JP2019005784A - High-temperature slide member and steam turbine - Google Patents

High-temperature slide member and steam turbine Download PDF

Info

Publication number
JP2019005784A
JP2019005784A JP2017124103A JP2017124103A JP2019005784A JP 2019005784 A JP2019005784 A JP 2019005784A JP 2017124103 A JP2017124103 A JP 2017124103A JP 2017124103 A JP2017124103 A JP 2017124103A JP 2019005784 A JP2019005784 A JP 2019005784A
Authority
JP
Japan
Prior art keywords
base material
sliding member
build
weld
dilution rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017124103A
Other languages
Japanese (ja)
Other versions
JP7163009B2 (en
Inventor
孝幸 山下
Takayuki Yamashita
孝幸 山下
章一 大河原
Shoichi Ogawara
章一 大河原
岡田 和也
Kazuya Okada
和也 岡田
斉樹 畑
Naritasu Hata
斉樹 畑
貴彦 廣畑
Takahiko Hirohata
貴彦 廣畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017124103A priority Critical patent/JP7163009B2/en
Publication of JP2019005784A publication Critical patent/JP2019005784A/en
Application granted granted Critical
Publication of JP7163009B2 publication Critical patent/JP7163009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

To provide a high-temperature slide member that prevents abnormal hardening from occurring in a padding weld part due to high temperature during use, and that can prevent cracking from occurring in the padding weld part due to reduction in toughness accompanying abnormal hardening, without causing increase in cost or work period problems in manufacturing the high-temperature slide member.SOLUTION: A high-temperature slide member comprises a base material part made of an iron based material, and a padding weld part formed on a surface of the base material part using a Co-Cr based heat-resistant alloy. In the high-temperature slide member, a dilution rate with a base material component falls into a range of 10-30%, in a region within a range of 0.2 mm-0.8 mm from a boundary surface of the base material part in a thickness direction of the padding weld part.SELECTED DRAWING: Figure 2

Description

本発明は、高温で使用される摺動部材および蒸気タービンに関するものである。   The present invention relates to a sliding member and a steam turbine used at high temperatures.

例えば蒸気タービンの蒸気弁における弁体や弁座については、熱衝撃やエロ―ジョン、コロージョン等による摩耗や亀裂の発生、損傷を防止するため、耐熱衝撃性と耐食性を有し、Cr鋼等の鉄基材料からなる母材よりも高硬度のCo−Cr系耐熱合金、すなわち商品名「ステライト」として知られる合金を含む耐熱合金を、相手材と当接する部位に肉盛溶接することが、従来から行われている。   For example, valve bodies and valve seats in steam valves of steam turbines have thermal shock resistance and corrosion resistance to prevent wear, cracks and damage due to thermal shock, erosion, corrosion, etc. Conventionally, overlay welding a heat-resistant alloy including a Co-Cr heat-resistant alloy having a hardness higher than that of a base material made of an iron-based material, that is, an alloy known as a trade name "Stellite", to a portion in contact with a counterpart material It is made from.

この種のCo−Cr系耐熱合金を肉盛溶接した部位(相手材との当接部位)の性能を向上させるための技術、とりわけ肉盛溶接部位の亀裂発生を抑制するための試みが従来からなされている。   Techniques for improving the performance of this type of Co-Cr heat resistant alloy build-up welded part (contact part with the mating material), particularly attempts to suppress the occurrence of cracks in the build-up welded part have been hitherto. Has been made.

例えば特許文献1では、蒸気タービン等に用いられる蒸気弁として、ステライト肉盛部の周方向に間隔をもってスリット部を形成し、そのスリット部に、埋め込み部材、望ましくは弁母材の線膨張係数とステライト材の線膨張係数との中間の線膨張係数を有する埋め込み部材を設けた蒸気弁が提案されている。この提案では、ステライト肉盛部の周方向の残留応力が緩和されて、肉盛部における亀裂発生を緩和できるとされている。   For example, in Patent Document 1, as a steam valve used in a steam turbine or the like, slit portions are formed at intervals in the circumferential direction of the stellite build-up portion, and the linear expansion coefficient of an embedded member, preferably a valve base material, is formed in the slit portion. A steam valve provided with an embedded member having a linear expansion coefficient intermediate to that of stellite has been proposed. According to this proposal, it is said that the residual stress in the circumferential direction of the stellite build-up portion is relieved, and the occurrence of cracks in the build-up portion can be relieved.

また特許文献2では、蒸気タービン弁等の高温摺動部材として、ステライト肉盛に先立ち、延性の大きいNi基合金を母材表面に肉盛形成し、その上にステライト肉盛を行うことが示されている。この特許文献2の技術によれば、主として熱応力による亀裂発生を防ぐことができるとされている。   Patent Document 2 shows that, as a high-temperature sliding member such as a steam turbine valve, a Ni-based alloy having a large ductility is formed on the surface of the base material before stellite build-up, and stellite build-up is performed thereon. Has been. According to the technique of this patent document 2, it is supposed that the generation of cracks mainly due to thermal stress can be prevented.

特開2010−236385号公報JP 2010-236385 A 特開平8−215842号公報JP-A-8-215842

蒸気タービン等に用いられる蒸気弁の弁体や弁座は、使用中に高温蒸気によって例えば500〜700℃程度の高温に曝される。しかるに、鉄基材料からなる母材の表面にステライト肉盛を行った従来の一般的な弁体、弁座では、肉盛溶接時における高温での運転中に肉盛溶接部の硬度が異常に高くなって靭性が低下することがある。そのため、使用中の弁開閉動作による衝撃や熱応力によって、肉盛溶接部に亀裂が発生してしまうことがある。   A valve body and a valve seat of a steam valve used in a steam turbine or the like are exposed to a high temperature of, for example, about 500 to 700 ° C. by high-temperature steam during use. However, with conventional conventional valve bodies and valve seats that have been subjected to stellite overlaying on the surface of the base material made of iron-based material, the hardness of the overlay welded part is abnormal during operation at high temperatures during overlay welding. It may increase and the toughness may decrease. Therefore, a crack may occur in the build-up weld due to an impact or thermal stress caused by a valve opening / closing operation during use.

しかしながら特許文献1の技術では、上記のような運転中の高温で異常硬化が生じることは避け得ず、その異常硬化に起因する開閉衝撃等による亀裂発生の問題を確実に回避することは困難である。
また特許文献2の技術では、ステライト肉盛に先立ってNi基合金を肉盛するため、その製造のために高コスト化を招かざるを得ず、また工期の点でも問題がある。
However, in the technique of Patent Document 1, it is inevitable that abnormal hardening occurs at a high temperature during operation as described above, and it is difficult to reliably avoid the problem of cracking due to opening / closing impacts and the like due to the abnormal hardening. is there.
Moreover, in the technique of patent document 2, since Ni-based alloy is built up prior to stellite build-up, the production cost is inevitably increased, and there is a problem in terms of construction period.

本発明は以上の事情を背景としてなされたもので、高温下で相手材に接する高温摺動部材として、使用中の高温によって肉盛溶接部に異常硬化が生じることを防止し、異常硬化に伴う靭性の低下によって肉盛溶接部に亀裂が発生することを防止し得る高温摺動部材であって、且つその製造にあたって高コスト化や工期の問題も生じないようにした高温摺動部材、およびそれを用いた蒸気タービンを提供することを課題としている。   The present invention has been made against the background described above, and as a high-temperature sliding member that comes into contact with a mating material at high temperatures, it prevents abnormal hardening from occurring in the weld overlay due to high temperatures during use, and is accompanied by abnormal hardening. A high-temperature sliding member that can prevent cracks in the weld overlay due to a decrease in toughness, and that does not cause high cost or construction problems in its production, and It is an object to provide a steam turbine using this.

本発明者等が、上記の課題を解決するべく、鋭意実験、検討を重ねたところ、肉盛金属中への母材成分の溶け込み(希釈)の状況・程度が、高温での使用による異常硬化の発生に大きく影響を与えていることを新規に知見した。そして、母材成分による希釈を適切に管理することによって、前記課題を解決し得ることを見い出し、本発明をなすに至った。   The present inventors have conducted extensive experiments and studies in order to solve the above-mentioned problems. As a result, the state and extent of the dissolution (dilution) of the base material component in the overlay metal is abnormally hardened due to use at a high temperature. It has been newly found that it greatly affects the occurrence of And it discovered that the said subject could be solved by managing appropriately the dilution by a base material component, and came to make this invention.

具体的には本発明の基本的な態様(第1の態様)の高温摺動部材は、鉄基材料からなる母材部と、Co−Cr系耐熱合金によって前記母材部の表面に形成された肉盛溶接部とを有し、前記肉盛溶接部の厚み方向に前記母材部との界面から0.2mm〜0.8mmの範囲内の領域での、母材成分による希釈率が10〜30%の範囲内であることを特徴とするものである。   Specifically, the high-temperature sliding member of the basic aspect (first aspect) of the present invention is formed on the surface of the base material part by a base material part made of an iron-based material and a Co—Cr heat resistant alloy. The dilution ratio by the base material component is 10 in the region within the range of 0.2 mm to 0.8 mm from the interface with the base material part in the thickness direction of the buildup weld part. It is characterized by being in the range of ˜30%.

ここで、母材部の表面に肉盛溶接部を形成するにあたっては、母材成分が溶接金属中に溶け込み、肉盛材料(溶加材)の成分が母材成分によって希釈される。そして本発明者等の知見によれば、母材の主成分であるFeが、Co−Cr系耐熱合金からなる肉盛溶接部に多量に溶け込んでいる場合、500℃から700℃程度の高温での使用中に、熱時効によって、肉盛溶接部にFe−Cr系金属間化合物であるσ相が析出することが判明している。σ相は著しく硬いため、σ相が多量に析出すれば、肉盛溶接部が異常硬化し、靭性が低下して、弁の開閉の衝撃や高温による熱応力などにより肉盛溶接部に亀裂が発生しやすくなる。   Here, in forming the build-up weld on the surface of the base material portion, the base material component dissolves into the weld metal, and the component of the build-up material (the filler material) is diluted by the base material component. According to the knowledge of the present inventors, when a large amount of Fe, which is the main component of the base material, is melted into the overlay weld made of the Co—Cr heat resistant alloy, the temperature is about 500 ° C. to 700 ° C. During use, it has been found that σ phase, which is an Fe—Cr intermetallic compound, precipitates in the weld overlay due to thermal aging. Since the σ phase is extremely hard, if a large amount of σ phase precipitates, the weld overlay will be abnormally hardened and the toughness will be reduced. It tends to occur.

しかるに、上記の第1の態様によれば、肉盛溶接部の厚み方向に母材部との界面から0.2mm〜0.8mmの範囲内の領域での、母材成分による希釈率を30%以下に規制することによって、高温での使用中における熱時効に起因してσ相が生成することを抑制し、これによって異常硬化を回避し、肉盛溶接部における割れ発生の危険性を最小限に抑えることが可能となる。また、上記の希釈率を10%以上とすることによって、肉盛溶接部と母材部との界面における融合不良の発生を回避することができる。また、特許文献2に示される技術のような、ステライト(Co−Cr系耐熱合金)の肉盛に先立ってNi基合金を肉盛しなくて済むため、その製造にあたってのコストの上昇も少なく、また生産性を阻害することもない。   However, according to said 1st aspect, the dilution rate by a base material component in the area | region in the range of 0.2 mm-0.8 mm from the interface with a base material part in the thickness direction of a build-up weld part is 30. By controlling to less than%, the generation of σ phase due to thermal aging during use at high temperatures is suppressed, thereby avoiding abnormal hardening and minimizing the risk of cracking in overlay welds. It becomes possible to limit to the limit. Further, by setting the dilution rate to 10% or more, it is possible to avoid the occurrence of poor fusion at the interface between the build-up weld and the base material. Moreover, since it is not necessary to build up the Ni-based alloy prior to the build-up of stellite (Co—Cr heat-resistant alloy), such as the technique shown in Patent Document 2, there is little increase in cost in the production, Moreover, productivity is not inhibited.

また本発明の第2の態様の高温摺動部材は、前記第1の態様の高温摺動部材において、前記希釈率が、12〜28%の範囲内であることを特徴とすることを特徴とする。   The high temperature sliding member according to the second aspect of the present invention is characterized in that, in the high temperature sliding member according to the first aspect, the dilution ratio is in a range of 12 to 28%. To do.

また本発明の第3の態様の高温摺動部材は、前記第1の態様もしくは第2の態様の高温摺動部材において、前記希釈率が、前記肉盛溶接部の前記領域内のFe濃度とCo濃度とのうち、いずれか一方の濃度により算出した値、もしくはFe濃度により算出した値とCo濃度により算出した値との平均値であることを特徴とする。   Moreover, the high temperature sliding member of the third aspect of the present invention is the high temperature sliding member of the first aspect or the second aspect, wherein the dilution rate is the Fe concentration in the region of the build-up weld. The Co concentration is a value calculated from one of the concentrations, or an average value of a value calculated from the Fe concentration and a value calculated from the Co concentration.

また本発明の第4の態様の高温摺動部材は、前記第1〜第3のいずれかの態様の高温摺動部材において、前記Co−Cr系耐熱合金が、質量%で、Cr:24〜32%、W:0〜20%、C:0.2〜3.5%、Mo:0〜6%、Ni:0〜25%、Fe3%以下を含有し、残部がCo及び不純物からなることを特徴とする。   The high temperature sliding member according to the fourth aspect of the present invention is the high temperature sliding member according to any one of the first to third aspects, wherein the Co—Cr heat-resistant alloy is contained in mass% and Cr: 24 to 32%, W: 0 to 20%, C: 0.2 to 3.5%, Mo: 0 to 6%, Ni: 0 to 25%, Fe 3% or less, the balance being made of Co and impurities It is characterized by.

また本発明の第5の態様の高温摺動部材は、前記第1〜第4のいずれかの態様の高温摺動部材において、前記母材部を構成する鉄基材料が、Feを75mass%以上含む耐熱鋼であることを特徴とする。   Moreover, the high temperature sliding member according to the fifth aspect of the present invention is the high temperature sliding member according to any one of the first to fourth aspects, wherein the iron base material constituting the base material portion contains Fe of 75 mass% or more. It is characterized by being heat-resistant steel.

また本発明の第6の態様の高温摺動部材は、前記第1〜第5のいずれかの態様の高温摺動部材において、その高温摺動部材が、蒸気タービンにおける蒸気弁の弁体もしくは弁座であることを特徴とする。   A high temperature sliding member according to a sixth aspect of the present invention is the high temperature sliding member according to any one of the first to fifth aspects, wherein the high temperature sliding member is a valve body or valve of a steam valve in a steam turbine. It is a seat.

また本発明の第7の態様の蒸気タービンは、前記第1〜第5のいずれかの態様の高温摺動部材が、蒸気弁の弁体もしくは弁座に用いられていることを特徴とする。   A steam turbine according to a seventh aspect of the present invention is characterized in that the high temperature sliding member according to any one of the first to fifth aspects is used for a valve body or a valve seat of a steam valve.

本発明の1態様の高温摺動部材によれば、使用中の高温によって肉盛溶接部に異常硬化が生じることを防止し、異常硬化に伴う靭性の低下によって肉盛溶接部に亀裂が発生することを防止することができ、且つその製造にあたって高コスト化や工期の問題も生じない。   According to the high temperature sliding member of one aspect of the present invention, abnormal hardening is prevented from occurring in the build-up weld due to high temperature during use, and cracks occur in the build-up weld due to a decrease in toughness associated with abnormal hardening. This can be prevented, and there is no problem of cost increase or construction period in the production.

本発明の一実施形態の高温摺動部材として、蒸気タービンの蒸気弁に使用される弁体の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the valve body used for the steam valve of a steam turbine as a high temperature sliding member of one Embodiment of this invention. 図1における丸囲い部分IIの拡大図である。It is an enlarged view of the circled part II in FIG. 鉄基材料からなる母材にCo−Cr系耐熱合金を肉盛溶接した部材について、600℃に加熱した場合の、種々の希釈率での、加熱時間とビッカース硬さとの関係を示すグラフである。It is a graph which shows the relationship between the heating time and Vickers hardness in various dilution rates at the time of heating to 600 degreeC about the member which carried out the overlay welding of the Co-Cr type heat-resistant alloy to the base material which consists of iron base materials. . 肉盛溶接部の希釈率と、実機蒸気タービンにおける運転後の肉盛溶接部のビッカース硬さとの関係を示すグラフである。It is a graph which shows the relationship between the dilution rate of a build-up weld part, and the Vickers hardness of the build-up weld part after a driving | operation in a real steam turbine. 肉盛溶接部の希釈率と融合不良発生確率との関係を示すグラフである。It is a graph which shows the relationship between the dilution rate of a build-up weld part, and a fusion defect generation | occurrence | production probability.

以下に本発明の一実施形態の高温摺動部材について説明する。なお以下の実施形態は、蒸気タービンの蒸気弁の弁体に適用した例として示す。   The high temperature sliding member of one embodiment of the present invention will be described below. In addition, the following embodiment shows as an example applied to the valve body of the steam valve of a steam turbine.

<弁体の全体構成>
図1には、高温摺動部材としての蒸気弁の弁体1の全体形状を示す。
図1において、弁体1の全体の形状は、従来から蒸気タービンの蒸気弁の形状と同様であればよい。この弁体1は、鉄基材料からなる母材部2のうち、相手材である弁座(図示せず)の弁座シート部に当接する部位、すなわち先端側の周縁部2Aに、Co−Cr系耐熱合金が肉盛溶接されて、肉盛溶接部3が形成されている。この肉盛溶接部3を拡大して図2に示している。
<Overall configuration of valve body>
In FIG. 1, the whole shape of the valve body 1 of the steam valve as a high temperature sliding member is shown.
In FIG. 1, the overall shape of the valve body 1 may be the same as that of the steam valve of the steam turbine. This valve body 1 has a portion of the base material portion 2 made of an iron-based material that contacts the valve seat portion of a valve seat (not shown) that is a counterpart material, that is, a Co- The build-up weld 3 is formed by overlay welding of a Cr-based heat resistant alloy. This build-up weld 3 is enlarged and shown in FIG.

肉盛溶接部3においては、既に述べたように、肉盛溶接施工時に、母材表面部位も溶融される結果、母材成分が溶け込み、肉盛材料であるCo−Cr系耐熱合金が、母材成分によって希釈される。母材部2の成分が肉盛溶接部3に溶け込んでいる状況を、図2においてドットで模式的に表現している。   In the overlay welding part 3, as already described, as a result of melting the base material surface part at the time of overlay welding, the base material component melts, and the Co—Cr heat-resistant alloy as the overlay material becomes the base material. Diluted by the ingredients. The situation in which the component of the base material part 2 is dissolved in the build-up weld 3 is schematically represented by dots in FIG.

このように母材成分により溶接金属が希釈された度合を一般に希釈率と称しているが、本実施形態では、後に改めて説明するように、肉盛溶接部3において、その厚み方向に、母材部との界面4から0.2mm〜0.8mmの範囲内の領域Zでの、母材成分による希釈率Pzを規定している。すなわち、上記領域Zにおける希釈率を10〜30%の範囲内、好ましくは12〜28%の範囲内としている。
なお肉盛溶接部3の厚み(母材部の表面に対して垂直な方向の肉盛溶接部断面の厚み)は特に限定しないが、一般的な蒸気タービンの蒸気弁の弁体や弁座の場合、2〜5mm程度である。
In this embodiment, the degree of dilution of the weld metal by the base material component is generally referred to as a dilution rate. However, in the present embodiment, in the build-up weld portion 3, the base material is arranged in the thickness direction as will be described later. The dilution rate Pz by the base material component in the region Z within the range of 0.2 mm to 0.8 mm from the interface 4 with the part is defined. That is, the dilution rate in the region Z is in the range of 10 to 30%, preferably in the range of 12 to 28%.
The thickness of the build-up weld 3 (thickness of the cross-section of the build-up weld in the direction perpendicular to the surface of the base metal part) is not particularly limited, but the valve body and valve seat of a steam valve of a general steam turbine are not limited. In this case, it is about 2 to 5 mm.

<母材の材料>
母材部の材料(母材)である鉄基材料は、従来から蒸気弁の弁体や弁座に使用されているFe基の耐熱材料、すなわち耐熱鋼と称されるものが好ましく、基本的には限定されないが、例えばFeを75mass%以上含み、Cr、Mo、V、W、Nb等の耐熱性向上のための合金元素を1種以上含む耐熱鋼が好ましい。その耐熱鋼の鋼種、鋼成分も特に限定されないが、例えば9Cr鋼や12Cr鋼等のCr鋼、Cr−Mo鋼、Cr−Mo―V鋼などが代表的である。具体的には、例えばJIS G 4311で規定されるSUH1、SUH3、SUH4、SUH11、SUH600、SUH616、あるいはそれらに類する耐熱鋼が挙げられる。
<Material of base material>
The iron base material that is the material of the base material (base material) is preferably an Fe-based heat-resistant material conventionally used for a valve body or valve seat of a steam valve, that is, a material called heat-resistant steel. Although not limited to this, for example, a heat resistant steel containing 75 mass% or more of Fe and containing one or more alloy elements for improving heat resistance such as Cr, Mo, V, W, and Nb is preferable. The steel type and steel component of the heat-resistant steel are not particularly limited, but typical examples include Cr steel such as 9Cr steel and 12Cr steel, Cr—Mo steel, Cr—Mo—V steel, and the like. Specifically, for example, SUH1, SUH3, SUH4, SUH11, SUH600, SUH616, or similar heat resistant steels defined in JIS G 4311 may be used.

<肉盛材料>
肉盛溶接時に加える肉盛材料(溶加材)としては、商品名「ステライト」として知られるCo−Cr系耐熱合金、もしくはステライトに類するCo−Cr系耐熱合金を使用する。このCo−Cr系耐熱合金の成分組成は、例えば、質量%で、Cr:24〜32%、W:0〜20%、C:0.2〜3.5%、Mo:0〜6%、Ni:0〜25%、Fe:3%以下、残部がCo及び不純物であることが好ましい。
<Building material>
As a build-up material (melting material) added at the time of build-up welding, a Co—Cr heat resistant alloy known as a trade name “Stellite” or a Co—Cr heat resistant alloy similar to Stellite is used. The component composition of this Co—Cr heat-resistant alloy is, for example, mass%, Cr: 24-32%, W: 0-20%, C: 0.2-3.5%, Mo: 0-6%, Preferably, Ni is 0 to 25%, Fe is 3% or less, and the balance is Co and impurities.

<希釈率>
一般的に肉盛溶接部における母材成分による希釈率は、肉盛溶接部全体の平均的な希釈率Pとしては、母材表面に対して垂直な断面で見て、肉盛溶接部全体の断面積をA、肉盛溶接時に溶融した母材部分の断面積をBとすれば、次の(1)式、
(%)=(B/A)×100・・・(1)
によって規定するのが通常である。
<Dilution ratio>
In general, the dilution ratio due to the base metal component in the overlay weld is the average dilution ratio P 0 of the entire overlay weld as viewed in a cross section perpendicular to the base metal surface. If the cross-sectional area of A is A and the cross-sectional area of the base material portion melted during overlay welding is B, the following equation (1):
P 0 (%) = (B / A) × 100 (1)
Usually, it is prescribed | regulated by.

しかしながら、蒸気弁の弁体や弁座のように、ある程度の厚みを有する肉盛溶接部では、母材との界面近傍では母材成分の溶け込み量が大きく、肉盛溶接部表面では母材成分の溶け込み量が小さいかまたはゼロとなる。また一般に、実際の弁体や弁座等の肉盛溶接においては、複数回の肉盛溶接パスを繰り返して、複数層のビードを積層した構造とされるのが一般的であり、その場合、母材側の最初のパスによるビード部位では、母材成分の溶け込み量が大きく、上層のビード部位ほど母材成分の溶け込み量が小さくなる。
これらの結果、母材の主成分であるFeの溶け込みに起因する、加熱時効によるσ相の生成量も、母材との界面近傍で大きくなり、またそれに伴う硬度上昇による亀裂発生のおそれも、界面近傍で大きくなる。
However, in a built-up weld with a certain thickness, such as a valve body or valve seat of a steam valve, the amount of the base material component is large in the vicinity of the interface with the base material, and on the surface of the build-up weld, The amount of melted is small or zero. In general, in overlay welding of actual valve bodies and valve seats, it is common to repeat a plurality of build-up welding passes and to have a structure in which multiple layers of beads are laminated. In the bead part by the first pass on the base material side, the amount of the base material component is larger, and the upper part bead part is the smaller the amount of the base material component.
As a result, the amount of σ phase generated due to heat aging due to the melting of Fe, which is the main component of the base material, also increases in the vicinity of the interface with the base material, and there is a risk of cracking due to the accompanying increase in hardness. It grows near the interface.

そこで本実施形態では、肉盛溶接部の全体の平均的な希釈率Pではなく、界面から肉盛溶接部の厚み方向に0.2mm〜0.8mmの領域における希釈率Pzを規定している。
具体的には、上記領域Zにおける分析した溶接金属(肉盛溶接後の肉盛溶接部の金属)の特定成分の成分量(濃度)をQ1、肉盛溶接のために供給される肉盛材料(溶加材)の同じ特定成分の成分量(濃度)をQ2、母材の同じ特定成分の成分量(濃度)をQ3とすれば、
希釈率Pz(%)={(Q1−Q2)/(Q3−Q2)}×100・・・(2)
によって、領域Zにおける希釈率Pz(%)を算出することができる。
Therefore, in the present embodiment, the dilution rate Pz in the region of 0.2 mm to 0.8 mm is defined from the interface in the thickness direction of the buildup weld, not the average dilution rate P0 of the entire buildup weld. Yes.
Specifically, the component amount (concentration) of the specific component of the analyzed weld metal in the region Z (the metal in the weld zone after build-up welding) is Q1, the overlay material supplied for overlay welding If the component amount (concentration) of the same specific component of (filler material) is Q2, and the component amount (concentration) of the same specific component of the base material is Q3,
Dilution rate Pz (%) = {(Q1-Q2) / (Q3-Q2)} × 100 (2)
Thus, the dilution rate Pz (%) in the region Z can be calculated.

ここで、母材はFeを主成分とし、一方肉盛材料にはFeが含まれていないか又は含まれても微量であるところから、上記の特定成分としてはFeを使用し、Fe量によって上記(2)式を計算することが好ましい。   Here, the base material contains Fe as a main component, while the build-up material does not contain Fe or is contained in a trace amount, so Fe is used as the specific component, and depending on the amount of Fe It is preferable to calculate the above equation (2).

また一方、母材はCoを含まないか又は含んでも微量であり、肉盛材料にはCoを多量に含まれている。そして肉盛金属が希釈されてCo量が減少した度合いも希釈率とみなすことができる。そこで、上記の特定成分としてはCoを使用し、Co量によって上記(2)式を計算することもできる。   On the other hand, the base material contains little or no Co, and the build-up material contains a large amount of Co. The degree to which the amount of Co is reduced by diluting the overlay metal can also be regarded as the dilution rate. Therefore, Co can be used as the specific component, and the above equation (2) can be calculated based on the amount of Co.

ここで、特定元素をFeとして算出した希釈率Pzの値と、特定元素をCoとして算出した希釈率Pzの値とは、同一となるから、上記(2)式により希釈率Pz(%)を算出するにあたっては、特定元素として、FeとCoのいずれを用いてもよい。   Here, since the value of the dilution rate Pz calculated with Fe as the specific element is the same as the value of the dilution rate Pz calculated with Co as the specific element, the dilution rate Pz (%) is calculated by the above equation (2). In the calculation, either Fe or Co may be used as the specific element.

但し、希釈成分の分布のばらつきや分析誤差等によって、特定元素をFeとして算出した希釈率Pzの値と、特定元素をCoとして算出した希釈率Pzの値とに差が生じることがある。そこで、そのような事態が懸念される場合には、Feによって(2)式の希釈率Pzを算出するとともに、Coによって(2)式の希釈率Pzを算出し、それらの平均値をもって、最終的な希釈率とすることが望ましい。   However, there may be a difference between the value of the dilution rate Pz calculated using the specific element as Fe and the value of the dilution rate Pz calculated using the specific element as Co due to variations in the distribution of dilution components, analysis errors, and the like. Therefore, when such a situation is a concern, the dilution rate Pz of the formula (2) is calculated by Fe, the dilution rate Pz of the formula (2) is calculated by Co, and the average value thereof is used as the final value. It is desirable to set the dilution ratio to be constant.

なお、(2)式における溶接金属中の特定成分の成分量(濃度)の測定方法は特に限定しないが、例えば電子線マイクロアナライザによって測定した半定量値を用いることができる。   In addition, although the measuring method of the component amount (concentration) of the specific component in the weld metal in Formula (2) is not specifically limited, For example, the semi-quantitative value measured with the electron beam microanalyzer can be used.

また、界面から肉盛溶接部の厚み方向に0.2mm〜0.8mmの領域における希釈率Pzとは、その0.2mm〜0.8mmの厚み方向に等間隔で5箇所を測定し、その平均値を求めた値を意味する。   Further, the dilution rate Pz in the region of 0.2 mm to 0.8 mm in the thickness direction of the weld overlay from the interface is measured at five locations at equal intervals in the thickness direction of 0.2 mm to 0.8 mm. Means the average value.

<希釈率限定理由:上限>
ここで、上記の領域Zにおける希釈率Pzが30%を超えれば、500〜700℃程度の温度に加熱された際に、σ相が急速に析出しやすくなり、短時間でσ相析出による硬度上昇が生じて、亀裂発生の可能性が増大する。このような希釈率と硬度との関係は、本発明者等の新規な知見である。
<Reason for limiting dilution: Upper limit>
Here, if the dilution rate Pz in the above-mentioned region Z exceeds 30%, the σ phase is likely to precipitate rapidly when heated to a temperature of about 500 to 700 ° C., and the hardness due to σ phase precipitation in a short time. An increase occurs and the possibility of cracking increases. Such a relationship between the dilution rate and the hardness is a novel finding of the present inventors.

すなわち、先ず本発明者等が、希釈率Pzを種々変化させた肉盛溶接試験片について、700℃で3時間の応力除去焼鈍(SR)を行った後、高温での使用環境を模した時効加熱として、600℃に種々の時間加熱したときの、加熱時間と肉盛溶接部のビッカース硬さとの関係を調べた結果を、図3に示す。なおこの実験では、母材として12Cr鋼を用い、肉盛材料のCo−Cr系耐熱合金として、Cr:24.0〜32.0%、C:0.2〜3.5%、Fe<3.0%、残部がCo及び不純物からなる合金を用いて、プラズマ紛体肉盛溶接法によって肉盛溶接を実施した。   That is, first, the present inventors performed stress removal annealing (SR) at 700 ° C. for 3 hours on an overlay welded test piece with various dilution ratios Pz, and then simulated the use environment at a high temperature. FIG. 3 shows the results of examining the relationship between the heating time and the Vickers hardness of the overlay weld when heated to 600 ° C. for various times as heating. In this experiment, 12Cr steel was used as a base material, and Co: -Cr heat resistant alloy as a build-up material was Cr: 24.0-32.0%, C: 0.2-3.5%, Fe <3. Overlay welding was performed by plasma powder overlay welding using an alloy consisting of 0.0% and the balance Co and impurities.

図3に示すように、希釈率Pzが52.0%では、600℃での加熱時間が1000時間を超える付近から急激に硬さが大きくなり、異常硬化が生じていることが判る。これに対して希釈率Pzが30%以下では、1000時間を超えても、硬さがほとんど上昇せず、異常硬化が生じていないことが判る。   As shown in FIG. 3, it can be seen that when the dilution rate Pz is 52.0%, the hardness suddenly increases from the vicinity where the heating time at 600 ° C. exceeds 1000 hours, and abnormal hardening occurs. On the other hand, it can be seen that when the dilution rate Pz is 30% or less, the hardness hardly increases even when the time exceeds 1000 hours, and abnormal hardening does not occur.

図3に示す実験結果を踏まえ、さらに本発明者等が、蒸気タービンにおける蒸気弁の弁体についての多数の実機データとして、500℃以上の高温蒸気に曝された後の肉盛溶接部のビッカース硬さとの関係を調べた結果を図4に示す。
なおこの実機データの弁体は、母材として12Cr鋼及び2.25CrMo鋼を用い、肉盛材料のCo−Cr系耐熱合金として、Cr:24.0〜32.0%、C:0.2〜3.5%、Fe<3.0%、残部がCo及び不純物からなる合金を用いて、プラズマ紛体肉盛溶接法によって肉盛溶接を実施したものである。
Based on the experimental results shown in FIG. 3, the present inventors further described, as a lot of actual machine data about the valve body of the steam valve in the steam turbine, the Vickers of the overlay weld after being exposed to high-temperature steam at 500 ° C. or higher. The results of examining the relationship with hardness are shown in FIG.
In addition, the valve body of this actual machine data uses 12Cr steel and 2.25CrMo steel as a base material, and Co: Cr heat-resistant alloy of overlay material: Cr: 24.0 to 32.0%, C: 0.2 Overlay welding was performed by plasma powder overlay welding using an alloy consisting of ~ 3.5%, Fe <3.0%, the balance being Co and impurities.

図4から、希釈率が高いほど硬さが高くなり、特に希釈率が30%附近で硬さが急上昇することが判る。希釈率が30%以下となれば、硬さは高くならず、特に28%以下では安定したレベルで硬さを維持できることが判明した。そこで、希釈率Pzの上限は30%、好ましくは28%とした。   It can be seen from FIG. 4 that the higher the dilution rate, the higher the hardness, and in particular, the hardness increases rapidly when the dilution rate is around 30%. It has been found that if the dilution rate is 30% or less, the hardness does not increase, and particularly if it is 28% or less, the hardness can be maintained at a stable level. Therefore, the upper limit of the dilution rate Pz is set to 30%, preferably 28%.

<希釈率限定理由:下限>
一方、希釈率Pzが10%未満では、肉盛溶接部と母材との間の融合不良が生じやすくなる。すなわち、母材と溶接金属との界面が充分に融合されず、その境界から割れが発生してしまう危険性が大きくなる。
<Reason for limiting dilution rate: Lower limit>
On the other hand, if the dilution rate Pz is less than 10%, poor fusion between the build-up weld and the base material tends to occur. That is, the interface between the base metal and the weld metal is not sufficiently fused, and there is a greater risk that cracks will occur from the boundary.

すなわち、本発明者等は、実機の蒸気タービンにおける蒸気弁の弁体についての多数の実機データから、希釈率と融合不良発生確率が、概ね図5に示すような関係となることを知見している。
なおここで対象とした実機弁体は、母材として12Cr鋼及び2.25CrMo鋼を用い、肉盛材料のCo−Cr系耐熱合金として、Cr:24.0〜32.0%、C:0.2〜3.5%、Fe<3.0%、残部がCo及び不純物からなる合金を用いて、プラズマ紛体肉盛溶接法によって肉盛溶接を行ったものである。
That is, the present inventors have found from a large number of actual machine data about the valve body of the steam valve in the actual steam turbine that the dilution rate and the probability of occurrence of poor fusion have a relationship as shown in FIG. Yes.
In addition, the actual valve body made into object here uses 12Cr steel and 2.25CrMo steel as a base material, Cr: 24.0 to 32.0%, C: 0 as a Co—Cr heat-resistant alloy as a build-up material .2 to 3.5%, Fe <3.0%, the balance welding was performed by the plasma powder overlay welding method using an alloy composed of Co and impurities.

図5から、希釈率が低いほど融合不良が生じやすく、特に希釈率が10%未満では、融合不良が著しく生じやすいことが判る。希釈率が10%以上となれば、融合不良発生の低下傾向は飽和し、特に12%以上では融合不良発生傾向がほとんど変化しない。そこで、前記希釈率Pzの下限は10%、好ましくは12%とした。   From FIG. 5, it can be seen that the lower the dilution rate, the more likely the fusion failure occurs. In particular, when the dilution rate is less than 10%, the fusion failure is likely to occur. When the dilution rate is 10% or more, the tendency of occurrence of poor fusion is saturated, and particularly when the dilution rate is 12% or more, the tendency of poor fusion is hardly changed. Therefore, the lower limit of the dilution rate Pz is set to 10%, preferably 12%.

<希釈率調整方法>
希釈率Pzを10〜30%、好ましくは12〜28%に制御するための方法は特に限定されるものではないが、例えば肉盛溶接時において、肉盛材料の供給速度(紛体肉盛溶接では紛体の単位時間当たりの供給量)や、肉盛溶接速度(ビード進行速度)を制御することによって、希釈率を調整することができる。例えば肉盛材料の供給速度もしくは溶接速度を大きくすれば、肉盛溶接部への母材成分の溶け込みが小さくなって、希釈率は小さくなる。したがって、実験や実績データによって肉盛材料の供給速度、溶接速度と希釈度との関係を求めておき、それに基づいて、希釈率が前記範囲内となるように、肉盛材料の供給速度、溶接速度を適切に設定して肉盛溶接を行えばよい。
<Dilution ratio adjustment method>
Although the method for controlling the dilution rate Pz to 10 to 30%, preferably 12 to 28% is not particularly limited, for example, at the time of overlay welding, the supply speed of the overlay material (in powder overlay welding) The dilution rate can be adjusted by controlling the supply amount of the powder per unit time) and the build-up welding speed (bead progression speed). For example, if the supply speed or welding speed of the build-up material is increased, the penetration of the base material component into the build-up weld is reduced, and the dilution rate is reduced. Therefore, the relationship between the supply rate of the overlaying material, the welding speed and the dilution is obtained by experiments and actual data, and based on this, the supply rate of the overlaying material and the welding are adjusted so that the dilution rate is within the above range. What is necessary is just to perform overlay welding by setting a speed | rate appropriately.

なお肉盛溶接方法は特に限定されないが、蒸気タービンの蒸気弁の弁体や弁座では、プラズマ紛体肉盛溶接法が好適であり、そのほか、TIG溶接法、レーザ溶接法なども適用可能である。   The build-up welding method is not particularly limited, but the plasma powder build-up welding method is suitable for the valve body and valve seat of the steam valve of the steam turbine. In addition, the TIG welding method, the laser welding method, and the like are also applicable. .

本発明の高温摺動部材は、蒸気タービンの蒸気弁の弁体もしくは弁座に最適であるが、そのほかの用途の弁、例えばエンジンバルブの弁体もしくは弁座にも適用することができ、さらには、弁以外の高温で使用される摺動部品、例えばブッシュ等にも適用することができる。   The high-temperature sliding member of the present invention is optimal for a valve body or a valve seat of a steam valve of a steam turbine, but can also be applied to a valve for other uses, for example, a valve body or a valve seat of an engine valve. Can also be applied to sliding parts used at high temperatures other than valves, such as bushes.

以上、本発明の好ましい実施形態について説明したが、この実施形態は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。   Although the preferred embodiment of the present invention has been described above, this embodiment is merely an example within the scope of the gist of the present invention, and additions and omissions of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible. That is, the present invention is not limited by the above description, is limited only by the scope of the appended claims, and can be appropriately changed within the scope.

1・・・高温摺動部材としての弁体
2・・・母材部
3・・・肉盛溶接部
4・・・界面
Z・・・領域
DESCRIPTION OF SYMBOLS 1 ... Valve body 2 as a high temperature sliding member ... Base material part 3 ... Overlay welding part 4 ... Interface Z ... Area | region

Claims (7)

鉄基材料からなる母材部と、Co−Cr系耐熱合金によって前記母材部の表面に形成された肉盛溶接部とを有し、
前記肉盛溶接部の厚み方向に前記母材部との界面から0.2mm〜0.8mmの範囲内の領域での、母材成分による希釈率が10〜30%の範囲内であることを特徴とする高温摺動部材。
A base metal part made of an iron-based material, and a weld overlay formed on the surface of the base metal part by a Co-Cr heat-resistant alloy,
That the dilution ratio by the base material component is in the range of 10 to 30% in the region within the range of 0.2 mm to 0.8 mm from the interface with the base material part in the thickness direction of the build-up weld. High temperature sliding member characterized.
前記希釈率が、12〜28%の範囲内であることを特徴とする請求項1に記載の高温摺動部材。   The high-temperature sliding member according to claim 1, wherein the dilution rate is in a range of 12 to 28%. 前記希釈率が、Fe濃度とCo濃度とのうち、いずれか一方の濃度により算出した値、もしくはFe濃度により算出した値とCo濃度により算出した値との平均値であることを特徴とする請求項1、請求項2のいずれかの請求項に記載の高温摺動部材。   The dilution rate is a value calculated from one of the Fe concentration and the Co concentration, or an average value of a value calculated from the Fe concentration and a value calculated from the Co concentration. The high temperature sliding member according to any one of claims 1 and 2. 前記Co−Cr系耐熱合金が、質量%で、Cr:24〜32%、W:0〜20%、C:0.2〜3.5%、Mo:0〜6%、Ni:0〜25%、Fe3%以下を含有し、残部がCo及び不純物からなることを特徴とする請求項1〜請求項3のいずれかの請求項に記載の高温摺動部材。   The Co—Cr heat resistant alloy is in mass%, Cr: 24 to 32%, W: 0 to 20%, C: 0.2 to 3.5%, Mo: 0 to 6%, Ni: 0 to 25 The high-temperature sliding member according to any one of claims 1 to 3, wherein the high-temperature sliding member contains Co and impurities. 前記鉄基材料が、Feを75mass%以上含有する耐熱鋼であることを特徴とする請求項1〜請求項4のいずれかの請求項に記載の高温摺動部材。   The high-temperature sliding member according to any one of claims 1 to 4, wherein the iron-based material is heat resistant steel containing 75 mass% or more of Fe. 蒸気タービンにおける蒸気弁の弁体もしくは弁座であることを特徴とする請求項1〜請求項5のいずれかの請求項に記載の高温摺動部材。   The high temperature sliding member according to any one of claims 1 to 5, wherein the high temperature sliding member is a valve body or a valve seat of a steam valve in a steam turbine. 請求項1〜請求項5のいずれかの請求項に記載の高温摺動部材が、蒸気弁の弁体もしくは弁座に用いられていることを特徴とする蒸気タービン。   A steam turbine, wherein the high-temperature sliding member according to any one of claims 1 to 5 is used for a valve body or a valve seat of a steam valve.
JP2017124103A 2017-06-26 2017-06-26 High temperature sliding parts and steam turbines Active JP7163009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017124103A JP7163009B2 (en) 2017-06-26 2017-06-26 High temperature sliding parts and steam turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017124103A JP7163009B2 (en) 2017-06-26 2017-06-26 High temperature sliding parts and steam turbines

Publications (2)

Publication Number Publication Date
JP2019005784A true JP2019005784A (en) 2019-01-17
JP7163009B2 JP7163009B2 (en) 2022-10-31

Family

ID=65027311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124103A Active JP7163009B2 (en) 2017-06-26 2017-06-26 High temperature sliding parts and steam turbines

Country Status (1)

Country Link
JP (1) JP7163009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230329A1 (en) * 2021-04-30 2022-11-03 三菱重工業株式会社 Steam valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206567A (en) * 1984-03-30 1985-10-18 Ebara Corp Formation of corrosion- and wear-resistant build-up layer
WO2008111150A1 (en) * 2007-03-12 2008-09-18 Mitsubishi Heavy Industries, Ltd. Valve gear
JP2010240700A (en) * 2009-04-07 2010-10-28 Fujico Co Ltd Friction surfacing method of composite metal tube and composite metal tube formed by friction surfacing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528106B2 (en) 2014-05-30 2019-06-12 アイセイエンジ株式会社 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool
JP2016150376A (en) 2015-02-19 2016-08-22 大同特殊鋼株式会社 Padding material and build-up metal material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206567A (en) * 1984-03-30 1985-10-18 Ebara Corp Formation of corrosion- and wear-resistant build-up layer
WO2008111150A1 (en) * 2007-03-12 2008-09-18 Mitsubishi Heavy Industries, Ltd. Valve gear
JP2010240700A (en) * 2009-04-07 2010-10-28 Fujico Co Ltd Friction surfacing method of composite metal tube and composite metal tube formed by friction surfacing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230329A1 (en) * 2021-04-30 2022-11-03 三菱重工業株式会社 Steam valve

Also Published As

Publication number Publication date
JP7163009B2 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
EP1319462B1 (en) Method of electron beam welding of single-crystal superalloys
JP4288304B1 (en) Turbine rotor and method of manufacturing turbine rotor
JP5383968B2 (en) Shim-based laser beam welding method for joining superalloys applied to gas turbines
US9365913B2 (en) High-hardness hardfacing alloy powder
US10994361B2 (en) Stepped design weld joint preparation
US9878403B2 (en) Ni-based alloy for welding material and welding wire, rod and power
US20110062220A1 (en) Superalloy composition and method of forming a turbine engine component
US20100059572A1 (en) Weld repair process and article repaired thereby
JP4645303B2 (en) Overlay welding material for hot forging die and hot forging die using the welding material
Jorge et al. Evaluation of the AISI 904L alloy weld overlays obtained by GMAW and electro-slag welding processes
US9346132B2 (en) Metal chemistry for improved weldability of super alloys
Anbarasu et al. Investigation of filler material influence on hardness of TIG welded joints
JP5917312B2 (en) Steam valve device and manufacturing method thereof
Kumar et al. Structural integrity assessment of Inconel 617/P92 steel dissimilar welds produced using the shielded metal arc welding process
JP7163009B2 (en) High temperature sliding parts and steam turbines
JP5554192B2 (en) Co-based hardfacing material and overlaying method
Naik et al. Development of NiCrSiBC weld hardfacing approach for P91 steels used in steam turbine components
US6713722B2 (en) Rotor and method for welding an element of a rotor
EP2564978B1 (en) Filler metal chemistry for improved weldability of super alloys
JP4508772B2 (en) Steam turbine rotor repair method, overlay welding material, and steam turbine
US20180237883A1 (en) METHOD FOR PRODUCING JOURNAL PART OF 9 TO 12% Cr STEEL TURBINE ROTOR, AND JOURNAL PART PRODUCED BY THE METHOD
KR102326108B1 (en) Method of forming weld joint in super austenite stainless steel
JP7140207B2 (en) METHOD FOR MANUFACTURING FERRITIC HEAT-RESISTANT STEEL WELD JOINT
JP6736941B2 (en) Welding method of steel member and welding material
KR20070093871A (en) Enhanced bearing durability rotating member method and apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170627

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211208

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220124

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220218

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220531

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220614

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220913

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221011

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221019

R150 Certificate of patent or registration of utility model

Ref document number: 7163009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150