC10、C11と比較して、低周波のノイズを防止するノイズ対策用の電気部品である。三端子コンデンサ85aの入力端子(IN)は、フィルタ回路131aの入力部となり、直流12Vの電源電圧VDD2が供給される。三端子コンデンサ85aの出力端子(OUT)は、フィルタ回路131aの出力部となり、電圧が安定化された直流12Vの電源電圧VDSを供給する。三端子コンデンサ85aの接地端子(GND)は、接地(グランドラインに接続)されている。三端子コンデンサ85aの出力端子と接地端子との間には、0.1μFのバイパスコンデンサC10、47μFのバイパスコンデンサC11、1000μFの電解コンデンサC1が、接続されている。
図14(B)に示すフィルタ回路131bは、三端子コンデンサ85b、バイパスコンデンサC12、C13、電解コンデンサC2を用いて構成されていればよい。バイパスコンデンサC12、C13は、電解コンデンサC2と比較して、高周波のノイズを防止するノイズ対策用の電気部品である。電解コンデンサC2は、バイパスコンデンサC12、C13と比較して、低周波のノイズを防止するノイズ対策用の電気部品である。三端子コンデンサ85bの入力端子(IN)は、フィルタ回路131bの入力部となり、直流5Vの電源電圧VCC2が供給される。三端子コンデンサ85bの出力端子(OUT)は、フィルタ回路131bの出力部となり、電圧が安定化された直流5Vの電源電圧VCCを供給する。三端子コンデンサ85bの接地端子(GND)は、接地(グランドラインに接続)されている。三端子コンデンサ85bの出力端子と接地端子との間には、0.1μFのバイパスコンデンサC12、47μFのバイパスコンデンサC13、1000μFの電解コンデンサC2が、接続されている。
図14(C)に示すフィルタ回路131cは、三端子コンデンサ85c、バイパスコンデンサC14、電解コンデンサC3を用いて構成されていればよい。バイパスコンデンサC14は、電解コンデンサC3と比較して、高周波のノイズを防止するノイズ対策用の電気部品である。電解コンデンサC3は、バイパスコンデンサC14と比較して、低周波のノイズを防止するノイズ対策用の電気部品である。三端子コンデンサ85cの入力端子(IN)は、フィルタ回路131cの入力部となり、直流12Vの電源電圧VDD3が供給される。三端子コンデンサ85cの出力端子(OUT)は、フィルタ回路131cの出力部となり、電圧が安定化された直流12Vの電源電圧VDCを供給する。三端子コンデンサ85cの接地端子(GND)は、接地(グランドラインに接続)されている。三端子コンデンサ85cの出力端子と接地端子との間には、0.1μFのバイパスコンデンサC14、1000μFの電解コンデンサC3が、接続されている。
フィルタ回路131a〜131cは、各電源経路の電圧を安定化する安定化回路として機能する。例えばフィルタ回路131aは、電源ラインLDSにより供給される直流12Vの電源電圧VDSを安定化する。フィルタ回路131bは、電源ラインLCCにより供給される直流5Vの電源電圧VCCを安定化する。フィルタ回路131cは、電源ラインLDCにより供給される直流12Vの電源電圧を安定化する。演出制御基板12には、フィルタ回路131a〜131cの他にも、各種電源電圧におけるノイズの発生を防止するノイズ防止回路が設けられてもよい。
図15は、演出制御基板12に設けられるノイズ防止回路の構成例を示している。図15(A)は、電源電圧VDLというLED用DC12V(直流12V)に対応するノイズ防止回路135aの構成例を示している。図15(B)は、電源電圧VCLというLED/モータ用DC5V(直流5V)に対応するノイズ防止回路135bの構成例を示している。図15(C)は、電源電圧VCCというIC用DC5V(直流5V)や直流3.3Vの電源電圧というIC用DC3.3V(直流3.3V)に対応するノイズ防止回路135cの構成例を示している。
図15(A)に示すノイズ防止回路135aは、直列接続されたコンデンサC20および抵抗R20と、直列接続されたコンデンサC21および抵抗R21と、直列接続されたコンデンサC22および抵抗R22とを用いて構成されていればよい。これらの構成は、いずれも電源電圧VDLを供給する電源ラインLDLと接地電圧を提供する接地端子(グランドライン)とに接続されていればよい。コンデンサC20、C21、C22は、いずれも0.1μFのバイパスコンデンサであればよい。抵抗R20、R21、R22は、いずれも22Ωの抵抗値を有するものであればよい。
図15(B)に示すノイズ防止回路135bは、直列接続されたコンデンサC23および抵抗R23と、直列接続されたコンデンサC24および抵抗R24とを用いて構成されていればよい。これらの構成は、いずれも電源電圧VCLを供給する電源ラインLCLと接地電圧を提供する接地端子(グランドライン)とに接続されていればよい。コンデンサC23、C24は、いずれも0.1μFのバイパスコンデンサであればよい。抵抗R23、R24は、いずれも22Ωの抵抗値を有するものであればよい。
図15(C)に示すノイズ防止回路135cは、コンデンサC25〜C28を用いて構成されていればよい。コンデンサC25は、電源電圧VCCを供給する電源ラインLCCと接地電圧を提供する接地端子(グランドライン)とに接続されていればよい。コンデンサC26、C27、C28は、いずれも直流3.3Vの電源電圧を供給する電源ラインL33と接地電圧を提供する接地端子(グランドライン)とに接続されていればよい。コンデンサC25〜C28は、いずれも0.1μFのバイパスコンデンサであればよい。
図15(A)に示すノイズ防止回路135aでは、コンデンサC20、C21、C22に加え、抵抗R20、R21、R22が用いられている。図15(B)に示すノイズ防止回路135bでは、コンデンサC23、C24に加え、抵抗R23、R24が用いられている。その一方で、図15(C)に示すノイズ防止回路135cでは、コンデンサC25〜C28が用いられ、抵抗は用いられていない。このように、ノイズ防止回路135a、135bでは、ノイズ防止回路135cとは異なる回路素子として、抵抗R20、R21、R22や、抵抗R23、R24が、用いられている。
図15(A)に示すノイズ防止回路135aにより安定化される電源電圧VDLは、例えば演出用LED61に含まれる特定のLEDといった、特定の電気部品を駆動するために用いられる。電源ラインLDLは、例えば演出用LED61に含まれる特定のLEDといった、特定の電気部品を駆動するための電源電圧VDLを供給する。図15(B)に示すノイズ防止回路135bにより安定化される電源電圧VCLは、例えば演出用モータ60に含まれる特定のモータや演出用LED61に含まれる特定のLEDといった、特定の電気部品を駆動するために用いられる。電源ラインLCLは、例えば演出用モータ60に含まれる特定のモータや演出用LED61に含まれる特定のLEDといった、特定の電気部品を駆動するための電源電圧VCLを供給する。図15(C)に示すノイズ防止回路135cにより安定化される電源電圧VCCと直流3.3Vの電源電圧は、例えば演出制御用CPU120やROM121あるいは表示制御部123に含まれる画像データメモリといった、特定の制御回路を含む電気回路を駆動するために用いられる。電源ラインLCCは、例えば演出制御用CPU120といった、特定の制御回路を含む電気回路を駆動するための電源電圧VCCを供給する。電源ラインL33は、例えばROM121あるいは表示制御部123の画像データメモリといった、特定の制御回路を含む電気回路を駆動するための直流3.3Vの電源電圧を供給する。このように、モータやLEDなど特定の電気部品を駆動するための電源電圧に対応するノイズ防止回路135a、135bでは、CPUやROMなど特定の電気回路を駆動するための電源電圧に対応するノイズ防止回路135cとは異なる回路素子として、抵抗R20、R21、R22や、抵抗R23、R24が、用いられている。
演出用モータ60に含まれる特定のモータや演出用LED61に含まれる特定のLEDのような電流駆動型の回路素子を用いた負荷回路では、負荷回路の過渡現象により過大な突入電流が発生して、電気部品が破損してしまうおそれがある。そこで、ノイズ防止回路135aでは、コンデンサC20に抵抗R20を直列接続し、コンデンサC21に抵抗R21を直列接続し、コンデンサC22に抵抗R22を直列接続する。また、ノイズ防止回路135bでは、コンデンサC23に抵抗R23を直列接続し、コンデンサC24に抵抗R24を直列接続する。なお、電源電圧VDLが安定しているときには、コンデンサC20、C21、C22が充電状態となり、抵抗R20、R21、R22は非導通状態となるので、電力損失の発生を防止できる。電源電圧VCLが安定しているときには、コンデンサC23、C24が充電状態となり、抵抗R23、R24は非導通状態となるので、電力損失の発生を防止できる。その一方で、演出制御用CPU120やROM121あるいは表示制御部123の画像データメモリなどの半導体集積回路では、例えばCMOS回路といった、電圧駆動型の回路素子が用いられ、入力インピーダンスが比較的に大きくなる。そのため、回路の過渡現象による突入電流は発生しにくい。そのため、ノイズ防止回路135cでは、コンデンサC25〜C28を用いる一方で、抵抗を用いる必要はない。こうして、電源電圧を供給する対象となる回路や電気部品の特性に応じて異なる回路素子を用いたノイズ防止回路を構成することにより、基板容積の増大や製造コストの増加を防止しつつ、ノイズの発生を防止する適切な基板構成が可能になる。
図16は、電源電圧VDCを用いる電源監視回路140を示している。演出制御基板12では、電源電圧VDCが電源断の発生を監視するために用いられる。電源監視回路140は、例えば停電監視リセットモジュールICを用いて構成され、電源断信号を出力可能な電源監視手段を実現する回路である。例えば電源監視回路140は、電源電圧VDCが所定値(例えば10V)を超えると、オフ状態(ハイレベル)の電源断信号を出力する。その一方で、電源電圧VDCが所定値以下になった期間が、予め定められた待機時間以上継続したときに、オン状態(ローレベル)の電源断信号を出力する。電源監視回路140から出力された電源断信号は、演出制御用CPU120へと伝送される。
電源断信号を出力するための監視対象となる電源電圧VDCは、直流1.05Vの電源電圧や直流3.3Vの電源電圧、直流1.5Vの電源電圧を生成するために用いられる。直流1.05Vの電源電圧は、例えば表示制御部123に含まれるグラフィックスプロセッサといった、所定の電気回路を駆動するために用いられる。直流3.3Vの電源電圧は、例えばROM121や表示制御部123に含まれる画像データメモリといった、所定の電気回路を駆動するために用いられる。直流1.5Vの電源電圧は、例えばRAM122といった、所定の電気回路を駆動するために用いられる。こうした電気回路に供給される電源電圧の生成に用いられる電源電圧VDCを監視対象とすることにより、電気回路の動作状態が不安定となる以前に、電源断信号を出力する(オン状態にする)ことができるので、各種電気回路における誤動作を防止できる。
演出制御基板12では、レセプタクルKRE2の端子TA27、TA28にて供給された電源電圧VDD3を、フィルタ回路131cにより安定化した後に、降圧コンバータ回路132に入力する。降圧コンバータ回路132は、入力電圧を用いて、直流1.05Vの電源電圧と、直流1.05Vよりも高い直流3.3Vの電源電圧とを生成する。直流3.3Vの電源電圧は、レギュレータ回路133に入力される。レギュレータ回路133は、入力電圧を用いて、直流1.5Vの電源電圧を生成する。直流1.5Vの電源電圧は、直流1.05Vよりも高いが直流3.3Vよりも低い電源電圧となる。このように、降圧コンバータ回路132およびレギュレータ回路133を用いて、直流1.05Vの電源電圧と、直流1.05Vよりも高い直流1.5Vの電源電圧と、直流1.5Vよりも高い直流3.3Vの電源電圧とを生成することができ、降圧コンバータ回路132は、直流1.05Vの電源電圧と、直流3.3Vの電源電圧とを出力する一方で、レギュレータ回路133は、直流1.5Vの電源電圧を出力する。
電源電圧VDD3を、フィルタ回路131cにより安定化した後に、分岐させた直流12Vの電源電圧VDCは、電源断の発生を監視する電源監視回路140に供給される。したがって、降圧コンバータ回路132の入力電圧は、直流12Vの電源電圧VDCと共通であり、降圧コンバータ回路132の入力電圧が電源監視回路140の監視対象になる。なお、電源電圧VDCを分岐させた後において、降圧コンバータ回路132の入力側に、所定容量(例えば47μF)のバイパスコンデンサが接続されてもよい。
降圧コンバータ回路132およびレギュレータ回路133を用いて生成される電源電圧のうち、電圧値が最も小さい低電圧となる直流1.05Vの電源電圧は、例えば表示制御部123のグラフィックスプロセッサといった、特定のマイクロプロセッサに供給される。なお、直流1.05Vの電源電圧は、表示制御部123のグラフィックスプロセッサに供給されるものに限定されず、例えば演出制御用CPU120その他に任意のマイクロプロセッサに供給されてもよい。
降圧コンバータ回路132およびレギュレータ回路133を用いて生成される電源電圧のうち、電圧値が最も大きく高電圧となる直流3.3Vの電源電圧は、例えばROM121や表示制御部123の画像データメモリなどに供給される。ROM121は、直流1.5Vの電源電圧により駆動する電気部品よりも先に起動可能であればよい。
降圧コンバータ回路132およびレギュレータ回路133を用いて生成される電源電圧のうち、直流1.05Vよりも高く直流3.3Vよりは低い直流1.5Vの電源電圧は、例えばRAM122に供給される。RAM122は、例えばDDR(Double Data Rate)方式で記憶や読出が可能な一時記憶メモリであり、SIMM(Single In-line Memory Module)やDIMM(Dual In-line Memory Module)といった、メモリモジュールとして機能する基板を構成する。このようなRAM122を構成する基板は、演出制御基板12に着脱自在に接続可能な別基板として構成されてもよい。この場合、直流1.5Vの電源電圧は、演出制御基板12とは異なる基板に供給されることになる。
降圧コンバータ回路132およびレギュレータ回路133に代えて、1入力3出力の降圧コンバータ回路を用いた場合には、特別な専用回路が必要になり、製造コストが増加するおそれがある。また、単一の回路における発熱量が増大して、電気回路が破損してしまうおそれがある。そこで、降圧コンバータ回路132では、フィルタ回路131cにより安定化した電源電圧VDD3(電源電圧VDCでも同様)が入力されて、直流1.05Vの電源電圧と、直流3.3Vの電源電圧とを出力する。レギュレータ回路133では、直流3.3Vの電源電圧が入力されて、直流1.5Vの電源電圧を出力する。これにより、製造コストの増加を防止するとともに、電気回路での発熱を分散する適切な基板構成が可能になる。
降圧コンバータ回路132に供給される電圧と同一または略同一の電源電圧VDCは、電源監視回路140に供給され、電源断の発生が監視される。こうして、降圧コンバータ回路132およびレギュレータ回路133による各種電源電圧の生成に用いられる電源電圧VDCを、電源監視回路140の監視対象とするので、例えば表示制御部123のグラフィックスプロセッサといった、パチンコ遊技機1における演出を実行するために重要な電気回路の動作状態が不安定となる以前に、電源断の発生を検出する適切な基板構成が可能になる。
降圧コンバータ回路132から出力された直流1.05Vの電源電圧は、例えば表示制御部123のグラフィックスプロセッサといった、特定のマイクロプロセッサに供給される。降圧コンバータ回路132から直流1.05Vの電源電圧を出力させることで、電源断が発生した場合に、レギュレータ回路133から出力させた構成よりも長時間が経過するまで直流1.05Vの電源電圧を維持することができる。これにより、電源断が発生した場合に、例えば表示制御部123のグラフィックスプロセッサといった、パチンコ遊技機1における演出を実行するために重要な電気回路の動作を可能な限り継続させる適切な基板構成が可能になる。
降圧コンバータ回路132から出力された直流3.3Vの電源電圧は、例えばROM121に供給され、レギュレータ回路133から出力される直流1.5Vの電源電圧により駆動するRAM122などの電気部品よりも先に起動可能となる。これにより、電源投入された場合に、例えば演出制御用CPU120によりROM121の記憶データを即座に読出できる適切な基板構成が可能になる。
レギュレータ回路133から出力された直流1.5Vの電源電圧は、例えばRAM122といった、演出制御基板12とは異なる基板として構成されたものに供給されてもよい。このように、演出制御基板12とは異なる基板に供給される直流1.5Vの電源電圧を、降圧コンバータ回路132とは異なるレギュレータ回路133から出力させることで、製造コストの増加を防止するとともに、電気回路での発熱を分散する適切な基板構成が可能になる。
(特徴部30AKに関する説明)
図17は、本実施形態の特徴部30AKに関し、主基板11における一方の基板面(表面)にて、CPU103とRAM102とを接続する配線のパターンが形成された部分の構成例を示している。主基板11では、例えばRAM102とCPU103といった、複数の電気部品を複数の信号配線により接続するために、複数の信号配線を構成する配線のパターンが形成されている。CPU103は、パチンコ遊技機1における遊技の制御に関して、所定の処理を実行可能に構成された電気部品であり、RAM102はCPU103による処理の実行に関する情報を記憶可能に構成された電気部品である。
複数の信号配線を構成する配線のパターンに対し、それらの周囲あるいは信号配線間における領域にて、1または複数のグランド導体が配置されている。グランド導体は、基準グランドや特性インピーダンス調整用グランドとして機能し、グランド電圧に維持される。図17に示す構成例では、複数のグランド導体として、複数の信号配線の周囲における領域にグランド導体30AK10Gおよびグランド導体30AK11Gが配置され、複数の信号配線間における領域にグランド導体30AK20Gが配置されている。このように、複数の信号配線を構成する配線のパターンが設けられていない空白領域となる空域部分には、1または複数のグランド導体が設けられていてもよい。これにより、複数の信号配線から放射される電磁波ノイズや信号配線間での電磁波ノイズによる電磁妨害を、防止あるいは抑制できる。
なお、複数の信号配線の周囲および信号配線間における双方の領域に複数のグランド導体が配置されるものに限定されず、複数の信号配線の周囲または信号配線間における一方の領域にのみグランド導体が配置されるものであってもよい。あるいは、このようなグランド導体が配置されないものであってもよい。
図18は、図17に示した複数の信号配線を構成する配線のパターンについて、より詳細に説明するための領域や区間を示している。図18に示す領域30AK01Rは、複数の信号配線がCPU103に接続される側の端部における領域である。図18に示す領域30AK10Rは、複数の信号配線がいずれも直線形状または略直線形状で互いに平行または略平行な第1形状となる領域であり、図18に示す領域30AK11Rと領域30AK12Rは、少なくとも一部の信号配線が直線形状および略直線形状とは異なる形状で他の信号配線と平行および略平行ではない第2形状となる領域である。図18に示す区間30AK0SCでは、複数の信号配線のうち一部の信号配線が最短または略最短の距離で接続する短距離パターンと短距離パターンに含まれない信号配線が短距離パターンよりも長い距離で接続する長距離パターンとが配置されている。
図19は、図18に示された領域30AK01Rの拡大図である。図19に示す領域30AK01Rにおいて、複数の信号配線を構成する配線のパターンは、パターン30AK10D〜30AK13Dと、パターン30AK10CKと、パターン30AK10CSと、パターン30AK10RSと、パターン30AK10A〜30AK14Aとを含んでいる。
図20は、図19に示された配線のパターンに対応して、信号種類、信号同期の有無、蛇行形状の有無についての設定例を示している。図20に示す信号種類は、各配線のパターンが構成する信号配線で伝送される電気信号の内容(用途)を示している。図20に示す信号同期は、他の信号配線で伝送される電気信号に対する同期の有無を示している。図20に示す蛇行形状は、RAM102とCPU103との間を接続する各配線のパターンについて、直線形状および略直線形状とは異なる蛇行形状となる部分が設けられているか否かを示している。蛇行形状は、ミアンダ形状やジグザグ形状、あるいは折返し形状とも称され、所定区間における信号配線の延設方向に対し、信号配線が繰り返し折り曲げられることにより、例えば延設方向に直交あるいは略直交する方向に折返し往復する形状であればよい。
図20に示す設定例において、配線のパターン30AK10D〜30AK13Dは、いずれもデータ信号を伝送するための信号配線を構成する。各信号配線で伝送されるデータ信号は、例えばクロック信号および他の信号配線で伝送されるデータ信号といった、他の信号配線で伝送される信号と同期して伝送される。配線のパターン30AK10CKは、クロック信号を伝送するための信号配線を構成する。クロック信号は、例えばデータ信号やアドレス信号、チップセレクト信号といった、他の信号配線で伝送される信号と同期して伝送される。配線のパターン30AK10CSは、チップセレクト信号を伝送するための信号配線を構成する。チップセレクト信号は、例えばクロック信号といった、他の信号配線で伝送される信号と同期して伝送される。配線のパターン30AK10RSは、リセット信号を伝送するための信号配線を構成する。リセット信号は、他の信号配線で伝送される信号とは同期しない非同期で伝送される。配線のパターン30AK10A〜30AK14Aは、いずれもアドレス信号を伝送するための信号配線を構成する。各信号配線で伝送されるアドレス信号は、例えばクロック信号および他の信号配線で伝送されるアドレス信号といった、他の信号配線で伝送される信号と同期して伝送される。
他の信号配線で伝送される信号と同期して伝送されるデータ信号、クロック信号、チップセレクト信号、アドレス信号のうちデータ信号を伝送するための信号配線を構成する配線のパターン30AK10D〜30AK13Dには、蛇行形状がない配線のパターン30AK10Dが含まれている。配線のパターン30AK10Dが構成する信号配線で伝送されるデータ信号とは異なるデータ信号、クロック信号、チップセレクト信号、アドレス信号を伝送するための信号配線を構成する配線のパターンは、少なくとも一部分が直線形状および略直線形状とは異なる形状としての蛇行形状となっている。
配線のパターン30AK10Dが構成するデータ信号を伝送するための信号配線は、他のデータ信号、クロック信号、チップセレクト信号、アドレス信号を伝送するための信号配線に比べて、RAM102とCPU103における接続端子間の距離が長くなっている。そこで、配線のパターン30AK10Dが構成する信号配線で伝送されるデータ信号とは異なるデータ信号、クロック信号、チップセレクト信号、アドレス信号を伝送するための信号配線を構成する配線のパターンは、少なくとも一部分が蛇行形状となることにより、各信号配線の配線長が同一または略同一となる。その一方で、配線のパターン30AK10Dには蛇行形状を設ける必要がない。
このように、同期信号を伝送するための信号配線のうち複数の電気部品における接続端子間の距離が他の接続端子間の距離と比べて長くなる信号配線は、例えば蛇行形状となる配線部分といった、直線形状および略直線形状とは異なる形状となる配線部分を含まないように、配線のパターンが形成されていればよい。逆にいうと、直線形状または略直線形状などの形状となる一方で蛇行形状のような直線形状および略直線形状とは異なる形状を含まない配線のパターンが構成する信号配線は、蛇行形状のような直線形状および略直線形状とは異なる形状を含む配線のパターンが構成する信号配線と比較して、複数の電気部品における接続端子間の距離が長い。あるいは、同期信号を伝送するための信号配線のうち複数の電気部品における接続端子間の距離が他の接続端子間の距離と比べて長くなる信号配線は、例えば蛇行形状となる配線部分といった、他の信号配線と平行および略平行な形状とは異なる形状となる配線部分を含まないように、配線のパターンが形成されていればよい。逆にいうと、他の信号配線と平行または略平行な形状となる一方で蛇行形状のような平行および略平行な形状とは異なる形状を含まない配線のパターンが構成する信号配線は、蛇行形状のような他の信号配線と平行および略平行な形状とは異なる形状を含む配線のパターンが構成する信号配線と比較して、複数の電気部品における接続端子間の距離が長い。これにより、各信号配線の配線長を同一または略同一とし、複数の信号配線で伝送される信号の遅延時間差(スキュー)が発生することを、防止あるいは抑制できる。複数の信号配線で伝送される信号の遅延時間差を減少させることにより、複数の信号配線で伝送される信号の信頼性を向上させることができる。
配線のパターン30AK10RSには、蛇行形状が設けられていない。配線のパターン30AK10RSは、非同期信号であるリセット信号を伝送するための信号配線を構成する。リセット信号などの非同期信号を伝送する場合には、他の信号配線で伝送される信号との遅延時間差を考慮する必要がない。そこで、リセット信号を伝送するための信号配線を構成する配線のパターン30AK10RSのように、非同期信号が伝送される信号配線を構成する配線のパターンには蛇行形状を設けない。配線のパターンに蛇行形状を設けないようにすれば、配線のパターンを配置する基板面積の増大が抑制されて、基板の小型化を図ることができる。
蛇行形状を設けない配線のパターンとして、グランド電圧に維持されるダミー配線を構成する配線のパターンが配置されてもよい。例えば配線のパターン30AK10RSが構成する信号配線では、リセット信号が伝送されることに代えて、グランド電圧に維持されてもよい。配線のパターン30AK10RSは、データ信号を伝送するための信号配線を構成する配線のパターン30AK10D〜30AK13D、クロック信号を伝送するための信号配線を構成する配線のパターン30AK10CK、チップセレクト信号を伝送するための信号配線を構成する配線のパターン30AK10CSで構成される一群のパターンと、アドレス信号を伝送するための信号配線を構成する配線のパターン30AK10A〜30AK14Aで構成される一群のパターンとの間に配置されている。配線のパターン30AK10RSのような他の信号配線間に配置される信号配線をグランド電圧に維持されるダミー配線とすることにより、複数の信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。蛇行形状を設けない配線のパターンとしては、グランド電圧に維持されるダミー配線に代えて、あるいはグランド電圧に維持されるダミー配線とともに、電源電圧に維持される配線のパターンが配置されてもよい。例えば配線のパターン30AK10RSが構成する信号配線では、リセット信号が伝送されることに代えて、電源電圧に維持されてもよい。なお、電源電圧に維持される配線のパターンは、他の信号配線を構成する配線のパターンと近接して配置すると、それぞれの信号配線どうしの電磁結合などにより、電磁波ノイズが発生するおそれがある。そこで、電源電圧に維持される配線のパターンを配置する場合には、グランド電圧に維持される配線のパターンを配置する場合と比較して、信号配線からの距離が長くなるように、各配線のパターンが形成されてもよい。これにより、信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。
図21は、図18に示された領域30AK10Rの拡大図である。領域30AK10Rには、配線のパターン30AK10CK、30AK10CS、30AK10RS、30AK10A〜14Aが形成されている。これらの配線のパターンは、領域30AK10Rにおいて、複数の信号配線がいずれも直線形状または略直線形状で互いに平行または略平行な形状となるように形成されている。このように、領域30AK10Rでは、複数の信号配線を構成する配線のパターンがいずれも直線形状または略直線形状となるように形成され、複数の信号配線が互いに平行または略平行な形状となるように配線のパターンが形成されている。
図22は、図18に示された領域30AK11Rの拡大図である。領域30AK11Rには、領域30AK10Rと同じく、配線のパターン30AK10CK、30AK10CS、30AK10RS、30AK10A〜14Aが形成されている。これらの配線のパターンは、領域30AK11Rにおいて、少なくとも1の信号配線が直線形状または略直線形状となるように形成されている一方で、他の信号配線が直線形状および略直線形状とは異なる形状となるように形成されている。図22に示す領域30AK11Rにおいて、例えばクロック信号を伝送するための信号配線を構成する配線のパターン30AK10CK、チップセレクト信号を伝送するための信号配線を構成する配線のパターン30AK10CSは、複数の折り曲げ部を含むものの、いずれも直線形状または略直線形状となるように形成されている。また、図22に示す領域30AK11Rにおいて、リセット信号を伝送するための信号配線を構成する配線のパターン30AK10RSは、折り曲げ部を含まない直線形状または略直線形状となるように形成されている。これに対し、図22に示す領域30AK11Rにおいて、アドレス信号を伝送するための信号配線を構成する配線のパターン30AK10A〜30AK14Aは、複数の折り曲げ部により蛇行形状が形成され、直線形状および略直線形状とは異なる形状となるように形成されている。
蛇行形状が形成される部分では、例えば複数の折り曲げ部を介することにより、信号配線が本来の延設方向に対して直交する方向へと屈曲されていればよい。各折り曲げ部では、信号配線が直角よりも大きい角度(鈍角)をなすように折り曲げられることにより、信号配線の延設方向が変更された配線のパターンが形成されていればよい。この場合に、各折り曲げ部における折り曲げ量は、直角よりも小さい角度となるように、信号配線が折り曲げられる。蛇行形状が形成される部分では、第1延設方向と、この第1延設方向に対して直交または略直交する第2延設方向とに、信号配線を延設可能とし、第1延設方向の信号配線を構成する配線のパターンと、第2延設方向の信号配線を構成する配線のパターンとの間には、複数の折り曲げ部が設けられていればよい。このように、信号配線の折り曲げ量が所定角度よりも小さい角度となる複数の折り曲げ部を介して信号配線の延設方向が変更される。折り曲げ量を小さくすることにより、折り曲げ部における配線のパターン幅が大きく変化してしまうことを抑制し、伝送路の特性インピーダンスが急変することを防止して、複数の信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。
各信号配線では、折り曲げ部の位置が他の信号配線における折り曲げ部の位置から所定長より長い距離となるように、複数の折り曲げ部が配置されていればよい。所定長は、例えば2mm〜5mmの範囲に含まれる一定長といった、基板設計上の観点から予め定められた長さであればよい。信号配線の折り曲げ部では、特性インピーダンスの変化などにより、電磁波ノイズが発生しやすくなる。複数の信号配線に含まれる1の信号配線を構成する配線のパターンが形成する折り曲げ部は、複数の信号配線に含まれる他の信号配線を構成する配線のパターンが形成する折り曲げ部と接近して配置されると、各信号配線で伝送される信号が電磁波ノイズの影響を受けやすくなるおそれがある。そこで、複数の信号配線に含まれる1の信号配線を構成する配線のパターンが形成する折り曲げ部と、複数の信号配線に含まれる他の信号配線を構成する配線のパターンが形成する折り曲げ部とが、所定長より長い距離となるように間隔をあけて配置することにより、複数の信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。
また、領域30AK11Rでは、少なくとも1の信号配線が平行および略平行とは異なる形状となるように形成されている。図22に示す領域30AK11Rにおいて、例えばクロック信号を伝送するための信号配線を構成する配線のパターン30AK10CKと、チップセレクト信号を伝送するための信号配線を構成する配線のパターン30AK10CSは、いずれも複数の折り曲げ部を介しながら、全体として互いの信号配線が平行または略平行な形状となるように形成されている。これに対し、図22に示す領域30AK11Rにおいて、アドレス信号を伝送するための信号配線を構成する配線のパターン30AK10A〜30AK14Aは、複数の折り曲げ部により蛇行形状が形成されているので、全体として互いの信号配線が平行または略平行とは異なる形状となるように形成されている。
図22に示す領域30AK11Rでは、複数の信号配線のうち少なくとも1の信号配線が、平行および略平行な形状とは異なる蛇行形状などの形状となっている。この領域30AK11Rにおいて、信号配線を構成する配線のパターンに近接するスペース領域30AK0SPには、少なくとも信号配線と同一の基板上で導体が設けられていない。スペース領域30AK0SPは、例えばアドレス信号を伝送するための信号配線を構成する配線のパターン30AK10A〜30AK14Aのうち領域30AK11Rにて蛇行形状が設けられた配線のパターン30AK10A〜30AK13Aに近接している。スペース領域30AK0SPには導体が設けられていないことにより、複数の信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。蛇行形状となる配線のパターンに近接する領域に導体が設けられている場合には、信号配線から電磁波が放射される可能性があり、信号配線と導体との電磁結合などにより、電磁波ノイズが発生するおそれがある。そこで、例えばスペース領域30AK0SPのように、蛇行形状が設けられた配線のパターンに近接する領域には導体が設けられないことで、複数の信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。
図23は、多層配線基板として形成された主基板11の構成例を示す断面図である。図23に示す主基板11は、合成樹脂を重ねて形成された多層構造を有し、各層の表面または内層には様々な配線のパターンを形成可能とされている。このような多層構造を有する主基板11に形成された配線のパターンを介して、例えばRAM102とCPU103といった、複数の電子部品が電気的に接続される。図23に示す主基板11の多層構造は、表面層30AK1Sと、グランド層30AK1Lと、電源層30AK2Lと、配線層30AK3Lと、電源層30AK4Lと、裏面層30AK2Sとを含んでいる。
主基板11における一方の基板面となる表面には、表面層30AK1Sが設けられ、信号配線を構成する配線のパターン30AK10Pおよびパターン30AK11Pが形成されている。主基板11における他方の基板面となる裏面には、裏面層30AK2Sが設けられ、信号配線を構成する配線のパターン30AK20Pが形成されている。主基板11の表面層30AK1Sに形成された配線のパターン30AK10Pは、主基板11の表面層30AK1Sおよび裏面層30AK2Sを貫通するスルーホール30AK1Hを介して、裏面層30AK2Sに形成された配線のパターン30AK20Pと電気的に接続されている。主基板11の表面層30AK1Sに形成された配線のパターン30AK11Pは、主基板11の表面層30AK1Sおよび裏面層30AK2Sを貫通するスルーホール30AK2Hを介して、裏面層30AK2Sに形成された配線のパターン30AK20Pと電気的に接続されている。このように、主基板11には、一方の基板面となる表面に設けられた表面層30AK1Sにおいて信号配線を構成する配線のパターン30AK10Pおよびパターン30AK11Pと、他方の基板面となる裏面に設けられた裏面層30AK2Sにおいて信号配線を構成する配線のパターン30AK20Pとを、電気的に接続可能なスルーホール30AK1Hおよびスルーホール30AK2Hが設けられている。
図23に示すRAM102とCPU103を接続する複数の信号配線に含まれる各信号配線の配線長は、表面層30AK1Sに形成された配線のパターン30AK10Pおよびパターン30AK11Pと、裏面層30AK2Sに形成された配線のパターン30AK20Pとが構成する信号配線の配線長だけでなく、スルーホール30AK1Hおよびスルーホール30AK2Hの長さを含めて、同一または略同一となる。図23に示す多層構造を有する主基板11において、スルーホール30AK1Hおよびスルーホール30AK2Hの長さを含めて、各信号配線の配線長を同一または略同一とし、複数の信号配線で伝送される信号の遅延時間差が発生することを、防止あるいは抑制できる。主基板11のような多層配線基板において複数の信号配線で伝送される信号の遅延時間差を減少させることにより、複数の信号配線で伝送される信号の信頼性を向上させることができる。
図23に示す多層構造を有する主基板11において、表面層30AK1Sに隣接する導体層として、グランド層30AK1Lが設けられている。グランド層30AK1Lには、1または複数のグランド導体が配置され、グランド導体はグランド電圧に維持される。表面層30AK1Sにおいて信号配線を構成する配線のパターン30AK10Pおよびパターン30AK11Pは、少なくともいずれか一方のパターンにおいて、蛇行形状といった、直線形状および略直線形状とは異なる形状で複数の信号配線が平行および略平行な形状とは異なる形状となる領域を含むように形成されていればよい。このような表面層30AK1Sに隣接する導体層としてのグランド層30AK1Lでは、信号の伝送が行われない。配線のパターン30AK10Pおよびパターン30AK11Pが形成された表面層30AK1Sに隣接する導体層で信号の伝送が行われないので、配線のパターン30AK10Pおよびパターン30AK11Pが構成する複数の信号配線で伝送される信号が電磁波ノイズの影響を受けにくくなり、他の信号配線に電磁波ノイズの影響が及ぶことも、防止あるいは抑制できる。
図23に示す多層構造を有する主基板11の裏面層30AK2Sにおいて信号配線を構成する配線のパターン30AK20Pが、蛇行形状といった、直線形状および略直線形状とは異なる形状で複数の信号配線が平行および略平行な形状とは異なる形状となる領域を含むように形成されてもよい。このような裏面層30AK2Sに隣接する導体層としての電源層30AK4Lでは、信号の伝送が行われない。電源層30AK4Lには、1または複数の電源導体が配置され、電源導体は電源電圧に維持される。配線のパターン30AK20Pが形成された裏面層30AK2Sに隣接する導体層で信号の伝送が行われないので、配線のパターン30AK20Pが構成する複数の信号配線で伝送される信号が電磁波ノイズの影響を受けにくくなり、他の信号配線に電磁波ノイズの影響が及ぶことも、防止あるいは抑制できる。主基板11のような多層配線基板において複数の信号配線が設けられる層に隣接する導体層では信号の伝送が行われないないことにより、複数の信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。
図23に示す多層構造を有する主基板11の配線層30AK3Lにおいて信号配線を構成する配線のパターンが、蛇行形状といった、直線形状および略直線形状とは異なる形状で複数の信号配線が平行および略平行な形状とは異なる形状となる領域を含むように形成されてもよい。このような配線層30AK3Lに隣接する導体層としての電源層30AK2Lや電源層30AK4Lでは、信号の伝送が行われない。主基板11のような多層配線基板において複数の信号配線が設けられる配線層30AK3Lに隣接する導体層では信号の伝送が行われないことにより、複数の信号配線での電磁波ノイズによる電磁妨害の防止あるいは抑制が図られる。ただし、多層配線基板に設けられた内層の導体層である配線層30AK3Lにおいて信号配線を構成する配線のパターンが蛇行形状などの形状となる領域を含むように形成された場合には、信号配線の断線などによる障害が発生した場合に、配線層30AK3Lにおける信号配線の状態を基板の外部から確認することが困難になるおそれがある。これに対し、主基板11の表面層30AK1Sや裏面層30AK2Sといった、主基板11が備える一方の基板面や他方の基板面において信号配線を構成する配線のパターンが蛇行形状などの形状となる領域を含むように形成された場合には、信号配線の断線などによる障害が発生した場合に、表面層30AK1Sや裏面層30AK2Sにおける信号配線の状態を基板の外部から確認しやすい適切な基板構成が可能になる。
主基板11の表面層30AK1Sおよび裏面層30AK2Sを貫通するスルーホールは、図23に示すスルーホール30AK1Hおよびスルーホール30AK2Hに限定されず、より多くのスルーホールが設けられ、複数の信号配線における各信号配線の配線長を同一または略同一にするために用いられてもよい。複数の信号配線を構成する配線のパターンのうちには、スルーホール30AK1Hおよびスルーホール30AK2Hのようなスルーホールを介することなく、例えば主基板11の表面層30AK1Sのみに信号配線が配置されるように形成されたパターンが含まれてもよい。配線のパターン30AK10Dが構成するデータ信号を伝送するための信号配線といった、複数の電気部品における接続端子間の距離が他の接続端子間の距離と比べて長くなる信号配線は、スルーホール30AK1Hおよびスルーホール30AK2Hのようなスルーホールを介することなく、主基板11の表面層30AK1Sのみに信号配線が配置されてもよい。逆にいうと、表面層30AK1Sなど1の導体層にてスルーホールを介することなく形成された配線のパターンが構成する信号配線は、表面層30AK1Sおよび裏面層30AK2Sなど複数の導体層にてスルーホールを介して電気的に接続可能となるように形成された配線のパターンが構成する信号配線と比較して、複数の電気部品における接続端子間の距離が長い。
複数の信号配線が隣接して設けられる場合には、図22に示したスペース領域30AK0SPのように、小さな空白領域が形成される。この空白領域にスルーホールを設け、例えばグランド層30AK1Lといった他の導体層と電気的に接続されるように、銅などの導電材料が埋設されたスルーホール電極を有する構成とすることも考えられる。空白領域にスルーホール電極のような導体が設けられる構成では、例えば空白領域における電界分布を安定させるために、多数のスルーホール電極が配置される場合もある。この場合には、主基板11の表面層30AK1Sのみでなく、裏面層30AK2Sにも、例えばバンプといった、スルーホール電極に対応する構造物が配置され、基板上における配線パターンの設計が制約されるという不都合が生じるおそれがある。また、多層配線基板に設けられた内層の導体層であるグランド層30AK1Lや電源層30AK2L、30AK4Lなどでは、スルーホール電極が設けられる場合に、そのスルーホール電極の周囲では導体層のパターンを除去することになり、グランド層30AK1Lや電源層30AK2L、30AK4Lなど内層の導体層におけるパターンが分断され、導体層におけるパターンの設計が困難になるという不都合が生じるおそれがある。さらに、スルーホール電極に代えて、例えばダミーパッドのような導体が空白領域に設けられ、他の導体層とは接続されないような構成では、この導体が外部からの電磁波ノイズによる影響を受けたり、この導体が複数の信号配線に電磁波ノイズの影響を及ぼしたりして、電磁妨害などの悪影響を与える不都合が生じるおそれがある。これに対し、信号配線を構成する配線のパターンに近接するスペース領域30AK0SPには、導体が設けられないことにより、これらの不都合が生じることを、防止あるいは抑制できる。
その他、図22に示したスペース領域30AK0SPのように、複数の信号配線が隣接して設けられる場合に形成される空白領域には、例えば基板固定用のネジ穴といった、基板の構成材料とは異なる材料が用いられる構造物が設けられないようにしてもよい。基板固定用のネジ穴が設けられた場合には、ネジ止めにより基板を固定した場合に、ネジの構成材料が外部からの電磁波ノイズによる影響を受け、他の信号配線にも電磁妨害などの悪影響を与える不都合が生じるおそれがある。また、基板に含まれる絶縁層とは誘電率が異なる合成樹脂や誘電材料を用いた構造物、あるいは基板に含まれる導体層とは電気伝導率が異なる合成樹脂や金属材料を用いた構造物が、複数の信号配線に近接した空白領域に設けられた場合には、これらの構造物が外部からの電磁波ノイズによる影響を受けたり、これらの構造物が複数の信号配線に電磁波ノイズの影響を及ぼしたりして、電磁妨害などの悪影響を与える不都合が生じるおそれがある。これに対し、信号配線を構成する配線のパターンに近接するスペース領域30AK0SPなどの空白領域には、基板の構成材料とは異なる材料を用いた構造物が設けられないことにより、これらの不都合が生じることを、防止あるいは抑制できる。
図18に示す区間30AK0SCでは、データ信号を伝送するための複数の信号配線を形成する配線のパターン30AK10D〜30AK13Dのうち1のパターン30AK13Dが、蛇行形状といった、直線形状および略直線形状とは異なる形状で他の信号配線と平行および略平行な形状とは異なる形状となる信号配線の部分を含むように形成されている。これに対し、少なくともパターン30AK10Dおよびパターン30AK11Dは、区間30AK0SCにて、蛇行形状を含むことなく、直線形状または略直線形状で互いの信号配線が平行または略平行な形状となるように形成されている。したがって、パターン30AK10Dおよびパターン30AK11Dは、信号配線が区間30AK0SCを最短または略最短で接続するパターンとなる。これに対し、パターン30AK12Dおよびパターン30AK13Dは、信号配線が区間30AK0SCをパターン30AK10Dおよびパターン30AK11Dよりも長い距離で接続するパターンとなる。
区間30AK0SCにて、パターン30AK13Dが構成する信号配線が蛇行形状などの直線形状および略直線形状とは異なる形状となっている部分では、他のパターン30AK10D〜パターン30AK12Dが構成する信号配線は直線形状または略直線形状となるように形成されている。このように、複数の信号配線を構成する配線のパターンのうち1の配線のパターンにより構成される信号配線が蛇行形状などの直線形状および略直線形状とは異なる形状となっている部分では、他の配線のパターンにより構成される信号配線が直線形状または略直線形状となるように形成されてもよい。1の配線のパターンにより構成される信号配線が蛇行形状などの直線形状および略直線形状とは異なる形状となる部分は、他の配線のパターンにより構成される信号配線が直線形状または略直線形状となる部分と重複しないように形成されてもよい。蛇行形状などの直線形状および略直線形状とは異なる形状となる部分が、複数の信号配線について重複しないように配線のパターンが形成されることにより、配線のパターンを配置する基板面積の増大が抑制されて、基板の小型化を図ることができる。
図24は、複数の信号配線が蛇行形状となる部分が重複しない配線のパターンについて、他の形成例を示している。図24に示す領域30AK20Rでも、複数の信号配線を構成する配線のパターンのうち1の配線パターンにより構成される信号配線が蛇行形状となっている部分では、他の配線のパターンにより構成される信号配線が直線形状または略直線形状となるように形成されている。そして、第1配線のパターンにより構成される第1信号配線が蛇行形状となる部分である第1蛇行部が終了すると、第1配線のパターンとは異なる第2配線のパターンにより構成される第2信号配線が蛇行形状となる部分である第2蛇行部が開始されるように、複数の信号配線を構成する配線のパターンが形成されている。第1蛇行部では、第1信号配線以外の信号配線を構成する配線のパターンとして、第2信号配線を構成する第2配線のパターンを含めた配線のパターンは、各パターンにより構成される信号配線が平行または略平行な形状となるように形成されていればよい。第2蛇行部では、第2信号配線以外の信号配線を構成する配線のパターンとして、第1信号配線を構成する第1配線のパターンを含めた配線のパターンは、各パターンにより構成される信号配線が平行または略平行な形状となるように形成されていればよい。第1蛇行部が終了してから第2蛇行部が開始されるので、第1蛇行部は第2蛇行部と重複しないように配置されている。これにより、多数の信号配線について蛇行形状などの直線形状および略直線形状とは異なる形状となる部分を設けた場合でも、配線のパターンを配置する基板面積の増大が可及的に抑制されて、基板の小型化を図ることができる。
複数の信号配線が蛇行形状となる部分が重複しない配線のパターンは、各信号配線の配線長が同一または略同一となるように形成される。こうした複数の信号配線を構成する配線のパターンのうち第1配線のパターンにより構成される第1信号配線は、第2配線のパターンにより構成される第2信号配線が直線形状または略直線形状となる第2直線部に対応して蛇行形状となる第1蛇行部を含む。また、複数の信号配線を構成する配線パターンのうち第2配線のパターンにより構成される第2信号配線は、第1配線のパターンにより構成される第1信号配線が直線形状または略直線形状となる第1直線部に対応して蛇行形状となる第2蛇行部を含む。このように第1蛇行部や第2蛇行部などが含まれることにより、配線のパターンを配置する基板面積の増大が抑制されて、基板の小型化を図ることができる。
あるいは、第1配線のパターンにより構成される第1信号配線が蛇行形状となる第1蛇行部は、第2配線のパターンにより構成される第2信号配線が蛇行形状となる第2蛇行部と異なる方向に信号配線を蛇行させてもよい。このように信号配線を蛇行させることにより、配線のパターンを配置する基板面積の増大が抑制されて、基板の小型化を図ることができる。
あるいは、複数の信号配線が蛇行形状となる配線のパターンは、信号配線の配線幅が狭い第1配線のパターンと、信号配線の配線幅が広い第2配線のパターンとを含んでいてもよい。このように配線のパターンが形成されることにより、例えば複数の信号配線で伝送される信号の種類などに応じて、適切な伝送路特性を有する信号配線が構成され、複数の信号配線で伝送される信号の信頼性を向上させることができる。
あるいは、複数の信号配線のうち一部または全部の信号配線が、例えば蛇行形状といった、直線形状および略直線形状とは異なる形状であるとともに、互いに平行または略平行な形状となるように、配線のパターンが形成される平行蛇行部を設けてもよい。平行蛇行部を設けることにより、配線のパターンを配置する基板面積の増大が抑制されて、基板の小型化を図ることができる。
あるいは、複数の信号配線のうち一部または全部の信号配線が、例えば蛇行形状といった、直線形状および略直線形状とは異なる形状となる非直線部にて、1の信号配線と他の信号配線とに接続された電気部品が実装されるように、配線のパターンが形成されてもよい。このように電気部品を実装することにより、配線のパターンや電気部品などを配置する基板面積の増大が抑制されて、基板の小型化を図ることができる。
あるいは、複数の信号配線のうち一部または全部の信号配線が、例えば蛇行形状といった、直線形状および略直線形状とは異なる形状となる非直線部を含む場合に、非直線部とは異なる形状となる部分にて各信号配線が電気部品と接続されるように、配線のパターンが形成されてもよい。このように電気部品と接続されることにより、配線のパターンや電気部品などを配置する基板面積の増大が抑制されて、基板の小型化を図ることができる。
複数の信号配線のうち少なくとも1の信号配線が直線形状および略直線形状とは異なる形状となるように形成された配線のパターン、あるいは少なくとも1の信号配線が他の信号配線と平行および略平行な形状とは異なる形状となるように形成された配線のパターンは、各信号配線の配線長が同一または略同一となるように形成される。こうした複数の信号配線を構成する配線のパターンのうち第1配線のパターンにより構成される第1信号配線は、第2配線のパターンにより構成される第2信号配線が直線形状および略直線形状とは異なる形状となる部分に対応して、あるいは第2信号配線が第1信号配線と平行および略平行な形状とは異なる形状となる部分に対応して、直線形状または略直線形状となればよい。そして、第2信号配線が直線形状および略直線形状とは異なる形状となる部分、あるいは第2信号配線が第1信号配線と平行および略平行な形状とは異なる形状となる部分には、テストポイントとなる特定導体部を設けてもよい。テストポイントは、信号配線や電気部品による電気的な接続状態を検査するためのプローブを当接可能に構成された特定導体部であればよい。このようにテストポイントを設けることにより、配線のパターンを適切に配置するとともに、各種の構造物を適切に配置して、基板面積の増大が抑制され、基板の小型化を図ることができる。
あるいは、テストポイントなどの特定導体部は、はんだ、または銅箔といった、金属材料を用いて形成され、信号配線の配線幅よりも大きい形状を有していればよい。このようにテストポイントなどが形成されることにより、配線のパターンを適切に配置するとともに、各種の構造物を適切に配置して、基板面積の増大が抑制され、基板の小型化を図ることができる。
あるいは、テストポイントなどの特定導体部は、多層配線基板に設けられたスルーホールにより、多層配線基板に含まれる複数の層のうち複数の信号配線およびテストポイントが設けられる層とは異なる導体層と、電気的に接続されてもよい。このようにテストポイントなどが形成されることにより、配線のパターンを適切に配置するとともに、各種の構造物を適切に配置して、基板面積の増大が抑制され、基板の小型化を図ることができる。
例えば表面側の基板面といった、一方の基板面にて、複数の信号配線のうち少なくとも1の信号配線が直線形状および略直線形状とは異なる形状に形成された配線のパターン、あるいは少なくとも1の信号配線が他の信号配線と平行および略平行な形状とは異なる形状となるように形成された配線のパターンは、各信号配線の配線長が同一または略同一となるように形成される。こうした複数の信号配線を構成する配線のパターンのうち第1配線のパターンにより構成される第1信号配線は、第2配線のパターンにより構成される第2信号配線が直線形状および略直線形状とは異なる形状となる部分に対応して、あるいは第2信号配線が第1信号配線と平行および略平行な形状とは異なる形状となる部分に対応して、直線形状または略直線形状となればよい。そして、例えば裏面側の基板面といった、配線のパターンが形成された一方の基板面とは異なる他方の基板面に、テストポイントとなる特定導体部を設けてもよい。このようにテストポイントを設けることにより、配線のパターンを適切に配置するとともに、各種の構造物を適切に配置して、基板面積の増大が抑制され、基板の小型化を図ることができる。
(変形および応用に関する説明)
この発明は上記の実施の形態に限定されず、様々な変形および応用が可能である。例えばパチンコ遊技機1は、上記実施の形態で示した全ての技術的特徴を備えるものでなくてもよく、従来技術における少なくとも1つの課題を解決できるように、上記実施の形態で説明した一部の構成を備えたものであってもよい。例えば上記実施の形態で示した特徴のうちで、適切な基板構成を可能にする少なくとも1の特徴を備えたものであればよい。
上記実施の形態では、複数の電気部品を電気的に接続する複数の信号配線のうち少なくとも1の信号配線が、直線形状および略直線形状とは異なる形状であって、他の信号配線と平行および略平行な形状とは異なる形状として、蛇行形状、ミアンダ形状、ジグザグ形状、折返し形状と称される形状となる部分を含むものとして説明した。これに対し、直線形状および略直線形状とは異なる形状や、他の信号配線と平行および略平行な形状とは異なる形状は、湾曲形状あるいは渦巻き形状といった、蛇行形状とは異なり信号配線の配線長を延長可能あるいは調整可能な任意の形状であればよい。複数の電気部品を電気的に接続する複数の信号配線のうち少なくとも1の信号配線について、その配線長を延長可能な形状となる部分を含むことにより、複数の信号配線に含まれる各信号配線の配線長を同一または略同一とし、複数の信号配線で伝送される信号の遅延時間差を防止あるいは抑制できればよい。
複数の信号配線により電気的に接続される複数の電気部品は、主基板11に搭載されたRAM102およびCPU103に限定されず、パチンコ遊技機1などの遊技機が備える任意の電気部品であればよい。例えば複数の電気部品として、演出制御基板12に搭載された演出制御用CPU120およびRAM122が、複数の信号配線により電気的に接続され、複数の信号配線のうち少なくとも1の信号配線が、直線形状および略直線形状とは異なる形状であって、他の信号配線と平行および略平行な形状とは異なる形状となるように、配線のパターンが形成されてもよい。この場合に、演出制御用CPU120は、パチンコ遊技機1における演出の制御に関して、所定の処理を実行可能に構成された電気部品であり、RAM122は演出制御用CPU120による処理の実行に関する情報を記憶可能に構成された電気部品である。あるいは、上記実施の形態におけるRAM102に代えてROM101といった、CPU103による処理の実行に関する情報を記憶可能な電気部品であってもよい。あるいは、演出制御用CPU120に代えて表示制御部123が備えるグラフィックスプロセッサといった、演出制御用CPU120とは異なる演出に関する処理を実行可能な電気部品であってもよい。さらに、RAM122に代えてROM121といった、演出制御用CPU120による処理の実行に関する情報を記憶可能な電気部品であってもよい。また、RAM122に代えて画像データメモリといった、演出制御用CPU120あるいは表示制御部123のグラフィックスプロセッサによる処理の実行に関する情報を記憶可能な電気部品であってもよい。
演出制御基板12は、上記実施の形態における主基板11と同様に、多層配線基板として構成されてもよい。上記実施の形態における複数の信号配線は、例えば演出制御基板12に搭載された演出制御用CPU120および表示制御部123が備えるグラフィックスプロセッサといった、複数の処理装置が電気的に接続されるように、配線のパターンが形成されたものであってもよい。あるいは、複数の信号配線は、表示制御部123が備えるグラフィックスプロセッサと、映像信号用の入出力ポートといった、複数の電気部品が電気的に接続されるように、配線のパターンが形成されたものであってもよい。このような複数の電気部品が接続される複数の信号配線には、例えばフィルタ回路やバッファ回路といった、複数の電気部品とは異なる任意の電気回路が介在するように、配線のパターンが形成されたものであってもよい。複数の信号配線では、例えば画像表示装置5におけるR(赤)、G(緑)、B(青)の表示色について、それぞれのレベル(RGB値)を示すデジタル映像信号が、パラレル信号方式で伝送されてもよい。あるいは、複数の信号配線では、遊技の制御や演出の制御に関する信号が、例えばLVDS(Low Voltage Differential Signal)方式といったパラレル信号方式で伝送されてもよい。これらのパラレル信号方式では、複数の信号配線において同期した信号伝送が要求されることがある。そこで、上記実施の形態のように、蛇行形状などの形状となる部分が設けられるように配線のパターンを形成することにより、複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となり、複数の信号配線で伝送される信号の遅延時間差を減少させることができる。
なお、パラレル信号方式で伝送される信号に限定されず、例えば画像表示装置5に供給される映像信号や、スピーカ8L、8R、遊技効果ランプ9、演出用モータ60および演出用LED61といった演出用の電気部品に供給される制御信号が、シリアル信号方式で伝送される場合に、クロック信号を伝送するための信号配線と、データ信号を伝送するための信号配線とが、上記実施の形態における複数の信号配線に含まれてもよい。さらに、映像信号や制御信号がシリアル信号方式で伝送される場合に、差動信号伝送方式により信号を伝送するための信号配線が、上記実施の形態における複数の信号配線に含まれてもよい。
例えば配線のパターン30AK10Dが構成する信号配線のように、複数の電気部品における接続端子間の距離が他の信号配線よりも長い信号配線についても、直線形状および略直線形状とは異なる形状であり、他の信号配線と平行および略平行な形状とは異なる形状となる部分が含まれるように、配線のパターンが形成されてもよい。複数の電気部品における接続端子間の距離が他の信号配線よりも短い信号配線であっても、基板上における配線パターンの設計によっては、配線長が他の信号配線よりも長くなることがある。このような場合に、複数の信号配線のうち蛇行形状などの形状となる部分が含まれる信号配線と、そのような部分が含まれない信号配線との選択は、基板上における配線パターンの設計に応じて任意に変更されてもよい。
レセプタクルKRE1は、演出制御基板12の基板上にて表面実装されるものに限定されず、例えば主基板11の基板上といった、任意の基板上にて表面実装されるものであればよい。各種の電源電圧は、演出制御基板12に供給されるものに限定されず、例えば主基板11あるいは払出制御基板といった、任意の制御基板に供給されるものであってもよい。各種の電気回路や電気部品も、演出制御基板12に配置されるものに限定されず、例えば主基板11あるいは払出制御基板といった、任意の制御基板に配置されるものであってもよい。
この発明は、パチンコ遊技機1に限らずスロットマシンなどにも適用できる。スロットマシンは、例えば複数種類の識別情報となる図柄の可変表示といった所定の遊技を行い、その遊技結果に基づいて所定の遊技価値を付与可能となる任意の遊技機であり、より具体的に、1ゲームに対して所定の賭数(メダル枚数またはクレジット数)を設定することによりゲームが開始可能になるとともに、各々が識別可能な複数種類の識別情報(図柄)を可変表示する可変表示装置(例えば複数のリールなど)の表示結果が導出表示されることにより1ゲームが終了し、その表示結果に応じて入賞(例えばチェリー入賞、スイカ入賞、ベル入賞、リプレイ入賞、BB入賞、RB入賞など)が発生可能とされた遊技機である。このようなスロットマシンにおいて、遊技制御を行うための遊技制御用マイクロコンピュータを含めたハードウェア資源と、所定の処理を行うソフトウェアとが協働することにより、上記実施の形態で示されたパチンコ遊技機1が有する特徴の全部または一部を備えるように構成されていればよい。
その他にも、遊技機の装置構成や各種の動作などは、この発明の趣旨を逸脱しない範囲で、任意に変更および修正が可能である。加えて、この発明の遊技機は、入賞の発生に基づいて所定数の遊技媒体を景品として払い出す払出式遊技機に限定されるものではなく、遊技媒体を封入し入賞の発生に基づいて得点を付与する封入式遊技機にも適用することができる。スロットマシンは、遊技用価値としてメダル並びにクレジットを用いて賭数が設定されるものに限定されず、遊技用価値として遊技球を用いて賭数を設定するスロットマシンや、遊技用価値としてクレジットのみを使用して賭数を設定する完全クレジット式のスロットマシンであってもよい。
(課題解決手段および効果に関する説明)
以上説明したように、本願に係るパチンコ遊技機1などの遊技機では、レセプタクルKRE1のような配線接続装置において、信号端子となる端子TA02の両側を挟む位置で、一対の接地端子となる端子TA01、TA03が演出制御基板12の基板上に表面実装されることにより、適切な基板構成が可能になる。
端子TA01、TA03がダミーパッドDP1、DP2に接合され、端子TA01〜TA03の先端部が基板ケース800のカバー部材802に被覆されることにより、適切な基板構成が可能になる。
レセプタクルKRE1には、ダミーパッドDP3、DP4に接合される固定用金具SS01、SS02が側面PL2の側に設けられることにより、適切な基板構成が可能になる。
開口領域836aにおける内周壁面836bとレセプタクルKRE1との間隔は、部品収容部802aに近い側の開口幅W2が遠い側の開口幅W1よりも広く形成されることにより、適切な基板構成が可能になる。
レセプタクルKRE1の端子TA01〜TA03は、それぞれ開口領域836aにて基板ケース800のカバー部材802により被覆されず露出する露出部と基板ケース800のカバー部材802により被覆されて露出しない被覆部とが形成されることにより、適切な基板構成が可能になる。
レセプタクルKRE1の端子TA01〜TA03が表面実装された実装位置は開口周縁部840により被覆され、開口周縁部840と演出制御基板12の基板面とが実装位置に近接するスペースSP1を形成することにより、適切な基板構成が可能になる。
あるいは、演出制御基板12では直流34Vの電源電圧VSL2がそのまま電源電圧VSLとして出力され、ドライバ基板19にてフィルタ回路511に入力して電圧を安定化することにより、適切な基板構成が可能になる。
直流34Vの電源電圧VSLを供給する電源ラインLSLにはフィルタ回路が介在しないことにより、適切な基板構成が可能になる。
レセプタクルKRE2において、フィルタ回路131a〜131cのいずれかに接続される端子TA15〜TA24、TA27、TA28の端子数が、フィルタ回路に接続されない端子TA13、TA14の端子数よりも多くなることにより、適切な基板構成が可能になる。
フィルタ回路131a〜131cのいずれかに接続される端子TA15〜TA24、TA27、TA28は複数種類の電源電圧を供給可能であり、演出制御基板12ではフィルタ回路に接続されない端子TA13、TA14は一種類の電源電圧を供給可能であり、端子TA13、TA14は端子TA15〜TA24などよりも外側に配置されていることにより、適切な基板構成が可能になる。
電源電圧端子である端子TA13〜TA24、TA27、TA28は、接地端子である端子TA11、TA12と、接地端子である端子TA29、TA30との間に配置されていることにより、適切な基板構成が可能になる。
レセプタクルKRE2では、第2電源電圧端子に含まれる端子TA13、TA14と、第1電源電圧端子に含まれる端子TA15〜TA24とが、第1接地端子に含まれる端子TA11、TA12と、第2接地端子に含まれる端子TA25、TA26との間に配置され、第1電源電圧端子に含まれる端子TA27、TA28が、第2接地端子に含まれる端子TA25、TA26と、第3接地端子に含まれる端子TA29、TA30との間に配置されることにより、適切な基板構成が可能になる。
あるいは、演出制御基板12において、1の電源電圧VDD2を、特定の電気部品を駆動するための電源電圧VDLと、増幅回路521に供給するための電源電圧VDSとに分岐した後に、フィルタ回路131aを用いて安定化した電源電圧VDSを増幅回路521に供給することにより、適切な基板構成が可能になる。
フィルタ回路131aから増幅回路521までの配線長LL2を、分岐点DB1にて電源電圧VDLが分岐されてからフィルタ回路131aに入力するまでの配線長LL1よりも短くすることにより、適切な基板構成が可能になる。
あるいは、ノイズ防止回路135a、135bでは、ノイズ防止回路135cとは異なる回路素子である抵抗を用いることにより、適切な基板構成が可能になる。
ノイズ防止回路135a、135bはモータやLEDなど特定の電気部品を駆動するための電源電圧に対応して設けられ、ノイズ防止回路135cはCPUやROMなど特定の電気回路を駆動するための電源電圧に対応して設けられることにより、適切な基板構成が可能になる。
あるいは、降圧コンバータ回路132では、フィルタ回路131cにより安定化した電源電圧VDD3が入力されて、直流1.05Vの電源電圧と、直流3.3Vの電源電圧とを出力し、レギュレータ回路133では、直流3.3Vの電源電圧が入力されて、直流1.5Vの電源電圧を出力することにより、適切な基板構成が可能になる。
降圧コンバータ回路132に供給される電圧と同一または略同一の電源電圧VDCは、電源監視回路140に供給されることにより、適切な基板構成が可能になる。
降圧コンバータ回路132から出力された直流1.05Vの電源電圧は、例えば表示制御部123のグラフィックスプロセッサといった、特定のマイクロプロセッサに供給されることにより、適切な基板構成が可能になる。
降圧コンバータ回路132から出力された直流3.3Vの電源電圧は、例えばROM121に供給され、レギュレータ回路133から出力される直流1.5Vの電源電圧により駆動するRAM122などの電気部品よりも先に起動可能となることにより、適切な基板構成が可能である。
レギュレータ回路133から出力された直流1.5Vの電源電圧は、例えばRAM122といった、演出制御基板12とは異なる基板として構成されたものに供給されることにより、適切な基板構成が可能になる。
(特徴部30AKの課題解決手段および効果に関する説明)
例えばパチンコ遊技機1など、遊技が可能な遊技機であって、例えば図17に示すように、複数の信号配線を構成するパターンが形成され、複数の信号配線によりRAM102やCPU103などの複数の電気部品が接続された主基板11などの基板を備え、パターンは、例えば領域30AK10Rなど、複数の信号配線が平行または略平行な第1形状となる平行配線部と、例えば領域30AK11Rなど、複数の信号配線のうち少なくとも1の信号配線が、他の信号配線と平行ではない第2形状となる特定配線部とを含み、複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となる。これにより、複数の信号配線で伝送される信号の遅延時間差を減少させる適切な基板構成が可能になる。
例えば配線のパターン30AK10Dが構成する信号配線など、第2形状を含まない信号配線は、複数の電気部品における接続端子間の距離が、例えば配線のパターン30AK11D〜30AK13Dが構成する信号配線など、第2形状を含む信号配線よりも長くてもよい。これにより、配線のパターンを配置する基板面積の増大が抑制されて、基板を小型化するために適切な基板構成が可能になる。
例えばスペース領域30AK0SPなど、第2形状となる信号配線に近接する所定領域には、導体が設けられていなくてもよい。これにより、複数の信号配線での電磁波ノイズによる電磁妨害が防止あるいは抑制される適切な基板構成が可能になる。
基板には、例えばスルーホール30AK1H、30AK2Hなど、基板の一面に設けられた信号配線と基板の他面に設けられた信号配線とを電気的に接続可能なスルーホールが設けられ、複数の信号配線に含まれる各信号配線の配線長は、スルーホールにより接続された信号配線について、スルーホールの長さを含めて同一または略同一となってもよい。これにより、複数の信号配線で伝送される信号の遅延時間差を減少させる適切な基板構成が可能になる。
基板は、例えば表面層30AK1S、グランド層30AK1L、電源層30AK2L、配線層30AK3L、電源層30AK4L、裏面層30AK2Sなど、複数の層を含み、複数の層のうち第2形状となる信号配線が設けられる層に隣接するグランド層30AK1Lなどの導体層では、信号の伝送が行われなくてもよい。これにより、複数の信号配線での電磁波ノイズによる電磁妨害が防止あるいは抑制される適切な基板構成が可能になる。
複数の電気部品として、例えばCPU103など、所定の処理を実行可能な処理手段と、例えばRAM102など、処理の実行に関する情報を記憶可能な記憶手段とが接続されてもよい。これにより、複数の電気部品として処理手段や記憶手段に接続された複数の信号配線で伝送される信号の遅延時間差を減少させる適切な基板構成が可能になる。
あるいは、例えばパチンコ遊技機1など、遊技が可能な遊技機であって、例えば図17に示すように、複数の信号配線を構成するパターンが形成され、複数の信号配線によりRAM102やCPU103などの複数の電気部品が接続された主基板11などの基板を備え、パターンは、例えば領域30AK10Rなど、複数の信号配線が平行または略平行な第1形状となる平行配線部と、例えば領域30AK11Rなど、複数の信号配線が第1形状とは異なる第2形状となる特定配線部とを含み、複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となってもよい。これにより、複数の信号配線で伝送される信号の遅延時間差を減少させる適切な基板構成が可能になる。
あるいは、例えばパチンコ遊技機1など、遊技が可能な遊技機であって、例えば図17に示すように、複数の信号配線を構成するパターンが形成され、複数の信号配線によりRAM102やCPU103などの複数の電気部品が接続された主基板11などの基板を備え、パターンは、例えば配線のパターン30AK10Dなど、複数の信号配線のうち少なくとも1の信号配線が、直線形状または略直線形状を含む第1形状となる第1パターンと、例えば配線のパターン30AK11D〜30AK13Dなど、複数の信号配線のうち第1パターンに含まれない他の信号配線が、第1形状とは異なる第2形状となる第2パターンとを含み、第1パターンおよび第2パターンは、複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となってもよい。これにより、複数の信号配線で伝送される信号の遅延時間差を減少させる適切な基板構成が可能になる。
あるいは、例えばパチンコ遊技機1など、遊技が可能な遊技機であって、例えば図17に示すように、複数の信号配線を構成するパターンが形成され、複数の信号配線によりRAM102やCPU103などの複数の電気部品が接続された主基板11などの基板を備え、パターンは、複数の信号配線のうち少なくとも1の信号配線が、区間30AK0SCなどの所定区間を最短または略最短の距離で接続する配線のパターン30AK10D、30AK11Dなどの第1パターンと、複数の信号配線のうち第1パターンに含まれない他の信号配線が、所定区間を第1パターンよりも長い距離で接続する配線のパターン30AK12D、30AK13Dなどの第2パターンとを含み、第1パターンおよび第2パターンは、複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となってもよい。これにより、複数の信号配線で伝送される信号の遅延時間差を減少させる適切な基板構成が可能になる。
第1パターンは、複数の電気部品における接続端子間の距離が、第2パターンよりも長くてもよい。これにより、配線のパターンを配置する基板面積の増大が抑制されて、基板を小型化するために適切な基板構成が可能になる。
例えばスペース領域30AK0SPなど、第2パターンに近接する所定領域には、導体が設けられていなくてもよい。これにより、複数の信号配線での電磁波ノイズによる電磁妨害が防止あるいは抑制される適切な基板構成が可能になる。
基板は、例えば表面層30AK1S、グランド層30AK1L、電源層30AK2L、配線層30AK3L、電源層30AK4L、裏面層30AK2Sなど、複数の層を含み、複数の層のうち第2パターンに含まれる信号配線が設けられる層に隣接するグランド層30AK1Lなどの導体層では、信号の伝送が行われなくてもよい。これにより、複数の信号配線での電磁波ノイズによる電磁妨害が防止あるいは抑制される適切な基板構成が可能になる。
1 … パチンコ遊技機
11 … 主基板
12 … 演出制御基板
13 … 音声制御基板
19 … ドライバ基板
120 … 演出制御用CPU
121 … ROM
122 … RAM
123 … 表示制御部
131a〜131c、511 … フィルタ回路
132 … 降圧コンバータ回路
133 … レギュレータ回路
140 … 電源監視回路
521 … 増幅回路
800 … 基板ケース
802 … カバー部材
KRE1〜KRE4 … レセプタクル
30AK10G、30AK11G、30AK20G … グランド導体
30AK01R、30AK10R、30AK11R、30AK12R、
30AK20R … 領域
30AK0SC … 区間
30AK10D〜30AK13D、30AK10CK、30AK10CS、
30AK10RS、30AK10A〜30AK14A、30AK10P、
30AK11P、30AK20P … 配線のパターン
30AK1S … 表面層
30AK2S … 裏面層
30AK1L … グランド層
30AK2L、30AK4L … 電源層
30AK3L … 配線層
30AK1H、30AK2H … スルーホール

Claims (1)

  1. 遊技が可能な遊技機であって、
    複数の信号配線を構成するパターンが形成され、前記複数の信号配線により複数の電気部品が接続された基板を備え、
    前記パターンは、
    前記複数の信号配線が平行または略平行な第1形状となる平行配線部と、
    前記複数の信号配線のうち少なくとも1の信号配線が、他の信号配線と平行ではない第2形状となる特定配線部とを含み、
    前記複数の信号配線に含まれる各信号配線の配線長が、同一または略同一となる、
    ことを特徴とする遊技機。
JP2017141498A 2017-07-21 2017-07-21 遊技機 Withdrawn JP2019017887A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017141498A JP2019017887A (ja) 2017-07-21 2017-07-21 遊技機
JP2020103452A JP6982136B2 (ja) 2017-07-21 2020-06-16 遊技機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017141498A JP2019017887A (ja) 2017-07-21 2017-07-21 遊技機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020103452A Division JP6982136B2 (ja) 2017-07-21 2020-06-16 遊技機

Publications (1)

Publication Number Publication Date
JP2019017887A true JP2019017887A (ja) 2019-02-07

Family

ID=65354596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141498A Withdrawn JP2019017887A (ja) 2017-07-21 2017-07-21 遊技機

Country Status (1)

Country Link
JP (1) JP2019017887A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092803A (ja) * 2017-11-22 2019-06-20 株式会社三共 遊技機
JP2020146537A (ja) * 2017-07-21 2020-09-17 株式会社三共 遊技機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119087A (ja) * 1987-07-13 1989-05-11 Internatl Business Mach Corp <Ibm> 印刷回路パネル
JPH05114770A (ja) * 1991-10-23 1993-05-07 Oki Electric Ind Co Ltd プリントパターンの配線構造
JP2005032737A (ja) * 2003-07-07 2005-02-03 Oki Electric Ind Co Ltd プリント配線板の配線構造
JP2009273566A (ja) * 2008-05-13 2009-11-26 Daito Giken:Kk 遊技台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119087A (ja) * 1987-07-13 1989-05-11 Internatl Business Mach Corp <Ibm> 印刷回路パネル
JPH05114770A (ja) * 1991-10-23 1993-05-07 Oki Electric Ind Co Ltd プリントパターンの配線構造
JP2005032737A (ja) * 2003-07-07 2005-02-03 Oki Electric Ind Co Ltd プリント配線板の配線構造
JP2009273566A (ja) * 2008-05-13 2009-11-26 Daito Giken:Kk 遊技台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146537A (ja) * 2017-07-21 2020-09-17 株式会社三共 遊技機
JP2019092803A (ja) * 2017-11-22 2019-06-20 株式会社三共 遊技機

Similar Documents

Publication Publication Date Title
JP2018198844A (ja) 遊技機
JP6315628B1 (ja) 遊技機
JP2019180621A (ja) 遊技機
JP6495954B2 (ja) 遊技機
JP6875580B2 (ja) 遊技機
JP6307148B1 (ja) 遊技機
JP2019017887A (ja) 遊技機
JP6317424B1 (ja) 遊技機
JP7128878B2 (ja) 遊技機
JP2019005200A (ja) 遊技機
JP2019216888A (ja) 遊技機
JP2019092803A (ja) 遊技機
JP6495953B2 (ja) 遊技機
JP6982136B2 (ja) 遊技機
JP2019005199A (ja) 遊技機
JP2019005197A (ja) 遊技機
JP2019024561A (ja) 遊技機
JP6317423B1 (ja) 遊技機
JP7128879B2 (ja) 遊技機
JP2019107194A (ja) 遊技機
JP6427162B2 (ja) 遊技機
JP2018121937A (ja) 遊技機
JP6495956B2 (ja) 遊技機
JP6495957B2 (ja) 遊技機
JP2019025263A (ja) 遊技機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200622