JP2019006638A - METHOD OF CHOOSING MgO-C BRICK, METHOD OF OPERATING MOLTEN METAL CONTAINER, AND LINING STRUCTURE OF MOLTEN METAL CONTAINER - Google Patents

METHOD OF CHOOSING MgO-C BRICK, METHOD OF OPERATING MOLTEN METAL CONTAINER, AND LINING STRUCTURE OF MOLTEN METAL CONTAINER Download PDF

Info

Publication number
JP2019006638A
JP2019006638A JP2017124286A JP2017124286A JP2019006638A JP 2019006638 A JP2019006638 A JP 2019006638A JP 2017124286 A JP2017124286 A JP 2017124286A JP 2017124286 A JP2017124286 A JP 2017124286A JP 2019006638 A JP2019006638 A JP 2019006638A
Authority
JP
Japan
Prior art keywords
mgo
brick
molten metal
metal container
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017124286A
Other languages
Japanese (ja)
Other versions
JP6885218B2 (en
Inventor
裕美 神子
Hiromi Kamiko
裕美 神子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017124286A priority Critical patent/JP6885218B2/en
Publication of JP2019006638A publication Critical patent/JP2019006638A/en
Application granted granted Critical
Publication of JP6885218B2 publication Critical patent/JP6885218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

To impart excellent durability to a MgO-C brick upon using the same in a lining structure of an intermittently operated molten metal container.SOLUTION: There is provided a method of choosing a MgO-C brick for use in a lining structure of an intermittently operated molten metal container, comprising a step of choosing a MgO-C brick whose test piece shows permeability of not lower than 10.0×10msubsequent to repeating processes of heating a test piece of the MgO-C brick up to 1600°C, keeping the test piece at 1600°C for 3 hours, slowly cooling the test piece down to 500°C, and keeping the test piece at 500°C for 3 hours, 10 times under a reduction atmosphere, and a step of choosing a MgO-C brick according to its apparent porosity subsequent to reduction calcination.SELECTED DRAWING: Figure 2

Description

本発明は、MgO−Cれんがの選定方法、溶融金属容器の操業方法、および溶融金属容器の内張り構造に関する。   The present invention relates to a method for selecting an MgO-C brick, a method for operating a molten metal container, and a lining structure of the molten metal container.

MgO−Cれんが(マグネシアカーボンれんが)は、マグネシアおよびグラファイトを主骨材として構成されるれんがであり、耐食性および耐スポール性に優れることから転炉などの溶融金属容器の内張り構造に広く用いられている。MgO−Cれんがでは、組織を緻密化することで耐用性が向上することが知られている。   MgO-C brick (magnesia carbon brick) is a brick composed mainly of magnesia and graphite, and is widely used for lining structures of molten metal containers such as converters because of its excellent corrosion resistance and spall resistance. Yes. In MgO-C brick, it is known that durability is improved by densifying the structure.

例えば、特許文献1には、マグネシア原料の粒度構成の適正化、およびグラファイトの粒度構成の適正化により、受熱後におけるMgO−Cれんがの一層の緻密化を図り、耐用性の高いMgO−Cれんがを提供するための技術が記載されている。特許文献1によれば、MgO−Cれんがの組織を緻密化することによって、外気との通気性を低くし、スラグや溶銑、溶鋼の浸透を抑制することによって、MgO−Cれんがの耐酸化性や耐食性を向上させることができる。   For example, Patent Document 1 discloses a highly durable MgO-C brick, which is made more dense after heat reception by optimizing the particle size composition of the magnesia raw material and the particle size composition of graphite. Techniques for providing are described. According to Patent Document 1, the MgO-C brick is made denser, thereby reducing the permeability to the outside air, and suppressing the penetration of slag, hot metal, and molten steel, thereby preventing the oxidation resistance of MgO-C brick. And corrosion resistance can be improved.

特開2014−166943号公報JP 2014-166943 A

しかしながら、例えば転炉の内張り構造にMgO−Cれんがを用いる場合、上記のように緻密化されたMgO−Cれんがを用いても、操業条件によっては期待されたような耐用性が得られないことがあった。具体的には、溶鋼が排出されてから次の溶銑が装入されるまでの待機時間が長く、その間に稼働面に大きな温度低下が発生する間欠操業の場合に、稼働面を構成するMgO−Cれんがに想定以上の損耗が発生することがあった。   However, for example, when using MgO-C brick for the lining structure of the converter, even if the MgO-C brick densified as described above is used, the expected durability cannot be obtained depending on the operating conditions. was there. Specifically, in the case of intermittent operation in which the waiting time from when the molten steel is discharged to when the next molten iron is charged is long, and during which a large temperature drop occurs on the operating surface, MgO − constituting the operating surface C bricks may be worn more than expected.

本発明は、MgO−Cれんがを間欠操業を行う溶融金属容器の内張り構造に用いる場合に良好な耐用性を得ることが可能な、新規かつ改良されたMgO−Cれんがの選定方法、溶融金属容器の操業方法、およびMgO−Cれんがを提供することを目的とする。   The present invention relates to a novel and improved method for selecting an MgO-C brick, a molten metal container capable of obtaining good durability when using MgO-C brick for a lining structure of a molten metal container for intermittent operation. It is an object of the present invention to provide an operation method and an MgO-C brick.

本発明のある観点によれば、間欠操業を行う溶融金属容器の内張り構造に用いられるMgO−Cれんがの選定方法であって、MgO−Cれんがの試験片を1600℃まで加熱する工程、試験片を1600℃で3時間保持する工程、試験片を500℃まで徐冷する工程、および試験片を500℃で3時間保持する工程を、還元雰囲気下で10回繰り返した後に、試験片の通気率が10.0×10−15以上であるMgO−Cれんがを選定するステップと、還元焼成後の見掛け気孔率に基づいてMgO−Cれんがを選定するステップとを含む、MgO−Cれんがの選定方法が提供される。 According to an aspect of the present invention, there is provided a method for selecting an MgO-C brick used in a lining structure of a molten metal container that performs intermittent operation, the step of heating a test piece of MgO-C brick to 1600 ° C, a test piece The test piece was kept at 1600 ° C. for 3 hours, the test piece was slowly cooled to 500 ° C., and the test piece was held at 500 ° C. for 3 hours under a reducing atmosphere 10 times. A MgO-C brick including a step of selecting an MgO-C brick having a size of 10.0 × 10 −15 m 2 or more and a step of selecting an MgO—C brick based on an apparent porosity after reduction firing. A selection method is provided.

上記の選定方法において、還元焼成後の見掛け気孔率に基づいてMgO−Cれんがを選定するステップでは、1400℃で30時間還元焼成した後の見掛け気孔率が10%未満のMgO−Cれんがを選定してもよい。   In the above selection method, in the step of selecting MgO-C brick based on the apparent porosity after reduction firing, MgO-C brick having an apparent porosity of less than 10% after reduction firing at 1400 ° C. for 30 hours is selected. May be.

本発明の別の観点によれば、MgO−Cれんがで形成される内張り構造を有する溶融金属容器の操業方法であって、溶融金属容器を用いて間欠操業を行う工程を含み、MgO−Cれんがは、1600℃まで加熱する工程、1600℃で3時間保持する工程、500℃まで徐冷する工程、および500℃で3時間保持する工程を、還元雰囲気下で10回繰り返した後の通気率が10.0×10−15以上、かつ1400℃で30時間還元焼成した後の見掛け気孔率が10%未満である、溶融金属容器の操業方法が提供される。 According to another aspect of the present invention, there is provided a method of operating a molten metal container having a lining structure formed of MgO-C brick, including a step of performing intermittent operation using the molten metal container, and includes a MgO-C brick. The air permeability after repeating the step of heating to 1600 ° C., the step of holding at 1600 ° C. for 3 hours, the step of gradually cooling to 500 ° C., and the step of holding at 500 ° C. for 3 hours under a reducing atmosphere is 10 times. There is provided a method for operating a molten metal container having an apparent porosity of 10.0 × 10 −15 m 2 or more and reduction firing at 1400 ° C. for 30 hours, which is less than 10%.

本発明のさらに別の観点によれば、間欠操業を行う溶融金属容器の、MgO−Cれんがで形成される内張り構造であって、MgO−Cれんがは、1600℃まで加熱する工程、1600℃で3時間保持する工程、500℃まで徐冷する工程、および500℃で3時間保持する工程を、還元雰囲気下で10回繰り返した後の通気率が10.0×10−15以上、かつ1400℃で30時間還元焼成した後の見掛け気孔率が10%未満である、溶融金属容器の内張り構造が提供される。 According to still another aspect of the present invention, a molten metal container that is intermittently operated is a lining structure formed of MgO-C brick, and the MgO-C brick is heated to 1600 ° C at 1600 ° C. The air permeability after repeating the step of holding for 3 hours, the step of gradually cooling to 500 ° C., and the step of holding for 3 hours at 500 ° C. in a reducing atmosphere 10 times or more is 10.0 × 10 −15 m 2 and There is provided a lining structure of a molten metal container having an apparent porosity of less than 10% after reduction firing at 1400 ° C. for 30 hours.

以上で説明したように、本発明によれば、選定されたMgO−Cれんがを間欠操業を行う溶融金属容器の内張り構造に用いる場合に良好な耐用性を得ることができる。   As described above, according to the present invention, when the selected MgO—C brick is used for the lining structure of a molten metal container that performs intermittent operation, good durability can be obtained.

本発明の一実施形態に係るMgO−Cれんがを内張り構造に用いた転炉の断面図である。It is sectional drawing of the converter which used the MgO-C brick which concerns on one Embodiment of this invention for the lining structure. 本発明の一実施形態に係るMgO−Cれんがの選定方法を示すフローチャートである。It is a flowchart which shows the selection method of the MgO-C brick which concerns on one Embodiment of this invention. 熱処理の繰り返し回数と通気率との関係を示すグラフである。It is a graph which shows the relationship between the repetition frequency of heat processing, and an air permeability. 熱処理の繰り返し回数と通気率との関係を示すグラフである。It is a graph which shows the relationship between the repetition frequency of heat processing, and an air permeability. 熱処理の繰り返し回数と通気率との関係を示すグラフである。It is a graph which shows the relationship between the repetition frequency of heat processing, and an air permeability. 還元焼成後の見掛け気孔率と回転浸食試験(通常)での浸食量指数との関係を示すグラフである。It is a graph which shows the relationship between the apparent porosity after reduction | restoration baking, and the erosion amount index | exponent in a rotation erosion test (normal). 還元焼成後の見掛け気孔率と回転浸食試験(間欠)での浸食量指数との関係を示すグラフである。It is a graph which shows the relationship between the apparent porosity after reduction | restoration baking, and the erosion amount index | exponent in a rotation erosion test (intermittent). 繰り返し熱処理後の通気率と回転浸食試験(通常)での浸食量指数との関係を示すグラフである。It is a graph which shows the relationship between the air permeability after repeated heat processing, and the erosion amount index | exponent in a rotation erosion test (normal). 繰り返し熱処理後の通気率と回転浸食試験(間欠)での浸食量指数との関係を示すグラフである。It is a graph which shows the relationship between the air permeability after repeated heat processing, and the erosion amount index | exponent in a rotation erosion test (intermittent). 繰り返し熱処理後の通気率と還元焼成後の見掛け気孔率との関係を示すグラフである。It is a graph which shows the relationship between the air permeability after repeated heat processing, and the apparent porosity after reduction baking.

図1は、本発明の一実施形態に係るMgO−Cれんがを内張り構造に用いた転炉の断面図である。図1を参照すると、本発明に係る溶融金属容器の例である転炉1は、MgO−Cれんがで形成された内張り構造2を有する。内張り構造2の稼働面2sの温度は、転炉1による溶銑の処理中には溶銑と同程度、具体的には例えば約1600℃〜1800℃であるが、処理後の溶鋼が排出された後、次に溶銑が装入されるまでの待機時間には上記温度よりも低下する。   FIG. 1 is a cross-sectional view of a converter using MgO—C brick according to an embodiment of the present invention for a lining structure. Referring to FIG. 1, a converter 1 which is an example of a molten metal container according to the present invention has a lining structure 2 formed of MgO-C brick. The temperature of the working surface 2s of the lining structure 2 is about the same as the hot metal during the hot metal treatment by the converter 1, specifically, for example, about 1600 ° C. to 1800 ° C., but after the treated molten steel is discharged. In the standby time until the molten iron is charged next, the temperature falls below the above temperature.

ここで、転炉1の稼働率が高く、待機時間が短い場合には温度低下は小さい。この場合、稼働面2sは例えば処理中と同程度の温度に維持される。一方、転炉1の稼働率が低く、待機時間が長い場合には温度低下が大きい。この場合、稼働面2sは上記温度を大きく下回る温度まで放冷されることになる。例えば、稼働面2sは、待機時間中に、付着したスラグの可視放射が顕著でなくなる約800℃、あるいはさらに低い約500℃といった温度まで徐冷される場合もある。   Here, when the operating rate of the converter 1 is high and the standby time is short, the temperature drop is small. In this case, the operating surface 2s is maintained at a temperature similar to that during processing, for example. On the other hand, when the operating rate of the converter 1 is low and the standby time is long, the temperature drop is large. In this case, the operating surface 2s is allowed to cool to a temperature that is significantly lower than the above temperature. For example, the operating surface 2s may be gradually cooled to a temperature of about 800 ° C. or a lower temperature of about 500 ° C. during which the visible radiation of the attached slag becomes insignificant during the waiting time.

本明細書では、このように、転炉1に溶銑または溶鋼が装入されていない間に内張り構造2の稼働面2sに発生する温度低下が所定の範囲を超えるような操業を間欠操業という。転炉1以外の溶融金属容器でも、同様に間欠操業を定義することができる。   In the present specification, an operation in which the temperature drop generated on the operating surface 2s of the lining structure 2 exceeds a predetermined range while the converter 1 is not charged with hot metal or molten steel is referred to as intermittent operation. In the molten metal container other than the converter 1, the intermittent operation can be defined similarly.

上述のように、間欠操業を行う転炉1では、緻密化されたMgO−Cれんがを用いた場合であっても、内張り構造2の稼働面2sを構成するMgO−Cれんがに想定以上の損耗が発生することがある。本発明者らが稼働面2sの損耗箇所を観察した結果、稼働面2sの近傍でMgO−Cれんがの内部に空隙が多く存在することが見出された。間欠操業を行う転炉1では、待機時間の後に再び溶銑が装入されたときに稼働面2sが大きな熱衝撃を受け、それによって上記の空隙を起点として稼働面2sが剥離するものと考えられる。   As described above, in the converter 1 that performs intermittent operation, even when densified MgO-C brick is used, the MgO-C brick constituting the working surface 2s of the lining structure 2 is worn more than expected. May occur. As a result of observing the worn part of the working surface 2s, the present inventors have found that there are many voids in the MgO-C brick in the vicinity of the working surface 2s. In the converter 1 that performs intermittent operation, it is considered that when the hot metal is charged again after the standby time, the operating surface 2s is subjected to a large thermal shock, whereby the operating surface 2s is peeled off from the above-described gap. .

一般的に、れんが内部の隙間は、高温減圧下でMgO−C反応を起こしたマグネシアおよびグラファイトが消失すること、およびMgO骨材の膨張収縮によって生じると考えられる。しかし、MgO−Cれんがの稼働面2sが緻密化された場合(より具体的には、MgO−Cれんがの稼働面にスラグが浸潤した場合)、上記のMgO−C反応や、炉内のスラグ成分とグラファイトとの反応で発生したCOガスが、炉内に放出されずに稼働面2sの緻密化された層の内側に滞留する割合が増加する。上記の損耗箇所で観察された空隙は、この滞留したCOガスの作用によってできたものと考えられる。   In general, it is considered that the gap inside the brick is caused by the disappearance of magnesia and graphite that have caused the MgO-C reaction under high temperature and reduced pressure, and the expansion and contraction of the MgO aggregate. However, when the working surface 2s of the MgO-C brick is densified (more specifically, when the slag infiltrates the working surface of the MgO-C brick), the above MgO-C reaction or the slag in the furnace The ratio of the CO gas generated by the reaction between the component and graphite staying inside the densified layer of the working surface 2s without being released into the furnace increases. It is considered that the voids observed at the above-mentioned worn portions were formed by the action of the staying CO gas.

MgO−Cれんがの組織を緻密化して耐酸化性や耐食性を向上させることが、MgO−Cれんがの耐用性を向上させるために有効であることは、既に述べた通りである。それゆえ、本発明者らは、このような緻密化の効果を維持しつつ、上記のような空隙の生成を原因とする稼働面2sの剥離を防止する方法を検討した。その結果、内張り構造2を形成するMgO−Cれんががある程度の通気率を有し、COガスが稼働面2sの内側に滞留せずにれんが内部に拡散されることによって、空隙の生成が防止される可能性に想到した。   As described above, it is effective to improve the oxidation resistance and corrosion resistance by densifying the MgO-C brick structure to improve the durability of the MgO-C brick. Therefore, the present inventors have studied a method for preventing the separation of the working surface 2s caused by the generation of voids as described above while maintaining such a densification effect. As a result, the MgO-C brick forming the lining structure 2 has a certain air permeability, and the CO gas does not stay inside the working surface 2s and is diffused inside the brick, thereby preventing the generation of voids. I came up with the possibility.

MgO−Cれんがは、製造時にはほとんど通気率を有さないが、転炉1で熱負荷を受けて上記のようなMgO−C反応が起きることによって組織に隙間が生じ、さらに間欠操業の場合にはMgO骨材が膨張収縮を繰り返すことによって隙間が拡張されて通気孔を形成し、通気率が上昇する。上述のように、稼働面2sが緻密化され、MgO−C反応によって発生するCOガスが緻密層直下に滞留して空隙を生成すると稼働面2sの剥離の原因になるが、そうではなく、MgO−Cれんがの内部で発生した隙間が、MgO骨材の膨張収縮等によって拡張されれば、通気孔としてCOガスをMgO−Cれんがの内部に拡散させる作用を有し、緻密層直下の空隙の生成を抑制しうるものと考えられる。本実施形態に係るMgO−Cれんがは、このような知見に基づき、以下で説明するような選定方法によって選定される。   MgO-C bricks have almost no air permeability at the time of manufacture, but when the MgO-C reaction as described above occurs under the heat load in the converter 1, gaps are generated in the structure, and in the case of intermittent operation. As the MgO aggregate repeatedly expands and contracts, the gap is expanded to form a vent hole, and the air permeability is increased. As described above, when the working surface 2s is densified and the CO gas generated by the MgO-C reaction stays immediately below the dense layer to generate voids, the working surface 2s is peeled off. If the gap generated inside the -C brick is expanded by expansion and contraction of the MgO aggregate, etc., it has the function of diffusing CO gas into the MgO-C brick as a vent hole, and the gap immediately below the dense layer It is thought that generation can be suppressed. Based on such knowledge, the MgO—C brick according to the present embodiment is selected by a selection method as described below.

図2は、本発明の一実施形態に係るMgO−Cれんがの選定方法を示すフローチャートである。図2を参照すると、MgO−Cれんがの選定方法は、繰り返し熱処理後の通気率に基づいてMgO−Cれんがを選定するステップS1と、還元焼成後の見掛け気孔率に基づいてMgO−Cれんがを選定するステップS2とを含む。   FIG. 2 is a flowchart showing a method for selecting an MgO—C brick according to an embodiment of the present invention. Referring to FIG. 2, the selection method of MgO-C brick includes step S1 of selecting MgO-C brick based on the air permeability after repeated heat treatment, and MgO-C brick based on the apparent porosity after reduction firing. And selecting step S2.

ステップS1は、MgO−Cれんがに対して上記のような転炉1における間欠操業を模擬した繰り返し熱処理を実施した上で通気率を測定し、その結果に基づいて内張り構造2に適したMgO−Cれんがを選定するステップである。具体的には、MgO−Cれんがの試験片を1600℃まで加熱する工程、試験片を1600℃で3時間保持する工程、試験片を500℃まで徐冷する工程、および試験片を500℃で3時間保持する工程を還元雰囲気下で10回繰り返した後に、JIS R2115に規定される方法で通気率を測定し、通気率が10.0×10−15以上であるMgO−Cれんがを使用に適したものとして選定する。 In step S1, MgO-C brick is subjected to repeated heat treatment simulating the intermittent operation in the converter 1 as described above, and the air permeability is measured. Based on the result, MgO- suitable for the lining structure 2 is measured. This is the step of selecting C brick. Specifically, the step of heating the MgO-C brick test piece to 1600 ° C, the step of holding the test piece at 1600 ° C for 3 hours, the step of gradually cooling the test piece to 500 ° C, and the test piece at 500 ° C After repeating the step of holding for 3 hours 10 times in a reducing atmosphere, the air permeability was measured by the method prescribed in JIS R2115, and the MgO-C brick having an air permeability of 10.0 × 10 −15 m 2 or more was measured. Select one suitable for use.

ステップS2は、例えば特開2014−166943号公報に記載されているように、MgO−Cれんがを予め還元焼成して転炉1で内張り構造2として使用されたときの状態に近づけた上で、組織の緻密さの指標として見掛け気孔率を測定し、その結果に基づいて内張り構造2に適したMgO−Cれんがを選定するステップである。具体的には、MgO−Cれんがの試験片の還元焼成を1400℃で30時間実施した後に、JIS A1509−3に規定される方法で見掛け気孔率を測定し、見掛け気孔率が10%未満であるMgO−Cれんがを使用に適したものとして選定する。ここで、還元焼成の時間は30時間には限定されないが、MgO−Cれんがは不焼成煉瓦であるため、長時間の還元焼成を実施することによって、実機での使用中に発生する成分の揮発やMgO−C反応、金属反応による焼き締まりなどを再現することができ、実機での操業が繰り返された後の表面の開気孔の状態をより正確に評価することができる。   Step S2, for example, as described in Japanese Patent Application Laid-Open No. 2014-166943, after MgO-C brick is preliminarily reduced and fired and brought close to the state when used as the lining structure 2 in the converter 1, This is a step of measuring the apparent porosity as an index of the fineness of the structure, and selecting an MgO—C brick suitable for the lining structure 2 based on the result. Specifically, after the reduction firing of the MgO-C brick test piece was performed at 1400 ° C. for 30 hours, the apparent porosity was measured by the method defined in JIS A1509-3, and the apparent porosity was less than 10%. A certain MgO-C brick is selected as suitable for use. Here, the time for reduction firing is not limited to 30 hours, but since MgO-C brick is unfired brick, volatilization of components generated during use in an actual machine by performing reduction firing for a long time. In addition, it is possible to reproduce the tightening due to MgO—C reaction, metal reaction, and the like, and it is possible to more accurately evaluate the state of the open pores on the surface after the operation in the actual machine is repeated.

図3〜図5は、後述する実施例における例1〜16をサンプルとして、熱処理の繰り返し回数と通気率との関係を示すグラフである。図3〜図5を参照すると、熱処理のサイクルが概ね10回繰り返されるまでは各例において通気率が上昇し、また各例の間で通気率の大小関係が入れ替わっていることがわかる。その一方で、熱処理のサイクルが概ね10回繰り返された後は、各例における通気率の上昇が緩やかになり、また各例の間で通気率の大小関係が入れ替わることもなくなっていることがわかる。   3 to 5 are graphs showing the relationship between the number of repetitions of the heat treatment and the air permeability, using Examples 1 to 16 in Examples described later as samples. 3 to 5, it can be seen that the air permeability increases in each example until the heat treatment cycle is repeated approximately 10 times, and the magnitude relationship of the air permeability is switched between the examples. On the other hand, after the heat treatment cycle is repeated approximately 10 times, the increase of the air permeability in each example becomes moderate, and it is understood that the magnitude relationship of the air permeability does not change between the examples. .

これは、MgO−C反応を起こしたマグネシアおよびグラファイトが消失して隙間が生じると、残ったマグネシアとグラファイトとの間の接触部分が減るため、熱処理のサイクルが繰り返されるにつれてMgO−C反応が起こりにくくなり、れんが内部に新たな隙間が形成されなくなるためであると考えられる。また、マグネシアの熱による膨張量は有限であるため、マグネシアの熱膨張および収縮による隙間の拡張も、熱処理のサイクルが繰り返されるにつれて収束すると考えられる。   This is because, when the magnesia and graphite that have caused the MgO-C reaction disappear and gaps are formed, the contact portion between the remaining magnesia and graphite decreases, so that the MgO-C reaction occurs as the heat treatment cycle is repeated. This is considered to be because it becomes difficult to form a new gap inside the brick. Further, since the amount of expansion of magnesia due to heat is limited, it is considered that expansion of the gap due to thermal expansion and contraction of magnesia converges as the heat treatment cycle is repeated.

以上の点を考慮して、本実施形態では、熱処理のサイクルを10回繰り返した後に測定した通気率をMgO−Cれんがの選定に利用することとした。なお、図3〜図5のグラフに示したように、各例では、熱処理のサイクルを10回繰り返したところで通気率が所定値(例1〜例6では10.0×10−15以上)に達している。また、サンプルの条件によって10回未満でも通気率がほぼ一定になるのであれば、熱処理のサイクルを2回以上繰り返した後に通気率の変化が安定したときの通気率の値を選定に利用してもよい。 Considering the above points, in this embodiment, the air permeability measured after repeating the heat treatment cycle 10 times is used for selection of the MgO-C brick. As shown in the graphs of FIGS. 3 to 5, in each example, the air permeability was a predetermined value (10.0 × 10 −15 m 2 or more in Examples 1 to 6) when the heat treatment cycle was repeated 10 times. ). Also, if the air permeability is substantially constant even if it is less than 10 times depending on the conditions of the sample, use the value of the air permeability when the change in air permeability is stable after repeating the heat treatment cycle twice or more for selection. Also good.

本実施形態では、上記で図2を参照して説明したステップS1およびステップS2でいずれも使用に適するものとして選定されたMgO−Cれんがを用いて転炉1の内張り構造2を形成することによって、間欠操業を行う転炉1においても、内張り構造2の稼働面2sの剥離を防止し、良好な耐用性を得ることができる。   In this embodiment, by forming the lining structure 2 of the converter 1 using the MgO—C brick selected as suitable for use in Steps S1 and S2 described above with reference to FIG. 2. Even in the converter 1 that performs intermittent operation, peeling of the working surface 2s of the lining structure 2 can be prevented, and good durability can be obtained.

次に、本発明の実施例について説明する。なお、以下で説明する実施例は、本発明の実施可能性および効果を確認するために採用した条件例にすぎず、本発明が以下の実施例の条件に限定されるものではない。   Next, examples of the present invention will be described. In addition, the Example demonstrated below is only the example of conditions employ | adopted in order to confirm the feasibility and effect of this invention, and this invention is not limited to the conditions of the following Examples.

以下の表に、本発明の実施例において選定の対象とされた例1〜例16に係るMgO−Cれんがの組成を示す。各例の間では、マグネシアおよびグラファイトの質量比(マグネシア87質量%、グラファイト13質量%)および金属アルミニウムの添加量(外掛けで0.5質量%)を一定としながら、マグネシアおよびグラファイトの粒度構成を変えている。各例について、上記で本発明の一実施形態として説明した選定方法に従って使用の適否を判定した上で、間欠操業を行う転炉1で内張り構造2に使用して実機試験を実施し、稼働面2sの損耗速度を測定した。また、各例について、通常操業(待機時間中の稼働面の温度低下が無視できる操業)および間欠操業の両方を模擬した回転浸食試験を実施し、それぞれの場合における浸食量指数を算出した。   The following table | surface shows the composition of the MgO-C brick which concerns on Example 1- Example 16 used as the object of selection in the Example of this invention. Between each example, the particle size composition of magnesia and graphite was kept constant while the mass ratio of magnesia and graphite (magnesia 87 mass%, graphite 13 mass%) and the amount of metallic aluminum added (0.5 mass% on the outer shell) were constant. Is changing. For each example, after determining the suitability for use according to the selection method described above as an embodiment of the present invention, the converter 1 that performs intermittent operation is used for the lining structure 2 and the actual machine test is performed. A wear rate of 2 s was measured. Moreover, about each example, the rotary erosion test which simulated both normal operation (operation which can ignore the temperature fall of the working surface during standby time) and intermittent operation was implemented, and the erosion amount index in each case was calculated.

Figure 2019006638
Figure 2019006638

Figure 2019006638
Figure 2019006638

Figure 2019006638
Figure 2019006638

例1〜例6では、いずれも、マグネシアおよびグラファイトの全体に対して、粗大粒(粒径1mm以上)のマグネシアの比率が50質量%であり、微粉粒(粒径0.075mm未満)のマグネシアの比率が2質量%以下である。このようなマグネシアの粒度構成は、一般的な緻密化されたMgO−れんがに比べると粗大粒が多く、微粉粒が少ない構成である。本発明者らの知見によれば、粗大粒のマグネシアが多いほど、熱膨張によって粒子間に隙間ができやすく、この隙間が通気孔になることによって通気率が上昇する。また、微粉粒のマグネシアが少ないほど、マグネシアの体積に対して表面積が小さくなるために、MgO−C反応によるCOガスの発生が抑制される。   In each of Examples 1 to 6, the ratio of coarse magnesia (particle size of 1 mm or more) to magnesia and graphite is 50% by mass, and magnesia of fine particles (particle size of less than 0.075 mm). Is 2 mass% or less. Such a magnesia particle size configuration is a configuration in which there are more coarse particles and fewer fine particles than general densified MgO-brick. According to the knowledge of the present inventors, the larger the coarse-grained magnesia, the easier it is to form a gap between particles due to thermal expansion, and the air permeability increases as this gap becomes a vent hole. Moreover, since the surface area becomes smaller with respect to the volume of magnesia as the amount of fine magnesia is smaller, the generation of CO gas due to the MgO—C reaction is suppressed.

加えて、例1〜例6では、いずれも、グラファイトの平均粒径が0.3mmを超えている。グラファイトの粒径が大きいほど、グラファイトの体積に対して表面積が小さくなるために、MgO−C反応や炉内のスラグ成分との反応によるCOガスの発生が抑制される。   In addition, in all of Examples 1 to 6, the average particle diameter of graphite exceeds 0.3 mm. The larger the particle size of the graphite, the smaller the surface area with respect to the volume of the graphite. Therefore, the generation of CO gas due to the MgO—C reaction and the reaction with the slag component in the furnace is suppressed.

各例における通気率の測定では、JIS R2115に従い、見掛け気孔率の測定時と同じ形状のMgO―Cれんがの試験片をコークス粉末を充填したSiC質の隔壁箱に封入した上で、電気炉を用いて隔壁箱を1600℃まで加熱する工程、隔壁箱を1600℃で3時間保持する工程、隔壁箱を500℃まで徐冷する工程、および隔壁箱を500℃で3時間保持する工程を還元雰囲気下で10回以上繰り返し、1サイクル毎に室温まで徐冷した後の通気率を測定した。この結果、例1〜例6のすべてで、10回目以降の通気率は10.0×10−15以上であった。従って、例1〜例6に係るMgO−Cれんがは、図2を参照して説明した本発明の一実施形態に係る選定方法のステップS1で、使用に適したものとして選定される。 In the measurement of the air permeability in each example, in accordance with JIS R2115, an MgO—C brick test piece having the same shape as that of the apparent porosity was sealed in a SiC partition box filled with coke powder, Using a reducing atmosphere to heat the partition box to 1600 ° C., hold the partition box at 1600 ° C. for 3 hours, slowly cool the partition box to 500 ° C., and hold the partition box at 500 ° C. for 3 hours The air permeability after repeated slow cooling to room temperature for each cycle was measured 10 times or more. As a result, in all of Examples 1 to 6, the air permeability after the 10th time was 10.0 × 10 −15 m 2 or more. Therefore, the MgO-C brick according to Examples 1 to 6 is selected as suitable for use in step S1 of the selection method according to the embodiment of the present invention described with reference to FIG.

一方、各例における見掛け気孔率の測定では、JIS A1509−3の規定に従い、MgO−Cれんがの試験片を直径50±0.5mm、高さ50±0.5mmの円柱状とし、試験片をコークス粉末を充填したSiC質の隔壁箱に封入した上で、1400℃で30時間にわたって焼成し、室温まで徐冷した後に見掛け気孔率を測定した。この結果、例1〜例6のすべてで、見掛け気孔率は10%未満であった。従って、例1〜例6に係るMgO−Cれんがは、図2を参照して説明した本発明の一実施形態に係る選定方法のステップS2でも、使用に適したものとして選定される。   On the other hand, in the measurement of the apparent porosity in each example, in accordance with JIS A1509-3, the MgO-C brick test piece was formed into a cylindrical shape having a diameter of 50 ± 0.5 mm and a height of 50 ± 0.5 mm. After sealing in a SiC partition wall box filled with coke powder, firing was performed at 1400 ° C. for 30 hours, and after cooling to room temperature, the apparent porosity was measured. As a result, in all of Examples 1 to 6, the apparent porosity was less than 10%. Therefore, the MgO-C brick according to Examples 1 to 6 is selected as suitable for use even in step S2 of the selection method according to the embodiment of the present invention described with reference to FIG.

一方、例7〜例16は、図2を参照して説明した本発明の一実施形態に係る選定方法のステップのいずれかにおいて、使用に適するものとして選定されない例である。   On the other hand, Examples 7 to 16 are examples that are not selected as suitable for use in any of the steps of the selection method according to the embodiment of the present invention described with reference to FIG.

具体的には、例7〜例15は、還元焼成後の見掛け気孔率が10%未満であるものの、繰り返し熱処理後の通気率が10.0×10−15に満たない例である(ステップS1で不選定)。MgO−Cれんがの組成についていえば、例7、例8および例15では、微粉粒(粒径0.075mm未満)のマグネシアの比率が2質量%を超えている。また、例9、例13および例14では、グラファイトの平均粒径が0.3mm未満である。例10〜例12、例14および例15では、粗大粒(粒径1mm以上)のマグネシアの比率が50質量%未満である。 Specifically, Examples 7 to 15 are examples in which the apparent porosity after reduction firing is less than 10%, but the air permeability after repeated heat treatment is less than 10.0 × 10 −15 m 2 ( (Not selected in step S1). Speaking of the composition of the MgO-C brick, in Examples 7, 8, and 15, the ratio of magnesia of fine particles (particle size less than 0.075 mm) exceeds 2% by mass. In Examples 9, 13, and 14, the average particle size of graphite is less than 0.3 mm. In Examples 10 to 12, Example 14, and Example 15, the proportion of magnesia of coarse particles (particle size of 1 mm or more) is less than 50% by mass.

一方、例16は、繰り返し熱処理後の通気率が10.0×10−15を超えるものの、還元焼成後の見掛け気孔率が10%を超える例である(ステップS2で不選定)。例16では、微粉粒のマグネシアの比率が2質量%を超えており、かつグラファイトの平均粒径が0.3mm未満である。 On the other hand, Example 16 is an example in which the air permeability after repeated heat treatment exceeds 10.0 × 10 −15 m 2 , but the apparent porosity after reduction firing exceeds 10% (not selected in Step S2). In Example 16, the proportion of magnesia of fine particles exceeds 2% by mass, and the average particle size of graphite is less than 0.3 mm.

上記のような各例における、転炉1を用いた実機試験の結果について説明する。実機として用いられた転炉1は容量300tであり、間欠操業を行っている。具体的には、転炉1では、溶鋼を排出した後、次に溶銑が装入されるまでの待機時間に、稼働面2sの温度が約500℃まで低下する。実機試験では、転炉1で、各例に係るMgO−Cれんがで形成した内張り構造2の初期厚みと1000チャージ(ch)の溶銑を処理した後の厚み(最も損耗が大きい部位)とを測定し、その差分をチャージの数で除することによって損耗速度(mm/ch)を算出した。   The result of the actual machine test using the converter 1 in each of the above examples will be described. The converter 1 used as an actual machine has a capacity of 300 t and performs intermittent operation. Specifically, in the converter 1, after the molten steel is discharged, the temperature of the working surface 2s is reduced to about 500 ° C. during the standby time until the molten iron is charged next. In the actual machine test, in the converter 1, the initial thickness of the lining structure 2 formed of the MgO-C brick according to each example and the thickness after the 1000-charge (ch) hot metal (ch) were measured (the portion with the greatest wear) were measured. The wear rate (mm / ch) was calculated by dividing the difference by the number of charges.

本発明者らの観察によれば、上記のような間欠操業を行う転炉1では、平均すると6chに1回の割合で稼働面2sの剥離が発生する。また、1回に剥離する稼働面2sの層の厚みは平均すると約3mmである。このような観察結果から、転炉1の間欠操業によって稼働面2sの剥離が発生している部位では、損耗速度が平均して0.50mm/ch(=3mm/6ch)になると仮定した。一方、稼働面2sの剥離が発生しなかった部位では主に溶損によって稼働面2sが損耗するが、この部位における損耗速度は平均して0.25mm/chであった。   According to the observations by the present inventors, in the converter 1 that performs the intermittent operation as described above, the operation surface 2s is peeled off at a rate of once per 6ch on average. Moreover, the thickness of the layer of the working surface 2s which peels at once is about 3 mm on average. From such observation results, it was assumed that the wear rate averaged 0.50 mm / ch (= 3 mm / 6 ch) at the site where the operating surface 2 s was peeled off due to the intermittent operation of the converter 1. On the other hand, the working surface 2s is worn mainly due to melting damage at a portion where the working surface 2s is not peeled, but the wear rate at this portion is 0.25 mm / ch on average.

上記のような本発明者らの観察および考察の結果によれば、例1〜例6では損耗速度が0.25mm/ch〜0.34mm/chであったため、いずれの例でも稼働面2sの剥離は発生しなかったものと考えられる。一方、例7〜例16では損耗速度が0.39mm/ch〜0.88mm/chであり、大半の例で稼働面2sの剥離が発生したものと考えられる。   According to the results of observation and consideration by the inventors as described above, in Examples 1 to 6, the wear rate was 0.25 mm / ch to 0.34 mm / ch. It is considered that no peeling occurred. On the other hand, in Examples 7 to 16, the wear rate was 0.39 mm / ch to 0.88 mm / ch, and in most cases, it is considered that peeling of the working surface 2s occurred.

次に、回転浸食試験の結果について説明する。回転浸食試験は、各例に係るMgO−Cれんがが、通常操業の場合と間欠操業の場合とのそれぞれで示す耐用性を比較するために実施した。つまり、回転浸食試験の結果から、各例に係るMgO−Cれんがが、通常操業にも間欠操業にも適するのか、通常操業には適するが間欠操業には適さないのか、通常操業にも間欠操業にも適さないのかを判断することができる。   Next, the results of the rotary erosion test will be described. The rotary erosion test was carried out in order to compare the durability of the MgO-C bricks according to each example in the case of normal operation and in the case of intermittent operation. In other words, from the results of the rotary erosion test, whether the MgO-C brick according to each example is suitable for normal operation or intermittent operation, is suitable for normal operation but not suitable for intermittent operation, or is intermittent operation for normal operation. It is possible to judge whether it is not suitable.

回転浸食試験は、水平方向の回転軸を有する円筒の内面をMgO−Cれんがでライニングした上で酸素−プロパンバーナで加熱し、スラグを投入してれんが表面を浸食させる試験である。投入時のスラグ温度は1700℃であり、スラグは30分毎に入れ替えられる。スラグ組成はCaO/SiO=3.2、FeO=24.8%、MgO=3.5%とし、試験終了後に各れんが中央部の寸法を測定することによって浸食量を算出した。 The rotary erosion test is a test in which the inner surface of a cylinder having a horizontal rotation axis is lined with MgO-C brick, heated with an oxygen-propane burner, and slag is introduced to erode the brick surface. The slag temperature at the time of charging is 1700 ° C., and the slag is replaced every 30 minutes. The slag composition was CaO / SiO 2 = 3.2, FeO = 24.8%, MgO = 3.5%, and the amount of erosion was calculated by measuring the size of each brick at the center after the test.

通常操業を模擬した回転浸食試験では、上記の試験を5時間にわたって実施した。また、間欠操業を模擬した回転浸食試験では、上記の試験を5時間にわたって実施した後、スラグを排出した上で容器を徐冷し(約15時間)、稼働面の温度が500℃まで低下したことを確認してから再度5時間にわたって上記の試験を実施した。   In the rotary erosion test simulating normal operation, the above test was performed for 5 hours. In the rotary erosion test simulating intermittent operation, the above test was carried out for 5 hours, and then the container was gradually cooled after discharging the slag (about 15 hours), and the operating surface temperature dropped to 500 ° C. After confirming this, the above test was carried out again for 5 hours.

それぞれの回転浸食試験の結果(浸食量)は、例1〜例6の中で最も実機試験での損耗速度が大きかった例4での浸食量を100とする指数で表されている(指数が大きいほど浸食量が大きい)。従って、例1〜3,5,6ではいずれも指数が100を下回っている。一方、例7〜例13では、通常操業を模擬した回転浸食試験での浸食量については例1〜例6と同程度(指数85〜104)であるものの、間欠操業を模擬した回転浸食試験での浸食量は例1〜例6を大きく上回っている(指数115〜184)。従って、これらの例に係るMgO−Cれんがは、通常操業には適するが間欠操業には適さないといえる。また、例14〜例16では、通常操業を模擬した試験での浸食量(指数128〜166)および間欠操業を模擬した試験での浸食量(指数139〜194)とも、例1〜例6を大きく上回っている。従って、これらの例に係るMgO−Cれんがは、通常操業にも間欠操業にも適さない例であるといえる。   The result (erosion amount) of each rotary erosion test is represented by an index in which the erosion amount in Example 4 where the wear rate in the actual machine test was the highest among Examples 1 to 6 was 100 (the index was The larger the size, the greater the amount of erosion). Therefore, in Examples 1 to 3, 5 and 6, the index is less than 100. On the other hand, in Examples 7 to 13, the amount of erosion in the rotational erosion test simulating normal operation is similar to that in Examples 1 to 6 (index 85 to 104), but in the rotational erosion test simulating intermittent operation. The amount of erosion is significantly higher than those of Examples 1 to 6 (indexes 115 to 184). Therefore, it can be said that the MgO-C brick according to these examples is suitable for normal operation but not for intermittent operation. In Examples 14 to 16, both the erosion amount (index 128 to 166) in the test simulating normal operation and the erosion amount (index 139 to 194) in the test simulating intermittent operation are the same as in Examples 1 to 6. It is much higher. Therefore, it can be said that the MgO-C brick according to these examples is an example that is not suitable for both normal operation and intermittent operation.

図6は、上記の各例における還元焼成後の見掛け気孔率と回転浸食試験(通常)での浸食量指数との関係を示すグラフである。図6に示されるように、還元焼成後の見掛け気孔率と回転浸食試験(通常)での浸食量指数との間には正の相関が認められる。ここで、転炉1の通常操業の場合に稼働面2sの損耗の主な原因となる溶損は、間欠操業の場合にも同様に発生する(間欠操業では、溶損に加えて上述のような剥離が発生する可能性がある)。この結果から、通常操業に対しては、還元焼成後の見掛け気孔率に基づく選定によって、稼働面2sの溶損が効果的に抑制されるMgO−Cれんがが選定されていたといえる。   FIG. 6 is a graph showing the relationship between the apparent porosity after reduction firing and the erosion amount index in the rotary erosion test (normal) in each of the above examples. As shown in FIG. 6, a positive correlation is observed between the apparent porosity after reduction firing and the erosion amount index in the rotary erosion test (normal). Here, in the case of normal operation of the converter 1, the melting loss that is the main cause of wear of the operating surface 2 s occurs in the case of intermittent operation as well (in the intermittent operation, as described above in addition to the melting damage). May occur.) From this result, it can be said that for normal operation, MgO—C brick that effectively suppresses melting of the working surface 2s was selected by selection based on the apparent porosity after reduction firing.

これに対し、図7は、上記の各例における還元焼成後の見掛け気孔率と回転浸食試験(間欠)での浸食量指数との関係を示すグラフである。図7に示されるように、還元焼成後の見掛け気孔率と回転浸食試験(間欠)での浸食量指数との間には明確な相関は認められない。この結果から、間欠操業に対しては、還元焼成後の見掛け気孔率に基づく選定だけで、稼働面2sの剥離が効果的に抑制されるMgO−Cれんがを選定することは困難であることがわかる。   On the other hand, FIG. 7 is a graph showing the relationship between the apparent porosity after reduction firing in each of the above examples and the erosion amount index in the rotary erosion test (intermittent). As shown in FIG. 7, there is no clear correlation between the apparent porosity after reduction firing and the erosion amount index in the rotary erosion test (intermittent). From this result, for intermittent operation, it is difficult to select an MgO-C brick that effectively suppresses peeling of the working surface 2s only by selection based on the apparent porosity after reduction firing. Recognize.

そこで本発明者らは、繰り返し熱処理後の通気率に基づく選定を実施した。図8は、上記の各例における繰り返し熱処理後の通気率と回転浸食試験(通常)での浸食量指数との関係を示すグラフである。ところが図8に示されるように、繰り返し熱処理後の通気率と回転浸食試験(通常)での浸食量指数との間には明確な相関は認められない。   Therefore, the present inventors performed selection based on the air permeability after repeated heat treatment. FIG. 8 is a graph showing the relationship between the air permeability after repeated heat treatment and the erosion index in the rotary erosion test (normal) in each of the above examples. However, as shown in FIG. 8, there is no clear correlation between the air permeability after repeated heat treatment and the erosion index in the rotary erosion test (normal).

一方、図9は、上記の各例における繰り返し熱処理後の通気率と回転浸食試験(間欠)での浸食量指数との関係を示すグラフである。図9に明確に示されるように、繰り返し熱処理後の通気率と回転浸食試験(間欠)での浸食量指数との間には負の相関が認められる。通常の操業においては通気率が高いれんがは耐食性に劣ると予想されるが、驚くべきことに間欠操業の場合には、逆に通気率が高いれんが程、耐用性に優れることが分かった。この結果から、繰り返し熱処理後の通気率は、間欠操業に適したMgO−Cれんがの選定に有効であることが分かる。   On the other hand, FIG. 9 is a graph showing the relationship between the air permeability after repeated heat treatment and the erosion amount index in the rotary erosion test (intermittent) in each of the above examples. As clearly shown in FIG. 9, there is a negative correlation between the air permeability after repeated heat treatment and the erosion amount index in the rotary erosion test (intermittent). Brick with high air permeability is expected to be inferior in corrosion resistance in normal operation. Surprisingly, it was found that in intermittent operation, brick with higher air permeability has better durability. From this result, it can be seen that the air permeability after repeated heat treatment is effective in selecting an MgO-C brick suitable for intermittent operation.

図10は、上記の各例における繰り返し熱処理後の通気率と還元焼成後の見掛け気孔率との関係を示すグラフである。上記の図6〜図9から類推されることではあるが、図10にも示されるように、繰り返し熱処理後の通気率と還元焼成後の見掛け気孔率との間には明確な相関は認められない。この結果から、間欠操業に対しては、従来の見掛け気孔率に基づく選定では好適な選定ができなかったが、還元焼成後の見掛け気孔率に基づく選定と、繰り返し熱処理後の通気率に基づく選定を実施することが適切であったといえる。更に、還元焼成後の見掛け気孔率に基づく選定を付加することで、より的確に間欠操業に適したMgO−Cれんがの選定が行えるといえる。   FIG. 10 is a graph showing the relationship between the air permeability after repeated heat treatment and the apparent porosity after reduction firing in each of the above examples. As can be inferred from FIGS. 6 to 9 described above, as shown in FIG. 10, there is a clear correlation between the air permeability after repeated heat treatment and the apparent porosity after reduction firing. Absent. From this result, for intermittent operation, the conventional selection based on the apparent porosity could not be selected, but the selection based on the apparent porosity after reduction firing and the selection based on the air permeability after repeated heat treatment. It can be said that it was appropriate to implement. Furthermore, it can be said that MgO—C brick suitable for intermittent operation can be selected more accurately by adding selection based on the apparent porosity after reduction firing.

以上のような結果によって、本発明に係る選定方法は、間欠操業を行う溶融金属容器(転炉1)に適したMgO−Cれんがを効果的に選定できるものであり、当該方法によって選定されたMgO−Cれんがは間欠操業を行う溶融金属容器(転炉1)の内張り構造に用いられた場合に良好な耐用性を示すことが確認された。   Based on the above results, the selection method according to the present invention can effectively select an MgO-C brick suitable for a molten metal container (converter 1) that performs intermittent operation, and was selected by the method. It has been confirmed that MgO-C bricks exhibit good durability when used in the lining structure of a molten metal container (converter 1) that performs intermittent operation.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1…転炉、2…内張り構造、2s…稼働面。   1 ... converter, 2 ... lining structure, 2s ... working surface.

Claims (4)

間欠操業を行う溶融金属容器の、内張り構造に用いられるMgO−Cれんがの選定方法であって、
MgO−Cれんがの試験片を1600℃まで加熱する工程、前記試験片を1600℃で3時間保持する工程、前記試験片を500℃まで徐冷する工程、および前記試験片を500℃で3時間保持する工程を、還元雰囲気下で10回繰り返した後に、前記試験片の通気率が10.0×10−15以上であるMgO−Cれんがを選定するステップと、
還元焼成後の見掛け気孔率に基づいてMgO−Cれんがを選定するステップと
を含む、MgO−Cれんがの選定方法。
A method of selecting a MgO-C brick used for a lining structure of a molten metal container that performs intermittent operation,
A step of heating a test piece of MgO-C brick to 1600 ° C, a step of holding the test piece at 1600 ° C for 3 hours, a step of gradually cooling the test piece to 500 ° C, and a step of heating the test piece at 500 ° C for 3 hours A step of selecting a MgO-C brick in which the air permeability of the test piece is 10.0 × 10 −15 m 2 or more after repeating the holding step 10 times in a reducing atmosphere;
Selecting the MgO-C brick based on the apparent porosity after reduction firing, and selecting the MgO-C brick.
還元焼成後の見掛け気孔率に基づいてMgO−Cれんがを選定するステップでは、1400℃で30時間還元焼成した後の見掛け気孔率が10%未満のMgO−Cれんがを選定する、請求項1に記載のMgO−Cれんがの選定方法。   In the step of selecting MgO-C brick based on the apparent porosity after reduction firing, MgO-C brick having an apparent porosity of less than 10% after reduction firing at 1400 ° C for 30 hours is selected. The selection method of MgO-C brick of description. MgO−Cれんがで形成される内張り構造を有する溶融金属容器の操業方法であって、
前記溶融金属容器を用いて間欠操業を行う工程を含み、
前記MgO−Cれんがは、1600℃まで加熱する工程、1600℃で3時間保持する工程、500℃まで徐冷する工程、および500℃で3時間保持する工程を、還元雰囲気下で10回繰り返した後の通気率が10.0×10−15以上、かつ1400℃で30時間還元焼成した後の見掛け気孔率が10%未満である、溶融金属容器の操業方法。
A method for operating a molten metal container having a lining structure formed of MgO-C brick,
Including a step of performing intermittent operation using the molten metal container,
In the MgO-C brick, the step of heating to 1600 ° C., the step of holding at 1600 ° C. for 3 hours, the step of gradually cooling to 500 ° C., and the step of holding at 500 ° C. for 3 hours were repeated 10 times in a reducing atmosphere. A method for operating a molten metal container, wherein the subsequent air permeability is 10.0 × 10 −15 m 2 or more and the apparent porosity after reduction baking at 1400 ° C. for 30 hours is less than 10%.
間欠操業を行う溶融金属容器の、MgO−Cれんがで形成される内張り構造であって、
前記MgO−Cれんがは、1600℃まで加熱する工程、1600℃で3時間保持する工程、500℃まで徐冷する工程、および500℃で3時間保持する工程を、還元雰囲気下で10回繰り返した後の通気率が10.0×10−15以上、かつ1400℃で30時間還元焼成した後の見掛け気孔率が10%未満である、溶融金属容器の内張り構造。
It is a lining structure formed of MgO-C brick of a molten metal container that performs intermittent operation,
In the MgO-C brick, the step of heating to 1600 ° C., the step of holding at 1600 ° C. for 3 hours, the step of gradually cooling to 500 ° C., and the step of holding at 500 ° C. for 3 hours were repeated 10 times in a reducing atmosphere. A lining structure of a molten metal container having a subsequent air permeability of 10.0 × 10 −15 m 2 or more and an apparent porosity of less than 10% after reduction firing at 1400 ° C. for 30 hours.
JP2017124286A 2017-06-26 2017-06-26 How to select MgO-C bricks, how to operate molten metal containers, and lining structure of molten metal containers Active JP6885218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017124286A JP6885218B2 (en) 2017-06-26 2017-06-26 How to select MgO-C bricks, how to operate molten metal containers, and lining structure of molten metal containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017124286A JP6885218B2 (en) 2017-06-26 2017-06-26 How to select MgO-C bricks, how to operate molten metal containers, and lining structure of molten metal containers

Publications (2)

Publication Number Publication Date
JP2019006638A true JP2019006638A (en) 2019-01-17
JP6885218B2 JP6885218B2 (en) 2021-06-09

Family

ID=65028380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124286A Active JP6885218B2 (en) 2017-06-26 2017-06-26 How to select MgO-C bricks, how to operate molten metal containers, and lining structure of molten metal containers

Country Status (1)

Country Link
JP (1) JP6885218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487509B2 (en) 2020-03-25 2024-05-21 住友金属鉱山株式会社 Method for recovering valuable metals and magnesia refractory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166943A (en) * 2013-01-31 2014-09-11 Kurosaki Harima Corp Magnesia-carbon brick
JP2015189605A (en) * 2014-03-27 2015-11-02 黒崎播磨株式会社 magnesia carbon brick

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166943A (en) * 2013-01-31 2014-09-11 Kurosaki Harima Corp Magnesia-carbon brick
JP2015189605A (en) * 2014-03-27 2015-11-02 黒崎播磨株式会社 magnesia carbon brick

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487509B2 (en) 2020-03-25 2024-05-21 住友金属鉱山株式会社 Method for recovering valuable metals and magnesia refractory

Also Published As

Publication number Publication date
JP6885218B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
TWI558683B (en) Magnesium oxide carbon brick
JP4773569B1 (en) MgO-C quality brick for ladle lining
JP2010242992A (en) Refractory lining
JP6546687B1 (en) Method of manufacturing magnesia carbon brick
JP5800087B2 (en) Molten steel container
JP6215109B2 (en) Magnesia carbon brick
JP6885218B2 (en) How to select MgO-C bricks, how to operate molten metal containers, and lining structure of molten metal containers
JP6353284B2 (en) Magnesia carbon brick
JP6253554B2 (en) Composite refractory and method for producing the same
JP2020055726A (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus, and vacuum degassing apparatus having the same lined on sidewall of lower vessel thereof
JP7041523B2 (en) Magnesia Alumina Carbon Brick
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP6219729B2 (en) Magnesia carbon brick
JP4802178B2 (en) Microwave heat treatment method for Al or / and Al-Mg alloy-added MgO-C brick
JP3343297B2 (en) Fired refractory brick for lining
JP2012192430A (en) Alumina carbon-based slide gate plate
JP7032084B2 (en) Amorphous refractory
JP6923824B2 (en) Manufacturing method of magnesia carbon refractory
JP6583968B2 (en) Refractory brick
JP6131378B1 (en) Heater tube for immersion in molten metal
JP7456035B1 (en) Back material for ladle
JP2020059612A (en) Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
CN114719610A (en) Furnace building process combining novel carbon brick and cold ramming paste
JPH06321626A (en) Production of mgo-c unburned refractory
JP2002060278A (en) Ramming material for induction furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151