JP2019008913A - Manufacturing method of secondary cell - Google Patents
Manufacturing method of secondary cell Download PDFInfo
- Publication number
- JP2019008913A JP2019008913A JP2017121540A JP2017121540A JP2019008913A JP 2019008913 A JP2019008913 A JP 2019008913A JP 2017121540 A JP2017121540 A JP 2017121540A JP 2017121540 A JP2017121540 A JP 2017121540A JP 2019008913 A JP2019008913 A JP 2019008913A
- Authority
- JP
- Japan
- Prior art keywords
- aging
- battery capacity
- secondary battery
- high temperature
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は,二次電池の製造方法に関する。さらに詳細には,組み立てた二次電池の初期充電後に高温エージングを行う工程を含む製造方法に関するものである。 The present invention relates to a method for manufacturing a secondary battery. More specifically, the present invention relates to a manufacturing method including a step of performing high temperature aging after initial charging of an assembled secondary battery.
従来から,二次電池の製造過程では,組み立てて初期充電を行った二次電池を,高温エージングに供することが行われている(例えば特許文献1の図6)。高温エージング後における電池容量値により不良品検査を行うためである(特許文献1の[0066]参照)。すなわち,不良品の二次電池においては,高温エージング後の電池容量値が正常な範囲から外れてしまうのである。 Conventionally, in the manufacturing process of a secondary battery, a secondary battery that has been assembled and initially charged has been subjected to high-temperature aging (for example, FIG. 6 of Patent Document 1). This is because defective products are inspected based on the battery capacity value after high temperature aging (see [0066] of Patent Document 1). That is, in a defective secondary battery, the battery capacity value after high-temperature aging falls outside the normal range.
しかしながら前記した従来の技術には,次のような問題点があった。良品であっても高温エージング後の電池容量値が,個々の二次電池によりかなり異なるのである。このため,単純に電池容量値の良品範囲を設定するだけでは適切な良否検査ができない。高温エージング後の電池容量値がばらつく原因はいくつかある。例えば,電極活物質層の塗工厚のばらつきや,組み立て後初期充電までの保管期間の環境温度のばらつき等である。このため,複雑な検査工程を実施する必要があった。あるいは,不良品とすべき二次電池を良品と判定してしまうことがあった。 However, the conventional techniques described above have the following problems. Even if it is a good product, the battery capacity value after high-temperature aging varies considerably depending on the individual secondary battery. For this reason, an appropriate quality inspection cannot be performed simply by setting a non-defective range of battery capacity values. There are several reasons why the battery capacity value varies after high temperature aging. For example, variation in the coating thickness of the electrode active material layer, variation in environmental temperature during the storage period from assembly to initial charge, and the like. For this reason, it was necessary to carry out a complicated inspection process. Alternatively, a secondary battery that should be regarded as a defective product may be judged as a good product.
本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,良品であるとした場合の電池容量値のばらつきを抑えるように高温エージングを行うことで,良否検査を容易に行うことができるようにした二次電池の製造方法を提供することにある。 The present invention has been made to solve the above-described problems of the prior art. In other words, the problem is to provide a method for manufacturing a secondary battery that enables easy quality inspection by performing high-temperature aging so as to suppress variations in battery capacity values in the case of non-defective products. It is to provide.
本発明の一態様における二次電池の製造方法は,二次電池を組み立てる組立工程と,組み立てた二次電池を充電する初期充電工程と,初期充電工程後の二次電池を室温より高い温度の環境下で保持するエージングを行う高温エージング工程とを行うことにより二次電池を製造する方法である。ここにおいて,初期充電工程にて対象の二次電池の電池容量の取得を行う。そして,初期充電工程で取得した電池容量に基づいて対象の二次電池についての高温エージング工程のエージング条件を決定する条件決定工程を行う。よって,高温エージング工程では,条件決定工程で決定されたエージング条件に従って対象の二次電池のエージングを行う。上記の条件決定工程では,電池容量が大きいほど重く(高温または長時間),電池容量が小さいほど軽く(低温または短時間)なるようにエージング条件を決定する。 A method for manufacturing a secondary battery in one embodiment of the present invention includes an assembling process for assembling a secondary battery, an initial charging process for charging the assembled secondary battery, and a temperature of the secondary battery after the initial charging process at a temperature higher than room temperature. This is a method for producing a secondary battery by performing a high-temperature aging step of performing aging that is held in an environment. Here, the battery capacity of the target secondary battery is acquired in the initial charging step. And the condition determination process which determines the aging conditions of the high temperature aging process about the object secondary battery based on the battery capacity acquired at the initial charge process is performed. Therefore, in the high temperature aging process, the target secondary battery is aged according to the aging conditions determined in the condition determining process. In the above condition determining step, the aging condition is determined so that the battery capacity is heavier (high temperature or long time) and the battery capacity is lighter (low temperature or short time).
上記態様における二次電池の製造方法では,組立工程の後の初期充電工程にて,対象の二次電池の電池容量を取得する。これにより,個々の二次電池の高温エージング前の時点での電池容量が把握される。そして,高温エージング前の電池容量に応じて個々の二次電池ごとに設定した高温エージング条件で高温エージング工程を実施する。こうすることで,各二次電池の良品である場合の高温エージング工程後における電池容量がなるべく均一になるようにする。このため,その後の容量検査で容易にかつ適切に二次電池の良否判定を行うことができる。 In the secondary battery manufacturing method in the above aspect, the battery capacity of the target secondary battery is acquired in the initial charging step after the assembly step. Thereby, the battery capacity before the high temperature aging of each secondary battery is grasped. And a high temperature aging process is implemented on the high temperature aging conditions set for every secondary battery according to the battery capacity before high temperature aging. In this way, the battery capacity after the high-temperature aging process when each secondary battery is a good product is made as uniform as possible. For this reason, the quality determination of the secondary battery can be performed easily and appropriately by subsequent capacity inspection.
本構成によれば,良品であるとした場合の電池容量値のばらつきを抑えるように高温エージングを行うことで,良否検査を容易に行うことができるようにした二次電池の製造方法が提供されている。 According to this configuration, there is provided a method for manufacturing a secondary battery that can easily perform a pass / fail inspection by performing high-temperature aging so as to suppress variations in battery capacity values when the product is non-defective. ing.
以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態では,図1に示す手順で二次電池(例えばリチウムイオン二次電池)を製造する。図1の製造手順は,組立工程と,初期充電工程と,高温エージング工程と,自己放電検査工程と,容量検査工程と,電圧調整工程とを有している。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. In this embodiment, a secondary battery (for example, a lithium ion secondary battery) is manufactured by the procedure shown in FIG. The manufacturing procedure in FIG. 1 includes an assembly process, an initial charging process, a high temperature aging process, a self-discharge inspection process, a capacity inspection process, and a voltage adjustment process.
組立工程は,二次電池の構成部品を互いに組付けて一体化する工程である。これにより,例えば図2に示すような二次電池100が作製される。図2の二次電池100は,電池ケース本体181と封口蓋182とを組付けてなる電池ケース180の内部に電極体150を収納したものである。封口蓋182には,正負の端子191,192が設けられている。電極体150は,正極板と負極板とを,セパレータを介して交互に積層したものである。また,図2には現れていないが,電池ケース180内には電解液も封入されている。
The assembly process is a process of assembling and integrating the components of the secondary battery. Thereby, for example, a
初期充電工程は,組み立てた二次電池を充電するとともに活性化する工程である。本形態ではここで,後述するように対象の二次電池の電池容量の測定も行う。高温エージング工程は,初期充電工程後の二次電池を高温下(55〜70℃程度)で保持する工程である。この高温エージングにより,組立工程時までに金属性異物が混入した二次電池とそうでない二次電池とで,電池容量に差が生じる。そして,高温エージング工程を経た二次電池は,自己放電や電池容量の検査で不良品が排除された後,電圧調整された上で出荷されるのである。 The initial charging step is a step of charging and activating the assembled secondary battery. In this embodiment, the battery capacity of the target secondary battery is also measured here as described later. The high temperature aging process is a process of holding the secondary battery after the initial charging process at a high temperature (about 55 to 70 ° C.). Due to this high-temperature aging, there is a difference in battery capacity between a secondary battery in which metallic foreign matters are mixed by the assembly process and a secondary battery that is not. The secondary battery that has undergone the high-temperature aging process is shipped after the voltage is adjusted after the defective product is eliminated by self-discharge or battery capacity inspection.
本形態の二次電池の製造方法における初期充電工程では,対象の二次電池の初期充電を行うとともに,前述のように電池容量を測定する。初期充電工程での電池容量の測定について図3により説明する。図3のグラフでは,横軸が時間を示しており,左の縦軸は電池電圧を,右の縦軸は充電電流を示している。図3から明らかなように初期充電工程では,時刻t1から時刻t2まで一定の充電電流Icを二次電池に印加している。これにより電池電圧は,充電開始時(時刻t1)のV1から充電終了時(時刻t2)のV2まで上昇している。この電池電圧の上昇が,初期充電の本来の目的である。 In the initial charging step in the secondary battery manufacturing method of the present embodiment, the target secondary battery is initially charged and the battery capacity is measured as described above. The measurement of the battery capacity in the initial charging process will be described with reference to FIG. In the graph of FIG. 3, the horizontal axis indicates time, the left vertical axis indicates the battery voltage, and the right vertical axis indicates the charging current. As apparent from FIG. 3, in the initial charging step, a constant charging current Ic is applied to the secondary battery from time t1 to time t2. As a result, the battery voltage rises from V1 at the start of charging (time t1) to V2 at the end of charging (time t2). This increase in battery voltage is the original purpose of initial charging.
この初期充電工程において,充電電流Icと充電期間Tの長さ(時刻t2−時刻t1)との積が,対象の二次電池の電池容量を表している。すなわち電池容量Cは,(1)式で算出される。ただし厳密にいえばこれは,電圧V1に相当する充電率と電圧V2に相当する充電率との間での区間容量に該当する。この電池容量Cの値(単位はAh)を取得することで,初期充電工程にて対象の二次電池の電池容量の測定がなされたことになる。
C = Ic×(t2−t1) ……(1)
In this initial charging step, the product of the charging current Ic and the length of the charging period T (time t2−time t1) represents the battery capacity of the target secondary battery. That is, the battery capacity C is calculated by the equation (1). However, strictly speaking, this corresponds to a section capacity between a charging rate corresponding to the voltage V1 and a charging rate corresponding to the voltage V2. By acquiring the value (unit: Ah) of the battery capacity C, the battery capacity of the target secondary battery is measured in the initial charging step.
C = Ic × (t2−t1) (1)
このようにして取得される電池容量Cは,同一仕様でかつ良品の二次電池についても個々の二次電池によりばらつく傾向がある。ばらつく原因は前述の通りである。そこで本形態では,初期充電工程の後の高温エージング工程にて,その調整を行う。すなわち,高温エージング工程の実施により二次電池の電池容量は低下するのだが,その低下幅は高温エージング工程の条件により異なる。エージング条件としては,エージング温度とエージング時間とが挙げられる。エージング温度については,高温であるほど電池容量の低下幅が大きく低温であるほど低下幅が小さい。エージング時間については,長時間であるほど電池容量の低下幅が大きく短時間であるほど低下幅が小さい。そこでここでは,エージング温度が高温であることやエージング時間が長時間であることを重いエージング条件といい,エージング温度が低温であることやエージング時間が短時間であることを軽いエージング条件という。 The battery capacity C obtained in this way tends to vary depending on the individual secondary batteries even if the secondary batteries have the same specifications and are good. The cause of the variation is as described above. Therefore, in this embodiment, the adjustment is performed in the high temperature aging process after the initial charging process. That is, although the battery capacity of the secondary battery is reduced by performing the high temperature aging process, the extent of the reduction varies depending on the conditions of the high temperature aging process. Aging conditions include aging temperature and aging time. Regarding the aging temperature, the higher the temperature, the lower the battery capacity, and the lower the temperature, the lower the capacity. Regarding the aging time, the longer the time is, the larger the decrease amount of the battery capacity is, and the shorter the time is, the smaller the decrease amount is. Therefore, here, a high aging temperature and a long aging time are referred to as heavy aging conditions, and a low aging temperature and a short aging time are referred to as light aging conditions.
そこで,高温エージング前の電池容量が小さければエージング条件を軽くし,高温エージング前の電池容量が大きければエージング条件を重くすればよい。これにより,高温エージング後の電池容量を,同一仕様でかつ良品の二次電池についてはほぼ一定とすることができる。このためのエージング条件の設定を,初期充電工程で取得した前述の電池容量Cに基づいて行うのである。 Therefore, the aging condition may be reduced if the battery capacity before high temperature aging is small, and the aging condition may be increased if the battery capacity before high temperature aging is large. As a result, the battery capacity after high-temperature aging can be made substantially constant for a non-defective secondary battery having the same specifications. The aging condition for this is set based on the above-described battery capacity C acquired in the initial charging step.
この条件設定について,図4を用いて説明する。図4では,横軸を温度とし,縦軸を電池容量としている。図4中に黒丸印で示すのが,初期充電工程で取得した電池容量Cが狙い通りであった二次電池についてのプロットである。黒三角印は,同一仕様であるが初期充電工程で取得した電池容量Cが狙いからずれていた二次電池についてのプロットである。図4中左上の方に,初期充電工程直後の状態での黒丸印(C1)と黒三角印(C2)とを示す。すなわち,「C1」が高温エージング前の電池容量Cの狙い値である。「C2」は狙い値より少し高い容量値であり,その差は「ΔC」である。ただし,「C2」の二次電池が必ずしも不良品であるという訳ではない。 This condition setting will be described with reference to FIG. In FIG. 4, the horizontal axis represents temperature and the vertical axis represents battery capacity. A black circle in FIG. 4 shows a plot for a secondary battery in which the battery capacity C acquired in the initial charging step was as intended. The black triangle mark is a plot for a secondary battery having the same specification but the battery capacity C acquired in the initial charging step deviating from the target. In the upper left of FIG. 4, a black circle mark (C1) and a black triangle mark (C2) immediately after the initial charging process are shown. That is, “C1” is the target value of the battery capacity C before high temperature aging. “C2” is a capacitance value slightly higher than the target value, and the difference is “ΔC”. However, the “C2” secondary battery is not necessarily defective.
図4中の右下寄りの位置の実線L1とその上の3つの黒丸印は,「C1」の二次電池の高温エージング後の電池容量を示している。ここでは,エージング時間を一定とし,エージング温度を振った場合を示している。前述のように,エージング温度が高い(重い条件)ほど電池容量値が低く,エージング温度が低い(軽い条件)ほど電池容量値が高くなっている。そこで,実線L1と,高温エージング後の狙いの電池容量Ctの水平線との交点により,標準のエージング温度τ1を定めることができる。 The solid line L1 at the lower right position in FIG. 4 and the three black circles above it indicate the battery capacity after high temperature aging of the secondary battery “C1”. Here, the aging time is constant and the aging temperature is varied. As described above, the battery capacity value is lower as the aging temperature is higher (heavy conditions), and the battery capacity value is higher as the aging temperature is lower (lighter conditions). Therefore, the standard aging temperature τ1 can be determined by the intersection of the solid line L1 and the horizontal line of the target battery capacity Ct after high temperature aging.
しかしながら,「C2」の二次電池の高温エージング後の電池容量は,実線L1ではなく破線L2とその上の3つの黒三角印のようになる。前述の容量差ΔCのためである。このため,「C2」の二次電池について同様にエージング温度τ1で高温エージングを行うと,その後の電池容量Csは,CtにΔCを加算した値となってしまう。よって「C2」の二次電池は,高温エージング後の電池容量による良否検査で不良品と判定されてしまうおそれがある。あるいは,電池容量Csが良品範囲内となるように判定基準を定めると,不良品とされるべき二次電池が良品と判定されてしまうおそれがある。 However, the battery capacity of the “C2” secondary battery after high-temperature aging is not a solid line L1, but a broken line L2 and three black triangles above it. This is because of the aforementioned capacity difference ΔC. For this reason, if high temperature aging is similarly performed on the secondary battery “C2” at the aging temperature τ1, the subsequent battery capacity Cs becomes a value obtained by adding ΔC to Ct. Therefore, the secondary battery of “C2” may be determined as a defective product in the quality inspection by the battery capacity after high temperature aging. Alternatively, if the determination standard is set so that the battery capacity Cs falls within the non-defective range, the secondary battery that should be determined as a defective product may be determined as a non-defective product.
このため「C2」の二次電池については,温度τ1ではなく別の温度で高温エージングを行うべきである。そこで,破線L2と電池容量Ctの水平線との交点により,「C2」の二次電池用のエージング温度τ2を定める。エージング温度τ2はいわば,高温エージング前の電池容量の差ΔCに基づいて標準のエージング温度τ1を補正したエージング温度であるといえる。このように,「C1」の二次電池と「C2」の二次電池とでエージング温度を分けることにより,高温エージング後の電池容量を狙いの値Ctに揃えるのである。なお,図4ではエージング時間を一定としエージング温度を振る場合を説明したが,逆に,エージング温度を一定としエージング時間を振る場合でも同様の考えで個々のエージング時間を定めることができる。 For this reason, the secondary battery of “C2” should be subjected to high temperature aging at a temperature other than the temperature τ1. Therefore, the aging temperature τ2 for the secondary battery of “C2” is determined by the intersection of the broken line L2 and the horizontal line of the battery capacity Ct. It can be said that the aging temperature τ2 is an aging temperature obtained by correcting the standard aging temperature τ1 based on the battery capacity difference ΔC before high-temperature aging. Thus, by dividing the aging temperature between the secondary battery of “C1” and the secondary battery of “C2”, the battery capacity after high-temperature aging is made equal to the target value Ct. Although FIG. 4 illustrates the case where the aging temperature is fixed and the aging temperature is varied, conversely, even when the aging temperature is constant and the aging time is varied, the individual aging time can be determined based on the same idea.
上記のようなエージング条件の設定は実際には,図5のグラフあるいは図6のグラフを用いて行うことができる。図5のグラフは,同一仕様でかつ良品の二次電池の高温エージング後の電池容量を狙いの一定値とするための,電池容量Cとエージング温度との関係を示すグラフである。図5のグラフでは,エージング温度に関わらずエージング時間は一定(例えば50h)としている。一方,図6のグラフは,同一仕様でかつ良品の二次電池の高温エージング後の電池容量を狙いの一定値とするための,電池容量Cとエージング時間との関係を示すグラフである。図6のグラフでは,エージング時間に関わらずエージング温度は一定(例えば62.5℃)としている。これらのグラフは,あらかじめ,同一仕様でかつ良品である多数の二次電池を用いた試験により取得しておく。 The setting of the aging conditions as described above can actually be performed using the graph of FIG. 5 or the graph of FIG. The graph of FIG. 5 is a graph showing the relationship between the battery capacity C and the aging temperature in order to set the battery capacity after high-temperature aging of a non-defective secondary battery having the same specification as a target constant value. In the graph of FIG. 5, the aging time is constant (for example, 50 hours) regardless of the aging temperature. On the other hand, the graph of FIG. 6 is a graph showing the relationship between the battery capacity C and the aging time in order to set the battery capacity after high temperature aging of a non-defective secondary battery having the same specification to a target constant value. In the graph of FIG. 6, the aging temperature is constant (for example, 62.5 ° C.) regardless of the aging time. These graphs are obtained in advance by tests using a number of secondary batteries having the same specifications and good products.
よって本形態では,図7に示すフローにより,エージング条件を設定して高温エージング工程を実施することができる。すなわち,まず初期充電工程で前述のように電池容量を取得する(#1)。これが,高温エージング前の電池容量Cである。すると,この電池容量Cを図5もしくは図6のグラフに当てはめることで,個々の二次電池についての高温エージング工程の条件を決定することができる(#2)。エージング温度の調整により決定する場合には図5を用い,エージング時間の調整により決定する場合には図6を用いる。 Therefore, in this embodiment, the aging condition can be set and the high temperature aging process can be performed by the flow shown in FIG. That is, first, the battery capacity is acquired as described above in the initial charging step (# 1). This is the battery capacity C before high temperature aging. Then, by applying this battery capacity C to the graph of FIG. 5 or FIG. 6, the conditions of the high temperature aging process for each secondary battery can be determined (# 2). FIG. 5 is used when determining by adjusting the aging temperature, and FIG. 6 is used when determining by adjusting the aging time.
このようにして決定されたエージング条件に基づき,高温エージング工程の実施単位を設定する(#3)。エージング条件は個々の二次電池ごとに決定されているので,高温エージング工程は,同一のエージング条件が決定されている二次電池を集めて実施することとなる。そのため図8に示すように,電池容量Cの値がごく近い二次電池100同士を拘束ジグ101で拘束して一体化する。この一体化したものを高温エージング工程の1つの実施単位とする。各二次電池を単独で1つの実施単位とすることがあってもよい。このようにして各二次電池ごとに決定されたエージング条件に従って,高温エージング工程が実施される(#4)。こうして行った高温エージング工程後の二次電池の電池容量は,良品であれば比較的狭い範囲内に分布しているはずである。
Based on the aging conditions determined in this way, the execution unit of the high temperature aging process is set (# 3). Since the aging conditions are determined for each secondary battery, the high temperature aging process is performed by collecting secondary batteries for which the same aging conditions are determined. Therefore, as shown in FIG. 8, the
よって,高温エージング工程より後に改めて電池容量を測定することで,その測定値により二次電池の良否検査を行うことができる(容量検査工程)。そのためには,測定値に対して単純に良品範囲を設定しておくだけの簡単な検査アルゴリズムで十分である。電池容量のばらつきを抑制するような別途の工程を行うことは必須ではない。 Therefore, by measuring the battery capacity anew after the high temperature aging process, the quality of the secondary battery can be inspected based on the measured value (capacity inspection process). For this purpose, a simple inspection algorithm that simply sets a non-defective range for measured values is sufficient. It is not essential to perform a separate process for suppressing variation in battery capacity.
そのための容量測定そのものは,例えば特許文献1の[0069]に記載されているような公知の方法で行えばよい。もし,この時点で測定された電池容量が前述の良品範囲から外れている場合には,その二次電池は何らかの不良品であると解される。また,電池容量による検査に加えて,自己放電による検査を合わせて行うこともできる(自己放電検査工程)。その検査方法も公知のものでよい。例えば,特許文献1の[0005]に記載されているように,所定時間放置したときの電池電圧値の低下状況に基づいて検査することができる。なお,容量検査工程と自己放電検査工程との順序は任意である。このようにして不良品が排除された二次電池は,再び充電されて電池電圧値が調整された上で出荷されることとなる。
For this purpose, the capacitance measurement itself may be performed by a known method as described in [0069] of
以上詳細に説明したように本実施の形態によれば,組立工程の後の初期充電工程にて,対象の二次電池の電池容量を取得する。これにより,個々の二次電池の高温エージング前の時点での電池容量Cを把握する。そして,電池容量Cに応じて個々の二次電池ごとに設定した高温エージング条件で高温エージング工程を実施する。こうすることで,各二次電池の良品である場合の高温エージング工程後における電池容量がなるべく均一になるようにする。このため,その後の容量検査で適切に二次電池の良否判定を行うことができる。このようにすることで,良否検査を適切に行うことができるようにした二次電池の製造方法が実現されている。 As described in detail above, according to the present embodiment, the battery capacity of the target secondary battery is acquired in the initial charging step after the assembly step. Thereby, the battery capacity C before the high temperature aging of each secondary battery is grasped. And a high temperature aging process is implemented on the high temperature aging conditions set for every secondary battery according to the battery capacity C. FIG. In this way, the battery capacity after the high-temperature aging process when each secondary battery is a good product is made as uniform as possible. For this reason, the quality determination of a secondary battery can be performed appropriately by subsequent capacity inspection. In this way, a method for manufacturing a secondary battery that can appropriately perform pass / fail inspection is realized.
なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,高温エージング工程後の良否検査は,容量検査だけでもよい。また,初期充電工程における充電電流は一定でなくてもよい。その場合の電池容量C(高温エージング前の電池容量)は,充電電流値を充電開始から充電終了まで時間積分して算出すればよい。また,電池容量Cそのもので直ちに良否判定を行う訳ではないとしたが,電池容量Cが通常の範囲から極端に外れているものについてはその時点で不良判定をしてもよい。また,電池容量Cに基づく高温エージング条件の設定においては,エージング温度とエージング時間との両方を調整するようにしてもよい。 Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the pass / fail inspection after the high temperature aging process may be only the capacity inspection. Further, the charging current in the initial charging step may not be constant. In this case, the battery capacity C (battery capacity before high-temperature aging) may be calculated by integrating the charging current value from the start of charging to the end of charging. In addition, the battery capacity C itself is not immediately judged as good or bad, but if the battery capacity C is extremely out of the normal range, it may be judged as defective at that time. In setting the high temperature aging condition based on the battery capacity C, both the aging temperature and the aging time may be adjusted.
100 二次電池
C 初期充電工程で取得した電池容量
Ic 充電電流
T 充電期間
100 Secondary battery C Battery capacity Ic acquired in the initial charging process Charging current T Charging period
Claims (1)
組み立てた二次電池を充電する初期充電工程と,
初期充電工程後の二次電池を室温より高い温度の環境下で保持するエージングを行う高温エージング工程とを行うことによる二次電池の製造方法であって,
前記初期充電工程にて対象の二次電池の電池容量の取得を行い,
前記初期充電工程で取得した電池容量に基づいて対象の二次電池についての前記高温エージング工程のエージング条件を決定する条件決定工程を行い,
前記高温エージング工程では,前記条件決定工程で決定されたエージング条件に従って対象の二次電池のエージングを行い,
前記条件決定工程では,電池容量が大きいほど重く,電池容量が小さいほど軽くなるようにエージング条件を決定することを特徴とする二次電池の製造方法。 An assembly process for assembling the secondary battery;
An initial charging process for charging the assembled secondary battery;
A method for producing a secondary battery by performing a high temperature aging process for performing aging to hold the secondary battery after the initial charging process in an environment at a temperature higher than room temperature,
Obtaining the battery capacity of the target secondary battery in the initial charging step,
Performing a condition determining step for determining the aging condition of the high temperature aging step for the target secondary battery based on the battery capacity acquired in the initial charging step;
In the high temperature aging process, the target secondary battery is aged according to the aging conditions determined in the condition determining process,
In the condition determining step, the aging condition is determined so that the battery capacity increases as the battery capacity increases and decreases as the battery capacity decreases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017121540A JP6760213B2 (en) | 2017-06-21 | 2017-06-21 | How to manufacture a secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017121540A JP6760213B2 (en) | 2017-06-21 | 2017-06-21 | How to manufacture a secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019008913A true JP2019008913A (en) | 2019-01-17 |
JP6760213B2 JP6760213B2 (en) | 2020-09-23 |
Family
ID=65029036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017121540A Active JP6760213B2 (en) | 2017-06-21 | 2017-06-21 | How to manufacture a secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6760213B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022225380A1 (en) * | 2021-04-23 | 2022-10-27 | 주식회사 엘지에너지솔루션 | Secondary battery manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014085323A (en) * | 2012-10-26 | 2014-05-12 | Toyota Motor Corp | Secondary battery inspection method |
JP2015122160A (en) * | 2013-12-20 | 2015-07-02 | トヨタ自動車株式会社 | Method of manufacturing secondary battery |
JP2016162559A (en) * | 2015-02-27 | 2016-09-05 | トヨタ自動車株式会社 | Inspection method of secondary battery |
JP2018026210A (en) * | 2016-08-08 | 2018-02-15 | トヨタ自動車株式会社 | Method for inspecting lithium ion secondary battery |
-
2017
- 2017-06-21 JP JP2017121540A patent/JP6760213B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014085323A (en) * | 2012-10-26 | 2014-05-12 | Toyota Motor Corp | Secondary battery inspection method |
JP2015122160A (en) * | 2013-12-20 | 2015-07-02 | トヨタ自動車株式会社 | Method of manufacturing secondary battery |
JP2016162559A (en) * | 2015-02-27 | 2016-09-05 | トヨタ自動車株式会社 | Inspection method of secondary battery |
JP2018026210A (en) * | 2016-08-08 | 2018-02-15 | トヨタ自動車株式会社 | Method for inspecting lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP6760213B2 (en) | 2020-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11940501B2 (en) | Method and apparatus for diagnosing low voltage of secondary battery cell | |
JP5692183B2 (en) | Secondary battery pre-shipment inspection method | |
US9588183B2 (en) | Short-circuit inspection method for secondary cell | |
JP6252439B2 (en) | Abnormality detection method and abnormality detection device for secondary battery | |
JP6202032B2 (en) | Secondary battery inspection method | |
US10847849B2 (en) | Inspection method of electrical storage device and manufacturing method thereof | |
US11011785B2 (en) | Electricity storage device testing method and electricity storage device manufacturing method | |
US20160161564A1 (en) | Test method for secondary battery | |
US10054645B2 (en) | Deterioration determination method, deterioration determination device, and storage medium | |
JP6308145B2 (en) | Secondary battery inspection method | |
KR20150144558A (en) | System for checking a fail in a secondary battery and method thereof | |
KR20140013965A (en) | Manufacturing method for secondary battery | |
JP5668663B2 (en) | Secondary battery inspection method and secondary battery manufacturing method | |
JP2017037764A (en) | Method for inspecting nonaqueous electrolyte secondary battery | |
KR102551798B1 (en) | Method for inspecting insulation of a secondary battery | |
JP6760213B2 (en) | How to manufacture a secondary battery | |
JP6529972B2 (en) | In situ recalibration of a reference electrode incorporated into an electrochemical system | |
JP2015032517A (en) | Manufacturing method of lithium ion secondary battery | |
JP2018055878A (en) | Manufacturing method of battery | |
JP5880972B2 (en) | Secondary battery inspection method | |
JP2016029616A (en) | Secondary battery inspection method | |
JP2018026210A (en) | Method for inspecting lithium ion secondary battery | |
JP6788800B2 (en) | Inspection method for non-aqueous electrolyte secondary batteries | |
JP5928815B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JP2024056309A (en) | Inspection device, and secondary battery inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200817 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6760213 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |