JP2019011219A - Durability improver - Google Patents

Durability improver Download PDF

Info

Publication number
JP2019011219A
JP2019011219A JP2017128409A JP2017128409A JP2019011219A JP 2019011219 A JP2019011219 A JP 2019011219A JP 2017128409 A JP2017128409 A JP 2017128409A JP 2017128409 A JP2017128409 A JP 2017128409A JP 2019011219 A JP2019011219 A JP 2019011219A
Authority
JP
Japan
Prior art keywords
mass
cement
durability
gehlenite
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017128409A
Other languages
Japanese (ja)
Other versions
JP6953838B2 (en
Inventor
貴康 伊藤
Takayasu Ito
貴康 伊藤
徹浩 境
Tetsuhiro Sakai
徹浩 境
正明 長井
Masaaki Nagai
正明 長井
雅史 大崎
Masafumi Osaki
雅史 大崎
小西 和夫
Kazuo Konishi
和夫 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2017128409A priority Critical patent/JP6953838B2/en
Publication of JP2019011219A publication Critical patent/JP2019011219A/en
Application granted granted Critical
Publication of JP6953838B2 publication Critical patent/JP6953838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide an admixture that can impart excellent acid resistance to cement/mortar/concrete, and a method for producing an acid-resistant admixture that effectively utilizes industrial waste/byproducts as raw material.SOLUTION: A durability improving agent contains a solid solution of akermanite and gehlenite by 30 mass% or more. A cement composition containing at least the durability improving agent and cement, with the gehlenite content being 5-16 mass% in the whole cement composition, exhibits high sulfuric acid resistance. The durability improving agent is produced by the steps of preparing raw material containing waste or industry byproducts, and sintering the prepared raw material at 1200°C-1450°C to obtain a solid solution of akermanite and gehlenite.SELECTED DRAWING: None

Description

本発明は、セメントの耐久性向上材に関する。詳しくは、セメント組成物の酸による腐食を抑制する耐久性向上材に関する。   The present invention relates to a cement durability improving material. In detail, it is related with the durability improvement material which suppresses the corrosion by the acid of a cement composition.

下水道、下水処理施設、汚泥処理施設、温泉地などの酸性の水にさらされる箇所においては、従来から、酸によるセメント硬化体の腐食が問題となっている。下水道施設等のインフラ構造物の長寿命化の観点、及びライフサイクルコスト低減の観点から、酸による腐食を抑制する材料や技術が提案されている。   In places exposed to acidic water, such as sewers, sewage treatment facilities, sludge treatment facilities, and hot springs, corrosion of hardened cement bodies due to acids has been a problem. From the viewpoint of extending the life of infrastructure structures such as sewer facilities and reducing the life cycle cost, materials and techniques for suppressing corrosion by acid have been proposed.

また、産業廃棄物・副産物として、石炭火力発電所から発生する石炭灰や、鉄鋼業界から発生するスラグ類などの発生量は、現状もかなり多く、その大部分はセメントに有効利用されている。しかし、依然として有効利用できないものも多く残っており、埋め立て処分されているものがあるのも事実であり、これらの有効利用も課題としてあげられる。   In addition, the amount of coal ash generated from coal-fired power plants and slag generated from the steel industry as industrial waste and by-products is quite large, and most of them are effectively used for cement. However, there are still many items that cannot be effectively used, and it is also true that there are those that have been disposed of in landfills.

酸による腐食を抑制する技術として、高炉スラグやフライアッシュ、シリカフューム等の混和材を混合したセメント組成物が報告されており(例えば、特許文献1)、特に高炉スラグを混合した高炉セメントが多く用いられてきた。しかしながら、これらの廃棄物・副産物を添加したセメント組成物の耐酸性の性能は十分でなく、さらなる改良が必要であった。   As a technique for suppressing corrosion by acid, a cement composition in which admixtures such as blast furnace slag, fly ash, and silica fume are mixed has been reported (for example, Patent Document 1), and in particular, blast furnace cement mixed with blast furnace slag is often used. Has been. However, the acid resistance performance of the cement composition to which these waste and by-products were added was not sufficient, and further improvement was required.

また、特許文献2には、セメントと、ケイ酸質材料と、アケルマナイト(2CaO・MgO・2SiO)及びメルビナイト(3CaO・MgO・SiO)からなる群より選択される少なくとも1種のCa−Mg−Si含有材料と、を含有するセメント組成物を調整する工程、調整されたセメント組成物を用いて成形体を形成する工程、成形体を水中養生する工程、成形体を常圧蒸気養生する工程、及び成形体をオートクレーブ養生する工程から選択される少なくとも1つの養生工程、を含む、セメント成形体の製造方法が開示されている。 Patent Document 2 discloses at least one Ca—Mg selected from the group consisting of cement, siliceous material, akermanite (2CaO · MgO · 2SiO 2 ), and merbinite (3CaO · MgO · SiO 2 ). A step of adjusting a cement composition containing a Si-containing material, a step of forming a molded body using the adjusted cement composition, a step of curing the molded body in water, and a step of curing the molded body at atmospheric pressure , And at least one curing step selected from the step of curing the molded body in an autoclave.

特開2002−128559JP 2002-128559 A 特開2015−143170JP2015-143170

上記問題点を考慮してなされた本発明の課題は、優れた耐硫酸性をセメント・モルタル・コンクリートに付与することのできる混和材料を提供することにある。また、産業廃棄物・副産物を原料として有効活用する、セメント・モルタル・コンクリート用の混和材を提供することにある。
将来の姿を鑑みるに、廃棄物や副産物を有効利用でき、且つ耐久性を向上できる材料を提供できれば、インフラ構造物のライフサイクルコスト低減に加え、廃棄物の有効利用も両立でき、より環境負荷を低減可能な社会を構築できる。特に、石炭灰には未燃炭素を多く含むものも有り、そのような石炭灰も有効利用できる技術が求められている。
An object of the present invention made in view of the above problems is to provide an admixture that can impart excellent sulfuric acid resistance to cement, mortar, and concrete. Another object of the present invention is to provide an admixture for cement, mortar and concrete that effectively uses industrial waste and by-products as raw materials.
Considering the future, if we can provide materials that can effectively use waste and by-products and improve durability, in addition to reducing the life cycle cost of infrastructure structures, it is possible to achieve both effective use of waste and more environmental impact. Can build a society that can reduce energy consumption. In particular, some coal ash contains a large amount of unburned carbon, and there is a demand for technology that can effectively use such coal ash.

上記課題に関して鋭意検討した結果、廃棄物・副産物を利用して作製したオケルマナイト−ゲーレナイト固溶体を使用することで、セメント・コンクリートの耐久性が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have found that the durability of cement / concrete is improved by using an akermanite-gerenite solid solution produced by using waste and by-products, thereby completing the present invention.

すなわち、本発明は、オケルマナイトとゲーレナイトの固溶体を30質量%以上含むことを特徴とする、耐久性向上材を提供するものである。本発明の耐久性向上材は、セメント・モルタル・コンクリート用の混和材として使用できる。   That is, this invention provides the durability improving material characterized by including 30 mass% or more of solid solutions of an akermanite and a gehlenite. The durability improving material of the present invention can be used as an admixture for cement, mortar and concrete.

オケルマナイトは2CaO・MgO・2SiOで表される鉱物であり(アケルマナイトとも呼ばれる)、ゲーレナイトは2CaO・Al・SiOで表される鉱物である。オケルマナイトとゲーレナイトは、常温で任意の比率で固溶体を形成し得るが、本発明の耐久性向上材に含有される固溶体中のオケルマナイトとゲーレナイトの質量比は、1:1〜10:1が好ましく、1:1〜3:1がより好ましい。本発明の耐久性向上材に含有される固溶体中のオケルマナイトの含有量は、10〜90質量%が好ましく、40〜70質量%がより好ましい。本発明の耐久性向上材に含有される固溶体中のゲーレナイトの含有量は、1〜90質量%が好ましく、20〜40質量%がより好ましい。 Okermanite is a mineral represented by 2CaO · MgO · 2SiO 2 (also referred to as akermanite), and gelenite is a mineral represented by 2CaO · Al 2 O 3 · SiO 2 . Okermanite and gehlenite can form a solid solution at an arbitrary ratio at room temperature, but the mass ratio of akermanite and gehlenite in the solid solution contained in the durability improver of the present invention is preferably 1: 1 to 10: 1. 1: 1 to 3: 1 is more preferable. 10-90 mass% is preferable and, as for content of the akermanite in the solid solution contained in the durability improvement material of this invention, 40-70 mass% is more preferable. 1-90 mass% is preferable and, as for content of the gehlenite in the solid solution contained in the durability improvement material of this invention, 20-40 mass% is more preferable.

オケルマナイトとゲーレナイトの固溶体中の組成は、CaOの含有量が25〜55質量%、MgOの含有量が3〜20質量%、Alの含有量が1〜20質量%、SiOの含有量が25〜55質量%であることが好ましく、CaOの含有量が30〜40質量%、MgOの含有量が5〜20質量%、Alの含有量が10〜15質量%、SiOの含有量が30〜40質量%であることがより好ましい。
本発明の耐久性向上材は、オケルマナイトとゲーレナイトの固溶体を30質量%以上、好ましくは、 60〜99質量%、さらに好ましくは90〜95質量%含む。
本発明の耐久性向上材は、固溶体中に、オケルマナイトとゲーレナイト以外の無機酸化物を一種以上、含むことができる。無機酸化物の例として、CaO、MgO(Periclase)、モンティセライト(Monticelite)、メルビナイト(C3MS2)、ブレディジャイト(C7MS4)、アノーサイト(CAS)が挙げられる。
The composition of the solid solution of akermanite and gehlenite, the content is 25 to 55 wt% of CaO, 3 to 20 mass% content of MgO, Al 2 O 3 content is 1 to 20 mass%, content of SiO 2 The amount is preferably 25 to 55% by mass, the content of CaO is 30 to 40% by mass, the content of MgO is 5 to 20% by mass, the content of Al 2 O 3 is 10 to 15% by mass, SiO 2 The content of 2 is more preferably 30 to 40% by mass.
The durability improving material of the present invention contains 30% by mass or more, preferably 60 to 99% by mass, and more preferably 90 to 95% by mass of a solid solution of akermanite and gehlenite.
The durability improving material of the present invention can contain one or more inorganic oxides other than akermanite and gehlenite in the solid solution. Examples of inorganic oxides include CaO, MgO (Periclase), Monticite (Monticite), Melvinite (C 3 MS 2 ), Bredygite (C 7 MS 4 ), and Anorthite (CAS 2 ).

本発明によれば、優れた耐薬品性、特に耐酸性、中でも耐硫酸性をセメント・モルタル・コンクリートに付与することのできる耐久性向上材が提供される。本発明の耐久性向上材を使用したセメント・モルタル・コンクリートは、耐酸性、中でも高い耐硫酸性を発揮する。
また、本発明によれば、産業廃棄物・副産物を原料として有効活用する、セメント・モルタル・コンクリート用の耐久性向上材の製造方法が提供される。
According to the present invention, there is provided a durability improving material capable of imparting excellent chemical resistance, particularly acid resistance, particularly sulfuric acid resistance, to cement, mortar and concrete. Cement / mortar / concrete using the durability improving material of the present invention exhibits acid resistance, particularly high sulfuric acid resistance.
Moreover, according to this invention, the manufacturing method of the durability improvement material for cement, mortar, and concrete which utilizes industrial waste and a by-product effectively as a raw material is provided.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の耐久性向上材は、廃棄物・副産物を原料として使用して製造することができる。廃棄物・副産物としては、石炭灰、スラグ、ALC廃材、ケイ酸カルシウム版廃材が例示される。好ましい廃棄物・副産物は、石炭灰、スラグ、ALC廃材、ケイ酸カルシウム版廃材及びこれらの組み合わせである。
オケルマナイト−ゲーレナイト固溶体は、原料において化学組成(Ca,Al,Mg,Si)を調整して焼成することで製造される。
The durability improving material of the present invention can be produced using wastes and by-products as raw materials. Examples of the waste / by-product include coal ash, slag, ALC waste, and calcium silicate plate waste. Preferred waste / by-products are coal ash, slag, ALC waste, calcium silicate plate waste, and combinations thereof.
The akermanite-gerenite solid solution is manufactured by adjusting the chemical composition (Ca, Al, Mg, Si) in the raw material and firing.

オケルマナイト−ゲーレナイト固溶体は、好ましくは、原料である廃棄物・副産物と必要に応じてCa系原料、Al系原料、Mg系原料、Si系原料を混合する原料調合工程(A)と、前記調合原料を焼成する焼成工程(B)により製造される。   The akermanite-gerenite solid solution is preferably a raw material preparation step (A) in which waste / by-products as raw materials and, if necessary, a Ca-based raw material, an Al-based raw material, an Mg-based raw material, and a Si-based raw material are mixed, and the mixed raw material It is manufactured by a baking step (B) for baking.

原料調合工程(A)においては、原料の化学組成(質量%)について(CaO/(SiO+Al))(以後、C/(S+A)と表現する)が0.3〜4.0、(SiO/Al)(以後、S/Aと表現する)が0.5〜30、M/(MgO/(SiO+Al))(以後、S+A)と表現する)が0.01〜0.3となるように、廃棄物又は産業の副産物を調合する。原料として使用する廃棄物・副産物は、Ca原子、Al原子、Mg原子、Si原子を含むものであれば特に限定されないが、石炭灰や焼却灰を使用することが産業廃棄物・副産物利用の観点から特に好ましい。 In the raw material preparation step (A), (CaO / (SiO 2 + Al 2 O 3 )) (hereinafter referred to as C / (S + A)) is 0.3 to 4.0 with respect to the chemical composition (mass%) of the raw material. , (SiO 2 / Al 2 O 3 ) (hereinafter referred to as S / A) is 0.5 to 30, M / (MgO / (SiO 2 + Al 2 O 3 )) (hereinafter referred to as S + A)) The waste or industrial by-product is prepared so that the ratio is 0.01 to 0.3. The waste and by-products used as raw materials are not particularly limited as long as they contain Ca atoms, Al atoms, Mg atoms, and Si atoms, but the use of coal ash and incinerated ash is a viewpoint for using industrial waste and by-products. Is particularly preferred.

原料として、廃棄物・副産物以外に、場合によりCa系原料、Al系原料、Mg系原料又はSi系原料等の補助原料を添加することができる。Ca系原料とは、Ca原子を含有する材料を指し、生石灰(CaO)、消石灰(Ca(OH))、石灰石(CaCO)が例示される。Al系原料とは、Al原子を含有する材料を指し、酸化アルミニウム(Al)、水酸化アルミニウム(Al(OH))が例示される。Mg系原料とは、Mg原子を含有する材料を指し、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))が例示される。Si系原料とは、Si原子を含有する材料を指し、酸化ケイ素(SiO)が例示される。補助原料は、廃棄物・副産物の種類に合わせ、耐久性向上材に含有される成分の制御を行うため、適量が配合される。 In addition to waste and by-products, auxiliary materials such as Ca-based materials, Al-based materials, Mg-based materials, and Si-based materials can be added as raw materials. The Ca-based material refers to a material containing Ca atoms, and examples include quick lime (CaO), slaked lime (Ca (OH) 2 ), and limestone (CaCO 3 ). The Al-based material refers to a material containing Al atoms, and examples thereof include aluminum oxide (Al 2 O 3 ) and aluminum hydroxide (Al (OH) 3 ). The Mg-based material refers to a material containing Mg atoms, and examples include magnesium oxide (MgO) and magnesium hydroxide (Mg (OH) 2 ). The Si-based material refers to a material containing Si atoms, and silicon oxide (SiO 2 ) is exemplified. An appropriate amount of the auxiliary raw material is blended in order to control the components contained in the durability improving material in accordance with the types of waste and by-products.

焼成工程(B)においては、原料調合工程(A)で調合された廃棄物・副産物等の原料及び場合により補助原料を温度1200〜1450℃、好ましくは1300〜1350℃の条件下で焼成して、オケルマナイト−ゲーレナイト固溶体を合成する。焼成は、オケルマナイト−ゲーレナイト固溶体が形成されるまでの時間行えばよく、好ましくは1〜5時間、より好ましくは2〜3時間である。焼成の雰囲気は特に限定されないが、空気及び酸素濃度を調整した空気等の有酸素気流下が好ましい。   In the firing step (B), the raw materials such as waste and by-products prepared in the raw material preparation step (A) and optionally auxiliary materials are calcined at a temperature of 1200 to 1450 ° C, preferably 1300 to 1350 ° C. Synthesize an akermanite-gerenite solid solution. Firing may be performed for a period of time until the akermanite-gerenite solid solution is formed, preferably 1 to 5 hours, more preferably 2 to 3 hours. The firing atmosphere is not particularly limited, but is preferably under an aerobic stream such as air and air with adjusted oxygen concentration.

このような焼成条件を採用することにより、原料に由来する未燃炭素を除去することができ、未燃炭素がセメント物性に悪影響(混練したモルタルの表面に黒い斑点となって浮く、モルタルの流動性低下等)を及ぼすことが防止される。
焼成後の冷却方法は特に限定されないが、焼成後は空冷して冷却することが好ましく、具体的には、温度低下速度が10〜1000℃/min.の範囲になるように冷却することがより好ましい。このように冷却することで、耐酸性に優れる耐久性向上材とすることができる。
By adopting such firing conditions, unburned carbon derived from the raw material can be removed, and unburned carbon adversely affects the physical properties of cement (the flow of mortar floats as black spots on the surface of the kneaded mortar. Deterioration).
Although the cooling method after baking is not specifically limited, It is preferable to cool by air cooling after baking, and specifically, the temperature decreasing rate is 10 to 1000 ° C./min. It is more preferable to cool so that it may become the range. By cooling in this way, it can be set as the durability improvement material excellent in acid resistance.

本発明の耐久性向上材は、オケルマナイト−ゲーレナイト固溶体以外の添加成分を含有してもよい。添加成分としては、各種ポルトランドセメント、アルミナセメント、フライアッシュ、高炉スラグ、シリカフューム、炭酸カルシウム、膨張剤、消石灰、水酸化マグネシウム、酸化カルシウム、減水剤、消泡剤、ケイ酸カルシウム、アルカリ金属塩、有機酸塩、硫酸塩、硝酸塩、樹脂粉末、等が例示される。   The durability improving material of the present invention may contain an additive component other than the akermanite-gerenite solid solution. As additive components, various Portland cement, alumina cement, fly ash, blast furnace slag, silica fume, calcium carbonate, expansion agent, slaked lime, magnesium hydroxide, calcium oxide, water reducing agent, antifoaming agent, calcium silicate, alkali metal salt, Examples thereof include organic acid salts, sulfates, nitrates, resin powders, and the like.

本発明の耐久性向上材は、セメント、モルタル、コンクリート、グラウト、セルフレベリング材等に混ぜたセメント組成物として使用する。本発明の耐久性向上材を配合したセメント組成物を使用した場合、生成する構造物は、向上した耐酸性、特に耐硫酸性を有する。
本発明の耐久性向上材の使用量は特に限定されないが、セメント組成物中のゲーレナイト量が5〜16質量%となる量が好ましく、8〜12質量%となる量がより好ましい。セメント組成物には、セメント及び本発明の耐久性向上材の他、細骨材、粗骨材、減水剤および水等が含まれる。
セメント組成物がモルタルの場合の組成は、セメント100質量部に対して、本発明の耐久性向上材が10〜300質量部、細骨材が100〜1000質量部および水20〜140質量部が好ましい。
セメント組成物がコンクリートの場合の組成は、セメント100質量部に対して、本発明の耐久性向上材が10〜300質量部、細骨材100〜1000質量部および水20〜140質量部が好ましい。
The durability improving material of the present invention is used as a cement composition mixed with cement, mortar, concrete, grout, self-leveling material or the like. When the cement composition containing the durability improver of the present invention is used, the resulting structure has improved acid resistance, particularly sulfuric acid resistance.
Although the usage-amount of the durability improvement material of this invention is not specifically limited, The quantity from which the amount of gehlenite in a cement composition will be 5-16 mass% is preferable, and the quantity which will be 8-12 mass% is more preferable. The cement composition includes fine aggregate, coarse aggregate, water reducing agent, water and the like in addition to cement and the durability improving material of the present invention.
The composition when the cement composition is mortar is 10 to 300 parts by mass of the durability improving material of the present invention, 100 to 1000 parts by mass of fine aggregate, and 20 to 140 parts by mass of water with respect to 100 parts by mass of cement. preferable.
The composition when the cement composition is concrete is preferably 10 to 300 parts by mass, 100 to 1000 parts by mass of fine aggregate, and 20 to 140 parts by mass of water with respect to 100 parts by mass of cement. .

セメントとしては、JIS R 5210に規定されたポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント等を使用することができる。
細骨材としては、砂、砕石、川砂、海砂等を使用することができる。
粗骨材としては、砂利、スラグ粗骨材、砕石粗骨材等を使用することができる。
減水剤としては、高性能減水剤又は高性能AE減水剤を使用することができる。減水剤の使用により組成物の所定の流動性を保持することができる。
As the cement, there can be used Portland cement, blast furnace cement, silica cement, fly ash cement or the like defined in JIS R 5210.
As the fine aggregate, sand, crushed stone, river sand, sea sand and the like can be used.
As the coarse aggregate, gravel, slag coarse aggregate, crushed coarse coarse aggregate or the like can be used.
As the water reducing agent, a high performance water reducing agent or a high performance AE water reducing agent can be used. The predetermined fluidity of the composition can be maintained by using a water reducing agent.

本発明の耐久性向上材は、一般的にはセメントに水を加えて混練する際に投入するが、耐久性向上材を入れるタイミングは特に限定されない。セメント等の粉体材料と耐久性向上材とを予め混合しておいたり(プレミックス)、耐久性向上材を予め水などに分散させておいて投入したり、水とセメントとの混練の最中に添加することもできる。
モルタルまたはコンクリートの硬化方法としては、例えば常温、大気圧下での養生、水蒸気養生やオートクレーブ養生などを採用することができる。モルタルまたはコンクリートは、通常の構造物や二次製品の他に、吹き付け、裏込め、グラウトなどに用いることができる。
The durability improving material of the present invention is generally added when water is added to the cement and kneaded, but the timing of adding the durability improving material is not particularly limited. A powder material such as cement and a durability improving material are mixed in advance (premix), or the durability improving material is dispersed in water before being added, or when mixing water and cement. It can also be added inside.
As a method for curing mortar or concrete, for example, curing at normal temperature and atmospheric pressure, steam curing, autoclave curing, and the like can be employed. Mortar or concrete can be used for spraying, backfilling, grouting, etc. in addition to ordinary structures and secondary products.

1.実験方法
[使用原料]
(1)石炭灰
石炭火力発電所由来の石炭灰。組成を表1に示す。
1. Experimental method [Raw materials]
(1) Coal ash Coal ash derived from coal-fired power plants. The composition is shown in Table 1.

Figure 2019011219

O(全アルカリ)=NaO(%)+0.658KO(%)
Figure 2019011219

R 2 O (total alkali) = Na 2 O (%) + 0.658 K 2 O (%)

(2)酸化マグネシウム(MgO)
宇部マテリアルズ株式会社製、商品名UC95S。
(3)炭酸カルシウム
宇部マテリアルズ株式会社製、100メッシュ。
(4)普通ポルトランドセメント(NC)
宇部三菱セメント株式会社製。
(5)標準砂
一般社団法人セメント協会製。
(6)高炉スラグ
高炉水砕スラグ微粉末。組成を表2に示す。
(2) Magnesium oxide (MgO)
Product name UC95S manufactured by Ube Materials Corporation.
(3) Calcium carbonate 100 mesh made by Ube Materials Corporation.
(4) Ordinary Portland cement (NC)
Made by Ube Mitsubishi Cement Co., Ltd.
(5) Standard sand Made by the Japan Cement Association.
(6) Blast furnace slag Fine powder of granulated blast furnace slag. The composition is shown in Table 2.

Figure 2019011219

O(全アルカリ)=NaO(%)+0.658KO(%)
Figure 2019011219

R 2 O (total alkali) = Na 2 O (%) + 0.658 K 2 O (%)

[耐久性向上材の作製]
表3に示す割合で、上記原材料を混合し、10℃/minで昇温した後、耐久性向上材1は1300℃、耐久性向上材2は1450℃で2時間焼成後、いずれも常温(約20℃)の風を当てて空冷することで焼成物を作製した。作製した焼成物をボールミルでブレーン比表面積3200±100cm/gになるように粉砕し、耐久性向上材を作製した。
[Production of durability improver]
After mixing the above raw materials at a rate shown in Table 3 and raising the temperature at 10 ° C./min, the durability improving material 1 was fired at 1300 ° C. and the durability improving material 2 was fired at 1450 ° C. for 2 hours. The fired product was produced by applying air of about 20 ° C. and air cooling. The fired product thus prepared was pulverized with a ball mill to a specific surface area of 3200 ± 100 cm 2 / g to produce a durability improving material.

Figure 2019011219
Figure 2019011219

得られた耐久性向上材の化学組成を表4に示す。化学組成は、JIS R5202:2015「ポルトランドセメントの化学分析方法」により測定した。耐久性向上材1は、オケルマナイトとゲーレナイトを含有したが、耐久性向上材2は、ゲーレナイトを含有しなかった。
また、作製した耐久性向上材の鉱物組成は、XRD(ブルカー・エイエックスエス株式会社製、加速電圧:30kV、電流:10mA、管球:Cu)を用いて測定し、オケルマナイト(Akermanite)、ゲーレナイト(Gehlenite)、CaO、MgO(Periclase)及びモンティセライト(Monticelite)からなることを確認した。さらにリートベルト解析ソフトのTOPAS(ブルカー・エイエックスエス株式会社製)を用い、上記5成分を構成相として選択したリートベルト解析により、作製した耐久性向上材の鉱物組成を定量した。
Table 4 shows the chemical composition of the obtained durability improver. The chemical composition was measured by JIS R5202: 2015 “Chemical analysis method of Portland cement”. The durability improving material 1 contained akermanite and gehlenite, but the durability improving material 2 did not contain gehlenite.
Moreover, the mineral composition of the produced durability improving material was measured using XRD (manufactured by Bruker AXS Co., Ltd., acceleration voltage: 30 kV, current: 10 mA, tube: Cu), and kermanite (Gerlenite). (Gehlenite), CaO, MgO (Periclase) and Monticerite (Monticlite) were confirmed. Furthermore, the mineral composition of the produced durability improvement material was quantified by the Rietveld analysis which selected the said 5 component as a constituent phase using TOPAS (made by Bruker AXS Co., Ltd.) of Rietveld analysis software.

Figure 2019011219
Figure 2019011219

[セメント組成物及びモルタル組成物の調整]
表5に示す配合比で普通ポルトランドセメント(NC)と、耐久性向上材1,2又は高炉スラグとを混合してセメント組成物を作製した。この時、実施例1のセメント組成物中のゲーレナイト量は11.84質量%であった。耐久性向上材等に代えてNCのみを使用した場合を比較例3とした。さらに前記の各セメント組成物に表5に示す配合比(質量部)で標準砂と水とを加えてモルタル組成物をJIS5201−2015に規定される練混ぜ方法で調製した。なお、練り混ぜ中ならびに練り混ぜ後のモルタル表面には、品質上問題となるような未燃炭素の浮きは確認されなかった。
[Adjustment of cement composition and mortar composition]
Cement compositions were prepared by mixing ordinary Portland cement (NC) with durability improving materials 1 and 2 or blast furnace slag at the mixing ratio shown in Table 5. At this time, the amount of gehlenite in the cement composition of Example 1 was 11.84% by mass. The case where only NC was used instead of the durability improving material or the like was designated as Comparative Example 3. Furthermore, standard sand and water were added to each cement composition at a blending ratio (parts by mass) shown in Table 5, and a mortar composition was prepared by a kneading method defined in JIS 5201-2015. It should be noted that no unburned carbon floating was observed on the mortar surface during and after the kneading, which would cause a quality problem.

Figure 2019011219
Figure 2019011219

[モルタル組成物の耐硫酸性の確認]
調製したモルタル組成物をJIS5201−2015に規定される方法で4cm×4cm×16cmの寸法の型枠に成形し、材齢1日後に型枠から脱型し、20℃の水中で材齢7日まで養生し、供試体を得た。この供試体を5質量%硫酸水溶液に浸漬し、浸漬期間7日、14日、21日、28日ごとに、供試体の表面を水洗いの後、表面の水をふき取り質量を測定した。なお、5質量%硫酸水溶液は7日ごとに全量新しいものに交換した。質量変化率は下記の式で求めた。
質量変化率(%)=(硫酸水溶液に浸漬する前の供試体の質量−硫酸水溶液に所定期間浸漬した後の供試体の質量)/(硫酸水溶液に浸漬する前の供試体の質量)×100
[Confirmation of sulfuric acid resistance of mortar composition]
The prepared mortar composition is molded into a mold having a size of 4 cm × 4 cm × 16 cm by the method prescribed in JIS5201-2015, removed from the mold after one day of material age, and the material age is 7 days in water at 20 ° C. The test specimen was obtained. The specimen was immersed in a 5% by mass sulfuric acid aqueous solution, and the surface of the specimen was washed with water every 7 days, 14 days, 21 days, and 28 days, and the surface water was wiped off and the mass was measured. The 5 mass% sulfuric acid aqueous solution was replaced with a new one every 7 days. The mass change rate was determined by the following formula.
Mass change rate (%) = (mass of specimen before being immersed in sulfuric acid aqueous solution−mass of specimen after being immersed in sulfuric acid aqueous solution for a predetermined period) / (mass of specimen before being immersed in sulfuric acid aqueous solution) × 100

[モルタル組成物の耐久性向上効果]
結果を表6に示す。浸漬期間28日で、耐久性向上材2を使用した比較例1は、34.7%、高炉スラグを使用した比較例2は33.6%、耐久性向上材等を使用しなかった比較例3は、供試体の質量が38.4%減少したが、対して、本発明の耐久性向上材1を使用した実施例1の質量減少率は15.4%と小さくなり、硫酸水溶液への耐久性が高くなった。
[Durability improvement effect of mortar composition]
The results are shown in Table 6. Comparative example 1 with a dipping period of 28 days and using durability improving material 2 was 34.7%, comparative example 2 using blast furnace slag was 33.6%, and comparative example without using a durability improving material, etc. No. 3, the mass of the specimen was reduced by 38.4%, whereas the mass reduction rate of Example 1 using the durability improving material 1 of the present invention was as low as 15.4%, Increased durability.

Figure 2019011219
Figure 2019011219

Claims (7)

オケルマナイトとゲーレナイトの固溶体を30質量%以上含む耐久性向上材。   A durability improving material containing 30% by mass or more of a solid solution of akermanite and gehlenite. 固溶体中のCaOの含有量が25〜55質量%、MgOの含有量が3〜20質量%、Alの含有量が1〜20質量%、SiOの含有量が25〜55質量%である、請求項1に記載の耐久性向上材。 The content of CaO in the solid solution is 25 to 55% by mass, the content of MgO is 3 to 20% by mass, the content of Al 2 O 3 is 1 to 20% by mass, and the content of SiO 2 is 25 to 55% by mass. The durability improving material according to claim 1, wherein 固溶体中のオケルマナイトとゲーレナイトの質量比が1:1〜10:1である、請求項1又は2に記載の耐久性向上材。   The durability improving material according to claim 1 or 2, wherein the mass ratio of akermanite to gehlenite in the solid solution is 1: 1 to 10: 1. 固溶体中のオケルマナイトの含有量が10〜90質量%である、請求項1〜3のいずれか1項に記載の耐久性向上材。   The durability improving material according to any one of claims 1 to 3, wherein the content of akermanite in the solid solution is 10 to 90 mass%. 固溶体中のゲーレナイトの含有量が1〜90質量%である、請求項1〜4のいずれか1項に記載の耐久性向上材。   The durability improving material according to any one of claims 1 to 4, wherein the content of gehlenite in the solid solution is 1 to 90% by mass. 少なくとも、請求項1〜5のいずれか1項に記載の耐久性向上材及びセメントを含有し、かつ、
セメント組成物全体におけるゲーレナイトの含有量が5〜16質量%である、セメント組成物。
Containing at least the durability improving material and cement according to any one of claims 1 to 5, and
The cement composition whose content of gehlenite in the whole cement composition is 5 to 16% by mass.
廃棄物又は産業副産物を含む原料を調合する工程と、
前記調合した原料を1200℃〜1450℃で焼成してオケルマナイトとゲーレナイトとからなる固溶体を30質量%以上含む耐久性向上材を得る工程を含む、
請求項1〜5のいずれか1項に記載の耐久性向上材の製造方法。
Formulating raw materials including waste or industrial by-products;
Firing the prepared raw material at 1200 ° C. to 1450 ° C. to obtain a durability improver containing 30% by mass or more of a solid solution composed of akermanite and gehlenite,
The manufacturing method of the durability improvement material of any one of Claims 1-5.
JP2017128409A 2017-06-30 2017-06-30 Durability improver Active JP6953838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128409A JP6953838B2 (en) 2017-06-30 2017-06-30 Durability improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128409A JP6953838B2 (en) 2017-06-30 2017-06-30 Durability improver

Publications (2)

Publication Number Publication Date
JP2019011219A true JP2019011219A (en) 2019-01-24
JP6953838B2 JP6953838B2 (en) 2021-10-27

Family

ID=65226755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128409A Active JP6953838B2 (en) 2017-06-30 2017-06-30 Durability improver

Country Status (1)

Country Link
JP (1) JP6953838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158792A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Nickel oxide ore smelting method, reduction furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348153A (en) * 2001-05-30 2002-12-04 Rasa Shoji Kk Manufacturing method of high purity cement from incinerator ash
JP2004340774A (en) * 2003-05-16 2004-12-02 Denki Kagaku Kogyo Kk Quality control method of blast furnace slow cooling slug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348153A (en) * 2001-05-30 2002-12-04 Rasa Shoji Kk Manufacturing method of high purity cement from incinerator ash
JP2004340774A (en) * 2003-05-16 2004-12-02 Denki Kagaku Kogyo Kk Quality control method of blast furnace slow cooling slug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158792A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Nickel oxide ore smelting method, reduction furnace
JP7255272B2 (en) 2019-03-25 2023-04-11 住友金属鉱山株式会社 Nickel oxide ore smelting method, reduction furnace

Also Published As

Publication number Publication date
JP6953838B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP5091519B2 (en) Geopolymer composition and method for producing the same
JP4860279B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
JP5110789B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
JP5818579B2 (en) Neutralization suppression type early strong cement composition
KR101432750B1 (en) Mortar or concrete composition using fly ash and use thereof
JP2007297250A (en) Ultrarapid hardening cement composition, ultrarapid hardening mortar composition and ultrarapid hardening grout mortar
JP5750011B2 (en) Blast furnace cement composition
JP4616113B2 (en) Quick-hardening clinker and cement composition
JP2006265083A (en) Hydraulic composition and mortar and hardened material obtained by using the same
JP2020055696A (en) Geopolymer composition and mortar and concrete using the same
JP2007320834A (en) Ultra rapid hardening cement composition, ultra rapid hardening cement concrete composition and ultra rapid hardening cement concrete
JP2007320835A (en) Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2006104013A (en) Extra quick hardening cement composition, extra quick hardening mortar composition, and extra quick hardening grout mortar
WO2016208277A1 (en) Quick-hardening material, method for manufacturing same, and quick-hardening cement composition using same
JP4860278B2 (en) Ultra-fast-hardening / high-fluidity cement composition and mortar or concrete using the same
KR101517924B1 (en) Noncement flooring coating mortar composite for revealing early strength
JP6580313B2 (en) Geopolymer additive and geopolymer cured product
JP6953838B2 (en) Durability improver
JP2014237560A (en) Binder for carbonized housing material and manufacturing method therefor
JP2005047771A (en) Cement composition
JP6922448B2 (en) Coal ash composition
JP6985547B1 (en) Grout material, grout mortar composition and cured product
JP6881094B2 (en) Acid resistant admixture
JP2008189486A (en) Admixture for formed body, formed body, and method for producing formed body
WO2017089899A1 (en) Chemically activated cement using industrial waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6953838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250