JP2019012629A - Elastic connector and conductively connecting method - Google Patents

Elastic connector and conductively connecting method Download PDF

Info

Publication number
JP2019012629A
JP2019012629A JP2017128457A JP2017128457A JP2019012629A JP 2019012629 A JP2019012629 A JP 2019012629A JP 2017128457 A JP2017128457 A JP 2017128457A JP 2017128457 A JP2017128457 A JP 2017128457A JP 2019012629 A JP2019012629 A JP 2019012629A
Authority
JP
Japan
Prior art keywords
elastic connector
electrode
connection object
electrode portions
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017128457A
Other languages
Japanese (ja)
Inventor
今野 英明
Hideaki Konno
英明 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Polymatech Co Ltd
Original Assignee
Sekisui Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Polymatech Co Ltd filed Critical Sekisui Polymatech Co Ltd
Priority to JP2017128457A priority Critical patent/JP2019012629A/en
Publication of JP2019012629A publication Critical patent/JP2019012629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

To provide an elastic connector having a plurality of electrode parts that conductively connect a first connection object to a second connection object, which can favorably conductively connect the objects to each other at low loads and suppress increase in resistance values.SOLUTION: A plurality of electrode parts 13, in which conductive particles are continuous like beads, have: a conductive path 11 having one end surface which come into contact with the first connection object and the other end surface which come into contact with the second connection object; and a protective coating 12 made of an insulative rubber elastic body for protecting a side of the conductive path 11. The plurality of electrode parts 13 are formed so that heights between both end surfaces are different between one electrode part 13a and another electrode part 13b, and are arranged so that the higher the height between both end surfaces, the larger compressibility between both end surfaces between the one electrode part and the other electrode part, while being held between the first connection object and the second connection object.SELECTED DRAWING: Figure 2

Description

本発明は、接続対象物間を導電接続するための弾性コネクタと、その弾性コネクタを用いた接続対象物間の導通接続方法に関する。   The present invention relates to an elastic connector for conductively connecting between connection objects, and a conduction connection method between connection objects using the elastic connector.

対向する回路基板の電極間や回路基板と電子部品との電極間などを電気的に接続したり、回路基板上の電子部品に溜まった静電気や電磁波のノイズを逃がすアース目的で回路基板と金属製筺体との間に挟んだりして用いる弾性コネクタが知られている。   The circuit board and metal are used for the purpose of grounding to electrically connect the electrodes of the circuit board facing each other, between the electrodes of the circuit board and the electronic component, and to release static electricity and electromagnetic noise accumulated on the electronic component on the circuit board. An elastic connector used by being sandwiched between a casing and the like is known.

こうした接続対象物間に弾性コネクタを設置する場合、接続対象物による押圧荷重が高すぎると弾性コネクタが座屈したり、筐体などの接続対象物の一部が反ったりするなどの不具合を生じるため、押圧荷重が低くても適切な導電接続が可能となるように、弾性コネクタのゴム材料を低硬度にする改良がなされている。しかしながら、ゴム材料が柔らかすぎると、弾性コネクタに対する圧縮が進むにつれて導電性粒子の配向が乱れ抵抗値が上昇する問題がある。この弾性コネクタの座屈の問題を回避するため、ある一定の高さまで硬質の補強芯材を弾性コネクタ内に設ける技術が特開2013−26140号公報(特許文献1)に記載されている。   When installing an elastic connector between such objects to be connected, if the pressure load by the object to be connected is too high, the elastic connector buckles or a part of the object to be connected such as a case warps. The rubber material of the elastic connector has been improved to have a low hardness so that appropriate conductive connection is possible even when the pressing load is low. However, if the rubber material is too soft, there is a problem that the orientation of the conductive particles is disturbed and the resistance value increases as the compression of the elastic connector proceeds. In order to avoid the problem of buckling of this elastic connector, Japanese Patent Laid-Open No. 2013-26140 (Patent Document 1) describes a technique in which a hard reinforcing core material is provided in an elastic connector up to a certain height.

特開2013−26140号公報JP 2013-26140 A

しかし、弾性コネクタ内に補強芯材が組み込まれると、弾性コネクタが硬くなるために、圧縮した時の荷重値が上昇し、筐体の反り解消のための圧縮荷重の低下には繋がらなかった。   However, when the reinforcing core member is incorporated in the elastic connector, the elastic connector becomes hard, so that the load value when compressed is increased, which does not lead to a decrease in the compression load for eliminating the warp of the housing.

そこで本発明は、低荷重で好適な導電接続が可能であり、また、抵抗値の上昇の少ない弾性コネクタを提供することを目的とする。また、こうした弾性コネクタを用いた接続対象物間の導通接続方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an elastic connector which can be suitably connected with a low load and has a small increase in resistance. Moreover, it aims at providing the conduction | electrical_connection connection method between the connection objects using such an elastic connector.

上記目的を達成するため、本発明は次の弾性コネクタを提供する。即ち、本発明は、第1の接続対象物と第2の接続対象物とを導通接続する複数の電極部を有する弾性コネクタについて、前記複数の電極部は、その何れの電極部も導電性粒子が数珠繋ぎに連続しており、前記第1の接続対象物に接触する一方の端面と、前記第2の接続対象物に接触する他方の端面とを有する導電路と、当該導電路の側面を保護する絶縁性のゴム状弾性体でなる保護被覆と、を有しており、前記複数の電極部は、一の電極部と他の電極部とで前記両端面間の高さが異なるように形成されつつ、前記第1の接続対象物と前記第2の接続対象物の間に挟持された状態で当該一の電極部と当該他の電極部とで前記両端面間での圧縮率が前記両端面間の高さの高い電極部ほど大きくなるように配置されることを特徴とした構成を備えている。   In order to achieve the above object, the present invention provides the following elastic connector. That is, the present invention relates to an elastic connector having a plurality of electrode portions for electrically connecting a first connection object and a second connection object, and the plurality of electrode portions are all electrically conductive particles. Are connected in a daisy chain and have a conductive path having one end surface that contacts the first connection object and the other end surface that contacts the second connection object, and protects the side surface of the conductive path. A protective coating made of an insulating rubber-like elastic body, and the plurality of electrode portions are formed such that the height between the both end faces is different between one electrode portion and the other electrode portion. While being held between the first connection object and the second connection object, the compression ratio between the both end surfaces of the one electrode part and the other electrode part is It has a configuration characterized in that the electrode part with a higher height between the faces is arranged to be larger. The

前記弾性コネクタは、第1の接続対象物と第2の接続対象物とを導通接続する複数の電極部を有することとして構成したため、弾性コネクタの特性の指標となる抵抗値や押圧荷重を複数の電極部の備える特徴の総和として表出させることができる。そのため、電極部ごとに特性を変化させることができる。   Since the elastic connector is configured to have a plurality of electrode portions that conductively connect the first connection object and the second connection object, a plurality of resistance values and pressing loads that are indicators of the characteristics of the elastic connector are provided. It can be expressed as the sum of the features of the electrode part. Therefore, the characteristics can be changed for each electrode part.

また前記弾性コネクタの複数の電極部は、導電性粒子が数珠繋ぎに連続しており、前記第1の接続対象物に接触する一方の端面と、前記第2の接続対象物に接触する他方の端面とを有する導電路と、当該導電路の側面を保護する絶縁性のゴム状弾性体でなる保護被覆と、を有するものとして構成したため、電極部ごとに接続対象物に接続できる。また、導電路を絶縁性の保護被覆で覆っているため、複数の導電路を互いに絶縁するとともに、押圧により配向が乱れ易い導電路を保護することができる。   In addition, the plurality of electrode portions of the elastic connector have conductive particles continuous in a daisy chain, one end surface that contacts the first connection object, and the other end surface that contacts the second connection object. And a protective coating made of an insulating rubber-like elastic body that protects the side surface of the conductive path. Therefore, each electrode part can be connected to a connection object. In addition, since the conductive paths are covered with an insulating protective coating, it is possible to insulate the plurality of conductive paths from each other and protect the conductive paths whose orientation is likely to be disturbed by pressing.

前記弾性コネクタの複数の電極部は、一の電極部と他の電極部とで前記両端面間の高さが異なるように形成されつつ、前記第1の接続対象物と前記第2の接続対象物の間に挟持された状態で当該一の電極部と当該他の電極部とで前記両端面間での圧縮率が前記両端面間の高さの高い電極部ほど大きくなるように配置されるため、弾性コネクタを圧縮し続ける組み付け時に、抵抗値を下げることができるので接続対象物間の安定した導通を維持することができる。加えて、押圧荷重の大きな上昇を抑えることができるので組み付け時やその後の接続対象物の反りのおそれを無くすことができる。   The plurality of electrode portions of the elastic connector are formed such that a height between the both end faces is different between one electrode portion and another electrode portion, and the first connection object and the second connection object. In a state of being sandwiched between objects, the one electrode part and the other electrode part are arranged so that the compression ratio between the both end faces increases as the height of the electrode part between the both end faces increases. For this reason, the resistance value can be lowered when the elastic connector is continuously compressed, so that stable conduction between the connection objects can be maintained. In addition, since a large increase in the pressing load can be suppressed, it is possible to eliminate the possibility of warping of the connection object during assembly or thereafter.

前記弾性コネクタは、換言すれば、高さのある第1電極部とそれより高さの低い第2電極部とをセットにして一の電極を形成するので、接続対象物と接続対象物の間の組み付け許容範囲の大きな弾性コネクタとすることができる。即ち、厚みが大きなデバイスは製造公差が大きくなり易く、中央値よりも厚みが薄い場合には弾性コネクタの座屈や荷重上昇の問題を起こし易く、厚みが厚い場合には弾性コネクタに対する十分な押圧ができず、何れの場合も好適な組み付けができないおそれがある。しかしながら、本発明の弾性コネクタは、接続対象物間の厚みに対する許容範囲を大きくし得るので、接続対象物間の長さの公差が大きくなりがちな大きなデバイスについても好適に適用できる。また、スマートフォンやノートPC等の携帯機器を落とした時の衝撃に対する許容性が高く、接続対象物のズレによる接点不良が生じ難い。こうした弾性コネクタの一の実施態様としては、接続対象物間の公差が0.5±0.3mmである接続対象物間に挟持できる弾性コネクタとすることができる。   In other words, the elastic connector forms a single electrode by setting the first electrode part having a height and the second electrode part having a lower height as a set. It is possible to make an elastic connector having a large assembly allowable range. That is, a device with a large thickness tends to have a large manufacturing tolerance, and if the thickness is thinner than the median value, it tends to cause a problem of buckling or a load increase of the elastic connector. In any case, there is a possibility that suitable assembly cannot be performed. However, since the elastic connector of the present invention can increase the allowable range for the thickness between the connection objects, it can be suitably applied to a large device in which the length tolerance between the connection objects tends to be large. Moreover, the tolerance with respect to the impact when dropping portable devices, such as a smart phone and a notebook PC, is high, and it is hard to produce the contact failure by the shift | offset | difference of a connection target object. As one embodiment of such an elastic connector, an elastic connector that can be sandwiched between connection objects having a tolerance of 0.5 ± 0.3 mm between the connection objects can be provided.

前記弾性コネクタは、前記第1の接続対象物と前記第2の接続対象物の間に挟持された状態で当該一の電極部と当該他の電極部とで前記両端面間の高さが同じになるように配置されるものとして構成できる。前記第1の接続対象物と前記第2の接続対象物の間に挟持された状態で当該一の電極部と当該他の電極部とで前記両端面間の高さが同じになるように配置されるため、弾性コネクタを組み付ける抵抗値を下げることができ接続対象物間の安定した導通を維持することができる。加えて、押圧荷重の大きな上昇を抑えることができるので組み付け時やその後の接続対象物の反りのおそれを無くすことができる。   The elastic connector has the same height between the both end surfaces of the one electrode part and the other electrode part in a state of being sandwiched between the first connection object and the second connection object. It can comprise as what is arrange | positioned so that it may become. Arranged so that the height between the both end faces is the same between the one electrode part and the other electrode part in a state of being sandwiched between the first connection object and the second connection object Therefore, the resistance value to which the elastic connector is assembled can be lowered, and stable conduction between the connection objects can be maintained. In addition, since a large increase in the pressing load can be suppressed, it is possible to eliminate the possibility of warping of the connection object during assembly or thereafter.

前記弾性コネクタは、複数の電極部の間にその複数の電極部を繋ぐ絶縁性のゴム状弾性体でなる連結部を有するものとして構成できる。複数の電極部の間にその複数の電極部を繋ぐ絶縁性のゴム状弾性体でなる連結部を有する構成としたため、2つの電極部間に適当な距離をおき、互いの導電路を平行に維持することができる。更に、連結部を絶縁性のゴム状弾性体とすることで、弾性コネクタを圧縮した時の荷重をより低く抑えることができる。仮に、連結部を銀フィラーにした場合に、導通性は良くなるかもしれないが、弾性コネクタ全体が硬くなり、荷重が急激に上昇する恐れがある。また、材料コストも嵩みデメリット要素が大きくなる。   The said elastic connector can be comprised as what has a connection part which consists of an insulating rubber-like elastic body which connects the some electrode part between several electrode parts. Since it has a structure having a connecting portion made of an insulating rubber-like elastic body that connects the plurality of electrode portions between the plurality of electrode portions, an appropriate distance is set between the two electrode portions, and the conductive paths are parallel to each other. Can be maintained. Furthermore, the load when the elastic connector is compressed can be further reduced by making the connecting portion an insulating rubber-like elastic body. If the connecting portion is made of a silver filler, the electrical conductivity may be improved, but the entire elastic connector becomes hard and the load may increase rapidly. In addition, the material cost increases and the demerit factor increases.

前記弾性コネクタは、電極部の側面方向に当該電極部から突出する絶縁性のゴム状弾性体でなるベース部を有するものと構成できる。前記弾性コネクタは電極部の側面方向に当該電極部から突出する絶縁性のゴム状弾性体でなるベース部を有するため、弾性コネクタの取扱い性を高め、また電極部の折れ曲がりや座屈を生じ難くすることができる。   The elastic connector can be configured to have a base portion made of an insulating rubber-like elastic body protruding from the electrode portion in the side surface direction of the electrode portion. Since the elastic connector has a base part made of an insulating rubber-like elastic body protruding from the electrode part in the side surface direction of the electrode part, the handleability of the elastic connector is improved and the electrode part is not easily bent or buckled. can do.

前記弾性コネクタは、前記複数の電極部をその一方側に位置する端面が互いに面一に形成されているものとして構成できる。前記弾性コネクタの複数の電極部をその一方側に位置する端面が互いに面一に構成したため、接続対象物の一方にはんだ付け等で設置し、固定し易く、もう一方の接続対象物による弾性コネクタへの押圧方向を好適な方向とし易い。そのため、好適な組み付けを行い易い。   The elastic connector may be configured such that the end surfaces of the plurality of electrode portions located on one side thereof are formed flush with each other. Since the plurality of electrode portions of the elastic connector are configured so that the end surfaces located on one side thereof are flush with each other, it is easy to install and fix one of the connection objects by soldering or the like, and the elastic connector by the other connection object It is easy to make the pressing direction to a suitable direction. Therefore, it is easy to perform suitable assembly.

前記弾性コネクタは、前記複数の電極部を2つとすることができる。前記弾性コネクタは、前記複数の電極部を2つとしたため、互いに高さの異なる電極部を2つ設けただけで、低荷重であり、抵抗値の上昇し難い弾性コネクタとすることができる。また、簡単に2つの電極部を形成することができる。   The elastic connector may include two of the plurality of electrode portions. Since the elastic connector includes the two electrode portions, the elastic connector can be an elastic connector that has a low load and does not easily increase in resistance value by simply providing two electrode portions having different heights. Also, two electrode portions can be easily formed.

前記弾性コネクタは、前記複数の電極部を形成する複数の導電路のうち、露出した両端面間の高さが最も高い導電路の直径に対して、当該導電路の当該両端面間の高さが0.5〜4倍の長さであるものと構成できる。電極高さの最も高い導電路の高さをその導電路の直径に対して0.5〜4倍の長さに構成したため、折れ曲がりや座屈を起こし難く、低荷重で接続対象物間の導電接続が可能となる。   The elastic connector has a height between the opposite end faces of the conductive path with respect to a diameter of the conductive path having a highest height between the exposed end faces among the plurality of conductive paths forming the plurality of electrode portions. Can be configured to be 0.5 to 4 times as long. Because the height of the conductive path with the highest electrode height is 0.5 to 4 times the diameter of the conductive path, it is difficult to bend or buckle, and it is easy to conduct between connected objects with low load. Connection is possible.

前記弾性コネクタは、前記複数の電極部を形成する複数の導電路のうち、前記高さの最も異なる2個の導電路の当該高さは、高さの高い方に比べて低い方が30〜90%の高さに構成できる。前記弾性コネクタは、高さの低い方の導電路を高い方の導電路に比べて30〜90%の高さにしたため、高さの高い方の電極部が押圧されすぎる前に高さの低い方の電極部に押圧荷重を分配することができる。そのため、押圧による抵抗値の上昇を抑えることができる。   Among the plurality of conductive paths forming the plurality of electrode portions, the elastic connector has a lower height of the two conductive paths having the most different heights as compared with the higher one. It can be configured to be 90% high. In the elastic connector, the lower conductive path is 30 to 90% higher than the higher conductive path, so that the height of the lower electrode part is too low before the higher electrode part is pressed too much. The pressing load can be distributed to the electrode portion on the other side. Therefore, an increase in resistance value due to pressing can be suppressed.

前記弾性コネクタは、前記複数の電極部を形成する複数の導電路の直径が同じ長さであるものとして構成できる。前記複数の電極部を形成する複数の導電路の直径が同じ長さであるものとして構成したため、導電路の形成が容易である。   The elastic connector may be configured such that a plurality of conductive paths forming the plurality of electrode portions have the same diameter. Since the plurality of conductive paths forming the plurality of electrode portions have the same length, the conductive paths can be easily formed.

前記弾性コネクタは、絶縁性のゴム状弾性体の硬度をA硬度で20〜30に構成できる。前記弾性コネクタの絶縁性のゴム状弾性体の硬度をA硬度で20〜30に構成したため、3N以下の低荷重で押圧でき折れ曲がりや座屈を起こさずに接続対象物間を導電接続する弾性コネクタとすることができる。   The elastic connector can be configured such that the hardness of the insulating rubber-like elastic body is 20 to 30 in terms of A hardness. Since the hardness of the insulating rubber-like elastic body of the elastic connector is 20 to 30 in terms of A hardness, the elastic connector can be pressed with a low load of 3N or less and conductively connected between connected objects without causing bending or buckling. It can be.

前記弾性コネクタは、前記連結部よりも前記複数の電極部の前記一方の端面側の保護被覆が前記導電路の導電方向に突出しているものとして構成できる。前記弾性コネクタについて前記連結部よりも前記複数の電極部の前記一方の端面側の保護被覆が前記導電路の導電方向に突出しているものとして構成したため、前記保護被覆が前記連結部よりも導電方向に突出した導電路の端部では、電極部のみが接続対象物と接触するため、弾性コネクタに対する押圧荷重を抑制することができる。反対に電極部だけでなく連結部も接続対象物に接触すると連結部を押圧するための荷重が余分にかかり押圧荷重が高くなることになるため、連結部よりも電極部を突出させてこうした押圧荷重の上昇を抑えている。   The elastic connector may be configured such that the protective coating on the one end face side of the plurality of electrode portions protrudes in the conductive direction of the conductive path from the connecting portion. Since the protective coating on the one end face side of the plurality of electrode portions protrudes in the conductive direction of the conductive path with respect to the elastic connector, the protective coating is more conductive than the connecting portion. At the end portion of the conductive path protruding in the direction, only the electrode portion comes into contact with the connection object, so that the pressing load on the elastic connector can be suppressed. On the other hand, if not only the electrode part but also the connecting part comes into contact with the connection object, an extra load is applied to press the connecting part and the pressing load becomes high. The increase in load is suppressed.

前記弾性コネクタは、前記第1電極部の導電路の高さが60%圧縮された際の押圧荷重が3N以下である弾性コネクタとすることができる。前記第1電極部の導電路の高さが60%圧縮された際の押圧荷重が3N以下である弾性コネクタとしたため、押圧荷重が3N以下という低荷重で60%圧縮できる弾性コネクタである。   The elastic connector may be an elastic connector having a pressing load of 3N or less when the height of the conductive path of the first electrode portion is compressed by 60%. The elastic connector has a pressing load of 3N or less when the height of the conductive path of the first electrode portion is compressed by 60%, so that the elastic connector can compress 60% with a low load of 3N or less.

上記構成によれば、圧縮率が60%の時点で荷重が3N以下であるので、弾性コネクタの組み付け時に筐体等の接続対象物を反らせるリスクを低減することができる。一般的に弾性コネクタは、圧縮率10〜20%の範囲で使用することが多くこの時点で荷重は1〜2N程度であるが、圧縮率をこれよりも大きくすると荷重がかなり大きくなるのに対して、荷重を3N以下に抑えて圧縮率の60%を達成できる点で好適である。   According to the said structure, since a load is 3 N or less when a compression rate is 60%, the risk of warping connection objects, such as a housing | casing, at the time of an assembly | attachment of an elastic connector can be reduced. In general, elastic connectors are often used in a compression rate range of 10 to 20%. At this point, the load is about 1 to 2N. However, if the compression rate is higher than this, the load becomes considerably large. Therefore, it is preferable in that the load can be suppressed to 3N or less and 60% of the compression rate can be achieved.

また、前記弾性コネクタは、押圧を受けると圧縮開始から圧縮終わりまで、抵抗値が下がり続けるとともに、圧縮率60%時点で、抵抗値が0.15Ω以下とすることができる。圧縮率が60%時点で抵抗値が0.15Ω以下を達成できれば、大きなサイズのデバイス等であって、接続対象物間の間隔に大きなバラツキがあるようなASSY品であっても、弾性コネクタの組み付け時に、圧縮率が60%となるような大きな圧縮がなされても安定的な導電性を維持することができるため、このバラツキに対する許容性を高めることができる。   Further, when the elastic connector is pressed, the resistance value continues to decrease from the start of compression to the end of compression, and the resistance value can be 0.15Ω or less at a compression rate of 60%. If the resistance value can be 0.15Ω or less at a compression rate of 60%, even an ASSY product with a large variation in the distance between connected objects, etc. Even when large compression is performed such that the compression rate is 60% at the time of assembly, stable conductivity can be maintained, and thus tolerance for this variation can be increased.

前記弾性コネクタは、前記複数の電極部の一方の端面には金属部が形成されているものとして構成できる。前記弾性コネクタは、前記複数の電極部の一方の端面には金属部が形成されているものとして構成したため、はんだ付けを利用して接続対象物に組み付けし易い弾性コネクタである。   The elastic connector may be configured such that a metal portion is formed on one end face of the plurality of electrode portions. Since the elastic connector is configured such that a metal portion is formed on one end face of the plurality of electrode portions, the elastic connector is an elastic connector that can be easily assembled to a connection object using soldering.

また本発明は弾性コネクタによる次の導通接続方法を提供する。即ち、複数の電極部を有する弾性コネクタによって第1の接続対象物と第2の接続対象物とを導通接続する導通接続方法について、前記複数の電極部は、その何れの電極部も導電性粒子が数珠繋ぎに連続しており、前記第1の接続対象物に接触する一方の端面と、前記第2の接続対象物に接触する他方の端面とを有する導電路と、当該導電路の側面を保護する絶縁性のゴム状弾性体でなる保護被覆と、を有し、当該端面間の高さが一の電極部と他の電極部とで異なるように形成されており、前記第1の接続対象物または前記第2の接続対象物に対して前記複数の電極部が段階的に接触していくことを特徴とする弾性コネクタによる導通接続方法である。   The present invention also provides the following conductive connection method using an elastic connector. That is, regarding the conductive connection method in which the first connection object and the second connection object are conductively connected by an elastic connector having a plurality of electrode parts, the plurality of electrode parts are electrically conductive particles. Are connected in a daisy chain and have a conductive path having one end surface that contacts the first connection object and the other end surface that contacts the second connection object, and protects the side surface of the conductive path. A protective coating made of an insulating rubber-like elastic body, and the height between the end faces is different between one electrode part and the other electrode part, and the first connection object The conductive connection method using an elastic connector, wherein the plurality of electrode portions contact the object or the second connection object in a stepwise manner.

弾性コネクタには高さの異なる複数の電極部を備え、前記第1の接続対象物または前記第2の接続対象物に対して前記複数の電極部が段階的に接触していくため、弾性コネクタへの圧縮に対する押圧荷重を低く抑えることができ、また抵抗値の上昇を抑えることができる。加えて、接続対象物に対して高さが異なる複数の接続部の一部が接触しただけでも導通接続させることができる。したがって、この導通接続方法を、多段階センサーに応用したり、複数の電極部のうちのいくつかのみを導通接続するように利用したりすることも可能である。   The elastic connector includes a plurality of electrode portions having different heights, and the plurality of electrode portions contact the first connection object or the second connection object in a stepwise manner. The pressing load with respect to the compression can be kept low, and an increase in resistance value can be suppressed. In addition, the conductive connection can be established even when only a part of the plurality of connection portions having different heights from the connection object are in contact with each other. Therefore, this conductive connection method can be applied to a multistage sensor, or can be used so that only some of the plurality of electrode portions are conductively connected.

本発明の弾性コネクタによれば、圧縮に対する押圧荷重を低く、抵抗値の上昇を抑えることができる弾性コネクタである。   According to the elastic connector of the present invention, it is an elastic connector that can reduce a pressing load against compression and suppress an increase in resistance value.

また、本発明の導通接続方法によれば、圧縮に対する押圧荷重を低く、抵抗値の上昇を抑えることができ、また接続対象物に対して高さが異なる複数の接続部の一部が接触しただけでも導通接続させることができる。   Further, according to the conductive connection method of the present invention, the pressing load against compression can be reduced, an increase in the resistance value can be suppressed, and a part of the plurality of connection portions having different heights contacted the connection object. It is possible to make a conductive connection only.

本発明の第1実施形態の弾性コネクタの平面図である。It is a top view of the elastic connector of 1st Embodiment of this invention. 図1の弾性コネクタのII−II線断面図である。It is the II-II sectional view taken on the line of the elastic connector of FIG. 図1の弾性コネクタを接続対象物間に組み付ける前の状態を説明する説明図である。It is explanatory drawing explaining the state before attaching the elastic connector of FIG. 1 between connection objects. 図1の弾性コネクタを接続対象物間に組み付ける途中の状態を説明する説明図である。It is explanatory drawing explaining the state in the middle of assembling | attaching the elastic connector of FIG. 1 between connection objects. 図1の弾性コネクタを接続対象物間に組み付けた状態を説明する説明図である。It is explanatory drawing explaining the state which assembled | attached the elastic connector of FIG. 1 between the connection objects. 本発明の第1実施形態の弾性コネクタの変更形態の図2相当断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 showing a modified form of the elastic connector according to the first embodiment of the present invention. 本発明の第2実施形態の弾性コネクタを示し、分図7(a)は一の弾性コネクタの図2相当断面図、分図7(b)は別の一の弾性コネクタの図2相当断面図、分図7(c)はさらに別の一の弾性コネクタの図1相当平面図である。7 shows an elastic connector according to a second embodiment of the present invention, in which FIG. 7A is a cross-sectional view corresponding to FIG. 2 of one elastic connector, and FIG. 7B is a cross-sectional view corresponding to FIG. FIG. 7 (c) is a plan view corresponding to FIG. 1 of still another elastic connector. 比較のための弾性コネクタの平面図である。It is a top view of the elastic connector for a comparison. 図8の弾性コネクタのIX−IX線断面図である。It is the IX-IX sectional view taken on the line of the elastic connector of FIG. 本発明の弾性コネクタの押圧−抵抗、荷重関係を示すグラフ図である。It is a graph which shows the pressure-resistance and load relationship of the elastic connector of this invention. 本発明の別の弾性コネクタの押圧−抵抗、荷重関係を示すグラフ図である。It is a graph which shows the pressure-resistance and load relationship of another elastic connector of this invention. 本発明のまた別の弾性コネクタの押圧−抵抗、荷重関係を示すグラフ図である。It is a graph which shows the pressure-resistance and load relationship of another elastic connector of this invention. 本発明のさらにまた別の弾性コネクタの押圧−抵抗、荷重関係を示すグラフ図である。It is a graph which shows the press-resistance and load relationship of another elastic connector of this invention. 比較のための2本の電極部の高さが等しい弾性コネクタの押圧−抵抗、荷重関係を示すグラフ図である。It is a graph which shows the pressure-resistance and load relationship of the elastic connector with which the height of the two electrode parts for a comparison is equal. 比較のための1本の電極部のみを有する弾性コネクタの押圧−抵抗、荷重関係を示すグラフ図である。It is a graph which shows the pressure-resistance and load relationship of the elastic connector which has only one electrode part for a comparison.

本発明の弾性コネクタについて実施形態に基づいて詳しく説明する。各実施形態において重複する部位には同じ符号を付け、また重複する機能、材質、製造方法、作用効果等についてはその説明を省略する。   The elastic connector of this invention is demonstrated in detail based on embodiment. In each embodiment, the same reference numerals are given to the overlapping parts, and the description of the overlapping functions, materials, manufacturing methods, operational effects, etc. is omitted.

第1実施形態[図1〜図5]:   First Embodiment [FIGS. 1 to 5]:

本実施形態の弾性コネクタ10の平面図を図1に、その断面図を図2に示す。この弾性コネクタ10は、導電性粒子が数珠繋ぎに、図2の上下方向に配向する導電路11aと、当該導電路11aの側面を保護する絶縁性のゴム状弾性体でなる保護被覆12aとで形成される第1電極部13aと、この第1電極部13aと同様の材質からなる導電路11bと保護被覆12bとで形成される第2電極部13bを有している。そして、この2つの電極部13a,13bの間には、この2つの電極部13a,13bを繋ぐ連結部14を備えており、また、2つの電極部13a,13bには、これら電極部13a,13bから側面方向に突出するベース部15を有している。なお、保護被覆12a,12bと同様に連結部14やベース部15は絶縁性のゴム状弾性体で形成されており、これらの部位は同一の材質から一体成形で形成したものである。これらの部位をまとめて絶縁部16とも言うものとする。また、図2では保護被覆12a,12bと、連結部14、ベース部15の部位を区別するための境界を破線で示している。   The top view of the elastic connector 10 of this embodiment is shown in FIG. 1, and the sectional view is shown in FIG. The elastic connector 10 is formed of a conductive path 11a in which conductive particles are connected in a row and oriented in the vertical direction in FIG. 2, and a protective coating 12a made of an insulating rubber-like elastic body that protects the side surface of the conductive path 11a. The first electrode portion 13a is formed, and the second electrode portion 13b is formed by a conductive path 11b made of the same material as the first electrode portion 13a and a protective coating 12b. And between these two electrode parts 13a and 13b, the connection part 14 which connects these two electrode parts 13a and 13b is provided, and these electrode parts 13a, 13b are provided in the two electrode parts 13a and 13b. It has the base part 15 which protrudes in the side surface direction from 13b. In addition, like the protective coatings 12a and 12b, the connecting portion 14 and the base portion 15 are formed of an insulating rubber-like elastic body, and these portions are integrally formed from the same material. These parts are collectively referred to as an insulating portion 16. Moreover, in FIG. 2, the boundary for distinguishing the site | part of protective coating 12a, 12b, the connection part 14, and the base part 15 is shown with the broken line.

第1電極部13aの両端面a1,a2は外部に露出し、第2電極部13bの両端面b1,b2もまた外部に露出している。そして、その一方側の端面、即ち図2における下側端面a2,b2が互いに面一に形成されている。こちら側の面を弾性コネクタ10の底面とすると、底面が面一である方が接続対象物の一方にはんだ付け等で設置し易く、その後、高さが異なる第1電極部13aの上面をもう一方の接続対象物で圧接し易くなる。   Both end faces a1 and a2 of the first electrode portion 13a are exposed to the outside, and both end faces b1 and b2 of the second electrode portion 13b are also exposed to the outside. One end face thereof, that is, the lower end faces a2 and b2 in FIG. 2 are formed flush with each other. If the surface on this side is the bottom surface of the elastic connector 10, it is easier to install one surface of the connection object by soldering or the like when the bottom surface is flush, and then the upper surface of the first electrode portion 13a having a different height is already installed. It becomes easy to press-contact with one connection object.

電極を形成する2つの導電路11a,11bは、その両端面a1,a2,b1,b2で露出する導電路の直径が何れも等しく形成されており、0.3〜1.5mmとすることができる。直径が0.3mmよりも小さいと、その取扱いが困難であり作業性が劣る。また、直径が1.5mmよりも大きいと、弾性コネクタ10の大きさが大きくなりすぎ、基板間の導通や基板と電子部品との導通目的のために過大品質となる。   The two conductive paths 11a and 11b forming the electrodes are formed such that the diameters of the conductive paths exposed at the both end faces a1, a2, b1 and b2 are equal, and should be 0.3 to 1.5 mm. it can. When the diameter is smaller than 0.3 mm, the handling is difficult and the workability is inferior. On the other hand, if the diameter is larger than 1.5 mm, the size of the elastic connector 10 becomes too large, and the quality becomes excessive for the purpose of conduction between the boards or between the board and the electronic component.

前記導電路11a,11bのうちの高さの高い方の導電路11aの高さ、即ち、下側端面a2から上側端面a1までの長さは、0.5〜6mmとすることができる。高さが0.5mmよりも低いと、その取扱いが困難であり作業性が劣る。また、高さが6mmよりも大きいと、接続対象物間で座屈し易く、適正に配置させることができず、好適な接続対象物間の導電接続を損なうおそれがある。   Of the conductive paths 11a and 11b, the height of the higher conductive path 11a, that is, the length from the lower end face a2 to the upper end face a1 can be set to 0.5 to 6 mm. When the height is lower than 0.5 mm, handling thereof is difficult and workability is inferior. On the other hand, if the height is larger than 6 mm, it is easy to buckle between the connection objects, and it is not possible to arrange them properly, and there is a possibility that a suitable conductive connection between the connection objects is impaired.

そしてまた第1電極部13a側の導電路11aの高さはその端面a2に露出する導電路11aの直径に対して、0.5〜4倍の長さの範囲にあることが好ましい。0.5倍の長さよりも低いと、その取扱いが困難であり作業性が劣る。また、4倍の長さよりも高いと、接続対象物間で座屈し易く、適正に配置させることができず、好適な接続対象物間の導電接続を損なうおそれがある。この導電路11aの直径に対する高さの比は、第2電極部13bにおける導電路11bにおいても概ね同様である。   The height of the conductive path 11a on the first electrode portion 13a side is preferably in the range of 0.5 to 4 times the diameter of the conductive path 11a exposed on the end surface a2. When the length is less than 0.5 times, the handling is difficult and the workability is inferior. On the other hand, if the length is longer than four times, it is easy to buckle between the connection objects, and it cannot be properly arranged, and there is a possibility that a suitable conductive connection between the connection objects is impaired. The ratio of the height to the diameter of the conductive path 11a is substantially the same in the conductive path 11b in the second electrode portion 13b.

2つの導電路11a,11bのうち、高さの高い方の導電路11aの高さに対して、高さの低い方の導電路11bの高さは30〜90%の高さに設定されることが好ましい。その高さの割合が30%よりも低いと、2つの導電路11a,11bの間で高さの差がありすぎて、高さの低い導電路11bが好適に接続対象物間で押圧を受ける以前に高さの高い導電路11aが押圧されすぎて抵抗値の上昇が起こるおそれがあるからである。一方、その高さの割合が90%よりも大きいと、高さの低い導電路11bと高さの高い導電路11aとの間で高さの違いが少なく、2つの導電路11a,11bの高さを変えた効果が生じ難いからである。   Of the two conductive paths 11a and 11b, the height of the lower conductive path 11b is set to 30 to 90% of the height of the higher conductive path 11a. It is preferable. If the ratio of the height is lower than 30%, there is a difference in height between the two conductive paths 11a and 11b, and the conductive path 11b having a low height is preferably pressed between the connection objects. This is because the conductive value 11a having a high height may be excessively pressed before and the resistance value may increase. On the other hand, when the ratio of the height is larger than 90%, there is little difference in height between the conductive path 11b having a low height and the conductive path 11a having a high height, and the heights of the two conductive paths 11a and 11b are high. This is because the effect of changing the height is unlikely to occur.

こうした弾性コネクタ10は、図3で示すように、第1電極13aの上側端面a1と第2電極13bの上側端面b1は一の接続対象物Faの一の接続面F1に対向して配置し、第1電極13aの下側端面a2と第2電極13bの下側端面b2は他の一の接続対象物Fbの一の接続面F2に対向して配置される。接続面F1や接続面F2は平坦面であることが好ましい。こうした平坦面に対して、そこからの距離の異なる端面を接触させることが弾性コネクタ10の特徴の一つであるからである。   In such an elastic connector 10, as shown in FIG. 3, the upper end surface a1 of the first electrode 13a and the upper end surface b1 of the second electrode 13b are arranged to face one connection surface F1 of one connection object Fa, The lower end surface a2 of the first electrode 13a and the lower end surface b2 of the second electrode 13b are arranged to face one connection surface F2 of another connection object Fb. The connection surface F1 and the connection surface F2 are preferably flat surfaces. This is because it is one of the features of the elastic connector 10 that the end surfaces having different distances from the flat surface are brought into contact with each other.

2つの接続対象物Fa,Fb間に弾性コネクタ10を組み付けるには、第1電極部13aと第2電極部13bそれぞれの下側端面a2,b2を他の一の接続対象物Fbの一の接続面F2に接触させた状態から、図4で示すように、第1電極部13aの上側端面a1を一の接続対象物Faの一の接続面F1に接触させる。そして、一の接続対象物Faと他の一の接続対象物Fbとで第1電極部13aを押圧して圧縮し、一の接続対象物Faの一の接続面F1と第2電極部13bの上側端面b1も接触させる。このように第1電極部13aと第2電極部13bが段階的に一の接続対象物Faと他の一の接続対象物Fbとの間に挟持されるようになる。   To assemble the elastic connector 10 between the two connection objects Fa and Fb, the lower end surfaces a2 and b2 of the first electrode part 13a and the second electrode part 13b are connected to one other connection object Fb. As shown in FIG. 4, the upper end surface a <b> 1 of the first electrode portion 13 a is brought into contact with one connection surface F <b> 1 of one connection object Fa from the state of being in contact with the surface F <b> 2. And the 1st electrode part 13a is pressed and compressed with one connection target object Fa and the other one connection target object Fb, and one connection surface F1 of one connection target object Fa and the 2nd electrode part 13b The upper end surface b1 is also brought into contact. Thus, the first electrode portion 13a and the second electrode portion 13b are sandwiched between the one connection object Fa and the other connection object Fb in a stepwise manner.

こうして弾性コネクタ10を2つの接続対象物Fa,Fb間に組み付けた状態を図5で示す。第1電極部13aの上側端面a1と第2電極部13bの上側端面b1が一の接続対象物Faの一の接続面F1に接触し、第1電極部13aの下側端面a2と第2電極部13bの下側端面b2が他の一の接続対象物Fbの一の接続面F2に接触する。そして弾性コネクタ10が一の接続対象物Faと他の一の接続対象物Fbとを導電接続する。したがって接続対象物側からみれば、接続対象物Faの一の接続面F1である平坦面に高さの異なる第1電極部13aの端面a1と第2電極部13bの端面b1が接触するのであり、弾性コネクタ10では、第1電極部13aと第2電極部13bとで1つの電極17を形成する。   FIG. 5 shows a state where the elastic connector 10 is assembled between the two connection objects Fa and Fb. The upper end surface a1 of the first electrode portion 13a and the upper end surface b1 of the second electrode portion 13b are in contact with one connection surface F1 of the one connection object Fa, and the lower end surface a2 of the first electrode portion 13a and the second electrode The lower end surface b2 of the part 13b is in contact with one connection surface F2 of the other connection object Fb. Then, the elastic connector 10 conductively connects one connection object Fa and another connection object Fb. Therefore, when viewed from the connection object side, the end surface a1 of the first electrode portion 13a and the end surface b1 of the second electrode portion 13b having different heights are in contact with a flat surface that is one connection surface F1 of the connection object Fa. In the elastic connector 10, one electrode 17 is formed by the first electrode portion 13a and the second electrode portion 13b.

導電路11は、ゴム状基材に分散させた導電粒子(導電体)が導電方向(図2では上下方向)に数珠繋ぎに配向しており、導通路となる部位である。導電体の材質には、金属、セラミックなどによる粒子状、繊維状、細線状のものが挙げられる。導電体には磁性導電体を用いる場合には、例えば、ニッケル、コバルト、鉄、フェライト、またはそれらを多く含む合金などが挙げられる。他にも良導電性の金、銀、白金、アルミニウム、ニッケル、銅、鉄、パラジウム、コバルト、クロムなどの金属類、ステンレス、真鍮などの合金類、樹脂、絶縁性セラミックなどからなる粉末や細線を磁性導電体でめっきしたもの、あるいは磁性導電体に良導電性の金属をめっきしたものなどを用いることができる。また、他の導電路の構成として、絶縁性のゴム状基材に導電体を均一分散させた導電ゴムとすることができる。この場合の導電体の材質としては、良電性の金属、樹脂、セラミック、カーボンブラックなどが挙げられる。   The conductive path 11 is a part that becomes conductive paths, in which conductive particles (conductors) dispersed in a rubber-like base material are oriented in a row in the conductive direction (vertical direction in FIG. 2). Examples of the material of the conductor include particles, fibers, and fine wires made of metal, ceramic, and the like. When a magnetic conductor is used as the conductor, for example, nickel, cobalt, iron, ferrite, or an alloy containing a large amount thereof can be used. In addition, powders and fine wires made of highly conductive metals such as gold, silver, platinum, aluminum, nickel, copper, iron, palladium, cobalt, and chromium, alloys such as stainless steel and brass, resins, and insulating ceramics Can be used which is plated with a magnetic conductor, or a magnetic conductor plated with a highly conductive metal. As another configuration of the conductive path, a conductive rubber in which a conductor is uniformly dispersed in an insulating rubber-like base material can be used. In this case, examples of the material of the conductor include good-electricity metals, resins, ceramics, and carbon black.

絶縁部16である保護被覆12や連結部14、ベース部15は、絶縁性のゴム状弾性体で形成される。その材質には、熱硬化性ゴムや熱可塑性エラストマーが使用できる。例えば、天然ゴム、シリコーンゴム、イソプレンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、1,2−ポリブタジエン、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレン−プロプレンゴム、クロロスルホンゴム、ポリエチレンゴム、アクリルゴム、エピクロルヒドリンゴム、フッ素ゴム、ウレタンゴム、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、アミド系熱可塑性エラストマー、塩化ビニル熱可塑性エラストマー、フッ化系樹脂熱可塑性エラストマー、イオン架橋系熱可塑性エラストマーなどが挙げられる。後述するように金型中で加熱硬化する場合は熱硬化性ゴムが好ましく、なかでも耐熱性の高いシリコーンゴム、フッ素ゴムがより好ましい。   The protective coating 12, which is the insulating portion 16, the connecting portion 14, and the base portion 15 are formed of an insulating rubber-like elastic body. As the material, thermosetting rubber or thermoplastic elastomer can be used. For example, natural rubber, silicone rubber, isoprene rubber, butadiene rubber, acrylonitrile butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, chlorosulfone rubber, polyethylene rubber, acrylic rubber , Epichlorohydrin rubber, fluoro rubber, urethane rubber, styrene thermoplastic elastomer, olefin thermoplastic elastomer, ester thermoplastic elastomer, urethane thermoplastic elastomer, amide thermoplastic elastomer, vinyl chloride thermoplastic elastomer, fluorinated resin A thermoplastic elastomer, an ion-crosslinking thermoplastic elastomer, etc. are mentioned. As will be described later, when heat-curing in a mold, thermosetting rubber is preferable, and silicone rubber and fluorine rubber having high heat resistance are more preferable.

絶縁部16のゴム状弾性体の硬度は、JISK6253に準じてA硬度で20〜30に構成することは好ましい。ゴム状弾性体の硬度をA硬度で20〜30とすれば、1電極を複数の電極部で形成する弾性コネクタを得ることができる。A硬度で20よりも低ければ、最も高さの高い電極部の折れ曲がりや座屈による絶縁不良を招くおそれがある。A硬度で30よりも高ければ、圧縮による荷重上昇が大きくなり筐体などの接続対象物に反りを生じさせるおそれがある。   It is preferable that the hardness of the rubber-like elastic body of the insulating part 16 is 20 to 30 in terms of A hardness according to JISK6253. If the hardness of the rubber-like elastic body is 20 to 30 in terms of A hardness, an elastic connector in which one electrode is formed by a plurality of electrode portions can be obtained. If the A hardness is lower than 20, there is a risk of causing insulation failure due to bending or buckling of the highest electrode part. If the A hardness is higher than 30, the increase in load due to compression is increased, and there is a risk of causing warpage of the connection object such as a housing.

第1実施形態の変形例[図6]:   Modified example of the first embodiment [FIG. 6]:

図6には変形形態である弾性コネクタ20を示す。この弾性コネクタ20は、前記弾性コネクタ10と比較して第1電極部13aと第2電極部13bの一方側端面a2,b2側、即ち、弾性コネクタ20の底面に銅箔からなる金属部17を設けた点が異なる。金属部17を設けることで導電路11a,11bを相互に導通させるとともに、はんだ付けして容易に接続対象物Fbに組み付けることができる。   FIG. 6 shows a modified elastic connector 20. Compared with the elastic connector 10, the elastic connector 20 has a first electrode portion 13 a and a second electrode portion 13 b on one side end surfaces a 2 and b 2, that is, a metal portion 17 made of copper foil on the bottom surface of the elastic connector 20. Different points are provided. By providing the metal portion 17, the conductive paths 11a and 11b can be electrically connected to each other, and can be easily assembled to the connection object Fb by soldering.

弾性コネクタ10,20を製造するには、導電路11となる磁性導電性粒子をゴム状弾性体中に磁場配向させる方法を採用することができる。硬化してゴム状弾性体となる液状ゴム中に磁性導電性粒子を分散させた原料組成物と、磁性ピンを配した上型と下型からなる金型を準備する。そして、この金型に原料組成物を注入し、磁場を印加して液状ゴム中に磁性導電性粒子を磁場配向させる。そして液状ゴムを硬化させることで弾性コネクタ10を得ることができる。電極部13の一方の端面に金属部17を形成する場合には予め金属部17となる金属片を金型内にインサートしておくことで、金属部17が一体化した弾性コネクタ20を得ることができる。金属部17を有する弾性コネクタ20は、金属部17を接続対象物Fbにはんだ付けすることで弾性コネクタ20の接続対象物Fb上への表面実装を行うことができる。   In order to manufacture the elastic connectors 10 and 20, it is possible to employ a method in which the magnetic conductive particles serving as the conductive paths 11 are magnetically oriented in the rubber-like elastic body. A raw material composition in which magnetic conductive particles are dispersed in a liquid rubber that is cured to become a rubbery elastic body, and a mold composed of an upper mold and a lower mold in which magnetic pins are arranged are prepared. Then, the raw material composition is injected into this mold, and a magnetic field is applied to magnetically orient the magnetic conductive particles in the liquid rubber. The elastic connector 10 can be obtained by curing the liquid rubber. In the case where the metal part 17 is formed on one end face of the electrode part 13, an elastic connector 20 in which the metal part 17 is integrated is obtained by inserting a metal piece to be the metal part 17 in the mold in advance. Can do. The elastic connector 20 having the metal part 17 can be surface-mounted on the connection object Fb of the elastic connector 20 by soldering the metal part 17 to the connection object Fb.

第2実施形態[図7(a)]:   Second Embodiment [FIG. 7A]:

図7(a)には本実施形態の弾性コネクタ30aを示す。第1実施形態の弾性コネクタ10,20では第1電極部13aと第2電極部13bの2つの電極部を有していたのに対し、本実施形態の弾性コネクタ30aでは、さらに第3電極部13cを有し3つの電極部を備えている。弾性コネクタ30aでは、第3電極部13cの導電路が3つの電極部の中で最も短いものとして形成しており、第1電極部13aから第3電極部13cまで横一列にこの順に並んだ形状に構成されている。弾性コネクタ30aもまた、低荷重で好適な導電接続が可能であり、また、抵抗値の上昇の少ない弾性コネクタである。   FIG. 7A shows the elastic connector 30a of the present embodiment. While the elastic connectors 10 and 20 of the first embodiment have two electrode portions, the first electrode portion 13a and the second electrode portion 13b, the elastic connector 30a of the present embodiment further includes a third electrode portion. 13c and three electrode portions. In the elastic connector 30a, the conductive path of the third electrode portion 13c is formed as the shortest of the three electrode portions, and the shape is arranged in this order from the first electrode portion 13a to the third electrode portion 13c in this order. It is configured. The elastic connector 30a is also an elastic connector that can be suitably conductively connected with a low load and has a small increase in resistance value.

第2実施形態の変形例[図7(b),図7(c)]:   Modified example of the second embodiment [FIG. 7B, FIG. 7C]:

図7(b)には第2実施形態の変形例の弾性コネクタ30bを示す。弾性コネクタ30aと比較して3つの電極部13a〜13cの並び方が異なり、導電路の最も長い第1電極部13aが横に並んだ3つの電極部の中心に形成されている。   FIG. 7B shows an elastic connector 30b according to a modification of the second embodiment. The arrangement of the three electrode portions 13a to 13c is different from that of the elastic connector 30a, and the first electrode portion 13a having the longest conductive path is formed at the center of the three electrode portions arranged side by side.

図7(c)には第2実施形態の別の変形例の弾性コネクタ30cを示す。弾性コネクタ30a,30bでは3つの電極部が横一列に形成されていたのと比較して、この弾性コネクタ30cでは、各電極部13a〜13cが三角形の頂点位置を占めるように形成されている。こうした弾性コネクタ30b,30cもまた、低荷重で好適な導電接続が可能であり、抵抗値の上昇の少ない弾性コネクタである。   FIG. 7C shows an elastic connector 30c according to another modification of the second embodiment. In this elastic connector 30c, each of the electrode portions 13a to 13c is formed so as to occupy the apex of the triangle, as compared with the elastic connectors 30a and 30b in which the three electrode portions are formed in a horizontal row. The elastic connectors 30b and 30c are also elastic connectors that can be suitably connected with a low load and have a small increase in resistance value.

弾性コネクタの製造:   Elastic connector manufacturing:

図1で示す形状の弾性コネクタを製造した。この弾性コネクタの大きさは、第1電極部の導電路の高さを1.3mm、その導電路の直径を0.5mm、この導電路に保護被覆を含めた端面の直径を0.8mm、第2電極部の導電路の高さを1.0mm、その導電路の直径を0.5mm、この導電路に保護被覆を含めた端面の直径を0.8mm、連結部の高さを0.5mmとし、2つの導電路の中心間距離を1.3mm(導電路の末端間距離0.8mm)、端面が面一となっている側の底面の幅を2.5mm、この底面の奥行きを1.0mmとした。底面にはさらに同じ大きさで厚さ35μmの金属部を設けた。材質は、導電路には磁性導電粒子として銀被覆ニッケルフィラーを用い、絶縁部はA硬度30である液状シリコーンゴムの硬化物で形成した。金属部には銅板を用いた。この弾性コネクタを試料1とした。   An elastic connector having the shape shown in FIG. 1 was manufactured. The size of this elastic connector is such that the height of the conductive path of the first electrode portion is 1.3 mm, the diameter of the conductive path is 0.5 mm, the diameter of the end surface including the protective coating on the conductive path is 0.8 mm, The height of the conductive path of the second electrode portion is 1.0 mm, the diameter of the conductive path is 0.5 mm, the diameter of the end surface including the protective coating on the conductive path is 0.8 mm, and the height of the connecting portion is 0. 5 mm, the distance between the centers of the two conductive paths is 1.3 mm (distance between the ends of the conductive paths is 0.8 mm), the width of the bottom surface on the side where the end surfaces are flush is 2.5 mm, and the depth of this bottom surface is 1.0 mm. A metal part having the same size and a thickness of 35 μm was further provided on the bottom surface. As the material, silver-coated nickel filler was used as magnetic conductive particles in the conductive path, and the insulating part was formed of a cured product of liquid silicone rubber having an A hardness of 30. A copper plate was used for the metal part. This elastic connector was designated as Sample 1.

また、第1電極部の導電路の高さを0.95mm、第2電極部の導電路の高さを0.65mmとする以外は試料1と同じ大きさ、形状で、絶縁部の硬度をA硬度25とした弾性コネクタを試料2とした。   Further, the insulating part has the same size and shape as the sample 1 except that the height of the conductive path of the first electrode part is 0.95 mm and the height of the conductive path of the second electrode part is 0.65 mm. An elastic connector having an A hardness of 25 was designated as Sample 2.

さらに、第1電極部の導電路の高さを0.95mm、第2電極部の導電路の高さを0.8mmとする以外は試料1と同じ大きさ、形状で、絶縁部の硬度をA硬度25とした弾性コネクタを試料3とした。   Further, the insulating part has the same size and shape as the sample 1 except that the height of the conductive path of the first electrode part is 0.95 mm and the height of the conductive path of the second electrode part is 0.8 mm. An elastic connector having an A hardness of 25 was designated as Sample 3.

さらにまた、第1電極部の導電路の高さを0.95mm、第2電極部の導電路の高さを0.8mmとする以外は試料1と同じ大きさ、形状で、絶縁部の硬度もA硬度30とした弾性コネクタを試料4とした。   Furthermore, the hardness of the insulating part is the same size and shape as the sample 1 except that the height of the conductive path of the first electrode part is 0.95 mm and the height of the conductive path of the second electrode part is 0.8 mm. Sample 4 was also an elastic connector having an A hardness of 30.

比較のため、試料1の第2電極部を第1電極部と同じ大きさ、形状のものに代替させて高さの等しい2本の電極部を備える弾性コネクタを製造した。この弾性コネクタを試料5とした。   For comparison, an elastic connector including two electrode portions having the same height was manufactured by replacing the second electrode portion of sample 1 with one having the same size and shape as the first electrode portion. This elastic connector was designated as Sample 5.

また、比較のため、1本の電極部のみを備える図8および図9で示す形状の弾性コネクタRを製造した。この弾性コネクタの大きさは、第1電極部の導電路の高さを1.3mm、その導電路の直径を0.7mm、この導電路に保護被覆を含めた端面の直径を1mmとし、底面の幅を2.5mm、この底面の奥行きを1.0mmとした。底面にはさらに試料1と同様に金属部を設けた。材質は試料1と同じである。この弾性コネクタを試料6とした。   For comparison, an elastic connector R having the shape shown in FIGS. 8 and 9 including only one electrode portion was manufactured. The size of this elastic connector is such that the height of the conductive path of the first electrode portion is 1.3 mm, the diameter of the conductive path is 0.7 mm, the diameter of the end face including the protective coating on this conductive path is 1 mm, The width was 2.5 mm, and the depth of the bottom surface was 1.0 mm. Further, a metal part was provided on the bottom surface in the same manner as Sample 1. The material is the same as Sample 1. This elastic connector was designated as Sample 6.

荷重抵抗測定試験:   Load resistance measurement test:

荷重測定機(AIKOH ENGINEERING社製)を用いて、前記試料1〜試料6の弾性コネクタを押圧したときの導電路の高さの変化に基づく荷重値を求め、抵抗測定機(NEC社製「REMOTE SCANNER Jr.DC3100」)を用いて抵抗値の変化を求めた。試料1に対する結果を図10、試料2に対する結果を図11、試料3に対する結果を図12、試料4に対する結果を図13、試料5に対する結果を図14、試料6に対する結果を図15に示す。図10〜図15において、左縦軸は抵抗値(Ω)、右縦軸は荷重値(N)、横軸は、第1電極部の導電路の高さ変化を示す。   Using a load measuring device (manufactured by AIKOH ENGINEERING), a load value based on the change in height of the conductive path when the elastic connectors of the samples 1 to 6 are pressed is obtained, and a resistance measuring device (“REMOTE” manufactured by NEC) is obtained. SCANNER Jr.DC3100 ”) was used to determine the change in resistance. The result for sample 1 is shown in FIG. 10, the result for sample 2 is shown in FIG. 11, the result for sample 3 is shown in FIG. 12, the result for sample 4 is shown in FIG. 13, the result for sample 5 is shown in FIG. 10 to 15, the left vertical axis represents the resistance value (Ω), the right vertical axis represents the load value (N), and the horizontal axis represents the change in the height of the conductive path of the first electrode portion.

考察:   Discussion:

電極部が1つの試料6では、弾性コネクタを押し始めると、暫くは抵抗値が下がり続けるが、その後、抵抗値が上昇してくる。これは、導電路が潰されて広がることで導電路を構成する導電性粒子の配向が乱れることが原因であると考えられる。更に押圧を続けると、抵抗値の上昇がピークに達した後、抵抗値はまた低下する。抵抗値が下がる原因は、接続対象物間の距離が短くなることで導電路も短くなり導電性粒子の配向の乱れの影響を上回る導電性を獲得したためと考えられる。試料6では、押圧過程で抵抗値が上昇する範囲が長く抵抗値の下がり具合が安定せず、適用できる範囲の圧縮率は小さく、接続対象物間の長さのバラツキが大きなものには適用し難いことがわかる。   In the sample 6 having one electrode part, when the elastic connector is pushed, the resistance value continues to decrease for a while, but then the resistance value increases. This is considered to be because the orientation of the conductive particles constituting the conductive path is disturbed due to the conductive path being crushed and widened. When the pressing is continued, the resistance value decreases again after the increase in the resistance value reaches a peak. The reason why the resistance value decreases is considered to be that the conductive path is shortened by shortening the distance between the connection objects, and the conductivity that exceeds the influence of disorder of the orientation of the conductive particles is obtained. In sample 6, the range in which the resistance value increases during the pressing process is long and the decrease in resistance value is not stable, the compression rate in the applicable range is small, and it is applied to the case where the length variation between connected objects is large. I find it difficult.

次に、同じ高さの2つの電極部を有する試料5では、弾性コネクタを押し始めて暫くは抵抗値が下がり続けるが、試料6と同様にある程度の圧縮が過ぎると抵抗値が上昇してくる。この抵抗値の上昇は試料6よりも大きいのは、同じ高さの電極部が2つあるが原因と考えられる。その後は抵抗値が下がるが、試料6と同様に、抵抗値が上昇する範囲が長く、接続対象物間の長さのバラツキが大きなものには適用し難いことがわかる。   Next, in the sample 5 having two electrode portions having the same height, the resistance value continues to decrease for a while after the elastic connector is pushed, but the resistance value increases after a certain amount of compression as in the case of the sample 6. The increase in the resistance value is larger than that of the sample 6 because the two electrode portions having the same height are present. Thereafter, the resistance value decreases, but it can be seen that, as in the case of Sample 6, the range in which the resistance value increases is long, and it is difficult to apply to the case where the length variation between the connection objects is large.

一方で、高さの異なる2つの電極部を有する試料1では、最初は第1電極部が押圧されて抵抗値が下がるが、弾性コネクタを押し始めて0.3mmのところでこの下がり方は徐々になだらかになってくる。この時点で背の低い第2電極部に接続対象物が接するので更に抵抗値が下がっていく。更に、押圧を続けると、若干抵抗値が上がっているところが見られるが、抵抗値の極端な上昇を抑えて、結果的に弾性コネクタを押し始めてから押し終わりまで、概ね抵抗値を下げ続ける結果となっている。   On the other hand, in the sample 1 having two electrode parts having different heights, the first electrode part is first pressed and the resistance value is lowered. However, when the elastic connector starts to be pushed, the way of decreasing gradually becomes 0.3 mm. It becomes. At this time, since the connection object comes into contact with the short second electrode portion, the resistance value further decreases. Furthermore, when the pressure is continued, the resistance value is slightly increased, but the extreme increase in the resistance value is suppressed, and as a result, the resistance value is generally decreased from the start to the end of pressing the elastic connector. It has become.

このことは、押圧により背の高い第1電極部の導電路を形成する導電性粒子が配向の乱れを生じ、抵抗値の上昇が認められるものの背の低い第2電極部はその導電性粒子の配向が乱れることなく抵抗値が下がるため、結果的に大きな抵抗値の上昇は見られないものと考えられる。この試料1では、第1導電路に対する圧縮率が54%程度で抵抗値が若干上昇しているが、圧縮率が61%程度での押圧荷重が3N以下であり、その際の抵抗値も0.15Ω以下であって押圧荷重、抵抗値とも好ましい範囲にあった。   This is because the conductive particles forming the conductive path of the tall first electrode part by pressing cause disorder in the orientation, and an increase in the resistance value is observed, but the short second electrode part of the conductive particle of the conductive particle Since the resistance value decreases without disturbing the orientation, it is considered that a large increase in resistance value is not observed as a result. In this sample 1, the resistance value is slightly increased when the compressibility with respect to the first conductive path is about 54%, but the pressing load when the compressibility is about 61% is 3N or less, and the resistance value at that time is also 0. .15Ω or less, and both the pressing load and the resistance value were in a preferable range.

また、高さの異なる2つの電極部を有する試料2〜試料4もまた、図11〜図13で示すように、試料1と概ね同様の結果となっている。   Samples 2 to 4 having two electrode portions having different heights have substantially the same results as those of sample 1 as shown in FIGS.

上記実施形態は例示であり、本発明の趣旨を逸脱しない範囲で種々の変更を行うことができる。例えば、1電極を2つや3つの電極部で形成するだけでなく、それ以上で形成することもできる。また、第1電極部の導電路と第2電極部の導電路とを同じ直径としたが、異なる直径としても良い。   The above embodiment is an exemplification, and various changes can be made without departing from the spirit of the present invention. For example, one electrode can be formed not only by two or three electrode portions but also by more than that. Further, although the conductive path of the first electrode part and the conductive path of the second electrode part have the same diameter, they may have different diameters.

10,20,30a,30b,30c 弾性コネクタ
11,11a,11b 導電路
12,12a,12b 保護被覆
13 電極部
13a 第1電極部
a1,a2 (第1電極部の)端面
13b 第2電極部
b1,b2 (第2電極部の)端面
13c 第3電極部
c1,c2 (第3電極部の)端面
14 連結部
15 ベース部
16 絶縁部
17 金属部
Fa 一の接続対象物
F1 一の接続面
Fb 他の一の接続対象物
F2 一の接続面
R (比較のための)弾性コネクタ
10, 20, 30a, 30b, 30c Elastic connector 11, 11a, 11b Conductive path 12, 12a, 12b Protective coating 13 Electrode part 13a First electrode part a1, a2 (first electrode part) end face 13b Second electrode part b1 , B2 (second electrode part) end face 13c third electrode part c1, c2 (third electrode part) end face 14 connecting part 15 base part 16 insulating part 17 metal part Fa one connection object F1 one connection face Fb Another connection object F2 One connection surface R Elastic connector (for comparison)

Claims (13)

第1の接続対象物と第2の接続対象物とを導通接続する複数の電極部を有する弾性コネクタにおいて、
前記複数の電極部は、その何れの電極部も導電性粒子が数珠繋ぎに連続しており、前記第1の接続対象物に接触する一方の端面と、前記第2の接続対象物に接触する他方の端面とを有する導電路と、当該導電路の側面を保護する絶縁性のゴム状弾性体でなる保護被覆と、を有しており、
前記複数の電極部は、一の電極部と他の電極部とで前記両端面間の高さが異なるように形成されつつ、前記第1の接続対象物と前記第2の接続対象物の間に挟持された状態で当該一の電極部と当該他の電極部とで前記両端面間での圧縮率が前記両端面間の高さの高い電極部ほど大きくなるように配置されることを特徴とする弾性コネクタ。
In the elastic connector having a plurality of electrode portions that conductively connect the first connection object and the second connection object,
In the plurality of electrode portions, any one of the electrode portions has conductive particles connected in a daisy chain, one end surface that contacts the first connection object, and the other that contacts the second connection object. And a protective coating made of an insulating rubber-like elastic body that protects the side surface of the conductive path.
The plurality of electrode portions are formed between the first connection object and the second connection object while being formed so that the height between the both end faces is different between one electrode part and another electrode part. The one electrode part and the other electrode part are arranged such that the compression ratio between the both end faces increases as the electrode part with a higher height between the both end faces increases. And elastic connector.
前記第1の接続対象物と前記第2の接続対象物の間に挟持された状態で当該一の電極部と当該他の電極部とで前記両端面間の高さが同じになるように配置される請求項1記載の弾性コネクタ。
Arranged so that the height between the both end faces is the same between the one electrode part and the other electrode part in a state of being sandwiched between the first connection object and the second connection object The elastic connector according to claim 1.
前記複数の電極部の間には、前記複数の電極部を繋ぐ絶縁性のゴム状弾性体でなる連結部を有する請求項1または請求項2記載の弾性コネクタ。
The elastic connector according to claim 1, further comprising a connecting portion made of an insulating rubber-like elastic body that connects the plurality of electrode portions between the plurality of electrode portions.
前記電極部の側面方向に当該電極部から突出する絶縁性のゴム状弾性体でなるベース部を有する請求項1〜請求項3何れか1項記載の弾性コネクタ。
The elastic connector according to any one of claims 1 to 3, further comprising a base portion made of an insulating rubber-like elastic body protruding from the electrode portion in a side surface direction of the electrode portion.
前記複数の電極部は、その一方側に位置する端面が互いに面一に形成されている請求項1〜請求項4何れか1項記載の弾性コネクタ。
The elastic connector according to any one of claims 1 to 4, wherein the plurality of electrode portions are formed such that end surfaces located on one side thereof are flush with each other.
前記複数の電極部は2つである請求項1〜請求項5何れか1項記載の弾性コネクタ。
The elastic connector according to claim 1, wherein the plurality of electrode portions are two.
前記複数の電極部を形成する複数の導電路のうち、露出した両端面間の高さが最も高い導電路の直径に対して、当該導電路の当該両端面間の高さが0.5〜4倍の長さである請求項1〜請求項6何れか1項記載の弾性コネクタ。
Among the plurality of conductive paths forming the plurality of electrode portions, the height between the both end faces of the conductive path is 0.5 to The elastic connector according to any one of claims 1 to 6, wherein the elastic connector is four times as long.
前記複数の電極部を形成する複数の導電路のうち、前記高さの最も異なる2個の導電路の当該高さは、高さの高い方に比べて低い方が30〜90%の高さである請求項1〜請求項7何れか1項記載の弾性コネクタ。
Among the plurality of conductive paths forming the plurality of electrode portions, the height of the two conductive paths having the most different heights is 30% to 90% lower than the higher one. The elastic connector according to any one of claims 1 to 7.
前記複数の電極部を形成する複数の導電路の直径が同じ長さである請求項1〜請求項8何れか1項記載の弾性コネクタ。
The elastic connector according to claim 1, wherein the plurality of conductive paths forming the plurality of electrode portions have the same diameter.
前記絶縁性のゴム状弾性体の硬度が、A硬度で20〜30である請求項1〜請求項9何れか1項記載の弾性コネクタ。
The elastic connector according to any one of claims 1 to 9, wherein the insulating rubber-like elastic body has an A hardness of 20 to 30.
前記連結部よりも前記複数の電極部の前記一方の端面側の保護被覆が前記導電路の導電方向に突出している請求項3記載の弾性コネクタ。
The elastic connector according to claim 3, wherein the protective coating on the one end face side of the plurality of electrode portions protrudes in the conductive direction of the conductive path from the connecting portion.
前記複数の電極部の一方の端面には金属部が形成されている請求項1〜請求項11何れか1項記載の弾性コネクタ。
The elastic connector according to any one of claims 1 to 11, wherein a metal portion is formed on one end face of the plurality of electrode portions.
複数の電極部を有する弾性コネクタによって第1の接続対象物と第2の接続対象物とを導通接続する導通接続方法において、
前記複数の電極部は、その何れの電極部も導電性粒子が数珠繋ぎに連続しており、前記第1の接続対象物に接触する一方の端面と、前記第2の接続対象物に接触する他方の端面とを有する導電路と、当該導電路の側面を保護する絶縁性のゴム状弾性体でなる保護被覆と、を有し、当該端面間の高さが一の電極部と他の電極部とで異なるように形成されており、
前記第1の接続対象物または前記第2の接続対象物に対して前記複数の電極部が段階的に接触していくことを特徴とする弾性コネクタによる導通接続方法。
In the conductive connection method of conductively connecting the first connection object and the second connection object by an elastic connector having a plurality of electrode portions,
In the plurality of electrode portions, any one of the electrode portions has conductive particles connected in a daisy chain, one end surface that contacts the first connection object, and the other that contacts the second connection object. And an electrode part having a height between the end faces and the other electrode part having a conductive path having an end face and a protective coating made of an insulating rubber-like elastic body that protects the side face of the conductive path. And are formed differently,
A conductive connection method using an elastic connector, wherein the plurality of electrode portions contact the first connection object or the second connection object in a stepwise manner.
JP2017128457A 2017-06-30 2017-06-30 Elastic connector and conductively connecting method Pending JP2019012629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128457A JP2019012629A (en) 2017-06-30 2017-06-30 Elastic connector and conductively connecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128457A JP2019012629A (en) 2017-06-30 2017-06-30 Elastic connector and conductively connecting method

Publications (1)

Publication Number Publication Date
JP2019012629A true JP2019012629A (en) 2019-01-24

Family

ID=65226919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128457A Pending JP2019012629A (en) 2017-06-30 2017-06-30 Elastic connector and conductively connecting method

Country Status (1)

Country Link
JP (1) JP2019012629A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077560A (en) * 2001-08-31 2003-03-14 Jsr Corp Anisotropic conductive sheet and manufacturing method therefor
WO2010082616A1 (en) * 2009-01-15 2010-07-22 ポリマテック株式会社 Connector
WO2014065252A1 (en) * 2012-10-24 2014-05-01 ポリマテック・ジャパン株式会社 Electromagnetic wave shield gasket and electromagnetic wave shield structure
WO2016136496A1 (en) * 2015-02-26 2016-09-01 ポリマテック・ジャパン株式会社 Elastic connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077560A (en) * 2001-08-31 2003-03-14 Jsr Corp Anisotropic conductive sheet and manufacturing method therefor
WO2010082616A1 (en) * 2009-01-15 2010-07-22 ポリマテック株式会社 Connector
WO2014065252A1 (en) * 2012-10-24 2014-05-01 ポリマテック・ジャパン株式会社 Electromagnetic wave shield gasket and electromagnetic wave shield structure
WO2016136496A1 (en) * 2015-02-26 2016-09-01 ポリマテック・ジャパン株式会社 Elastic connector

Similar Documents

Publication Publication Date Title
EP2099269B1 (en) Solderable elastic electric contact terminal
JP4793203B2 (en) Anisotropic conductive connector and method for inspecting test object using this anisotropic conductive connector
CN108806919B (en) Coil component
US8439690B2 (en) Connector
KR20100124148A (en) Conductive contactor for substrate surface mount
CN103633453A (en) Conductor connecting structure
JP2009087976A (en) Shock absorber
KR102450690B1 (en) Electronic component with metal terminal
WO2016136496A1 (en) Elastic connector
JP2006196475A (en) Anisotropic conductive sheet, connector, and method of manufacturing anisotropic conductive sheet
JP2019012629A (en) Elastic connector and conductively connecting method
JP2000156269A (en) Socket for semiconductor
TW201448379A (en) Reinforcement structure of substrate
US20070035939A1 (en) Reduced cost conductive interface
JP4919093B2 (en) Anisotropic conductive sheet
US10237991B2 (en) Electronic component
CN203387770U (en) Antistatic protection device, circuit board and electronic device
JP2009054304A (en) Anisotropic conductive connector
CN107222815B (en) Conductive piece and sounding device
JP2013026140A (en) Elastic connector
KR20160068290A (en) Pocket-typed electric contact terminal capable for surface mounting with reflow soldering process
JP5750101B2 (en) connector
JP2016076299A (en) Anisotropic conductor
JP4449955B2 (en) Impedance measurement method for surface mount electronic components
JP2018120766A (en) Connecting end-equipped cable and cable connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130