JP2019009099A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2019009099A
JP2019009099A JP2017211144A JP2017211144A JP2019009099A JP 2019009099 A JP2019009099 A JP 2019009099A JP 2017211144 A JP2017211144 A JP 2017211144A JP 2017211144 A JP2017211144 A JP 2017211144A JP 2019009099 A JP2019009099 A JP 2019009099A
Authority
JP
Japan
Prior art keywords
electrode
processing apparatus
plasma processing
terminal
balanced terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017211144A
Other languages
English (en)
Other versions
JP6309683B1 (ja
Inventor
忠 井上
Tadashi Inoue
忠 井上
正治 田名部
Masaharu Tanabe
正治 田名部
一成 関谷
Kazunari Sekiya
一成 関谷
浩 笹本
Hiroshi Sasamoto
浩 笹本
辰憲 佐藤
Tatsunori Sato
辰憲 佐藤
信昭 土屋
Nobuaki Tsuchiya
信昭 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2017211144A priority Critical patent/JP6309683B1/ja
Application granted granted Critical
Publication of JP6309683B1 publication Critical patent/JP6309683B1/ja
Publication of JP2019009099A publication Critical patent/JP2019009099A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】電極に掛かる電圧とプラズマ密度とを調整し、プラズマ電位を安定させるプラズマ処理装置を提供する。【解決手段】プラズマ処理装置は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有するバラン103と、接地された真空容器110と、前記第1平衡端子211に電気的に接続された第1電極106と、前記第2平衡端子212に電気的に接続された第2電極111と、インピーダンス整合回路102と、前記インピーダンス整合回路102を介して前記バラン103に接続され、前記インピーダンス整合回路102および前記バラン103を介して前記第1電極106に高周波を供給する第1電源101と、ローパスフィルタ115と、前記ローパスフィルタ115を介して前記第1電極106に電圧を供給する第2電源116と、を備える。【選択図】図1

Description

本発明は、プラズマ処理装置に関する。
2つの電極の間に高周波を印加することによってプラズマを発生し該プラズマによって基板を処理するプラズマ処理装置がある。このようなプラズマ処理装置は、2つの電極の面積比および/またはバイアスによってスパッタリング装置として動作したり、エッチング装置として動作したりしうる。スパッタリング装置として構成されたプラズマ処理装置は、ターゲットを保持する第1電極と、基板を保持する第2電極とを有し、第1電極と第2電極との間(ターゲットと基板との間)に高周波が印加され、ターゲットとアノードとの間にプラズマが生成される。プラズマの生成によってターゲットの表面にセルフバイアス電圧が発生し、これによってターゲットにイオンが衝突し、ターゲットからそれを構成する材料の粒子が放出される。
特許文献1には、接地されたチャンバと、インピーダンス整合回路網を介してRF発生源に接続されたターゲット電極と、基板電極同調回路を介して接地された基板保持電極とを有するプラズマ処理装置が記載されている。
特許文献1に記載されたようなスパッタリング装置では、基板保持電極の他、チャンバがアノードとして機能しうる。セルフバイアス電圧は、カソードとして機能しうる部分の状態およびアノードとして機能しうる部分の状態に依存しうる。よって、基板保持部電極の他にチャンバもアノードとして機能する場合、セルバイアス電圧は、チャンバのうちアノードとして機能する部分の状態にも依存して変化しうる。セルフバイアス電圧の変化は、プラズマ電位の変化をもたらし、プラズマ電位の変化は、形成される膜の特性に影響を与えうる。
スパッタリング装置によって基板に膜を形成すると、チャンバの内面にも膜が形成されうる。これによってチャンバのうちアノードとして機能しうる部分の状態が変化しうる。そのため、スパッタリング装置を継続して使用すると、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、プラズマ電位も変化しうる。よって、従来は、スパッタリング装置を長期にわたって使用した場合において、基板の上に形成される膜の特性を一定に維持することが難しかった。
同様に、エッチング装置が長期にわたって使用された場合においても、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、これによってプラズマ電位も変化しうるので、基板のエッチング特性を一定に維持することが難しかった。
また、特許文献1に記載されたようなスパッタリング装置では、セルフバイアス電圧を制御するために高周波電力を調整する必要がある。しかし、セルフバイアス電圧を調整するために高周波電力を変化させると、プラズマ密度も変化する。したがって、従来は、セルフバイアス電圧とプラズマ密度とを個別に調整することができなかった。同様に、エッチング装置においても、従来は、セルフバイアス電圧とプラズマ密度とを個別に調整することができなかった。
特公昭55−35465号公報
本発明は、上記の課題認識に基づいてなされたものであり、プラズマ電位を安定させるために有利で、電極に掛かる電圧とプラズマ密度とを個別に調整するために有利な技術を提供することを目的とする。
本発明の1つの側面は、プラズマ処理装置に係り、前記プラズマ処理装置は、第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、インピーダンス整合回路と、前記インピーダンス整合回路を介して前記バランに接続され、前記インピーダンス整合回路および前記バランを介して前記第1電極に高周波を供給する第1電源と、ローパスフィルタと、前記ローパスフィルタを介して前記第1電極に電圧を供給する第2電源と、を備える。
本発明によれば、プラズマ電位を安定させるために有利で、電極に掛かる電圧とプラズマ密度とを個別に調整するために有利な技術が提供される。
本発明の第1実施形態のプラズマ処理装置の構成を模式的に示す図。 バランの構成例を示す図。 バランの他の構成例を示す図。 バラン103の機能を説明する図。 電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係を例示する図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 Rp−jXpの確認方法を例示する図。 本発明の第2実施形態のプラズマ処理装置の構成を模式的に示す図。 本発明の第3実施形態のプラズマ処理装置の構成を模式的に示す図。 本発明の第4実施形態のプラズマ処理装置の構成を模式的に示す図。 本発明の第5実施形態のプラズマ処理装置の構成を模式的に示す図。 本発明の第6実施形態のプラズマ処理装置の構成を模式的に示す図。
以下、添付図面を参照しながら本発明をその例示的な実施形態を通して説明する。
図1には、本発明の第1実施形態のプラズマ処理装置1の構成が模式的に示されている。プラズマ処理装置1は、バラン(平衡不平衡変換回路)103と、真空容器110と、第1電極106と、第2電極111と、ローパスフィルタ115と、電源116(第2電源)とを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111と、ローパスフィルタ115と、電源116(第2電源)、を備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。電源116は、例えば、直流電源又は交流電源でありうる。該直流電源は、交流成分を含む直流電圧を発生してもよい。本体10は、真空容器110に接続された第3端子253を有してもよい。プラズマ処理装置1は、更に、インピーダンス整合回路102および高周波電源101(第1電源)を備えうる。
バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、バラン103の第1平衡端子211および第2平衡端子212には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。バラン103は、中点端子213を更に有してもよい。バラン103は、中点端子213の電圧が第1平衡端子211の電圧と第2平衡端子212の電圧との中点となるように構成されうる。中点端子213は、本体10の第3端子253に電気的に接続されうる。
第1実施形態では、第1電極106は、カソードであり、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。また、第1実施形態では、第2電極111は、アノードであり、基板112を保持する。第1実施形態のプラズマ処理装置1は、ターゲット109のスパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第1電極106は、第1平衡端子211に電気的に接続され、第2電極111は、第2平衡端子212に電気的に接続されている。第1電極106と第1平衡端子211とが電気的に接続されていることは、第1電極106と第1平衡端子211との間で電流が流れるように第1電極106と第1平衡端子211との間に電流経路が構成されていることを意味する。同様に、この明細書において、aとbとが電気的に接続されているとは、aとbとの間で電流が流れるようにaとbとの間に電流経路が構成されることを意味する。
上記の構成は、第1電極106が第1端子251に電気的に接続され、第2電極111が第2端子252に電気的に接続され、第1端子251が第1平衡端子211に電気的に接続され、第2端子252が第2平衡端子212に電気的に接続された構成としても理解されうる。
第1実施形態では、第1電極106と第1平衡端子211(第1端子251)とがブロッキングキャパシタ104を介して電気的に接続されている。ブロッキングキャパシタ104は、第1平衡端子211と第1電極106との間(あるいは、第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、後述のインピーダンス整合回路102が、第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1電極106は、絶縁体107を介して真空容器110によって支持されうる。第2電極111は、絶縁体108を介して真空容器110によって支持されうる。あるいは、第2電極111と真空容器110との間に絶縁体108が配置されうる。
高周波電源101(第1電源)は、インピーダンス整合回路102を介してバラン103の第1不平衡端子201と第2不平衡端子202との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。換言すると、高周波電源101は、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極111との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。あるいは、高周波電源101は、インピーダンス整合回路102およびバラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給するものとしても理解されうる。
電源116(第2電源)は、ローパスフィルタ115を介して第1電極106に負の直流電圧(バイアス電圧)又は交流電圧を供給するように構成されうる。ローパスフィルタ115は、バラン103から供給される高周波が電源116に伝わらないように該高周波を遮断する。電源116から第1電極106に負の直流電圧又は交流電圧を供給することによってターゲット109の表面の電圧又はターゲット109の表面に衝突するイオンエネルギーを制御(決定)することができる。ターゲット109が導電材料で構成されている場合は、電源116から第1電極106に負の直流電圧を供給することによってターゲット109の表面の電圧を制御することができる。ターゲット109が絶縁材料で構成されている場合は、電源116から第1電極106に交流電圧を供給することによってターゲット109の表面に衝突するイオンエネルギーを制御することができる。
ターゲット109が絶縁材料で構成され、電源116(第2電源)が第1電極106に交流電圧を供給する場合、電源116が第1電極106に供給する電圧の周波数は、高周波電源101(第1電源)が発生する高周波の周波数よりも低く設定されうる。この場合、電源116が第1電極106に供給する電圧の周波数は、数100KHz〜数MHzの範囲内に設定されることが好ましい。
真空容器110の内部空間には、真空容器110に設けられた不図示のガス供給部を通しガス(例えば、Ar、KrまたはXeガス)が供給される。また、第1電極106と第2電極111との間には、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して高周波電源101(第1電源)によって高周波が供給される。また、第1電極106には、ローパスフィルタ115を介して直流電源116から負の直流電圧又は交流電圧が供給される。これにより、第1電極106と第2電極111との間にプラズマが生成され、ターゲット109の表面が負電圧に制御され、又は、ターゲット109の表面に衝突するイオンエネルギーが制御される。そして、プラズマ中のイオンがターゲット109の表面に衝突し、ターゲット109からそれを構成する材料の粒子が放出され、この粒子によって基板112の上に膜が形成される。
図2Aには、バラン103の一構成例が示されている。図2Aに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。
図2Bには、バラン103の他の構成例が示されている。図2Bに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。また、図2Bに示されたバラン103は、第1平衡端子211と第2平衡端子212との間に接続された第3コイル223および第4コイル224を更に有し、第3コイル223および第4コイル224は、第3コイル223と第4コイル224との接続ノードを第1平衡端子211の電圧と第2平衡端子212の電圧との中点とするように構成されている。該接続ノードは、中点端子213に接続されている。第3コイル223および第4コイル224は、同一巻き数のコイルであり、鉄心を共有する。中点端子213は、接地されてもよいし、真空容器110に接続されてもよいし、フローティングにされてもよい。
図3を参照しながらバラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
ISO[dB]=20log(I3/I2’)
図3において、Rp−jXpは、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極106および第2電極111の側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104のリアクタンスを含む)を示している。なお、このインピーダンスは、高周波電源101が発生する高周波の周波数におけるインピーダンスであり、ローパスフィルタ115および直流電源116のインピーダンスは無視可能である。Rpは抵抗成分、−Xpはリアクタンス成分を示している。また、図3において、Xは、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
ここで、高周波電源101からバラン103を介して第1電極106と第2電極111との間に高周波を供給する構成の利点を明らかにするために、電源116(およびローパスフィルタ115)をプラズマ処理装置1(本体10)から取り外した状態におけるプラズマ処理装置1の動作を説明する。図4には、電源116(およびローパスフィルタ115)をプラズマ処理装置1(本体10)から取り外した状態における電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。
本発明者は、1.5≦X/Rp≦5000を満たす場合に真空容器110の内部空間(第1電極106と第2電極111との間の空間)に形成されるプラズマの電位(プラズマ電位)が真空容器110の内面の状態に対して鈍感になることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、−10.0dB≧ISO≧−80dBに相当する。
図5A〜5Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。図5Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図5Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図5A〜5Dより、1.5≦X/Rp≦5000を満たす場合は、真空容器110の内面が種々の状態においてプラズマ電位が安定していることが理解される。
図6A〜6Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および第1電極116の電位(カソード電位)をシミュレーションした結果が示されている。図6Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図6Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図6A〜6Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面が状態に依存してプラズマ電位が変化することが理解される。
ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.0、X/Rp=0.5)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極106と第2電極111との間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、図6A〜6Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成するべきである。
図7を参照しながらRp−jXp(実際に知りたいものはRpのみ)の決定方法を例示する。まず、プラズマ処理装置1からバラン103を取り外し、インピーダンス整合回路102の出力端子230を本体10の第1端子251(ブロッキングキャパシタ104)に接続する。また、本体10の第2端子252(第2電極111)を接地する。この状態で高周波電源101からインピーダンス整合回路102を通して本体10の第1端子251に高周波を供給する。図7に示された例では、インピーダンス整合回路102は、等価的に、コイルL1、L2および可変キャパシタVC1、VC2で構成される。可変キャパシタVC1、VC2の容量値を調整することによってプラズマを発生させることができる。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側(第1電極106および第2電極111の側)のインピーダンスRp−jXpに整合している。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。よって、インピーダンスが整合したときのインピーダンス整合回路102のインピーダンスRp+jXpに基づいて、Rp−jXp(実際に知りたいものはRpのみ)を得ることができる。Rp−jXpは、その他、例えば、設計データに基づいてシミュレーションによって求めることができる。
このようにして得られたRpに基づいて、1.5≦X/Rp≦5000を満たすように、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)Xを決定すればよい。以上のようにバラン103のリアクタンス成分を決定することによって、電源116を設けない場合においても、プラズマ電位(およびセルフバイアス電圧(ターゲット109の表面電圧))を安定させることができる。
更に、ローパスフィルタ115を介して電源116から第1電極106に負の直流電圧を供給する構成によれば、この直流電圧によってターゲット109の表面電圧を制御することができる。一方、ローパスフィルタ115を介して電源116から第1電極106に交流電圧を供給する構成によれば、この交流電圧によってターゲット109の表面に衝突するイオンエネルギーを制御することができる。したがって、高周波電源101から第1電極106と第2電極111との間に供給する高周波の電力を、ターゲット109の表面電圧とは独立して調整することができる。また、ローパスフィルタ115を介して電源116から第1電極106に負の直流電圧又は交流電圧を供給する構成によれば、プラズマ電位を真空容器110の内面の状態に対して鈍感にすることができる。よって、1.5≦X/Rp≦5000を満たすことは必ずしも必要ではなく、1.5≦X/Rp≦5000を満たさない場合においても、実用的な性能が提供されうる。
第1電極106と第2電極111との大きさの関係に制限はないが、第1電極106と第2電極111とが同程度の大きさを有することが好ましい。この場合、セルフバイアス電圧を小さくすることができ、ターゲット109の表面電圧またはターゲット109の表面に衝突するイオンエネルギーを電源116によって自由に制御することができる。
図8には、本発明の第2実施形態のプラズマ処理装置1の構成が模式的に示されている。第2実施形態のプラズマ処理装置1は、基板112をエッチングするエッチング装置として動作しうる。第2実施形態では、第1電極106は、カソードであり、基板112を保持する。また、第2実施形態では、第2電極111は、アノードである。第2実施形態のプラズマ処理装置1は、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第2実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
図9には、本発明の第3実施形態のプラズマ処理装置1の構成が模式的に示されている。第3実施形態のプラズマ処理装置1は、第1実施形態のプラズマ処理装置1の変形例であり、第2電極111を昇降させる機構および第2電極111を回転させる機構の少なくとも一方を更に備える。図9に示された例では、プラズマ処理装置1は、第2電極111を昇降させる機構および第2電極111を回転させる機構の双方を含む駆動機構114を備える。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。同様に、第2実施形態のプラズマ処理装置1も、第2電極111を昇降させる機構および第2電極111を回転させる機構の少なくとも一方を更に備えうる。
第3実施形態においても、第1電極106と第2電極111との大きさの関係に制限はないが、第1電極106と第2電極111とが同程度の大きさを有することが好ましい。
図10には、本発明の第4実施形態のプラズマ処理装置1の構成が模式的に示されている。第4実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第3実施形態に従いうる。プラズマ処理装置1は、バラン103と、真空容器110と、第1電極106と、第2電極135と、第3電極151と、ローパスフィルタ115、303と、電源116と、直流電源304とを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極135と、第3電極151と、ローパスフィルタ115、303と、電源116と、直流電源304とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252を有する。プラズマ処理装置1は、更に、インピーダンス整合回路102、302および高周波電源101、301を備えうる。電源116は、例えば、直流電源又は交流電源でありうる。該直流電源は、交流成分を含む直流電圧を発生してもよい。
バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、バラン103の第1平衡端子211および第2平衡端子212には、平衡回路が接続される。バラン103は、前述のような中点端子を更に有してもよい。該中点端子は、真空容器110に電気的に接続されうる。
第1電極106は、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。第2電極135は、第1電極106の周囲に配置される。第1電極106は、バラン103の第1平衡端子211に電気的に接続され、第2電極135は、バラン103の第2平衡端子212に電気的に接続されている。第3電極151は、基板112を保持する。第3電極151には、高周波電源301からインピーダンス整合回路302を介して高周波が供給されうる。
上記の構成は、第1電極106が第1端子251に電気的に接続され、第2電極135が第2端子252に電気的に接続され、第1端子251がバラン103の第1平衡端子211に電気的に接続され、第2端子252がバラン103の第2平衡端子212に電気的に接続された構成としても理解されうる。
第1電極106と第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104を介して電気的に接続されうる。ブロッキングキャパシタ104は、バラン103の第1平衡端子211と第1電極106との間(あるいは、バラン103の第1平衡端子211と第2平衡端子212との間)で、電源116からの直流電流又は交流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、インピーダンス整合回路102が、第1不平衡端子201と第2不平衡端子202との間を流れる、電源116からの直流電流又は交流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ104は、第2電極135と第2平衡端子212(第2端子252)との間に配置されてもよい。第1電極106および第2電極135は、絶縁体132を介して真空容器110によって支持されうる。
高周波電源101は、インピーダンス整合回路102を介してバラン103の第1不平衡端子201と第2不平衡端子202との間に高周波を供給する。換言すると、高周波電源101は、第1インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極135との間に高周波を供給する。あるいは、高周波電源101は、インピーダンス整合回路102およびバラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。高周波電源301は、インピーダンス整合回路302を介して第3電極151に高周波を供給する。
電源116は、ローパスフィルタ115を介して第1電極106に負の直流電圧(バイアス電圧)又は交流電圧を供給する。ローパスフィルタ115は、バラン103から供給される高周波が電源116に伝わらないように該高周波を遮断する。電源116から第1電極106に負の直流電圧を供給することによってターゲット109の表面の電圧を制御することができる。電源116から第1電極106に交流電圧を供給することによってターゲット109の表面に衝突するイオンエネルギーを制御することができる。直流電源304は、ローパスフィルタ303を介して第3電極151に直流電圧(バイアス電圧)を供給する。ローパスフィルタ303は、高周波電源301から供給される高周波が直流電源304に伝わらないように該高周波を遮断する。直流電源304によって第3電極151に直流電圧を供給することによって基板112の表面電位を制御することができる。
第4実施形態においても、電源116から第1電極106に負の直流電圧又は交流電圧を供給することによってターゲット109の表面の電圧を又はターゲット109に衝突するイオンエネルギーを制御し、高周波電源101および高周波電源301によってプラズマ密度を制御することができる。また、第4実施形態においても、1.5≦X/Rp≦5000を満たすことは、プラズマ電位をより安定させるために有利である。
第4実施形態においても、第1電極106と第2電極135との大きさの関係に制限はないが、第1電極106と第2電極135とが同程度の大きさを有することが好ましい。
図11には、本発明の第5実施形態のプラズマ処理装置1の構成が模式的に示されている。第5実施形態のプラズマ処理装置1は、第4実施形態のプラズマ処理装置1に対して駆動機構114を追加した構成を有する。駆動機構114は、第3電極151を昇降させる機構および第3電極151を回転させる機構の少なくとも一方を備えうる。
第5実施形態においても、第1電極106と第2電極135との大きさの関係に制限はないが、第1電極106と第2電極135とが同程度の大きさを有することが好ましい。
図12には、本発明の第6実施形態のプラズマ処理装置1の構成が模式的に示されている。第6実施形態として言及しない事項は、第1乃至第5実施形態に従いうる。第6実施形態のプラズマ処理装置1は、複数の第1高周波供給部と、少なくとも1つの第2高周波供給部とを備えている。ここでは、複数の第1高周波供給部が2つの高周波供給部で構成される例を説明する。また、2つの高周波供給部およびそれに関連する構成要素を添え字a、bで相互に区別する。同様に、2つのターゲットについても、添え字a、bで相互に区別する。
複数の第1高周波供給部のうちの1つは、第1電極106aと、第2電極135aと、バラン103aと、電源116aと、ローパスフィルタ115aと、高周波電源101aと、インピーダンス整合回路102aと、ブロッキングキャパシタ104aとを含みうる。複数の第1高周波供給部のうちの他の1つは、第1電極106bと、第2電極135bと、バラン103b、電源116bと、ローパスフィルタ115bと、高周波電源101bと、インピーダンス整合回路102bと、ブロッキングキャパシタ104bとを含みうる。第2高周波供給部は、高周波電源301と、インピーダンス整合回路302と、直流電源304と、ローパスフィルタ303とを含みうる。電源116a、116bは、例えば、直流電源又は交流電源でありうる。該直流電源は、交流成分を含む直流電圧を発生してもよい。
他の観点において、プラズマ処理装置1は、バラン103a、103bと、真空容器110と、第1電極106a、106bと、第2電極135a、135bと、第3電極151と、ローパスフィルタ115a、115b、303と、電源116a、116bと、直流電源304と、高周波電源101a、101b、301とを備えている。
バラン103aは、第1不平衡端子201a、第2不平衡端子202a、第1平衡端子211aおよび第2平衡端子212aを有する。バラン103aの第1不平衡端子201aおよび第2不平衡端子202aの側には、不平衡回路が接続され、バラン103aの第1平衡端子211aおよび第2平衡端子212aには、平衡回路が接続される。バラン103bは、第1不平衡端子201b、第2不平衡端子202b、第1平衡端子211bおよび第2平衡端子212bを有する。バラン103bの第1不平衡端子201bおよび第2不平衡端子202bの側には、不平衡回路が接続され、第1バラン103bの第1平衡端子211bおよび第2平衡端子212bには、平衡回路が接続される。
第1電極106a、106bは、それぞれターゲット109a、109bを保持する。ターゲット109a、109bは、例えば、絶縁体材料または導電体材料でありうる。第2電極135a、135bは、それぞれ第1電極106a、106bの周囲に配置される。第1電極106a、106bは、それぞれバラン103a、103bの第1平衡端子211a、211bに電気的に接続され、第2電極135a、135bは、それぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続されている。高周波電源101aは、インピーダンス整合回路102aを介してバラン103aの第1不平衡端子201aと第2不平衡端子202aとの間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。高周波電源101bは、インピーダンス整合回路102bを介してバラン103bの第1不平衡端子201bと第2不平衡端子202bとの間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。第3電極151は、基板112を保持する。第3電極151には、高周波電源301からインピーダンス整合回路302を介して高周波が供給されうる。
電源116a、116bは、それぞれローパスフィルタ115a、115bを介して第1電極106a、106bに負の直流電圧(バイアス電圧)又は交流電圧を供給する。ローパスフィルタ115a、115bは、それぞれバラン103a、103bから供給される高周波が電源116a、116bに伝わらないように該高周波を遮断する。電源116a、116bから第1電極106a、106bに負の直流電圧を供給することによってターゲット109a、109bの表面の電圧を制御することができる。電源116a、116bから第1電極106a、106bに交流電圧を供給することによってターゲット109a、109bの表面に衝突するイオンエネルギーを制御することができる。直流電源304は、ローパスフィルタ303を介して第3電極151に直流電圧(バイアス電圧)を供給する。ローパスフィルタ303は、高周波電源301から供給される高周波が直流電源304に伝わらないように該高周波を遮断する。直流電源304によって第3電極151に直流電圧を供給することによって基板112の表面電位を制御することができる。
第1高周波供給部および第2高周波供給部は、それぞれ図3と同様の等価回路で表現されうる。第6実施形態においても、1.5≦X/Rp≦5000を満たすことが好ましい。
第6実施形態においても、第1電極106aと第2電極135aとの大きさの関係に制限はないが、第1電極106aと第2電極135aとが同程度の大きさを有することが好ましい。同様に、第1電極106bと第2電極135bとの大きさの関係に制限はないが、第1電極106bと第2電極135bとが同程度の大きさを有することが好ましい。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
1:プラズマ処理装置、10:本体、101:高周波電源、102:インピーダンス整合回路、103:バラン、104:ブロッキングキャパシタ、106:第1電極、107、108:絶縁体、109:ターゲット、110:真空容器、111:第2電極、112:基板、115:ローパスフィルタ、116:電源、201:第1不平衡端子、202:第2不平衡端子、211:第1平衡端子、212:第2平衡端子、213:中点端子、251:第1端子、252:第2端子、253:第3端子、221:第1コイル、222:第2コイル、223:第3コイル、224:第4コイル

Claims (20)

  1. 第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、
    接地された真空容器と、
    前記第1平衡端子に電気的に接続された第1電極と、
    前記第2平衡端子に電気的に接続された第2電極と、
    インピーダンス整合回路と、
    前記インピーダンス整合回路を介して前記バランに接続され、前記インピーダンス整合回路および前記バランを介して前記第1電極に高周波を供給する第1電源と、
    ローパスフィルタと、
    前記ローパスフィルタを介して前記第1電極に電圧を供給する第2電源と、
    を備えることを特徴とするプラズマ処理装置。
  2. 前記第1電極はターゲットを保持し、前記第2電極は基板を保持する、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記バランは、前記第1不平衡端子と前記第1平衡端子とを接続する第1コイルと、前記第2不平衡端子と前記第2平衡端子とを接続する第2コイルとを有する、
    ことを特徴とする請求項1又は2に記載のプラズマ処理装置。
  4. 前記バランは、前記第1平衡端子と前記第2平衡端子との間に接続された第3コイルおよび第4コイルを更に有し、前記第3コイルおよび前記第4コイルは、前記第3コイルと前記第4コイルとの接続ノードの電圧を前記第1平衡端子の電圧と前記第2平衡端子の電圧との中点とするように構成されている、
    ことを特徴とする請求項3に記載のプラズマ処理装置。
  5. 前記接続ノードは、前記真空容器に接続されている、
    ことを特徴とする請求項4に記載のプラズマ処理装置。
  6. 前記第2電源は、交流電源を含み、
    前記交流電源が前記第1電極に供給する電圧の周波数は、前記周波数よりも低い、
    ことを特徴とする請求項1乃至5のいずれか1項に記載のプラズマ処理装置。
  7. 前記第1電極が絶縁体を介して前記真空容器によって支持されている、
    ことを特徴とする請求項1乃至6のいずれか1項に記載のプラズマ処理装置。
  8. 前記第2電極と前記真空容器との間に絶縁体が配置されている、
    ことを特徴とする請求項1乃至7のいずれか1項に記載のプラズマ処理装置。
  9. 前記第2電極を昇降させる機構および前記第2電極を回転させる機構の少なくとも一方を更に備える、
    ことを特徴とする請求項1乃至8のいずれか1項に記載のプラズマ処理装置。
  10. 前記第1電極は基板を保持し、前記プラズマ処理装置は、エッチング装置として構成されている、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  11. 前記第1電極はターゲットを保持し、前記第2電極は前記第1電極の周囲に配置されている、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  12. 複数の高周波供給部を備え、前記複数の高周波供給部の各々が前記バラン、前記第1電極および前記第2電極を含み、
    前記複数の高周波供給部の各々の前記第1電極がターゲットを保持し、前記複数の高周波供給部の各々において、前記第2電極が前記第1電極の周囲に配置されている、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  13. 前記第1電極および前記第2電極が絶縁体を介して前記真空容器によって支持されている、
    ことを特徴とする請求項11又は12に記載のプラズマ処理装置。
  14. 基板を保持する第3電極と、
    第2インピーダンス整合回路を介して前記第3電極に高周波を供給する第2高周波電源と、
    を更に備えることを特徴とする請求項11乃至13のいずれか1項に記載のプラズマ処理装置。
  15. 第2ローパスフィルタを介して前記第3電極に直流電圧を供給する第2直流電源を更に備えることを特徴とする請求項14に記載のプラズマ処理装置。
  16. 前記第3電極と前記真空容器との間に絶縁体が配置されている、
    ことを特徴とする請求項14又は15に記載のプラズマ処理装置。
  17. 前記第3電極を昇降させる機構および前記第3電極を回転させる機構の少なくとも一方を更に備える、
    ことを特徴とする請求項14乃至16のいずれか1項に記載のプラズマ処理装置。
  18. 前記第1平衡端子と前記第1電極とがブロッキングキャパシタを介して電気的に接続されている、
    ことを特徴とする請求項1乃至17のいずれか1項に記載のプラズマ処理装置。
  19. 前記第2平衡端子と前記第2電極とがブロッキングキャパシタを介して電気的に接続されている、
    ことを特徴とする請求項1乃至18のいずれか1項に記載のプラズマ処理装置。
  20. 前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときの前記第1平衡端子と前記第2平衡端子との間の抵抗成分をRpとし、前記第1不平衡端子と前記第1平衡端子との間のインダクタンスをXとしたときに、1.5≦X/Rp≦5000を満たす、
    ことを特徴とする請求項1乃至19のいずれか1項に記載のプラズマ処理装置。
JP2017211144A 2017-10-31 2017-10-31 プラズマ処理装置 Active JP6309683B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017211144A JP6309683B1 (ja) 2017-10-31 2017-10-31 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017211144A JP6309683B1 (ja) 2017-10-31 2017-10-31 プラズマ処理装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017555818A Division JP6595002B2 (ja) 2017-06-27 2017-06-27 スパッタリング装置

Publications (2)

Publication Number Publication Date
JP6309683B1 JP6309683B1 (ja) 2018-04-11
JP2019009099A true JP2019009099A (ja) 2019-01-17

Family

ID=61901984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017211144A Active JP6309683B1 (ja) 2017-10-31 2017-10-31 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP6309683B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019003309A1 (ja) * 2017-06-27 2019-06-27 キヤノンアネルバ株式会社 スパッタリング装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004190A1 (ja) * 2017-06-27 2019-01-03 キヤノンアネルバ株式会社 プラズマ処理装置
TWI693860B (zh) 2017-06-27 2020-05-11 日商佳能安內華股份有限公司 電漿處理裝置
KR102361377B1 (ko) 2017-06-27 2022-02-10 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
PL3648550T3 (pl) 2017-06-27 2021-11-22 Canon Anelva Corporation Urządzenie do przetwarzania plazmowego
TWI678425B (zh) 2017-06-27 2019-12-01 日商佳能安內華股份有限公司 電漿處理裝置
WO2020003557A1 (ja) 2018-06-26 2020-01-02 キヤノンアネルバ株式会社 プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156081A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH11307299A (ja) * 1998-04-27 1999-11-05 Nichimen Denshi Koken Kk プラズマ処理装置
JP2009302566A (ja) * 2009-09-16 2009-12-24 Masayoshi Murata トランス型平衡不平衡変換装置を備えたプラズマ表面処理装置
WO2010041679A1 (ja) * 2008-10-10 2010-04-15 Murata Masayoshi 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法
JP2014049541A (ja) * 2012-08-30 2014-03-17 Mitsubishi Heavy Ind Ltd 薄膜製造装置及びその電極電圧調整方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156081A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH11307299A (ja) * 1998-04-27 1999-11-05 Nichimen Denshi Koken Kk プラズマ処理装置
WO2010041679A1 (ja) * 2008-10-10 2010-04-15 Murata Masayoshi 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法
JP2009302566A (ja) * 2009-09-16 2009-12-24 Masayoshi Murata トランス型平衡不平衡変換装置を備えたプラズマ表面処理装置
JP2014049541A (ja) * 2012-08-30 2014-03-17 Mitsubishi Heavy Ind Ltd 薄膜製造装置及びその電極電圧調整方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019003309A1 (ja) * 2017-06-27 2019-06-27 キヤノンアネルバ株式会社 スパッタリング装置

Also Published As

Publication number Publication date
JP6309683B1 (ja) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6309683B1 (ja) プラズマ処理装置
JP6595002B2 (ja) スパッタリング装置
JP6280677B1 (ja) プラズマ処理装置
JP6458206B1 (ja) プラズマ処理装置
JP6516951B1 (ja) プラズマ処理装置
JP6656478B2 (ja) プラズマ処理装置および方法
JP6785935B2 (ja) エッチング装置
JP6516950B1 (ja) プラズマ処理装置
JP6656481B2 (ja) プラズマ処理装置および方法
JP6546369B2 (ja) プラズマ処理装置
JP2020074273A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R150 Certificate of patent or registration of utility model

Ref document number: 6309683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250