JP2019013981A - Flux free brazing method of aluminum material and aluminum alloy member for flux free brazing - Google Patents
Flux free brazing method of aluminum material and aluminum alloy member for flux free brazing Download PDFInfo
- Publication number
- JP2019013981A JP2019013981A JP2017195779A JP2017195779A JP2019013981A JP 2019013981 A JP2019013981 A JP 2019013981A JP 2017195779 A JP2017195779 A JP 2017195779A JP 2017195779 A JP2017195779 A JP 2017195779A JP 2019013981 A JP2019013981 A JP 2019013981A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- brazing
- flux
- aluminum alloy
- alloy member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005219 brazing Methods 0.000 title claims abstract description 167
- 239000000463 material Substances 0.000 title claims abstract description 111
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 56
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 230000004907 flux Effects 0.000 title claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 49
- 239000002184 metal Substances 0.000 claims abstract description 36
- 238000002844 melting Methods 0.000 claims abstract description 29
- 230000008018 melting Effects 0.000 claims abstract description 29
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 14
- 239000011162 core material Substances 0.000 claims abstract description 13
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 10
- 229910052718 tin Inorganic materials 0.000 claims description 23
- 229910052738 indium Inorganic materials 0.000 claims description 21
- 229910052745 lead Inorganic materials 0.000 claims description 21
- 229910052700 potassium Inorganic materials 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 238000005304 joining Methods 0.000 abstract description 14
- 239000000945 filler Substances 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 20
- 239000000956 alloy Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 7
- 229910052797 bismuth Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 4
- 229910018566 Al—Si—Mg Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- -1 by mass% Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
本発明は、アルミニウム材のフラックスフリーろう付方法およびフラックスフリーろう付用アルミニウム合金部材に関する。 The present invention relates to a flux-free brazing method for an aluminum material and an aluminum alloy member for flux-free brazing.
自動車用等の熱交換器では、部材を組み付けた後にろう付接合することによって製造されている。良好なろう付を行うためには、合金部材の表面における酸化皮膜を破壊する必要があり、材料表面の酸化皮膜を破壊するために、フラックスを用いてろう付を行う方法が広く知られている。フラックスを用いてろう付接合を行う方法としては、ノコロックフラックスを用いた工法が主流となっている。しかし、高強度化のためにMgを含有させたアルミニウム合金を使用した場合には、Mgがフラックスと反応し、フラックスの不活性化反応(フッ化Mgなどの生成)が起きてしまうという問題がある。そこで、フラックスを用いずにろう付接合を行う方法が提案されている。 Heat exchangers for automobiles and the like are manufactured by brazing and joining after assembling members. In order to perform good brazing, it is necessary to destroy the oxide film on the surface of the alloy member, and in order to destroy the oxide film on the material surface, a method of brazing using a flux is widely known. . As a method of performing brazing and joining using a flux, a method using a noclock flux has become the mainstream. However, when an aluminum alloy containing Mg is used to increase the strength, there is a problem that Mg reacts with the flux and a flux inactivation reaction (generation of Mg fluoride or the like) occurs. is there. Therefore, a method of performing brazing joining without using a flux has been proposed.
フラックスを用いずに良好なろう付を行うための方法として、ろう材にAl−Si−Mg系合金を用いることが提案されている。ろう材にAl−Si−Mg系合金を用いることで、ろう付時において、ろう材の融点付近でろう材中のMgが接合部表面のAl酸化皮膜(Al2O3)を還元分解して合金表面の酸化皮膜を破壊するため、良好なろう付を行うことが可能となる。
例えば、特許文献1では、フィン材およびブレージングシートのろう材にMgを添加し、かつ、添加するMgの量を調整して、真空ろう付時における炉内へのスケール付着の問題を解決しながら、高強度で軽量な熱交換器の製造を可能にしている。
また、特許文献2では、不活性ガス雰囲気下におけるフラックスフリーのろう付方法として、Mg、Si等を含有する芯材用のAl合金に、Ag、Be、Bi等の元素やミッシュメタルを添加したろう材用のAl合金をクラッドしたものを用い、ろう付時の濡れ拡がり性を改善させることが提案されている。
As a method for performing good brazing without using a flux, it has been proposed to use an Al—Si—Mg alloy as a brazing material. By using an Al—Si—Mg-based alloy for the brazing material, the Mg in the brazing material reduces and decomposes the Al oxide film (Al 2 O 3 ) on the surface of the joint near the melting point of the brazing material at the time of brazing. Since the oxide film on the alloy surface is destroyed, good brazing can be performed.
For example, in Patent Document 1, while adding Mg to the brazing material of the fin material and brazing sheet and adjusting the amount of Mg to be added, while solving the problem of scale adhesion in the furnace during vacuum brazing This makes it possible to manufacture high-strength and lightweight heat exchangers.
In Patent Document 2, as a flux-free brazing method in an inert gas atmosphere, elements such as Ag, Be, Bi, and misch metal are added to an Al alloy for a core material containing Mg, Si, or the like. It has been proposed to use a clad Al alloy for brazing material to improve the wet spreadability during brazing.
上記したように、Al−Si−Mg系ろう材を用いるフラックスフリーろう付では、溶融して活性となったろう材中のMgが接合部表面のAl酸化皮膜(Al2O3)を還元分解することで接合が可能となる。また、雰囲気の影響を受けにくい閉塞的な面接合継ぎ手などでは、Mgによる酸化皮膜の分解作用により、ろう材を有するブレージングシート同士を組み合わせた継手や、ブレージングシートとろう材を有さない被接合部材(ベア材)とを組み合わせた継手で、良好な接合状態が得られる。 As described above, in flux-free brazing using an Al—Si—Mg-based brazing material, Mg in the brazing material that has been melted and activated reductively decomposes the Al oxide film (Al 2 O 3 ) on the surface of the joint. It becomes possible to join. In addition, for obstructive surface joints that are not easily affected by the atmosphere, joints that combine brazing sheets with brazing materials and brazed sheets and brazing materials that do not have brazing materials due to the decomposition of the oxide film by Mg With a joint that combines a member (bare material), a good joined state can be obtained.
しかしながら、雰囲気の影響を受けやすい開放部を有する継手形状の場合は、十分な接合状態が得られ難い。特に、ブレージングシートとベア材とを組み合わせて接合する場合は、ベア材の表面のAl酸化皮膜の分解が進み難く、十分な接合を得ることが難しい。さらに、軽量化・高強度化等のためにMgが添加されたベア材を用いる場合は、分解され難く安定した酸化皮膜であるMgO皮膜がろう付時に成長しやすく、接合が著しく阻害されてしまう。このことから、開放部を有する継手においても安定した接合状態が得られるようなフラックスフリーろう付方法が強く望まれている。 However, in the case of a joint shape having an open portion that is easily influenced by the atmosphere, it is difficult to obtain a sufficient joined state. In particular, when a brazing sheet and a bare material are combined and joined, decomposition of the Al oxide film on the surface of the bare material is difficult to proceed, and it is difficult to obtain sufficient joining. Furthermore, when using a bare material to which Mg is added for weight reduction, strength enhancement, etc., the MgO film which is a stable oxide film which is difficult to be decomposed easily grows at the time of brazing, and bonding is significantly hindered. . Therefore, a flux-free brazing method that can obtain a stable joint state even in a joint having an open portion is strongly desired.
本発明は、上記事情を背景としてなされたものであり、開放部を有する継手においても安定した接合状態が得られるフラックスフリーろう付方法およびフラックスフリーろう付用アルミニウム合金部材を提供することを目的とする。 The present invention has been made in the background of the above circumstances, and an object thereof is to provide a flux-free brazing method and an aluminum alloy member for flux-free brazing that can obtain a stable joined state even in a joint having an open portion. To do.
本発明者らは、低融点、かつ、酸化物の標準生成自由エネルギーが高い金属元素をベア材の合金に添加することで、ベア材の緻密なAl酸化皮膜が変質してろう付時に分解されやすくなり、その結果、ブレージングシートとベア材とのろう付による接合状態が改善されることを発見した。
低融点元素が添加されたベア材表面では、ろう付昇温過程でベア材表面に低融点元素が濃縮し、緻密な酸化皮膜の成長を抑制するため、Mgを含有する活性な溶融ろう材と接触した際に、酸化皮膜が分解されやすくなったと考えられる。また、Mgが添加されたベア材表面においても同様に、ろう付昇温過程で低融点元素がベア材表面に濃縮し、MgO皮膜の成長が抑制されるため、安定した接合状態が得られると考えられる。なお、酸化物の標準生成自由エネルギーが低い低融点元素をベア材に添加すると、表面で濃縮した低融点元素が酸化物層を形成して接合を阻害するため、ベア材に添加する元素としては、酸化物の標準生成自由エネルギーが高い低融点元素を選択することが重要である。
By adding a metal element having a low melting point and a high standard free energy of formation of oxide to the bare alloy, the present inventors altered the dense Al oxide film of the bare material and decomposed it during brazing. As a result, it was discovered that the joining state by brazing between the brazing sheet and the bare material was improved.
On the bare metal surface to which the low melting point element is added, in order to suppress the growth of a dense oxide film by concentrating the low melting point element on the bare material surface during the brazing temperature rising process, It is thought that the oxide film was easily decomposed when contacted. Similarly, on the bare material surface to which Mg is added, low melting point elements are concentrated on the bare material surface during the brazing temperature rising process, and the growth of the MgO film is suppressed, so that a stable bonding state is obtained. Conceivable. In addition, when a low melting point element having a low standard free energy of formation of oxide is added to the bare material, the low melting point element concentrated on the surface forms an oxide layer and inhibits bonding. It is important to select a low-melting-point element having a high standard free energy of formation of oxide.
すなわち、本発明のアルミニウム材のフラックスフリーろう付方法のうち、第1の本発明は、Siを3〜13mass%、Mgを0.1〜5.0mass%含有するAl合金ろう材がAl製芯材の片面または両面にクラッドされたブレージングシートと、被接合部材のアルミニウム合金部材とを組み付け、非酸化性ガス雰囲気中でフラックスを用いずにろう付するアルミニウム材のフラックスフリーろう付方法であって、
前記アルミニウム合金部材中に、融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上をそれぞれ0.01〜0.5mass%含有することを特徴とする。
That is, among the flux-free brazing methods for an aluminum material of the present invention, the first invention is that an Al alloy brazing material containing 3 to 13 mass% Si and 0.1 to 5.0 mass% Mg is an Al core. A flux-free brazing method for an aluminum material in which a brazing sheet clad on one or both surfaces of a material and an aluminum alloy member to be joined are assembled and brazed in a non-oxidizing gas atmosphere without using a flux. ,
In the aluminum alloy member, one or two metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2 ) It contains 0.01 to 0.5 mass% of seeds or more.
第2の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1の本発明において、前記アルミニウム合金部材は、前記金属元素として、Bi:0.01〜0.5mass%、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 The flux-free brazing method for an aluminum material according to a second aspect of the present invention is the method according to the first aspect, wherein the aluminum alloy member includes Bi: 0.01 to 0.5 mass%, In: 0. 01-0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass%, Na: 0.01-0.5 mass% , Pb: One or more of 0.01 to 0.5 mass% are contained.
第3の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1の本発明において、前記アルミニウム合金部材が、前記金属元素として、Bi:0.01〜0.5mass%を含有し、さらに、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 A flux-free brazing method for an aluminum material according to a third aspect of the present invention is the method according to the first aspect, wherein the aluminum alloy member contains Bi: 0.01 to 0.5 mass% as the metal element, , In: 0.01 to 0.5 mass%, Sn: 0.01 to 0.5 mass%, K: 0.01 to 0.5 mass%, Se: 0.01 to 0.5 mass%, Na: 0.01 It is characterized by containing 1 type (s) or 2 or more types of -0.5mass%, Pb: 0.01-0.5mass%.
第4の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1〜第3の本発明のいずれかにおいて、前記アルミニウム合金部材は、さらに、Mgを0.1〜0.7mass%含有することを特徴とする。 In the flux-free brazing method for an aluminum material according to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the aluminum alloy member further contains 0.1 to 0.7 mass% of Mg. It is characterized by that.
第5の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1〜第4の本発明のいずれかにおいて、前記ろう材は、前記金属元素を含有し、前記金属元素として、Bi:0.01〜0.5mass%、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 In the flux-free brazing method for an aluminum material according to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the brazing material contains the metal element, and Bi: 0 as the metal element. .01-0.5 mass%, In: 0.01-0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass %, Na: 0.01 to 0.5 mass%, Pb: 0.01 to 0.5 mass%, or one or more thereof.
第6の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1〜第4の本発明のいずれかにおいて、前記ろう材は、前記金属元素を含有し、前記金属元素として、Bi:0.01〜0.5mass%を含有し、さらに、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 A flux-free brazing method for an aluminum material according to a sixth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the brazing material contains the metal element, and Bi: 0 as the metal element. .01-0.5 mass%, and In: 0.01-0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.0. It contains one or more of 01 to 0.5 mass%, Na: 0.01 to 0.5 mass%, and Pb: 0.01 to 0.5 mass%.
第7の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1〜第6の本発明のいずれかにおいて、前記接合部の表面における酸化皮膜の厚さが、前記ろう付の昇温過程中で前記接合部の実体温度が550℃であるときに20nm以下となるように、前記ろう付を行うことを特徴とする。 A flux-free brazing method for an aluminum material according to a seventh aspect of the present invention is the method according to any one of the first to sixth aspects of the present invention, wherein the thickness of the oxide film on the surface of the joint portion is the temperature raising process of the brazing. In particular, the brazing is performed so that the actual temperature of the joint portion is 20 nm or less when the actual temperature is 550 ° C.
第8の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1〜第7の本発明のいずれかにおいて、前記接合部の表面におけるMgO皮膜の厚さが、前記ろう付の昇温過程中で前記接合部の実体温度が550℃であるときに2nm以下となるように、前記ろう付を行うことを特徴とする。 The flux-free brazing method for an aluminum material according to an eighth aspect of the present invention is the method according to any one of the first to seventh aspects, wherein the thickness of the MgO film on the surface of the joint is the temperature rising process of the brazing. Among them, the brazing is performed so that the actual temperature of the joint portion is 2 nm or less when the actual temperature is 550 ° C.
第9の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1〜第8の本発明のいずれかにおいて、発明のいずれかにおいて、前記非酸化性ガス雰囲気は、酸素濃度が100ppm以下の雰囲気であることを特徴とする。 A flux-free brazing method for an aluminum material according to a ninth aspect of the present invention is the method according to any one of the first to eighth aspects, wherein the non-oxidizing gas atmosphere has an oxygen concentration of 100 ppm or less. It is characterized by an atmosphere.
第10の本発明のフラックスフリーろう付用アルミニウム合金部材は、Siを3〜13mass%、Mgを0.1〜5.0mass%含有するAl合金ろう材を用いて酸素濃度が100ppm以下の非酸化性ガス雰囲気でフラックスを用いずにろう付されるフラックスフリーろう付用アルミニウム合金部材であって、
前記アルミニウム合金部材中に、融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上をそれぞれ0.01〜0.5mass%含有することを特徴とする。
The aluminum alloy member for flux-free brazing according to the tenth aspect of the present invention is a non-oxidizing material having an oxygen concentration of 100 ppm or less using an Al alloy brazing material containing 3 to 13 mass% Si and 0.1 to 5.0 mass% Mg. A flux-free aluminum alloy member for brazing that is brazed without using flux in a reactive gas atmosphere,
One or two metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2) in the aluminum alloy member. Each of these is characterized by containing 0.01 to 0.5 mass%.
第11の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第10の本発明において、前記金属元素として、Bi:0.01〜0.5mass%、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 The aluminum alloy member for flux-free brazing according to an eleventh aspect of the present invention is the metal element according to the tenth aspect of the present invention, wherein Bi: 0.01 to 0.5 mass%, In: 0.01 to 0.5 mass% , Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass%, Na: 0.01-0.5 mass%, Pb: 0.01 It contains 1 type or 2 types or more of -0.5 mass%, It is characterized by the above-mentioned.
第12の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第10の本発明において、前記金属元素として、Bi:0.01〜0.5mass%を含有し、さらに、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 An aluminum alloy member for flux-free brazing according to a twelfth aspect of the present invention, in the tenth aspect of the present invention, contains Bi: 0.01 to 0.5 mass% as the metal element, and In: 0.01 -0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass%, Na: 0.01-0.5 mass%, One or more of Pb: 0.01-0.5mass% is contained, It is characterized by the above-mentioned.
第13の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第10〜第12の本発明のいずれかにおいて、前記ろう材は、前記金属元素を含有し、前記金属元素として、Bi:0.01〜0.5mass%、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 According to a thirteenth aspect of the present invention, there is provided the flux-free brazing aluminum alloy member according to any one of the tenth to twelfth aspects of the present invention, wherein the brazing material contains the metal element, and Bi: 0 as the metal element. .01-0.5 mass%, In: 0.01-0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass %, Na: 0.01 to 0.5 mass%, Pb: 0.01 to 0.5 mass%, or one or more thereof.
第14の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第10〜第12の本発明のいずれかにおいて、前記ろう材は、前記金属元素を含有し、前記金属元素として、Bi:0.01〜0.5mass%を含有し、さらに、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 According to a fourteenth aspect of the present invention, there is provided the flux-free brazing aluminum alloy member according to any one of the tenth to twelfth aspects of the present invention, wherein the brazing material contains the metal element, and Bi: 0 .01-0.5 mass%, and In: 0.01-0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.0. It contains one or more of 01 to 0.5 mass%, Na: 0.01 to 0.5 mass%, and Pb: 0.01 to 0.5 mass%.
第15の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第10〜第14の本発明のいずれかにおいて、Mg:0.1〜0.7mass%をさらに含有することを特徴とする。 The aluminum alloy member for flux-free brazing according to the fifteenth aspect of the present invention is characterized in that in any one of the tenth to fourteenth aspects of the present invention, Mg: 0.1 to 0.7 mass% is further contained.
以下、成分等の限定理由について説明する。 Hereinafter, the reasons for limiting the components and the like will be described.
1.アルミニウム合金部材
融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上:0.01〜0.5mass%
上記した金属元素は、ろう付時にベア材表面に濃縮するため、緻密なAl酸化皮膜やMgO皮膜の成長を抑制する。含有量が0.01mass%未満では、この効果が不十分であり、含有量が0.5mass%以上では、その効果が飽和する。したがって、上記金属元素の含有量を上記範囲に定める。なお、下限を0.05mass%、上限を0.3mass%とすることがより好ましい。また、上記金属元素としては、好適には、Bi、In、Sn、K、Se、Na、Pbが挙げられる。
1. Aluminum alloy member One or more metal elements having a melting point of 350 ° C. or lower and a standard free energy (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2 ): 0 .01 to 0.5 mass%
Since the above metal elements are concentrated on the bare material surface during brazing, the growth of a dense Al oxide film or MgO film is suppressed. If the content is less than 0.01 mass%, this effect is insufficient, and if the content is 0.5 mass% or more, the effect is saturated. Therefore, the content of the metal element is set in the above range. The lower limit is more preferably 0.05 mass% and the upper limit is more preferably 0.3 mass%. Moreover, as said metal element, Bi, In, Sn, K, Se, Na, Pb is mentioned suitably.
Mg:0.1〜0.7mass%
アルミニウム合金部材中に添加されたMgは、ベア材に添加されたSiやろう材から拡散してきたSiと化合物を形成することでMg2Siを形成し、材料強度を高める。また、ベア材表面のAl酸化皮膜(Al2O3)を還元分解する。含有量が0.1mass%未満であれば、その効果が不十分であり、0.7mass%を超えると、開放部を有する継手ではベア材表面でMgO皮膜が成長しやすくなり、接合が阻害される。したがって、所望によりMgを含有する場合は、その含有量を上記範囲に定める。なお、下限を0.2mass%、上限を0.6mass%とすることがなお望ましい。
Mg: 0.1-0.7 mass%
Mg added to the aluminum alloy member forms Mg2Si by forming a compound with Si added to the bare material and Si diffused from the brazing material, thereby increasing the material strength. Also, the Al oxide film (Al2O3) on the bare material surface is reduced and decomposed. If the content is less than 0.1 mass%, the effect is insufficient. If the content exceeds 0.7 mass%, the MgO film tends to grow on the bare material surface in the joint having an open portion, and the bonding is hindered. The Therefore, when Mg is contained if desired, the content is set within the above range. It is more desirable that the lower limit is 0.2 mass% and the upper limit is 0.6 mass%.
さらに、アルミニウム合金部材に添加するBi、In、Snなどの低融点元素は、アルミニウムへの固溶度が低いため、素材製造工程の熱処理条件によってはアルミニウム材料中で低融点元素単体の融点で溶融し、アルミニウム材料表面に濃縮する。低融点元素が濃縮した材料表面では、酸化皮膜が脆弱になることで腐食し易くなるため、ろう付前に腐食が進むと材料表面に水和酸化物などが堆積し、ろう付時に接合を阻害する場合がある。この際には、Mgと低融点元素を一緒に添加すると化合物などを形成し融点を上昇させることができるため、素材製造工程中での表面濃縮が抑制できる。ただし、この場合も約600℃までのろう付昇温過程では、ろう溶融前までに低融点元素が材料表面に濃縮するため、前記のMgO皮膜の成長抑制効果などは維持される。 In addition, low melting point elements such as Bi, In, and Sn added to aluminum alloy members have a low solid solubility in aluminum, and therefore melt at the melting point of the low melting point element alone in the aluminum material depending on the heat treatment conditions of the material manufacturing process. And concentrated on the surface of the aluminum material. Since the surface of the material enriched with low melting point elements is susceptible to corrosion due to the weakened oxide film, hydrated oxide accumulates on the surface of the material when corrosion progresses before brazing, impeding bonding during brazing. There is a case. In this case, if Mg and a low melting point element are added together, a compound or the like can be formed and the melting point can be raised, so that surface concentration during the raw material manufacturing process can be suppressed. However, in this case as well, in the brazing temperature raising process up to about 600 ° C., the low melting point element is concentrated on the surface of the material before the melting of the brazing, so the above-mentioned effect of suppressing the growth of the MgO film is maintained.
また、本発明のアルミニウム合金では、Alおよび上記した微量元素の他に、質量%で、Mn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.2%、Fe:0.1〜1.0%などを含有することができる。 In addition, in the aluminum alloy of the present invention, in addition to Al and the above-described trace elements, by mass%, Mn: 0.2 to 2.5%, Cu: 0.05 to 1.0%, Si: 0.1 -1.2%, Fe: 0.1-1.0% etc. can be contained.
2.ブレージングシート
(1)ろう材
Si:3〜13mass%
Al合金ろう材に添加されたSiは、ろう材の融点を低下させ、ろう付昇温時の共晶温度以上で、接合に必要な溶融ろう材を生成する。Siの含有量が3%未満では生成する液相量が不足するため十分な流動性が得られず、13%を超えると初晶Siが急激に増加して加工性が悪化するとともに、ろう付時に接合部のろう侵食が著しく促進される。したがって、ろう材中のSiの含有量を上記範囲に定める。なお、同様の理由により、下限を5%、上限を12%とすることがより好ましい。
2. Brazing sheet (1) brazing material Si: 3 to 13 mass%
Si added to the Al alloy brazing material lowers the melting point of the brazing material and generates a molten brazing material necessary for joining at a temperature equal to or higher than the eutectic temperature at the time of brazing temperature rise. If the Si content is less than 3%, the amount of liquid phase produced is insufficient and sufficient fluidity cannot be obtained. If the Si content exceeds 13%, the primary crystal Si rapidly increases and the workability deteriorates. Sometimes joint erosion is significantly accelerated. Therefore, the content of Si in the brazing material is set within the above range. For the same reason, it is more preferable to set the lower limit to 5% and the upper limit to 12%.
Mg:0.1〜5.0mass%
Mgは、ろう付昇温過程において、材料表面に生成する緻密な酸化皮膜(Al2O3膜)に作用して酸化皮膜を分解することで、ろうの濡れ性や流動性を向上させる。ただし、Mgの含有量が0.1mass%未満では、酸化皮膜の分解作用が十分に得られず、5.0mass%を超えると、ろう材強度が高くなり過ぎて加工性が低下する。このため、ろう材中のMgの含有量は、上記範囲とすることが好ましい。なお、同様の理由により、Mgの含有量は、下限を0.2%、上限を3.0%とすることがより好ましい。
Mg: 0.1-5.0 mass%
Mg acts on a dense oxide film (Al2O3 film) generated on the surface of the material in the brazing temperature rising process to decompose the oxide film, thereby improving the wettability and fluidity of the brazing. However, if the Mg content is less than 0.1 mass%, the decomposition action of the oxide film cannot be sufficiently obtained, and if it exceeds 5.0 mass%, the brazing filler metal strength becomes too high and the workability is lowered. For this reason, the content of Mg in the brazing material is preferably within the above range. For the same reason, the Mg content is more preferably 0.2% at the lower limit and 3.0% at the upper limit.
融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上:0.01〜0.5mass%
上記した金属元素は、ろう付時にろう材表面に濃縮するため、緻密なAl酸化皮膜やMgO皮膜の成長を抑制する。含有量が0.01mass%未満では、この効果が不十分であり、含有量が0.5mass%以上では、その効果が飽和する。したがって、上記金属元素の含有量を上記範囲に定める。なお、下限を0.05mass%、上限を0.3mass%とすることがより好ましい。また、上記金属元素としては、好適には、Bi、In、Sn、K、Se、Na、Pbが挙げられる。
さらに、これらの元素の中でBi、In、Sn、Pbは溶融ろうの表面張力を低下させ、ろう材の濡れ拡がり性を向上する効果があり、特にBiはその効果が高いため好適に用いることができる。
One or more metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2 ): 0.01 to 0.5 mass%
Since the metal elements described above are concentrated on the surface of the brazing material during brazing, the growth of a dense Al oxide film or MgO film is suppressed. If the content is less than 0.01 mass%, this effect is insufficient, and if the content is 0.5 mass% or more, the effect is saturated. Therefore, the content of the metal element is set in the above range. The lower limit is more preferably 0.05 mass% and the upper limit is more preferably 0.3 mass%. Moreover, as said metal element, Bi, In, Sn, K, Se, Na, Pb is mentioned suitably.
Further, among these elements, Bi, In, Sn, and Pb have the effect of lowering the surface tension of the molten solder and improving the wetting and spreading property of the brazing material, and in particular, Bi is preferably used because of its high effect. Can do.
(2)芯材
Al製芯材の組成は特に限定されず、一般的に用いられているアルミニウム材料であれば何れも問題なく使用可能である。ただし、Al−Si系合金ろう材によるろう付では、製品温度を600℃付近まで加熱するため、これより固相線温度が低い合金部材を用いるとろう付後の構造寸法精度の確保が難しくなる。本発明では、この問題を生じない何れのアルミニウム合金も使用できるが、熱伝導性や強度に優れるJIS A1000系、A3000系、A6000系合金を用いることが好適である。
(2) Core material The composition of the Al core material is not particularly limited, and any commonly used aluminum material can be used without any problem. However, in brazing with an Al—Si alloy brazing material, the product temperature is heated to around 600 ° C., so if an alloy member having a lower solidus temperature is used, it is difficult to ensure structural dimensional accuracy after brazing. . In the present invention, any aluminum alloy that does not cause this problem can be used, but it is preferable to use JIS A1000 series, A3000 series, and A6000 series alloys that are excellent in thermal conductivity and strength.
本発明よれば、低融点、かつ、酸化物の標準生成自由エネルギーが高い金属元素をベア材合金に添加することで、ベア材の表面の緻密なAl酸化皮膜が変質してろう付時に分解されやすくなり、ろう付後の接合状態を改善することが可能となる。 According to the present invention, by adding a metal element having a low melting point and a high standard free energy of oxide formation to the bare material alloy, the dense Al oxide film on the surface of the bare material is altered and decomposed during brazing. It becomes easy and it becomes possible to improve the joining state after brazing.
以下に、本発明の一実施形態について説明する。
本発明のアルミニウム合金部材は、例えば常法により製造することができる。
まず、本発明組成に調製してアルミニウム合金を溶製する。該溶製は半連続鋳造法によって行う。得られたアルミニウム合金鋳塊に対しては、所定条件で均質化処理を行う。すなわち、均質化処理条件は、処理温度350〜600℃、処理時間1〜10時間とする。その後、均熱処理、熱間圧延、冷間圧延などを経て、本発明のアルミニウム合金部材が得られる。アルミニウム合金部材は、例えば熱交換機用のフィン材として製造することができる。均熱処理は均質化処理の温度および処理時間以下とし、温度350〜500℃、保持時間1〜10時間とするのが望ましい。冷間圧延では、75%以上の総圧下率で冷間圧延を行い、温度300〜400℃にて中間焼鈍を行い、その後圧延率40%の最終圧延を行うことができる。中間焼鈍は行わないものとしてもよい。
Hereinafter, an embodiment of the present invention will be described.
The aluminum alloy member of the present invention can be produced by, for example, a conventional method.
First, an aluminum alloy is prepared by preparing the composition of the present invention. The melting is performed by a semi-continuous casting method. The obtained aluminum alloy ingot is homogenized under predetermined conditions. That is, the homogenization treatment conditions are a treatment temperature of 350 to 600 ° C. and a treatment time of 1 to 10 hours. Thereafter, the aluminum alloy member of the present invention is obtained through soaking, hot rolling, cold rolling and the like. The aluminum alloy member can be manufactured, for example, as a fin material for a heat exchanger. The soaking is preferably performed at a temperature equal to or less than the homogenization temperature and processing time, and a temperature of 350 to 500 ° C and a holding time of 1 to 10 hours. In cold rolling, cold rolling can be performed at a total rolling reduction of 75% or more, intermediate annealing can be performed at a temperature of 300 to 400 ° C., and then final rolling at a rolling rate of 40% can be performed. The intermediate annealing may not be performed.
上記冷間圧延などによって熱交換機用のフィン材を得た場合には、その後、必要に応じてコルゲート加工などを施す。コルゲート加工は、回転する2つの金型の間を通すことによって行うことができ、良好に加工を行うことを可能とし、優れた成形性を示す。 When the fin material for the heat exchanger is obtained by the cold rolling or the like, thereafter, corrugating or the like is performed as necessary. The corrugating process can be performed by passing between two rotating molds, can be processed satisfactorily, and exhibits excellent formability.
上記工程で得られたフィン材は、熱交換器の構成部材として、他の構成部材(チューブやヘッダーなど)と組み合わされて、ろう付に供される。他の構成部材としては、Siを3〜13mass%、Mgを0.1〜5.0mass%含有するAl合金ろう材が、Al製芯材の片面または両面にクラッドされたブレージングシートからなるものを用いる。ろう付は、非酸化性ガス雰囲気下でフラックスを用いずに行う。非酸化性ガス雰囲気としては、酸素濃度が100ppm以下であることが望ましい。
なお、ろう付は、接合部の表面における酸化皮膜の厚さが、前記ろう付の昇温過程中で前記接合部の実体温度が550℃であるときに20nm以下となるように行い、アルミニウム合金部材がMgを含有している場合には、MgO皮膜の厚さが、前記ろう付の昇温過程中で前記接合部の実体温度が550℃であるときに2nm以下となるように行うのが望ましい。ろう付昇温過程の酸化皮膜やMgO皮膜の厚さは、雰囲気中の酸素濃度、雰囲気に曝される合金中のMg量、ろう付昇温速度、ろう付炉の気密性、ろう付炉内の雰囲気流速、導入する非酸化性ガス中の不純物酸素や水分量などの影響を受けるが、これらを総合的に勘案して調整するため、何れかの条件が特に限定されるものではない。
The fin material obtained in the above process is used for brazing as a constituent member of a heat exchanger in combination with other constituent members (such as a tube and a header). As other constituent members, an Al alloy brazing material containing 3 to 13 mass% Si and 0.1 to 5.0 mass% Mg is composed of a brazing sheet clad on one or both sides of an Al core material. Use. Brazing is performed without using flux in a non-oxidizing gas atmosphere. The non-oxidizing gas atmosphere preferably has an oxygen concentration of 100 ppm or less.
The brazing is performed such that the thickness of the oxide film on the surface of the joint is 20 nm or less when the actual temperature of the joint is 550 ° C. during the temperature raising process of the brazing. When the member contains Mg, the thickness of the MgO film is 2 nm or less when the actual temperature of the joint is 550 ° C. during the brazing temperature rising process. desirable. The thickness of the oxide film or MgO film in the brazing temperature rising process is the oxygen concentration in the atmosphere, the amount of Mg in the alloy exposed to the atmosphere, the brazing temperature rising rate, the airtightness of the brazing furnace, the brazing furnace However, any of the conditions is not particularly limited in order to adjust in consideration of these factors comprehensively.
上記したろう付によれば、低融点、かつ、酸化物の標準生成自由エネルギーが高い金属元素をベア材合金に添加することで、ベア材の表面の緻密なAl酸化皮膜が変質し、ろう付時に分解されやすくなるため、開放部を有する継手においても安定した接合状態を得ることが可能となる。 According to the brazing described above, by adding a metal element having a low melting point and a high standard free energy of formation of oxide to the bare material alloy, the dense Al oxide film on the surface of the bare material is altered and brazed. Since it becomes easy to be disassembled sometimes, a stable joint state can be obtained even in a joint having an open portion.
表1〜5に示す組成(残部Alと不可避不純物)のろう材と、芯材として用意したJIS A1100合金(Al-0.15mass%Si-0.4mass%Fe-0.1mass%Cu)、JIS A3003合金(Al-1.2mass%Mn-0.3mass%Si-0.4mass%Fe-0.1mass%Cu)、JIS A3005合金(Al-1.2mass%Mn-0.3mass%Si-0.4mass%Mg-0.4mass%Fe-0.1mass%Cu-0.05Zn)、JIS A6063合金(Al-0.6mass%Mg-0.4mass%Si-0.25mass%Fe)と組合せてクラッドしたアルミニウム材を用意した。アルミニウムクラッド材は、各種組成ろう材をクラッド率5%とし、H14相当調質の0.3mm厚に仕上げた。 A brazing material having a composition shown in Tables 1 to 5 (the balance Al and inevitable impurities), a JIS A1100 alloy (Al-0.15 mass% Si-0.4 mass% Fe-0.1 mass% Cu) prepared as a core material, JIS A3003 alloy (Al-1.2 mass% Mn-0.3 mass% Si-0.4 mass% Fe-0.1 mass% Cu), JIS A3005 alloy (Al-1.2 mass% Mn-0.3 mass% Si-0. 4 mass% Mg-0.4 mass% Fe-0.1 mass% Cu-0.05 Zn), clad in combination with JIS A6063 alloy (Al-0.6 mass% Mg-0.4 mass% Si-0.25 mass% Fe) Aluminum material was prepared. As the aluminum clad material, various composition brazing materials were made to have a clad rate of 5% and finished to a thickness of 0.3 mm equivalent to H14.
また、ろう付対象部材として表1〜5に示す合金組成のアルミニウムベア材(0.1mm厚)のコルゲートフィンを用意した。アルミニウムベア材は、ベース合金として、JIS A1100合金(Al-0.15mass%Si-0.4mass%Fe-0.1mass%Cu)、JIS A3003合金(Al-1.2mass%Mn-0.3mass%Si-0.4mass%Fe-0.1mass%Cu)、JIS A7072合金(Al-1.0mass%Zn-0.1mass%Si-0.25mass%Fe)を準備し、再溶解した各種ベース合金にBi、In、Sn、K、Se、Na、Pb、Mgを添加し、表1〜5に示す各種アルミニウム合金ベア材を溶製した。この実施形態では、アルミニウムベア材は、本発明の被接合部材のアルミニウム合金部材に相当する。 Moreover, the corrugated fin of the aluminum bear material (0.1-mm thickness) of the alloy composition shown to Tables 1-5 was prepared as brazing object member. The aluminum bare material is based on JIS A1100 alloy (Al-0.15 mass% Si-0.4 mass% Fe-0.1 mass% Cu) and JIS A3003 alloy (Al-1.2 mass% Mn-0.3 mass%) as a base alloy. Si-0.4 mass% Fe-0.1 mass% Cu) and JIS A7072 alloy (Al-1.0 mass% Zn-0.1 mass% Si-0.25 mass% Fe) were prepared and re-melted into various base alloys. Bi, In, Sn, K, Se, Na, Pb, and Mg were added, and various aluminum alloy bare materials shown in Tables 1 to 5 were melted. In this embodiment, the aluminum bare material corresponds to the aluminum alloy member of the joined member of the present invention.
前記アルミニウムクラッド材を用いて幅25mmのチューブを製作し、図1に示すように、該チューブ12とコルゲートフィン11とを組み合わせ、ろう付評価モデルとしてチューブ15段、長さ300mmのコア10とした。前記コアを、各種酸素含有量に調整した窒素ガス雰囲気中のろう付炉にて600℃まで加熱し、そのろう付状態を評価した。なお、各種接合試験は、窒素ガスで置換された加熱室と冷却室の2室からなるバッチ式炉で行ったが、各種試験の550℃における酸化皮膜やMgO皮膜厚さを調べるため、事前に到達温度550℃で冷却したコアを用いて、X線光電子分光装置によるデプスプロファイルで接合部表面の酸化皮膜厚さやMgO皮膜厚さを調べた。
A tube having a width of 25 mm was manufactured using the aluminum clad material, and as shown in FIG. 1, the
○ろう付性
・接合率
以下式にて接合率を求め、各試料間の優劣を評価した。
フィン接合率=(フィンとチューブのろう付後総接合長さ/フィンとチューブのろう付前総接触長さ)×100
O Brazing property and joining rate The joining rate was calculated | required with the following formula and the superiority / inferiority between each sample was evaluated.
Fin joint rate = (total joint length after fin and tube brazing / total contact length before fin and tube braze) × 100
・接合部幅評価
ろう付接合状態は上記接合率のみではなく、本発明の目的であるフィレット形成能の向上を確認するため、図2に示すように接合部13の幅Wを各試料で20点計測し、その平均値をもって優劣を評価した。
実施例の何れも良好なろう付性を示したのに対し、比較例では接合率50%以下で十分な接合が得られなかった。
-Joint width evaluation The brazed joint state is not limited to the above-mentioned joint ratio, but in order to confirm the improvement of fillet forming ability, which is the object of the present invention, as shown in FIG. The points were measured, and the superiority or inferiority was evaluated by the average value.
While all of the examples showed good brazing properties, in the comparative example, sufficient joining was not obtained at a joining rate of 50% or less.
10 コア
11 コルゲートフィン
12 チューブ
13 接合部
10
すなわち、本発明のアルミニウム材のフラックスフリーろう付方法のうち、第1の本発明は、Siを3〜13mass%、Mgを0.1〜5.0mass%含有するAl合金ろう材がAl製芯材の片面または両面にクラッドされたブレージングシートと、被接合部材であるベア材のアルミニウム合金部材とを組み付け、非酸化性ガス雰囲気中でフラックスを用いずにろう付するアルミニウム材のフラックスフリーろう付方法であって、
前記アルミニウム合金部材中に、融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上をそれぞれ0.01〜0.5mass%含有することを特徴とする。
That is, among the flux-free brazing methods for an aluminum material of the present invention, the first invention is that an Al alloy brazing material containing 3 to 13 mass% Si and 0.1 to 5.0 mass% Mg is an Al core. A brazing sheet clad on one or both sides of a material and a bare aluminum alloy member, which is a member to be joined , and brazed without using flux in a non-oxidizing gas atmosphere. A method,
In the aluminum alloy member, one or two metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2 ) It contains 0.01 to 0.5 mass% of seeds or more.
第7の本発明のアルミニウム材のフラックスフリーろう付方法は、前記第1〜第6の本発明のいずれかにおいて、発明のいずれかにおいて、前記非酸化性ガス雰囲気は、酸素濃度が100ppm以下の雰囲気であることを特徴とする。 A flux-free brazing method for an aluminum material according to a seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the non-oxidizing gas atmosphere has an oxygen concentration of 100 ppm or less. It is characterized by an atmosphere.
第8の本発明のフラックスフリーろう付用アルミニウム合金部材は、Siを3〜13mass%、Mgを0.1〜5.0mass%含有するAl合金ろう材を用いて酸素濃度が100ppm以下の非酸化性ガス雰囲気でフラックスを用いずにろう付されるベア材のフラックスフリーろう付用アルミニウム合金部材であって、
前記アルミニウム合金部材中に、融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上をそれぞれ0.01〜0.5mass%含有することを特徴とする。
The aluminum alloy member for flux-free brazing according to the eighth aspect of the present invention is a non-oxidizing material having an oxygen concentration of 100 ppm or less using an Al alloy brazing material containing 3 to 13 mass% Si and 0.1 to 5.0 mass% Mg. a aluminum alloy member for with flux free brazing a bare material to be brazed without flux in sexual gas atmosphere,
In the aluminum alloy member, one or two metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2 ) It contains 0.01 to 0.5 mass% of seeds or more.
第9の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第8の本発明において、前記金属元素として、Bi:0.01〜0.5mass%、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 The aluminum alloy member for flux-free brazing according to the ninth aspect of the present invention is the metal element according to the eighth aspect , wherein Bi: 0.01 to 0.5 mass%, In: 0.01 to 0.5 mass%. , Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass%, Na: 0.01-0.5 mass%, Pb: 0.01 It contains 1 type or 2 types or more of -0.5 mass%, It is characterized by the above-mentioned.
第10の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第8の本発明において、前記金属元素として、Bi:0.01〜0.5mass%を含有し、さらに、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 An aluminum alloy member for flux-free brazing according to a tenth aspect of the present invention contains Bi: 0.01 to 0.5 mass% as the metal element in the eighth aspect of the present invention, and further, In: 0.01 -0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass%, Na: 0.01-0.5 mass%, One or more of Pb: 0.01-0.5mass% is contained, It is characterized by the above-mentioned.
第11の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第8〜第10の本発明のいずれかにおいて、前記ろう材は、前記金属元素を含有し、前記金属元素として、Bi:0.01〜0.5mass%、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 An aluminum alloy member for flux-free brazing according to an eleventh aspect of the present invention is the aluminum alloy member for brazing according to any one of the eighth to tenth aspects of the present invention, wherein the brazing material contains the metal element, and Bi: 0 as the metal element. .01-0.5 mass%, In: 0.01-0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.01-0.5 mass %, Na: 0.01 to 0.5 mass%, Pb: 0.01 to 0.5 mass%, or one or more thereof.
第12の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第8〜第10の本発明のいずれかにおいて、前記ろう材は、前記金属元素を含有し、前記金属元素として、Bi:0.01〜0.5mass%を含有し、さらに、In:0.01〜0.5mass%、Sn:0.01〜0.5mass%、K:0.01〜0.5mass%、Se:0.01〜0.5mass%、Na:0.01〜0.5mass%、Pb:0.01〜0.5mass%のうちの1種または2種以上を含有することを特徴とする。 The aluminum alloy member for flux-free brazing according to a twelfth aspect of the present invention is the aluminum alloy member for brazing according to any one of the eighth to tenth aspects of the present invention, wherein the brazing material contains the metal element, and Bi: 0 as the metal element. .01-0.5 mass%, and In: 0.01-0.5 mass%, Sn: 0.01-0.5 mass%, K: 0.01-0.5 mass%, Se: 0.0. It contains one or more of 01 to 0.5 mass%, Na: 0.01 to 0.5 mass%, and Pb: 0.01 to 0.5 mass%.
第13の本発明のフラックスフリーろう付用アルミニウム合金部材は、前記第8〜第12の本発明のいずれかにおいて、Mg:0.1〜0.7mass%をさらに含有することを特徴とする。 The aluminum alloy member for flux-free brazing according to the thirteenth aspect of the present invention is characterized in that in any of the eighth to twelfth aspects of the present invention, Mg: 0.1 to 0.7 mass% is further contained.
第8の本発明のフラックスフリーろう付用アルミニウム合金部材は、非酸化性ガス雰囲気でMgを含有するAl合金ろう材によるフラックスフリーでのろう付にベア材の被接合部材として供されるフラックスフリーろう付用アルミニウム合金部材であって、
前記アルミニウム合金部材中に、融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上をそれぞれ0.01〜0.5mass%含有することを特徴とする。
An aluminum alloy member for flux-free brazing according to an eighth aspect of the present invention is a flux-free material used as a bare member to be joined for flux-free brazing with an Al alloy brazing material containing Mg in a non-oxidizing gas atmosphere. An aluminum alloy member for brazing,
One or two metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2) in the aluminum alloy member. Each of these is characterized by containing 0.01 to 0.5 mass%.
Claims (15)
前記アルミニウム合金部材中に、融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上をそれぞれ0.01〜0.5mass%含有することを特徴とするアルミニウム材のフラックスフリーろう付方法。 A brazing sheet in which an Al alloy brazing material containing 3 to 13 mass% Si and 0.1 to 5.0 mass% Mg is clad on one or both sides of an Al core material and an aluminum alloy member to be joined are assembled. A flux-free brazing method for an aluminum material that is brazed without using a flux in a non-oxidizing gas atmosphere,
One or two metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2) in the aluminum alloy member. A flux-free brazing method for an aluminum material characterized by containing 0.01 to 0.5 mass% of each of the above.
前記アルミニウム合金部材中に、融点が350℃以下で、600℃における酸化物の標準生成自由エネルギー(ΔG°)が−150(kg cal/gr mol O2)よりも高い金属元素の1種または2種以上をそれぞれ0.01〜0.5mass%含有することを特徴とするフラックスフリーろう付用アルミニウム合金部材。 A flux-free brazing that uses an Al alloy brazing material containing 3 to 13 mass% of Si and 0.1 to 5.0 mass% of Mg without using flux in a non-oxidizing gas atmosphere having an oxygen concentration of 100 ppm or less. Attached aluminum alloy member,
One or two metal elements having a melting point of 350 ° C. or lower and a standard free energy of formation (ΔG °) of oxide at 600 ° C. higher than −150 (kg cal / gr mol O 2) in the aluminum alloy member. An aluminum alloy member for flux-free brazing characterized by containing 0.01 to 0.5 mass% of each of the above.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017134515 | 2017-07-10 | ||
JP2017134515 | 2017-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6405020B1 JP6405020B1 (en) | 2018-10-17 |
JP2019013981A true JP2019013981A (en) | 2019-01-31 |
Family
ID=63855093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017195779A Active JP6405020B1 (en) | 2017-07-10 | 2017-10-06 | Flux-free brazing method for aluminum material and aluminum alloy member for flux-free brazing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6405020B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021013936A (en) * | 2019-07-10 | 2021-02-12 | 三菱アルミニウム株式会社 | Aluminum brazing sheet and method for manufacturing heat exchanger |
WO2021065513A1 (en) * | 2019-10-04 | 2021-04-08 | 三菱アルミニウム株式会社 | Aluminum brazing sheet and method for flux-free brazing of aluminum member |
WO2021199732A1 (en) * | 2020-03-31 | 2021-10-07 | 三菱アルミニウム株式会社 | Aluminum brazing sheet for fluxless brazing use |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020129268A1 (en) * | 2019-01-23 | 2020-06-25 | 三菱アルミニウム株式会社 | Aluminum alloy for brazing and aluminum brazing sheet |
CN110719965B (en) | 2019-01-23 | 2021-01-08 | 三菱铝株式会社 | Aluminum brazing sheet for fluxless brazing |
JP7164498B2 (en) | 2019-08-29 | 2022-11-01 | 株式会社神戸製鋼所 | Aluminum alloy material, fluxless brazing structure, and fluxless brazing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07164181A (en) * | 1993-12-13 | 1995-06-27 | Daiichi Meteko Kk | Heat exchanger made of aluminum alloy and its production |
JP2009162450A (en) * | 2008-01-09 | 2009-07-23 | Sumitomo Light Metal Ind Ltd | Aluminum heat exchanger and its manufacturing method |
JP2012055895A (en) * | 2010-09-06 | 2012-03-22 | T Rad Co Ltd | Fluxless brazing method for heat exchanger having narrow flow channel inner fin and aluminum clad material used for the same |
JP2012061483A (en) * | 2010-09-14 | 2012-03-29 | Mitsubishi Alum Co Ltd | Flux-less brazing method of aluminum material |
JP2013216935A (en) * | 2012-04-06 | 2013-10-24 | Sumitomo Light Metal Ind Ltd | Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger |
JP2013215797A (en) * | 2012-04-12 | 2013-10-24 | Mitsubishi Alum Co Ltd | Flux-less brazing method of aluminum material, brazing sheet for flux-less brazing and method for manufacturing the same, brazing structure |
JP2014084521A (en) * | 2012-10-26 | 2014-05-12 | Uacj Corp | Aluminum alloy made brazing sheet for fin, heat exchanger and method of producing heat exchanger |
JP2014226704A (en) * | 2013-05-23 | 2014-12-08 | 株式会社Uacj | Soldering method for aluminum alloy material |
-
2017
- 2017-10-06 JP JP2017195779A patent/JP6405020B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07164181A (en) * | 1993-12-13 | 1995-06-27 | Daiichi Meteko Kk | Heat exchanger made of aluminum alloy and its production |
JP2009162450A (en) * | 2008-01-09 | 2009-07-23 | Sumitomo Light Metal Ind Ltd | Aluminum heat exchanger and its manufacturing method |
JP2012055895A (en) * | 2010-09-06 | 2012-03-22 | T Rad Co Ltd | Fluxless brazing method for heat exchanger having narrow flow channel inner fin and aluminum clad material used for the same |
JP2012061483A (en) * | 2010-09-14 | 2012-03-29 | Mitsubishi Alum Co Ltd | Flux-less brazing method of aluminum material |
JP2013216935A (en) * | 2012-04-06 | 2013-10-24 | Sumitomo Light Metal Ind Ltd | Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger |
JP2013215797A (en) * | 2012-04-12 | 2013-10-24 | Mitsubishi Alum Co Ltd | Flux-less brazing method of aluminum material, brazing sheet for flux-less brazing and method for manufacturing the same, brazing structure |
JP2014084521A (en) * | 2012-10-26 | 2014-05-12 | Uacj Corp | Aluminum alloy made brazing sheet for fin, heat exchanger and method of producing heat exchanger |
JP2014226704A (en) * | 2013-05-23 | 2014-12-08 | 株式会社Uacj | Soldering method for aluminum alloy material |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021013936A (en) * | 2019-07-10 | 2021-02-12 | 三菱アルミニウム株式会社 | Aluminum brazing sheet and method for manufacturing heat exchanger |
WO2021065513A1 (en) * | 2019-10-04 | 2021-04-08 | 三菱アルミニウム株式会社 | Aluminum brazing sheet and method for flux-free brazing of aluminum member |
JP2021058901A (en) * | 2019-10-04 | 2021-04-15 | 三菱アルミニウム株式会社 | Aluminum brazing sheet and aluminum component flux-free brazing method |
EP4039394A4 (en) * | 2019-10-04 | 2022-11-02 | Mitsubishi Aluminum Co., Ltd. | Aluminum brazing sheet and method for flux-free brazing of aluminum member |
JP7282468B2 (en) | 2019-10-04 | 2023-05-29 | Maアルミニウム株式会社 | Flux-free brazing method for aluminum brazing sheets and aluminum members |
WO2021199732A1 (en) * | 2020-03-31 | 2021-10-07 | 三菱アルミニウム株式会社 | Aluminum brazing sheet for fluxless brazing use |
JP2021159967A (en) * | 2020-03-31 | 2021-10-11 | 三菱アルミニウム株式会社 | Aluminum brazing sheet for non-flux brazing |
US11806816B2 (en) | 2020-03-31 | 2023-11-07 | Ma Aluminum Corporation | Aluminum brazing sheet for fluxless brazing use |
JP7440325B2 (en) | 2020-03-31 | 2024-02-28 | Maアルミニウム株式会社 | Aluminum brazing sheet for flux-free brazing |
Also Published As
Publication number | Publication date |
---|---|
JP6405020B1 (en) | 2018-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6405020B1 (en) | Flux-free brazing method for aluminum material and aluminum alloy member for flux-free brazing | |
EP3459676B1 (en) | Brazing sheet for flux-free brazing, flux-free brazing method and method for producing heat exchanger | |
JP4547032B1 (en) | Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing | |
JP4023760B2 (en) | Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance | |
JP2012050993A (en) | Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing | |
JP5279277B2 (en) | Brazing sheet for tube material of heat exchanger, heat exchanger and manufacturing method thereof | |
JP6109615B2 (en) | Aluminum alloy fin clad material for brazing | |
JP5614883B2 (en) | Fluxless brazing method of aluminum material, aluminum alloy brazing sheet for fluxless brazing, and aluminum alloy brazing material for fluxless brazing | |
JP2012024827A (en) | Fluxless brazing method of aluminum material and aluminum alloy brazing sheet for fluxless brazing | |
JP2014037576A (en) | Brazing sheet made of aluminum alloy, and method for brazing the same | |
JP5695490B2 (en) | Aluminum alloy brazing sheet | |
JP7440325B2 (en) | Aluminum brazing sheet for flux-free brazing | |
JP7210259B2 (en) | Aluminum bonded body, manufacturing method thereof, and brazing sheet used for aluminum bonded body | |
JP3360026B2 (en) | Brazing method of aluminum alloy brazing sheet for heat exchanger | |
JP5084490B2 (en) | Aluminum alloy clad material | |
JP2012030244A (en) | Fluxless brazing method for aluminum material | |
JPH04263033A (en) | Aluminum clad material for heat exchanger | |
JP2013086103A (en) | Aluminum alloy brazing sheet | |
JP7364522B2 (en) | Aluminum alloy brazing sheet and brazing method for aluminum alloy brazing sheet | |
JP2018099725A (en) | Aluminum alloy brazing sheet | |
JP6282444B2 (en) | Aluminum alloy brazing sheet, aluminum alloy assembly for brazing, and method of brazing aluminum alloy material | |
JP2011252196A (en) | Brazing sheet made of aluminum alloy | |
JPH0446695A (en) | Brazing filler metal for brazing to aluminum member | |
JP5576662B2 (en) | Aluminum alloy brazing sheet and method for producing aluminum alloy brazing sheet | |
JP6470603B2 (en) | Brazing method of aluminum material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6405020 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R255 | Notification that request for automated payment was rejected |
Free format text: JAPANESE INTERMEDIATE CODE: R2525 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |