JP2019016275A - 画像処理方法、画像処理プログラム、記憶媒体、画像処理装置、および撮像装置 - Google Patents

画像処理方法、画像処理プログラム、記憶媒体、画像処理装置、および撮像装置 Download PDF

Info

Publication number
JP2019016275A
JP2019016275A JP2017134761A JP2017134761A JP2019016275A JP 2019016275 A JP2019016275 A JP 2019016275A JP 2017134761 A JP2017134761 A JP 2017134761A JP 2017134761 A JP2017134761 A JP 2017134761A JP 2019016275 A JP2019016275 A JP 2019016275A
Authority
JP
Japan
Prior art keywords
information
image processing
depth map
subject space
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017134761A
Other languages
English (en)
Inventor
崇 鬼木
Takashi Oniki
崇 鬼木
法人 日浅
Norito Hiasa
法人 日浅
義明 井田
Yoshiaki Ida
義明 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017134761A priority Critical patent/JP2019016275A/ja
Publication of JP2019016275A publication Critical patent/JP2019016275A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)

Abstract

【課題】高精度なデプスマップを取得することのできる画像処理方法を提供する。【解決手段】撮像装置において、画像処理部は、被写体空間の奥行分布に関する第1の情報を取得する第1の工程と、参照情報を取得する第2の工程と、多層のニューラルネットワークと第1の情報と参照情報とを用いて被写体空間のデプスマップを算出する第3の工程とを含む画像処理を行う。参照情報は、撮影画像と、信頼度マップと、ラベルマップと、の少なくとも1つを含む。【選択図】図3

Description

本発明は、デプスマップを取得するための画像処理方法に関する。
画像に対するボケ付加処理や車両の自動運転制御を行うために、被写体空間のデプスマップを高精度に取得することが望まれている。
特許文献1には、多視点画像におけるオクルージョン領域の奥行情報を、オクルージョン領域と同等の特徴を有する非オクルージョン領域の奥行情報を用いて算出することが記載されている。このとき、オクルージョン領域の特徴としては色やテクスチャが用いられることが開示されている。
特開2011−060216号公報
しかしながら、特許文献1では非オクルージョン領域の奥行情報を用いているため、全体がオクルージョン領域に含まれる被写体の奥行情報を正しく求めることができない。また、オクルージョン領域と同等の特徴を有するが奥行が異なる非オクルージョン領域が存在する場合、オクルージョン領域の奥行情報を正しく求めることができない。
本発明の目的は、高精度なデプスマップを取得することのできる画像処理方法を提供することである。
本発明の画像処理方法は、被写体空間の奥行分布に関する第1の情報を取得する第1の工程と、前記被写体空間に存在する被写体の特性に関する第2の情報と、前記第1の情報の信頼度を示す第3の情報と、前記被写体空間を撮影することにより得られた撮影画像と、のうちの少なくとも一つ含む参照情報を取得する第2の工程と、多層のニューラルネットワークと前記第1の情報と前記参照情報とを用いて前記被写体空間のデプスマップを算出する第3の工程と、を有することを特徴とする。
本発明によれば、高精度なデプスマップを取得することのできる画像処理方法を実現できる。
実施例1の撮像装置の概略図である。 実施例1の撮像装置の撮像部の概略図である。 実施例1の撮像装置の画像処理部において行われる処理を説明するフローチャートである。 多層のニューラルネットワークの概略図である。 学習情報を取得するための処理を説明するフローチャートである。 ボケ像の強度分布を説明する図である。 実施例2の画像処理システムの概略図である。 実施例2の画像処理システムで行われる処理を説明するフローチャートである。 実施例3の撮像装置の概略図である。
以下、本発明の実施形態について、図面を参照しながら説明する。
後述する各実施例では、多層のニューラルネットワークを用いて高精度なデプスマップを得ている。多視点画像などから求めた被写体空間の奥行分布に関する第1の情報と、第1の情報に含まれる破綻部を補完するための参照情報と、を多層のニューラルネットワークに入力することで被写体空間のデプスマップを得る。参照情報とは、被写体空間に存在する被写体の特性に応じて被写体空間をラベリングした情報である第2の情報と、第1の情報の信頼度を示す情報である第3の情報と、被写体空間を撮影した撮影画像と、のうちの少なくとも1つ含む情報である。なお破綻部とは、実際の奥行からの誤差が大きくなってしまった部分やオクルージョン等の影響で奥行分布に関する情報が欠損してしまった部分を言う。
第1の情報を参照情報と共にニューラルネットワークに入力することで、第1の情報の破綻部における奥行分布を高精度に推定でき、被写体空間のデプスマップを高精度に取得することができる。
[実施例1]
まず、本発明の撮像装置に関する実施例について説明する。本実施例では、第1の情報として被写体空間を多視点から撮像して得られた多視点画像から得られた第1のデプスマップを用いる。また、本実施例では参照情報として被写体空間を撮影した撮影画像を用いる。
本実施例の撮像装置100のシステム構成を図1(a)に示す。また、撮像装置100の外観図を図1(b)に示す。撮像装置100は、被写体空間の光学像を光電変換し、撮影画像として取得する撮像部101を有している。撮像部101は、被写体空間から入射する光を集光する光学系101aと、複数の画素を有する撮像素子101bを有している。撮像素子101bとしては、CCD(Charge Coupled Device)センサや、CMOS(Complementary Metal−Oxide Semiconductor)センサなどを用いることができる。撮像部101は、後述のように、多視点画像を取得できるように構成されている。
撮像部101で取得された撮影画像は、画像処理部102に入力される。画像処理部102は、学習部102a、第1の算出部102b、第2の算出部102cを有する。第1の算出部102bは、多視点画像である複数の撮影画像の視差情報を用いて被写体空間の奥行分布を表す第1のデプスマップを生成する。第1のデプスマップにはオクルージョンなどの影響により奥行分布に破綻を生じた破綻部が含まれている場合がある。第2の算出部102cは、学習部102aによって予め学習された学習情報を記憶部103から読み出し、第1のデプスマップよりも高精度な第2のデプスマップを算出する。
記憶部103は、予め学習された学習情報の他に、画像処理部102で行われる画像処理プログラムや撮像装置の制御に必要な各種情報を記憶している。
第2の算出部102cによって算出された第2のデプスマップは、撮影画像と合わせて記録媒体105に保存される。
表示部104には、第2のデプスマップを用いた画像処理を施された撮影画像が表示される。第2のデプスマップを用いた画像処理としては、例えばぼけ付加処理がある。以上の一連の制御は、システムコントローラ106によって行われる。
本実施例における撮像部101の構成を図2に示す。図2に示す構成は一般にPlenoptic1.0構成と呼ばれる。図2において軸上光束を一点鎖線で表している。
撮像素子101bは、マイクロレンズアレイ122と、複数の画素121を有する。マイクロレンズアレイ122は、光学系101aを介して被写体面120と共役になる位置に配置される。マイクロレンズアレイ122を構成する各マイクロレンズにはそれぞれ複数の画素が対応付けられている。これによって光学系101aの瞳を分割して露光することができ、多視点画像を取得することができる。本実施例では1つのマイクロレンズに対して4つの画素が配列されており、撮像部101は多視点画像としてそれぞれ異なる視点から被写体空間を撮影した4枚の画像を一度に取得することができる。
次に、第2の算出部102cにおける処理に関して図3を用いて説明する。
図3は、第2の算出部102cで行われる処理に関するフローチャートである。図3において、「S」はステップ(工程)を表す。これは以下の説明でも同様である。
まずS101では、多視点画像と、学習情報と、第1のデプスマップと、を取得する。学習情報とは、入力画像と第2のデプスマップを結びつけるために予め学習された情報である。
S102では、第2の算出部102cがニューラルネットワークに入力する入力データを選択する。本実施例における入力データは、第1のデプスマップと撮影画像である。撮影画像は多視点画像のうちの1つの視点の画像でもよいし、複数の視点の画像でも良い。
撮影画像として複数の視点の画像を用いる場合、それぞれの視点の画像から一部の領域(以下、部分領域と称する)を切り出して入力することが好ましい。これによって入力データのサイズを小さくすることができ、第2の算出部102cの計算負荷を低減することができる。この場合、各部分領域は被写体空間における同一の位置を含むように切り出される。ただし、各視点の画像から切り出した各領域のサイズは同一でなくてもよい。撮影画像として複数の視点の画像を用いる場合、視差から被写体空間の奥行分布を見積もることができるため、部分領域のサイズが小さくても高精度に第2のデプスマップを算出することができる。
一方、撮影画像として1つの視点の画像のみを用いる場合は、構図など非局所的な特徴から被写体空間の奥行分布を推定するため、ある程度の画像サイズを有していることが望ましい。したがって、撮影画像として1つの視点の画像のみを用いる場合、撮影画像から部分領域を切り出さずにそのまま入力すると良い。
また、第1のデプスマップについては、一部の領域を抽出して入力しても良いし、全体を入力しても良い。撮影画像から一部の領域を抽出して入力する場合には、第1のデプスマップから一部の領域を抽出して入力すれば良い。
S103では、第2の算出部102cが学習情報と入力データを用いて第2のデプスマップを生成する。S103で行われる推定の詳細に関して、図4を用いて説明する。図4は、多層のニューラルネットワークの1つであるConvolutional Neural Network(CNN)のネットワーク構造を示している。
CNNは、複数の層を有する。具体的には、入力データが入力される入力層と、CNNによって推定された第2のデプスマップを出力する出力層と、入力層と出力層の間に設けられた複数の中間層を有する。各中間層には、学習情報を用いて直前の層の値を線型変換および非線型変換した値が入力される。
ここでCNNがN個(Nは3以上の整数)の層を有するとする。nを1からNまでの整数とした時、n番目の層を第n層と称する。このとき、第1層が入力層であり第N層が出力層である。
第1層201は複数のチャンネルを有しており、第1のデプスマップと撮影画像は第1層201のそれぞれ別のチャンネルに入力される。撮影画像として複数の視点の画像を入力する場合には、各視点の画像はそれぞれ別のチャンネルに入力される。なお、撮影画像を入力する際、撮影画像を1つのチャンネルに入力しても良いし、RGBに分けて3つのチャンネルに入力しても良い。
第1層201に入力された入力データは、複数のフィルタ202それぞれとのコンボリューション(複数の線型関数による線型変換)をとられる。その後、活性化関数(Activation Function)で非線形変換されて第2層203に入力される。図4におけるAFは活性化関数を表す。
複数のフィルタ202の係数は、学習情報から決定される。学習情報はフィルタ係数そのものでもよいし、フィルタをなんらかの関数でフィッティングした際の係数でもよい。複数のフィルタ202に含まれる各フィルタは、入力データ201と同一のチャンネル数を有する3次元フィルタである(3次元目がチャンネル数を表す)。なお、各フィルタでのコンボリューションの結果に、学習情報から決定される定数を加算してもよい。
活性化関数に入力される値をxとしたとき、活性化関数f(x)の例としては以下の式(1)乃至(3)がある。
Figure 2019016275
Figure 2019016275
Figure 2019016275
式(1)はシグモイド関数、式(2)はハイパボリックタンジェント関数、式(3)はReLU(Rectified Linear Unit)である。式(3)中のmaxは、xと0のうち大きい方の値を出力するMAX関数である。式(1)乃至(3)は、全て単調増加関数である。
第2層203は複数のチャンネルを有しており、第2層203の各チャンネルには複数のフィルタ202に含まれる各フィルタからの出力を活性化関数AFで非線形変換した結果が入力される。そのため、第2層203のチャンネル数は、複数のフィルタ202に含まれるフィルタの数と同一である。
次に、第2層203に対して、第1層201に対して行った処理と同様に、学習情報から決定される複数のフィルタ204とのコンボリューションによる線型変換と、活性化関数による非線型変換を行なう。複数のフィルタ204に含まれる各フィルタのチャンネル数は第2層203のチャンネル数と同じである。フィルタ204に含まれるフィルタの数、各フィルタの係数、各フィルタのサイズは、第1層201に対して使用するフィルタ202と異なる。
同様の演算をN−2回繰り返すことで、第N−1層210のデータを得る。最後に、第N−1層に対してフィルタ211を用いたコンボリューションおよび定数の加算を行い、第N層(出力層)212にデータを出力する。第N−1層に対して用いるフィルタ211および定数も、学習情報から決定される。このようにして第N層212に出力されたデータは、入力データから推定された高精度なデプスマップである。なお、S102において撮影画像および第1のデプスマップの部分領域を抽出して入力データとした場合、S203で推定されるデプスマップはS102で抽出された部分領域に対応した領域のデプスマップとなる。なお、第N層212から出力されるデプスマップのサイズは入力データのサイズと異なっていても良い。
本実施例のように、多層のニューラルネットワークを用いる推定方法は、ディープラーニングと呼ばれる。ディープラーニングが高い性能を発揮できる理由は、非線型変換を多層構造によって何度も行うことで、高い非線型性が得られるためである。仮に、非線型変換を担う活性化関数が存在せず、線型変換のみでネットワークが構成されていた場合、いくら多層にしてもそれと等価な単層の線型変換が存在するため、多層構造にする意味がない。ディープラーニングでは、より多くの層で構成されたニューラルネットワークを用いることで、より高い性能が得られると言われている。一般に、少なくとも3層を有するニューラルネットワークを用いる場合にディープラーニングと呼ばれる。このように構成されたディープラーニングを用いることで、第1のデプスマップの破綻部の奥行情報を高精度に推定したデプスマップを得ることができる。
S104では、第1のデプスマップのうち既定の領域の全てに対して、デプスマップの推定処理を行ったかを第2の算出部102cが判定する。既定の領域とは、例えば第1のデプスマップの全体である。既定の領域の全てに対してデプスマップの推定処理が行われていれば、S105へ進む。そうでなければ、ステップS102へ戻り、デプスマップの推定処理がされていない領域を抽出して入力データとする。
S105では、第2の算出部102cが第2のデプスマップを出力する。第2のデプスマップは、S102からS104を複数回繰り返して得られたデプスマップを合成することで生成される。ただし、S102で撮影画像および第1のデプスマップの部分領域を抽出しなかった場合は、第N層212の出力をそのまま第2のデプスマップとする。
以上の処理によって、第1のデプスマップから撮影画像を参照して推定した第2のデプスマップを得ることができる。
次に、学習情報の学習に関して、図5のフローチャートを用いて説明する。学習情報の学習は、撮像装置100の学習部102aで行なってもよいし、撮像装置100とは別の演算装置で行なってもよい。以下の説明では、学習部102aで学習を実行する場合を例に説明する。
図5は学習部102aで行われる学習工程を示すフローチャートである。この学習工程は図3に示す第2のデプスマップの推定処理に先立って行われる。
S201では、一対以上の学習データを取得する。一対の学習データとは、任意の方法で生成された被写体空間の奥行分布を示す参照デプスマップおよび被写体空間を撮影した参照画像を含む学習用入力データと、参照デプスマップよりも高精度な被写体空間の奥行分布である学習用デプスマップである。
本実施例では、上述のように、特定の方法で作成した第1のデプスマップを用いて第2のデプスマップの推定処理を行う。したがって、学習用入力データは第2のデプスマップの推定処理における入力データと同条件で取得することが好ましい。すなわち、参照デプスマップは、第2のデプスマップの推定時に用いる第1のデプスマップと同様の手法によって生成されることが好ましい。デプスマップの破綻部は、デプスマップの生成方法に応じて異なるが、参照デプスマップを第1のデプスマップと同じ方法で生成することで、第1のデプスマップの破綻部を高精度に補正可能な学習情報を得ることができる。また、学習時に用いる参照画像は第2のデプスマップの推定時に用いる撮影画像と枚数および撮影条件(光学系の焦点距離、F値、撮像素子のISO感度)を一致させることが好ましい。これによって第2のデプスマップの推定精度を向上させることができる。
なお、学習時に用いる参照画像は第2のデプスマップの推定時に用いる撮影画像と撮影条件(光学系の焦点距離、F値、撮像素子のISO感度)を異ならせても良い。これによって、撮影画像を取得した際の撮影条件による第2のデプスマップの推定誤差を低減させることができ、撮影画像を取得した際の撮影条件に依らず第2のデプスマップを高精度に推定することのできる学習情報を得ることができる。
学習用デプスマップは、参照デプスマップの破綻部の奥行に関する情報を有するデプスマップである。学習用デプスマップの精度によって、第2の算出部102cで推定される第2のデプスマップの精度が決まる。
学習用入力データと学習用デプスマップは、第1のデプスマップを取得した被写体空間とは異なる他の被写体空間から得られたデプスマップを用いる。他の被写体空間は、コンピュータグラフィックス(CG)によるシミュレーションを用いた仮想的な被写体空間を含む。したがって、学習用デプスマップは、被写体空間の奥行分布を実測したりして取得したデータでも良いし、CGによるシミュレーションによって取得したデータでも良い。
学習情報は第1のデプスマップの補正に使用するため、参照画像のいくつかには第1のデプスマップを算出する際に奥行の精度が低くなるような被写体が含まれていることが好ましい。本実施例では多視点画像から第1のデプスマップを生成するが、以下に説明するように多視点画像からデプスマップを算出する場合、金属や透明体等の被写体において奥行の精度が低くなりやすい。また、被写体の境界など奥行が不連続に変化する領域で奥行の精度が低くなりやすい。したがって、本実施例では参照画像には金属や透明体等の被写体や、奥行が不連続に変化する領域が含まれていることが好ましい。
ここで、デプスマップの生成方法による破綻部の違いについて説明する。まず、本実施例で用いられている多視点画像からデプスマップを生成する場合に関して述べる。多視点画像からデプスマップを生成する場合、異なる視点の画像間における視差量(異なる視点間で対応する領域がどれだけずれているか)を求める必要がある。視点間の対応する領域は、被写体が異なる視点から観察しても略同一に見えるという仮定を置くことで、視点間の相関値が高くなる領域として求まる。そのため、視点によって見え方(例えば被写体の輝度分布)が大きく変わる被写体の奥行を正しく算出することは困難である。視点によって見え方が変わる被写体としては、金属などの鏡面反射の強い被写体や、ガラスなどの透明な被写体がこれに該当する。
また、異なる奥行に存在する被写体間の境界も、オクルージョンや、ブロックマッチング等で推定した奥行のエッジが膨張する問題(いわゆるedge fattening problem)があるため、奥行の破綻を起こしやすい。さらに、画素値の変化が小さい領域や周期的な構造を持つ被写体も、相関値が高くなる領域が複数存在するため、奥行の算出の精度が低下する。
S202では、学習データから複数の学習ペアを取得する。学習ペアは、学習用入力データと学習用部分デプス情報とからなる。学習用入力データは参照デプスマップと参照画像から取得され、サイズはステップS102における入力データと同じである。学習用部分デプス情報は、学習用デプスマップから、該領域の中心が学習用入力データと同じ被写体位置になるように取得される。学習用部分デプス情報のサイズは、ステップS102で選択される第1のデプスマップのサイズと同じである。
S203では、複数の学習ペアから、学習情報を取得する。S203における学習では、第2のデプスマップの推定に用いるニューラルネットワークと同じ構造のニューラルネットワークを使用する。本実施例では、図4に示したネットワーク構造に対して学習用入力データを入力し、その出力結果と学習用部分デプス情報の誤差を算出する。該誤差が最小化されるように、例えば誤差逆伝播法(Backpropagation)などを用いて、第1乃至第N−1層に対して用いられる各フィルタの係数や定数(学習情報)を最適化する。
各フィルタの係数および定数の初期値は乱数を用いて定めると良い。なお、各フィルタの係数と定数の初期値をAuto Encoderなどのプレトレーニングを行なって定めてもよい。Auto Encoderに関しては、G. E. Hinton & R .R. Salakhutdinov (2006−07−28). “Reducing the Dimensionality of Data with Neural Networks“, Science 313(5786): 504−507.を参照すると良い。
取得した学習ペアを全てネットワーク構造へ入力し、それら全ての情報を使って学習情報を更新する学習方法をバッチ学習と呼ぶ。ただし、この学習方法は学習ペアの数が増えるにつれて、計算負荷が膨大になってしまう欠点がある。反対に、学習情報の更新に1つの学習ペアのみを使用し、更新ごとに異なる学習ペアを使用する学習方法をオンライン学習と呼ぶ。この学習方法は、学習ペアが増えても計算量が増大しない利点があるが、その代わりに1つの学習ペアに存在するノイズの影響を大きく受ける問題がある。そのため、これら2つの学習方法の中間に位置するミニバッチ法を用いて学習することが好ましい。ミニバッチ法は、全学習ペアの一部を抽出し、それらを用いて学習情報の更新を行なう。次の更新では、異なる少数の学習ペアを抽出して使用する。これを繰り返すことで、バッチ学習とオンライン学習の欠点を小さくすることができ、高い推定効果を得やすくなる。
S204では、学習された学習情報を出力する。本実施例では、学習情報は記憶部103に記憶される。
以上の処理によって、破綻の少ない高精度なデプスマップを推定することが可能な学習情報を学習することができる。
本実施例では、多層のニューラルネットワークの各層に前の層の出力を所定のフィルタでコンボリューションした結果が入力される例を説明したが、本発明はこれに限定されない。多層のニューラルネットワークを、公知のプーリング層、ドロップアウト層、全結合層を含んで構成しても良い。
また、本実施例では、多視点画像の視差情報から算出された第1のデプスマップを第1の情報として用いる例について説明したが、第1の情報はこれに限られない。第1の情報は被写体空間の距離情報に関する情報であれば良く、例えば、多視点画像から得た視差マップでも良い。この場合、多層のニューラルネットワークには、視差マップと撮影画像が入力される。ニューラルネットワークの出力としては、入力した視差マップにおける破綻部を高精度に補正した視差マップが出力される。このようにして得た視差マップを用い、視差量と奥行の関係から第2のデプスマップを算出することで、高精度なデプスマップを得ることができる。なお、ニューラルネットワークに視差マップと撮影画像を入力する場合、ニューラルネットワークが第2のデプスマップを出力するように構成しても良い。
ただし、画像処理部における処理負荷を低減させるためには、第1の情報は本実施例のようにデプスマップであることが好ましい。
また、本実施例では、第1の情報を多視点画像から求める例について説明したが、第1の情報の算出方法はこれに限られない。第1の情報は、被写体空間の奥行分布に関する情報を取得する種々の方法を用いて取得することができる。ただし、第1の情報は多視点撮影、Depth from Focus(DFF)、Depth from Defocus(DFD)、光飛行時間(Time of Fright、TOF)方式、アクティブステレオ方式のいずれかの手法で求めることが好ましい。これらの方法で被写体空間の奥行分布に関する情報を求める、特定の領域において奥行分布に破綻を生じるが、破綻を生じない領域については高精度に被写体空間の奥行分布を算出することができる。したがって、これらの方法を用いて取得した第1の情報の破綻部をニューラルネットワークで推定することで高精度なデプスマップを得ることができる。
DFFを用いてデプスマップを生成する場合の破綻部について説明する。DFFとは、合焦位置の異なる複数の画像の各領域において、最もコントラストの高い画像が該領域に合焦している画像と仮定することで、奥行を推定する手法である。DFFも多視点撮影と同様に、奥行の異なる被写体の境界や画素値の変化が小さい領域で奥行の推定精度が低下してしまう。またDFFでは、デフォーカスによるぼけ像の強度が、図6(a)に示すように、なだらかに減衰するという仮定を置いている。したがって、この仮定が成り立たない場合正しいデプスを推定することが困難となる。実際の多くの光学系では、ぼけ像の強度分布は図6(b)に示すように周辺にピークを持った強度分布となる。そのため、暗部に点光源が存在するようなコントラストの強いシーンでは、非合焦時に点光源のぼけ像周辺に強いエッジが生成される。ゆえに、そのエッジが合焦画像と誤判定され、破綻の原因となる。
次に、DFDを用いてデプスマップを生成する場合の破綻部について説明する。DFDは撮影時の合焦位置またはF値(瞳の大きさ)を異ならせて撮影された複数の画像(デフォーカスの異なる複数の画像)を使用する。あるデフォーカスの画像の部分領域に対して、複数のPSFそれぞれとの畳み込み(或いは、逆畳み込み)を算出し、異なるデフォーカスの画像における同一位置の部分領域と相関を求める。最も相関が高くなる点像強度分布(Point Spread Function,PSF)から、該領域における奥行を推定することができる。DFDの場合でも、奥行の異なる被写体の境界と画素値の変化が小さい領域で奥行の推定精度が低下してしまう。また、輝度飽和している領域は被写体の情報が失われているため、異なるデフォーカスの画像と一致する畳み込み(或いは、逆畳み込み)結果が存在しない。そのため、輝度飽和が発生している領域でも奥行の推定精度が低下してしまう。
次に、TOFを用いてデプスマップを生成する場合の破綻部について説明する。TOFは、撮像装置から発した光が被写体に反射され、再び撮像装置まで戻ってくる時間と光速度から奥行を算出する手法である。そのため、光を透過、或いは吸収する被写体では正しく奥行を求めることができない。また、光を反射する被写体でも、鏡面反射を起こしやすい鏡面反射体では、該被写体の法線が撮像装置に対して傾いている場合、反射光が撮像装置に戻って来ないため奥行が算出できない。また、被写体間での光の相互反射もデプス取得精度の低下を招く。投射系と撮像系の組み合わせから奥行を推定するアクティブステレオ方式からデプスマップを生成する場合も、TOFと同様の被写体で破綻が生じる。被写体が鏡面反射体の場合、投射系から投射された光の反射光が撮像系に入射するような面の傾きを有する被写体しか奥行が取得できない。
以上のように、被写体空間の奥行分布を求める各方法には、奥行分布の算出結果に破綻を生じやすい領域があるが、多層のニューラルネットワークを用いて破綻部の奥行分布を推定することで高精度なデプスマップ(第2のデプスマップ)を得ることができる。
[実施例2]
次に、本発明の画像処理システムの実施例について説明する。本実施例の画像処理システムは、デプスマップを推定する画像処理装置と、撮影画像を取得する撮像装置、学習を行なうサーバーから構成されている。本実施例では、第1の情報としてDFFを用いて取得した第1のデプスマップを用いる。また、本実施例では参照情報として第2の情報(ラベルマップ)または第3の情報(信頼度マップ)を用いる。
図7(a)に、本実施例の画像処理システムの構成の概略図を示す。また、本実施例の画像処理システムの外観図を図7(b)に示す。撮像装置300の構成は、撮影装置300は、単一視点の画像を取得可能に構成されており、撮影時に合焦位置を変えながら複数回撮影することで、合焦位置が異なる複数の画像(撮影画像)を取得する。
撮像装置300によって撮影された郷正一が異なる複数の撮影画像は、画像処理装置301に送信され、画像処理装置301の記憶部302に記憶される。画像処理装置301の第1の算出部303は、複数の撮影画像からDFDまたはDFFを用いて第1のデプスマップを算出する。第1の算出部303によって算出された第1のデプスマップは記憶部302に記憶される。
画像処理装置301は、サーバー306にネットワーク305を介して有線または無線で接続されている。サーバー306は、第1のデプスマップと参照データから第2のデプスマップを算出するための学習情報を学習する学習部308と、該学習情報を記憶する記憶部307を有している。画像処理装置301は、サーバー305の記憶部307から学習情報を取得し、取得した学習情報を用いて第2の算出部304で第2のデプスマップを推定する。
第2の算出部304で生成されたデプスマップは、モニタやプロジェクタなどの表示装置309、記録媒体310、プリンタなどの出力装置311の少なくとも何れかに出力される。ユーザーは表示装置309や出力装置311によって処理途中の画像を確認しながら作業を行うことができる。
記録媒体310は、例えば半導体メモリ、ハードディスク、ネットワーク上のサーバー等である。出力装置311は、プリンタなどである。画像処理装置301は、必要に応じて現像処理やその他の画像処理を行う機能を有していてよい。
本実施例の画像処理装置301において行われる処理について、図8を用いて説明する。
まず、S301で第2の算出部304は記憶部302から撮影画像を取得する。
S302では、第2の算出部304は記憶部302から第1のデプスマップと参照データを取得する。
ここで、前述のように本実施例における参照データはラベルマップまたは信頼度マップである。ラベルマップとは、被写体空間に存在する被写体の特性に基づいて撮影画像の各領域をラベリングした情報である。被写体の特性とは、例えば被写体の材質、被写体の透過特性、被写体の反射特性を指す。被写体の透過特性または反射特性は、例えばS. Bell, et al., “Material recognition in the wild with the materials in context database”, Proceedings of the IEEE conference on CVPR (2015).に記載された方法を用いることができる。これによって、DFDやDFFで奥行が破綻しやすい被写体(例えば、鏡面反射によって輝度飽和を生じやすい金属)や、多視点撮影やTOF方式で推定した奥行が破綻する鏡面反射体や透明体などを判定できる。なお、信頼度マップは被写体空間の全ての被写体についてラベリングする必要はなく、奥行の破綻を生じやすい被写体とその他の被写体が分別できるようにラベリングすれば十分である。
また、信頼度マップとは、第1の情報としての第1のデプスマップの信頼度をマッピングした情報である。信頼度マップは、例えば第1の情報を算出する際のマッチングエラーの大きさに基づいて生成することができる。
S303では、参照データに基づいて、使用するネットワーク構造と学習情報、及び入力データのサイズを決定する。本実施例では、実施例1と同様に、図4に示したニューラルネットワークを使用してデプス情報の推定を行なう。ただし、本実施例では参照データの種類ごとに学習した学習情報を用いる。
まず、参照データとしてラベルマップを用いる場合について述べる。本実施例で用いるラベルマップでは第1のデプスマップにおいて破綻が生じやすい領域と破綻が生じにくい領域にそれぞれ異なるラベルが付されている。参照データとしてラベルマップを用いる場合に使用されるネットワーク構造と入力データのサイズは学習時の条件によって決まる。なお、ニューラルネットワークを用いて第2のデプスマップを推定する領域を、破綻が生じやすい領域としてラベル付けされた領域に限っても良い。すなわち、第1のデプスマップのうち、ラベルマップに基づいて定められた一部の領域に対してのみ第2のデプスマップを算出しても良い。これによって第2の算出部304における処理を高速化することができる。
参照データとして信頼度マップを用いる場合、信頼度が低い領域ほど入力データのサイズを大きくするとよい。また、入力データを抽出する際、抽出された部分領域が信頼度の高い領域を含むようにしてもよい。これによって、より精度の高い推定が可能となる。なお、なお、ニューラルネットワークを用いてデプスマップを推定する領域を信頼度マップにおける信頼度が所定の閾値より低い領域に限ってもよい。すなわち、第1のデプスマップのうち、信頼度マップに基づいて定められた一部の領域に対してのみ第2のデプスマップを算出しても良い。これによって第2の算出部304における処理を高速化することができる。
S304では、S303での決定に基づいて第1のデプスマップと参照データから入力データを取得する。
S305では、学習情報および多層のニューラルネットワークを用いて第1のデプスマップを高精度化したデプスマップを生成する。
S306では、既定の領域の全てに対してデプスマップを推定し終えたか判定する。S306がYesの場合S307へ進み、No場合はステップS304へ戻り既定の領域のうち第2のデプスマップが推定されていない領域を抽出して入力データとする。
S307では、複数回S305を行って生成された複数のデプスマップを合成して第2のデプスマップを出力する。
以上のような処理を行うことで、参照データとして信頼度マップまたはラベルマップを用いる場合にも、破綻の少ない高精度なデプスマップを取得することができる。
次に、学習部308が行なう学習情報の学習に関して説明する。本実施例では、前述のように参照データごとに異なる学習情報を学習する。学習方法は、実施例1と同様に、図5に示したフローチャートに従う。
一例として、学習データをシミュレーション(CGレンダリング)によって生成する場合に関して述べる。この場合、あるデプス情報が設定されたレンダリング画像を生成し、該レンダリング画像から第1のデプスマップを取得する。レンダリング画像は第1のデプスマップで破綻が生じやすい領域および破綻が生じにくい領域を含むように構成されている。第2のデプスマップを生成する際の参照データとしてラベルマップを用いる場合は、レンダリング画像において第1のデプスマップの破綻を生じやすい領域にラベルを付けた参照ラベルマップを利用する。例えば第1のデプスマップをDFDで算出する場合、被写体同士の境界部、画素値の変化の少ない平坦部、輝度飽和部、それ以外の領域で分類しラベル付けする。
S201で学習データとして、レンダリング画像から得た参照デプスマップ、参照ラベルマップ、レンダリング時の奥行に関する情報から取得した学習用デプスマップを取得する。その後、学習データに対してステップS202乃至S204を実行し、学習情報を得る。参照データとして信頼度マップを使用する場合も同様の手順で学習することで学習情報を得ることができる。すなわち、レンダリング画像から参照デプスマップを算出し、参照デプスマップを算出する際の信頼度を用いて参照信頼度マップを生成する。その後、学習データとして参照デプスマップ、参照信頼度マップ、学習用デプスマップを用いて学習情報を得ることができる。
なお、上述した実施例1および実施例2では、参照データとして撮影画像と信頼度マップとラベルマップのいずれか1つを用いる例について説明したが、本発明はこれに限定されない。参照データとして撮影画像と信頼度マップとラベルマップのうちの2つの情報を用いても良いし、全ての情報を用いても良い。撮影画像と信頼度マップとラベルマップのうち複数の情報を用いる場合、それぞれの情報は入力層201の異なるチャンネルに入力される。
[実施例3]
次に、実施例3の撮像装置について述べる。本実施例では、TOF方式によって第1の情報としての第1のデプスマップを得る。
図10に、本実施例の撮像装置400のシステム構成図を示す。撮像装置400は発光部407を有する点で実施例1の撮像装置100と異なる。発光部407は撮影時に被写体に向かって近赤外光を照射する。
撮像素子401bは被写体で反射された近赤外光を受光する。撮像素子401bは撮影画像を取得するRGBのカラー画素に加えて、近赤外光を受光して光電変換するIR(Infrared)画素を有している。なお、カラー画素とIR画素は同一の撮像素子に設ける必要はなく、カラー画素とIR画素を別々の撮像素子に設けても良い。この場合、光学系401aを通過した光をハーフミラーで可視光と近赤外光に分割することで、可視光と近赤外光を別々の撮像素子に受光させることができる。
第1の算出部402bは、IR画素の出力信号から第1のデプスマップを算出する。第2の算出部402cは、第1のデプスマップと参照情報を用いて第2の情報としての第2のデプスマップを算出する。なお、本実施例における参照情報はカラー画素の出力信号から得られた撮影画像でも良いし、実施例2で述べたラベルマップや信頼度マップでも良い。また、撮影画像とラベルマップと信頼度マップの複数を参照情報として用いても良い。
なお、本実施例では発光部407から近赤外光を発光し、TOF方式によって第1のデプスマップを得る例について説明したが、発光部407から空間的なパターンを投射するように構成してアクティブステレオ方式で第1のデプスマップを得ても良い。
以上の構成により、高精度なデプスマップを推定することが可能な撮像装置を提供することができる。
[その他の実施例]
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されたものではなく、その要旨の範囲内で様々な変形、及び変更が可能である。
102 画像処理部
102b 第1の算出手段
102c 第2の算出手段

Claims (19)

  1. 被写体空間の奥行分布に関する第1の情報を取得する第1の工程と、
    前記被写体空間に存在する被写体の特性に関する第2の情報と、前記第1の情報の信頼度を示す第3の情報と、前記被写体空間を撮影することにより得られた撮影画像と、のうちの少なくとも一つ含む参照情報を取得する第2の工程と、
    多層のニューラルネットワークと前記第1の情報と前記参照情報とを用いて前記被写体空間のデプスマップを算出する第3の工程と、
    を有することを特徴とする画像処理方法。
  2. 前記第1の情報は、前記被写体空間を複数の視点から撮影した複数の撮影画像を用いて算出された情報であることを特徴とする請求項1に記載の画像処理方法。
  3. 前記参照情報は前記被写体空間を複数の視点から撮影した複数の撮影画像を含むことを特徴とする請求項1または2に記載の画像処理方法。
  4. 前記第3の工程において、前記複数の撮影画像のそれぞれにおける一部の領域を用いて、前記被写体空間のデプスマップを算出することを特徴とする請求項3に記載の画像処理方法。
  5. 前記第1の情報は、合焦位置を異ならせて前記被写体空間を撮影した複数の撮影画像を用いて算出された情報であることを特徴とする請求項1に記載の画像処理方法。
  6. 前記第1の情報は、光学系のF値を異ならせて前記被写体空間を撮影した複数の撮影画像を用いて算出された情報であることを特徴とする請求項1に記載の画像処理方法。
  7. 前記第1の情報は、アクティブステレオ方式またはTOF方式によって取得された情報であることを特徴とする請求項1に記載の画像処理方法。
  8. 前記第1の情報は、前記被写体空間のデプスマップであることを特徴とする請求項1乃至7のいずれか一項に記載の画像処理方法。
  9. 前記参照情報は前記第2の情報を含み、
    前記第3の工程において、前記第2の情報に基づいて定められた前記被写体空間の一部の領域に対する前記第1の情報を用いて前記被写体空間のデプスマップを算出することを特徴とする請求項1乃至8のいずれか一項に記載の画像処理方法。
  10. 前記参照情報は前記第2の情報を含み、
    前記被写体の特性は、材質と、反射特性と、透過特性の少なくとも1つを含むことを特徴とする請求項1乃至9のいずれか一項に記載の画像処理方法。
  11. 前記参照情報は前記第3の情報を含み、
    前記第3の工程において、前記第3の情報に基づいて定められた前記被写体空間の一部の領域に対する前記第1の情報を用いて前記被写体空間のデプスマップを算出することを特徴とする請求項1乃至10のいずれか一項に記載の画像処理方法。
  12. 前記第3の工程は、予め学習された学習情報を用いて行われることを特徴とする請求項1乃至11のいずれか一項に記載の画像処理方法。
  13. 前記学習情報は、前記被写体空間とは異なる被写体空間における奥行分布に関する情報を用いて学習された情報であることを特徴とする請求項12に記載の画像処理方法。
  14. 前記参照情報は前記撮影画像を含み、
    前記学習情報は、前記撮影画像を取得する際の撮影条件と同じ撮影条件で撮影された複数の画像を用いて学習された情報であることを特徴とする請求項12または13に記載の画像処理方法。
  15. 前記参照情報は前記撮影画像を含み、
    前記学習情報は、複数の撮影条件で撮影された複数の画像を用いて学習された情報であることを特徴とする請求項12または13に記載の画像処理方法。
  16. 請求項1乃至15のいずれか一項に記載の画像処理方法をコンピュータに実行させることを特徴とする画像処理プログラム。
  17. 請求項16に記載の画像処理プログラムを記憶していることを特徴とする記憶媒体。
  18. 被写体空間の奥行分布に関する第1の情報を取得する第1の算出手段と、
    前記被写体空間に存在する被写体の特性に応じて前記被写体空間をラベリングした第2の情報と、前記第1の情報の信頼度を示す第3の情報と、前記被写体空間を撮影した撮影画像と、のうちの少なくとも1つ含む参照情報を取得する取得手段と、
    多層のニューラルネットワークと前記第1の情報と前記参照情報とを用いて前記被写体空間のデプスマップを算出する第2の算出手段と、
    を有することを特徴とする画像処理装置。
  19. 光学像を光電変換して画像を出力する撮像部と、請求項18に記載の画像処理装置を有することを特徴とする撮像装置。
JP2017134761A 2017-07-10 2017-07-10 画像処理方法、画像処理プログラム、記憶媒体、画像処理装置、および撮像装置 Pending JP2019016275A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017134761A JP2019016275A (ja) 2017-07-10 2017-07-10 画像処理方法、画像処理プログラム、記憶媒体、画像処理装置、および撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017134761A JP2019016275A (ja) 2017-07-10 2017-07-10 画像処理方法、画像処理プログラム、記憶媒体、画像処理装置、および撮像装置

Publications (1)

Publication Number Publication Date
JP2019016275A true JP2019016275A (ja) 2019-01-31

Family

ID=65356906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017134761A Pending JP2019016275A (ja) 2017-07-10 2017-07-10 画像処理方法、画像処理プログラム、記憶媒体、画像処理装置、および撮像装置

Country Status (1)

Country Link
JP (1) JP2019016275A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148483A (ja) * 2019-03-11 2020-09-17 株式会社東芝 画像処理装置、測距装置、方法及びプログラム
JP2020181186A (ja) * 2019-04-25 2020-11-05 キヤノン株式会社 撮像装置及びその制御方法
JP2020201540A (ja) * 2019-06-06 2020-12-17 キヤノン株式会社 画像処理方法、画像処理装置、画像処理システム、学習済みウエイトの製造方法、および、プログラム
WO2021021313A1 (en) * 2019-07-30 2021-02-04 Microsoft Technology Licensing, Llc Pixel classification to reduce depth-estimation error
JP2021043115A (ja) * 2019-09-12 2021-03-18 株式会社東芝 画像処理装置、測距装置、方法及びプログラム
WO2021065065A1 (ja) * 2019-10-03 2021-04-08 株式会社ザクティ 撮像装置
JP2022501681A (ja) * 2019-08-30 2022-01-06 上海商▲湯▼▲臨▼港智能科技有限公司 デプス画像補完方法及び装置、コンピュータ可読記憶媒体
JP7120365B1 (ja) 2021-03-23 2022-08-17 株式会社リコー 撮像装置、撮像方法および情報処理装置
WO2022201803A1 (ja) * 2021-03-25 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理方法、及びプログラム
JP2023503761A (ja) * 2020-11-09 2023-02-01 グーグル エルエルシー 赤外光を利用したポートレート再照明
WO2023106119A1 (ja) * 2021-12-09 2023-06-15 ソニーグループ株式会社 制御装置、制御方法、情報処理装置、生成方法、およびプログラム
JP7370922B2 (ja) 2020-04-07 2023-10-30 株式会社東芝 学習方法、プログラム及び画像処理装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145725A (ja) * 2013-01-30 2014-08-14 Canon Inc 画像処理装置、撮像装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145725A (ja) * 2013-01-30 2014-08-14 Canon Inc 画像処理装置、撮像装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENJAMIN UMMENHOFER, ET AL.: "DeMoN: Depth and Motion Network for Learning Monocular Stereo", ARXIV, JPN7021003094, 11 April 2017 (2017-04-11), US, pages 1 - 22, ISSN: 0004566353 *
XIN ZHANG, ET AL.: "Fast depth image denoising and enhancement using a deep convolutional network", 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), JPN6021030906, 20 March 2016 (2016-03-20), US, pages 2499 - 2503, XP032901053, ISSN: 0004566354, DOI: 10.1109/ICASSP.2016.7472127 *
吉田 俊之: "Shape From Focus/Defocus法による3次元形状計測法とその応用について", 電子情報通信学会技術研究報告 VOL.115 NO.348, vol. 第115巻, JPN6021030909, 2015, JP, ISSN: 0004566355 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148483A (ja) * 2019-03-11 2020-09-17 株式会社東芝 画像処理装置、測距装置、方法及びプログラム
JP7051740B2 (ja) 2019-03-11 2022-04-11 株式会社東芝 画像処理装置、測距装置、方法及びプログラム
JP2020181186A (ja) * 2019-04-25 2020-11-05 キヤノン株式会社 撮像装置及びその制御方法
JP7234171B2 (ja) 2019-04-25 2023-03-07 キヤノン株式会社 撮像装置及びその制御方法
JP2020201540A (ja) * 2019-06-06 2020-12-17 キヤノン株式会社 画像処理方法、画像処理装置、画像処理システム、学習済みウエイトの製造方法、および、プログラム
US11694310B2 (en) 2019-06-06 2023-07-04 Canon Kabushiki Kaisha Image processing method, image processing apparatus, image processing system, and manufacturing method of learnt weight
JP7016835B2 (ja) 2019-06-06 2022-02-07 キヤノン株式会社 画像処理方法、画像処理装置、画像処理システム、学習済みウエイトの製造方法、および、プログラム
WO2021021313A1 (en) * 2019-07-30 2021-02-04 Microsoft Technology Licensing, Llc Pixel classification to reduce depth-estimation error
US11416998B2 (en) 2019-07-30 2022-08-16 Microsoft Technology Licensing, Llc Pixel classification to reduce depth-estimation error
JP7143449B2 (ja) 2019-08-30 2022-09-28 上▲海▼商▲湯▼▲臨▼▲港▼智能科技有限公司 デプス画像補完方法及び装置、コンピュータ可読記憶媒体
JP2022501681A (ja) * 2019-08-30 2022-01-06 上海商▲湯▼▲臨▼港智能科技有限公司 デプス画像補完方法及び装置、コンピュータ可読記憶媒体
JP7170609B2 (ja) 2019-09-12 2022-11-14 株式会社東芝 画像処理装置、測距装置、方法及びプログラム
JP2021043115A (ja) * 2019-09-12 2021-03-18 株式会社東芝 画像処理装置、測距装置、方法及びプログラム
JP2021060450A (ja) * 2019-10-03 2021-04-15 株式会社ザクティ 撮像装置
WO2021065065A1 (ja) * 2019-10-03 2021-04-08 株式会社ザクティ 撮像装置
JP7370922B2 (ja) 2020-04-07 2023-10-30 株式会社東芝 学習方法、プログラム及び画像処理装置
JP2023503761A (ja) * 2020-11-09 2023-02-01 グーグル エルエルシー 赤外光を利用したポートレート再照明
JP7304484B2 (ja) 2020-11-09 2023-07-06 グーグル エルエルシー 赤外光を利用したポートレート再照明
JP7120365B1 (ja) 2021-03-23 2022-08-17 株式会社リコー 撮像装置、撮像方法および情報処理装置
JP2022146970A (ja) * 2021-03-23 2022-10-06 株式会社リコー 撮像装置、撮像方法および情報処理装置
WO2022201803A1 (ja) * 2021-03-25 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理方法、及びプログラム
WO2023106119A1 (ja) * 2021-12-09 2023-06-15 ソニーグループ株式会社 制御装置、制御方法、情報処理装置、生成方法、およびプログラム

Similar Documents

Publication Publication Date Title
JP2019016275A (ja) 画像処理方法、画像処理プログラム、記憶媒体、画像処理装置、および撮像装置
KR101233013B1 (ko) 화상 촬영 장치 및 그 거리 연산 방법과 합초 화상 취득 방법
JP6786225B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
US10154216B2 (en) Image capturing apparatus, image capturing method, and storage medium using compressive sensing
JP5370542B1 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
US9965834B2 (en) Image processing apparatus and image acquisition apparatus
CN113168670A (zh) 使用神经网络的亮点去除
US20170127048A1 (en) Confidence generation apparatus, confidence generation method, and imaging apparatus
CN107465866A (zh) 图像处理设备及方法、摄像设备和计算机可读存储介质
JP2015035658A (ja) 画像処理装置、画像処理方法、および撮像装置
US9008412B2 (en) Image processing device, image processing method and recording medium for combining image data using depth and color information
US20210392313A1 (en) Image processing apparatus, image processing method, storage medium, manufacturing method of learned model, and image processing system
JP2012124555A (ja) 撮像装置
JP7378219B2 (ja) 撮像装置、画像処理装置、制御方法、及びプログラム
JP2014006388A (ja) 撮像装置およびその制御方法ならびにプログラム
JP6353233B2 (ja) 画像処理装置、撮像装置、及び画像処理方法
JP5857712B2 (ja) ステレオ画像生成装置、ステレオ画像生成方法及びステレオ画像生成用コンピュータプログラム
JP2020197774A (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP6700818B2 (ja) 画像処理装置、撮像装置、および画像処理方法
JP6395429B2 (ja) 画像処理装置、その制御方法及び記憶媒体
US20170116739A1 (en) Apparatus and method for raw-cost calculation using adaptive window mask
JP2017134561A (ja) 画像処理装置、撮像装置および画像処理プログラム
CN112866655B (zh) 图像处理方法和装置、电子设备、计算机可读存储介质
US20230032387A1 (en) Learning method, storage medium, and image processing device
JP4205533B2 (ja) 立体画像構成方法,立体対象の距離導出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222