JP5917312B2 - Steam valve device and manufacturing method thereof - Google Patents

Steam valve device and manufacturing method thereof Download PDF

Info

Publication number
JP5917312B2
JP5917312B2 JP2012138348A JP2012138348A JP5917312B2 JP 5917312 B2 JP5917312 B2 JP 5917312B2 JP 2012138348 A JP2012138348 A JP 2012138348A JP 2012138348 A JP2012138348 A JP 2012138348A JP 5917312 B2 JP5917312 B2 JP 5917312B2
Authority
JP
Japan
Prior art keywords
steam
base material
valve
welding
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012138348A
Other languages
Japanese (ja)
Other versions
JP2014001702A (en
Inventor
大輔 ▲辻▼
大輔 ▲辻▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012138348A priority Critical patent/JP5917312B2/en
Publication of JP2014001702A publication Critical patent/JP2014001702A/en
Application granted granted Critical
Publication of JP5917312B2 publication Critical patent/JP5917312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Lift Valve (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明の実施形態は、蒸気弁装置およびその製造方法に関する。   Embodiments described herein relate generally to a steam valve device and a method for manufacturing the same.

火力発電プラントの蒸気タービン発電設備には、蒸気流量の制御機能を有する蒸気弁装置が設けられている。その主な蒸気弁装置としては、主蒸気止め弁、蒸気加減弁、再熱蒸気止め弁、およびインターセプト弁などが挙げられる。   A steam turbine power generation facility of a thermal power plant is provided with a steam valve device having a steam flow rate control function. Examples of the main steam valve device include a main steam stop valve, a steam control valve, a reheat steam stop valve, and an intercept valve.

例えば、蒸気加減弁は、弁棒と、この弁棒に連動する弁体を弁棒の軸方向に移動させ、弁の開度を変化させることにより、蒸気流量を調整している。一連の流量調整動作の中で、弁棒はバルブスタンド内部に設置されたブッシュを、弁体はスリーブを、それぞれガイドとして移動する。弁棒および弁体は、軸方向に対して直交する方向に固定されていないことから、蒸気圧力による振動でブッシュおよびスリーブに対して摺動を繰り返すことになる。   For example, a steam control valve adjusts the steam flow rate by moving a valve stem and a valve body linked to the valve stem in the axial direction of the valve stem to change the opening of the valve. In a series of flow rate adjusting operations, the valve rod moves using a bush installed inside the valve stand, and the valve element moves using a sleeve as a guide. Since the valve stem and the valve body are not fixed in a direction orthogonal to the axial direction, the sliding with respect to the bush and the sleeve is repeated by vibration due to the steam pressure.

従来の蒸気タービン発電設備の蒸気条件下(538℃又は566℃)における蒸気弁装置は、蒸気弁摺動部への耐酸化性(酸化スケール生成の抑制)、耐摩耗性(高温硬さの向上)処理の検討が行われている。   The steam valve device under steam conditions (538 ° C or 566 ° C) of conventional steam turbine power generation equipment is resistant to oxidation (suppression of oxide scale generation) and wear resistance (improvement of high temperature hardness) ) Processing is being considered.

弁体とスリーブ、弁棒とブッシュなどの摺動部における間隙は、蒸気の漏洩および蒸気圧力による振動を防止するため、微小である。そして、この間隙に高温蒸気が流入すると、酸化スケールが生成される。この酸化スケールは、時間の経過に伴い摺動部に堆積することで弁が固着する、いわゆるスティック現象の要因となる。このスティック現象を抑制するため、従来の蒸気弁装置では、摺動部の摺動面にCo基硬質合金であるステライト(商品名)の肉盛溶接が施されている。   The gaps in the sliding parts such as the valve body and the sleeve, the valve stem and the bush are very small in order to prevent steam leakage and vibration due to steam pressure. When high-temperature steam flows into this gap, an oxide scale is generated. This oxide scale becomes a factor of a so-called stick phenomenon in which the valve sticks as it accumulates on the sliding portion over time. In order to suppress this sticking phenomenon, in the conventional steam valve device, build-up welding of stellite (trade name), which is a Co-based hard alloy, is performed on the sliding surface of the sliding portion.

また、従来の蒸気弁装置では、高温高圧の過熱蒸気の流入または流出による熱衝撃、蒸気弁急閉時の衝撃荷重による弁座または弁体のシート部の損傷、蒸気の流れによるエロージョン(浸食)、コロージョン(腐食)などの摩耗による損傷を防止する必要がある。そのため、従来の蒸気弁装置では、弁座や弁体のシート部に、耐熱衝撃性および耐酸化性を有し、弁母材より硬度の高いステライトの肉盛溶接が施されている。   In addition, in conventional steam valve devices, thermal shock due to inflow or outflow of high-temperature and high-pressure superheated steam, damage to the seat of the valve seat or valve body due to impact load at the time of rapid closing of the steam valve, erosion due to steam flow (erosion) It is necessary to prevent damage due to wear such as corrosion. Therefore, in the conventional steam valve device, the seat portion of the valve seat and the valve body is subjected to overlay welding of stellite having thermal shock resistance and oxidation resistance and higher hardness than the valve base material.

このように高温で使用される機器の高温部材は、高温での耐摩耗性、耐酸化性に優れていることが要求される。また、当然のこととして応力が作用する構造部材としては、要求される高温強度を満足する必要がある。   Thus, the high temperature member of the equipment used at high temperature is required to be excellent in wear resistance and oxidation resistance at high temperature. As a matter of course, the structural member on which the stress acts needs to satisfy the required high temperature strength.

前述のステライトは、Coを主成分とし、30%程度のCr、4〜15%のタングステンを含有するCo基硬質合金であり、耐摩耗性に優れた材料として知られている。   The above-mentioned stellite is a Co-based hard alloy containing Co as a main component and containing approximately 30% Cr and 4-15% tungsten, and is known as a material excellent in wear resistance.

また、このステライトは高温でも硬度の低下が小さく、CrやCoを多く含んでいるため耐酸化性に優れている。しかし、ステライト自体は、靭性に乏しいことから溶接後の冷却速度が速いと、熱応力によってステライトの肉盛溶接部に割れが発生することもある。そのため、ステライトは、溶接施工にあたっては予熱、層間温度、および後熱処理などを充分に管理して行うことが重要である。   Further, this stellite has a small decrease in hardness even at a high temperature and is excellent in oxidation resistance because it contains a large amount of Cr and Co. However, since stellite itself has poor toughness, if the cooling rate after welding is high, cracks may occur in the welded portion of stellite due to thermal stress. For this reason, it is important that stellite is sufficiently controlled for preheating, interlayer temperature, post-heat treatment, and the like when performing welding.

また、肉盛溶接を行う母材の性質によっては、母材自体にも割れが発生することがある。従来の蒸気弁装置では、母材にSUS309系溶接材料(オーステナイト系ステンレス鋼)を下盛溶接し、その上にステライトを肉盛溶接する方法が一般的であった。   Further, depending on the properties of the base material to be overlay welded, the base material itself may be cracked. In a conventional steam valve device, a general method is that a SUS309 welding material (austenitic stainless steel) is welded on a base metal and stellite is overlay welded thereon.

このようなステライトの肉盛溶接部や母材の割れを防止する技術として、例えば特許文献1に開示されたものがある。この技術では、母材への下盛溶接材料をSUS309系溶接材料(オーステナイト系ステンレス鋼)から、延性を有するNi基合金に変更し、その上面にステライトを肉盛する方法が開示されている。   As a technique for preventing such a welded portion of stellite and cracking of the base material, there is one disclosed in Patent Document 1, for example. In this technique, a method of overlaying stellite on the upper surface of a base material by changing the overlay welding material to a base material from a SUS309 welding material (austenitic stainless steel) to a Ni-based alloy having ductility is disclosed.

特開平8−215842号公報JP-A-8-215842

前述の特許文献1に開示された技術では、下盛溶接材料をNi基合金に変更して改善を図っているものの、下盛溶接を行う母材にCrを9〜13%程度含有するマルテンサイト系耐熱鋼が用いられている。このマルテンサイト系耐熱鋼は、焼入硬化性が大きいため下盛溶接時にミクロ割れが発生し、母材自体の割れ問題は解決されていないのが現状である。   In the technique disclosed in the above-mentioned Patent Document 1, although improvement is achieved by changing the base welding material to a Ni-based alloy, martensite containing about 9 to 13% of Cr in the base material for the base welding is performed. A heat resistant steel is used. Since this martensitic heat resistant steel has a high quenching hardenability, microcracks are generated at the time of underlay welding, and the cracking problem of the base metal itself has not been solved.

本発明の実施形態は、このような事情を考慮してなされたもので、母材に下盛層を下盛溶接し、表面硬化層を肉盛溶接する場合に母材に亀裂が発生するのを防止可能な蒸気弁装置およびその製造方法を提供することを目的とする。   The embodiment of the present invention has been made in consideration of such circumstances, and cracks are generated in the base material when the overlay layer is welded on the base material and the surface hardened layer is welded on the base material. It is an object of the present invention to provide a steam valve device capable of preventing the above and a manufacturing method thereof.

上記目的を達成するために、本発明の実施形態に係る蒸気弁装置は、高温蒸気の流路に設けられた蒸気弁装置であって、フェライト系耐熱鋼製の母材と、前記母材に接して設けられたNi基合金層と、前記Ni基合金層に接して設けられたCo基硬質合金層と、を備えることを特徴とする。 To achieve the above object, a steam valve apparatus according to an embodiment of the present invention is a flow path steam valve assembly provided et the the high-temperature steam, and the base material made of ferritic heat-resistant steel, the base material And a Ni-based alloy layer provided in contact with the Ni-based alloy layer and a Co-based hard alloy layer provided in contact with the Ni-based alloy layer .

本発明の実施形態に係る蒸気弁装置の製造方法は、高温蒸気の流路に設けられ、母材に溶接部を形成する蒸気弁装置の製造方法であって、フェライト系耐熱鋼製の母材にNi基合金製の下盛層を下盛溶接により形成する下盛層形成ステップと、前記下盛層上にCo基硬質合金製の表面硬化層を肉盛溶接により形成する表面硬化層形成ステップと、を有することを特徴とする。 A method for manufacturing a steam valve device according to an embodiment of the present invention is a method for manufacturing a steam valve device that is provided in a flow path for high-temperature steam and forms a weld in a base material, and is a base material made of ferritic heat resistant steel And a step of forming a hardened layer made of a Co-based hard alloy on the lower layer by overlay welding. It is characterized by having.

本発明の実施形態によれば、母材に下盛層を下盛溶接し、表面硬化層を肉盛溶接する場合に亀裂の発生を未然に防止することができる。   According to the embodiment of the present invention, it is possible to prevent the occurrence of cracks when the overlay layer is overlay welded to the base material and the surface hardened layer is overlay welded.

本発明に係る蒸気弁装置の製造方法の一実施形態において、断面逆台形状の開先に溶接部を形成した例を示す拡大断面図である。In one Embodiment of the manufacturing method of the steam valve apparatus which concerns on this invention, it is an expanded sectional view which shows the example which formed the welding part in the groove | channel of a cross-section inverted trapezoid shape. 一実施形態において、断面円弧状の開先に溶接部を形成した変形例を示す拡大断面図である。In one Embodiment, it is an expanded sectional view which shows the modification which formed the welding part in the groove | channel of circular arc cross section. 一実施形態において、円筒形状の母材であるブッシュに溶接部を形成した変形例を示す拡大断面図である。In one Embodiment, it is an expanded sectional view which shows the modification which formed the welding part in the bush which is a cylindrical-shaped base material. 本発明の一実施形態に係る蒸気弁装置の製造方法が適用された蒸気加減弁の弁体周辺部の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the valve body periphery part of the steam control valve to which the manufacturing method of the steam valve apparatus which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る蒸気弁装置の製造方法が適用された組合せ再熱弁の弁体周辺部の構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the valve body periphery part of the combination reheat valve to which the manufacturing method of the steam valve apparatus which concerns on one Embodiment of this invention was applied.

以下に、本発明に係る蒸気弁装置およびその製造方法の実施形態および実施例について、図面を参照して説明する。   Embodiments and examples of a steam valve device and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.

(実施形態)
図1は本発明に係る蒸気弁装置の製造方法の一実施形態において、断面逆台形状の開先に溶接部を形成した例を示す拡大断面図である。なお、本実施形態の溶接部は、例えば高温蒸気条件下(蒸気温度600℃以上)において、蒸気弁装置の摺動部、弁座または弁体のシート部に形成される。
(Embodiment)
FIG. 1 is an enlarged cross-sectional view showing an example in which a welded portion is formed on a groove having an inverted trapezoidal cross section in one embodiment of a method for manufacturing a steam valve device according to the present invention. In addition, the welding part of this embodiment is formed in the sliding part of a steam valve apparatus, a valve seat, or the seat part of a valve body, for example on high temperature steam conditions (steam temperature of 600 degreeC or more).

図1に示すように、本実施形態は、母材1に肉盛のために断面逆台形状の開先部1aが予め形成されている。この開先部1aには、下盛層2が下盛溶接により形成されている。この下盛層2の上には、表面硬化層3が肉盛溶接により形成されている。   As shown in FIG. 1, in this embodiment, a groove portion 1 a having an inverted trapezoidal cross section is formed in advance on a base material 1 for overlaying. A bottom layer 2 is formed on the groove portion 1a by bottom welding. A surface hardened layer 3 is formed on the underlying layer 2 by overlay welding.

母材1は、例えばCrを9%程度含有するフェライト系耐熱鋼により成形されている。下盛層2の材料には、延性の大きいNi基合金が用いられている。表面硬化層3の材料には、Co基硬質合金であるステライトが用いられている。   The base material 1 is formed of ferritic heat-resistant steel containing, for example, about 9% Cr. As the material for the underlayer 2, a Ni-based alloy having a high ductility is used. As the material of the surface hardened layer 3, stellite, which is a Co-based hard alloy, is used.

本実施形態は、ステライトを肉盛溶接して表面硬化層3を形成する場合、母材1の材料に、従来のようなCrを9〜13%程度含有するマルテンサイト系耐熱鋼ではなく、炭素の固溶量が少なく溶接性が良好な例えばCrを9%程度含有するフェライト系耐熱鋼が用いられている。   In the present embodiment, when the surface hardened layer 3 is formed by overlay welding of stellite, the material of the base material 1 is not a martensitic heat-resistant steel containing about 9 to 13% of Cr as in the prior art, but carbon. Ferritic heat-resistant steel containing about 9% Cr, for example, having a small solid solution amount and good weldability is used.

また、本実施形態は、母材1への表面硬化層3であるステライトの肉盛溶接に先立って、延性の大きいNi基合金を母材1へ下盛溶接して下盛層2を形成している。その後、下盛層2の上に溶接速度や溶接時の温度などが管理されたPTA溶接(Plasma Transferred Arc)にて表面硬化層3であるステライトを肉盛溶接している。   Further, in the present embodiment, prior to the overlay welding of stellite which is the surface hardened layer 3 to the base material 1, the base layer 2 is formed by overlay welding a Ni-based alloy having high ductility to the base material 1. ing. Thereafter, the stellite which is the surface hardened layer 3 is build-up welded on the underlying layer 2 by PTA welding (Plasma Transferred Arc) in which the welding speed, the temperature at the time of welding, and the like are controlled.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

近年、蒸気タービンの効率向上を目的として、蒸気温度を600℃以上とした火力発電プラントが運転している。この蒸気温度の高温化に適した蒸気弁装置の材料としては、従来の耐熱合金鋼として使用されているCrを9〜13%程度含有するマルテンサイト系耐熱鋼と比べ、強度および耐酸化性の向上のため、Crを9%含有する9Cr鋼やCrを12%含有する12Cr鋼などのフェライト系耐熱鋼が適している。   In recent years, a thermal power plant having a steam temperature of 600 ° C. or more has been operated for the purpose of improving the efficiency of the steam turbine. The material of the steam valve device suitable for increasing the steam temperature is higher in strength and oxidation resistance than martensitic heat-resistant steel containing about 9 to 13% of Cr used as a conventional heat-resistant alloy steel. For improvement, ferritic heat resistant steels such as 9Cr steel containing 9% Cr and 12Cr steel containing 12% Cr are suitable.

したがって、本実施形態に係る蒸気弁装置における摺動部材および弁シート部は、高温で使用される高温部材として最適なものが選択される。例えば、Crを9%程度含有するフェライト系耐熱鋼を母材1としてステライトの表面硬化層3を形成するに当たり、ステライトと同程度の熱膨張係数にある延性の大きいNi基合金を下盛層2として形成し、その上に、溶接速度や溶接時の温度などが管理されたPTA溶接にてステライトを肉盛成形して表面硬化層3が形成される。   Therefore, as the sliding member and the valve seat portion in the steam valve device according to the present embodiment, an optimum one as a high temperature member used at a high temperature is selected. For example, when forming the surface hardened layer 3 of stellite using a ferritic heat-resistant steel containing about 9% of Cr as a base material 1, a Ni-base alloy having a large ductility and having a thermal expansion coefficient comparable to that of stellite The hardened surface layer 3 is formed by overlaying stellite by PTA welding in which the welding speed and the temperature during welding are controlled.

このように本実施形態によれば、Ni基合金を下盛層2として形成することにより、母材1のフェライト系耐熱鋼との熱膨張係数の差が小さく、またステライトとは、熱膨張係数の差がほとんどないため、加熱冷却の熱サイクルに伴う熱反応力の発生も小さくすることができる。さらに、下盛層2のNi基合金は、延性が大きいため、ステライトおよび母材1の割れに対して緩衝材となるので、溶接部の割れ発生を未然に防止することができる。   Thus, according to this embodiment, by forming the Ni-based alloy as the underlayer 2, the difference in thermal expansion coefficient from the ferritic heat resistant steel of the base material 1 is small, and stellite is a thermal expansion coefficient. Therefore, the generation of thermal reaction force associated with the heat cycle of heating and cooling can be reduced. Furthermore, since the Ni-based alloy of the underlayer 2 has a high ductility, it becomes a buffer material against cracks in the stellite and the base material 1, so that the occurrence of cracks in the welded portion can be prevented in advance.

さらに、本実施形態によれば、高温での使用中においても熱応力の発生が小さく、熱疲労やクリープ損傷に対して信頼性が向上する。また、下盛層2のNi基合金は、炭素の固溶量が小さいため、母材1側の溶接境界の炭素移行を防止し、脱炭現象による強度低下も低減させるという効果がある。   Furthermore, according to the present embodiment, the generation of thermal stress is small even during use at high temperatures, and the reliability is improved against thermal fatigue and creep damage. In addition, since the Ni-based alloy of the underlay layer 2 has a small amount of carbon solid solution, it has an effect of preventing carbon migration at the weld boundary on the base material 1 side and reducing strength reduction due to decarburization phenomenon.

以上のように、本実施形態を用いた摺動部や弁シート部などを有する蒸気弁装置によれば、その製作に際しては歩留り良く部材を製作することができるとともに、従来の温度以上の高温蒸気条件下において耐酸化、高温硬さについて有効な特性が得られる。その結果、酸化スケールの生成を防止し、摺動による摩耗量の減少が期待でき、蒸気弁の動作不調を防止することができ、使用に際しても劣化損傷が少なく、蒸気弁装置として信頼性を高めることができる。   As described above, according to the steam valve device having the sliding portion, the valve seat portion, and the like using the present embodiment, the member can be manufactured with a high yield and the high temperature steam higher than the conventional temperature can be manufactured. Under the conditions, effective properties can be obtained with respect to oxidation resistance and high temperature hardness. As a result, the generation of oxide scale can be prevented, the amount of wear due to sliding can be reduced, the malfunction of the steam valve can be prevented, and there is little deterioration damage during use, increasing the reliability as a steam valve device. be able to.

図2は一実施形態において、断面円弧状の開先に溶接部を形成した変形例を示す拡大断面図である。この変形例は、母材1に肉盛のために断面円弧状の開先部1bが形成されている。この開先部1bには、下盛層2が下盛溶接により形成されている。この下盛層2の上には、表面硬化層3が肉盛溶接により形成されている。   FIG. 2 is an enlarged cross-sectional view showing a modification in which a weld is formed in a groove having an arcuate cross section in one embodiment. In this modification, a groove portion 1b having a circular arc cross section is formed on the base material 1 for overlaying. A bottom layer 2 is formed on the groove portion 1b by bottom welding. A surface hardened layer 3 is formed on the underlying layer 2 by overlay welding.

また、母材1、下盛層2および表面硬化層3は、前記実施形態と同様の材質のものが用いられている。その他の作用効果は、前記実施形態と同様であるので、その説明を省略する。   Moreover, the base material 1, the underlaying layer 2, and the surface hardened layer 3 are made of the same material as in the above embodiment. Other functions and effects are the same as those of the above-described embodiment, and thus description thereof is omitted.

図3は一実施形態において、円筒形状の母材であるブッシュに溶接部を形成した変形例を示す拡大断面図である。この変形例は、円筒形状の母材1であるブッシュの外周面1cに下盛層2が下盛溶接により形成されている。この下盛層2の上には、表面硬化層3が肉盛溶接により形成されている。   FIG. 3 is an enlarged cross-sectional view showing a modification in which a weld portion is formed on a bush that is a cylindrical base material in one embodiment. In this modification, the underlayer 2 is formed by underlay welding on the outer peripheral surface 1c of the bush, which is the cylindrical base material 1. A surface hardened layer 3 is formed on the underlying layer 2 by overlay welding.

また、母材1であるブッシュの外周面1c、下盛層2および表面硬化層3は、前記実施形態と同様の材質のものが用いられている。その他の作用効果は、前記実施形態と同様であるので、その説明を省略する。   Moreover, the outer peripheral surface 1c of the bush which is the base material 1, the underlaying layer 2 and the surface hardened layer 3 are made of the same material as in the above embodiment. Other functions and effects are the same as those of the above-described embodiment, and thus description thereof is omitted.

(実施例)
図4は本発明の一実施形態に係る蒸気弁装置の製造方法が適用された蒸気加減弁の弁体周辺部の構造を示す縦断面図である。
(Example)
FIG. 4 is a longitudinal sectional view showing the structure of the periphery of the valve body of the steam control valve to which the method for manufacturing the steam valve device according to one embodiment of the present invention is applied.

図4に示す蒸気加減弁は、弁棒4と、この弁棒4に連動する弁体6を軸方向に移動させ、弁の開度を変化させることにより、蒸気流量を調整している。   The steam control valve shown in FIG. 4 adjusts the steam flow rate by moving the valve stem 4 and the valve body 6 linked to the valve stem 4 in the axial direction to change the opening of the valve.

一連の流量調整動作の中で、弁棒4はバルブスタンド11の内部に設置されたブッシュ5を、弁体6はスリーブ7を、それぞれガイドとして移動する。弁棒4および弁体6は、軸方向に対して直交する方向に固定されていないので、蒸気圧力による振動により摺動を繰り返すことになる。   In a series of flow rate adjusting operations, the valve rod 4 moves with the bush 5 installed inside the valve stand 11 and the valve body 6 moves with the sleeve 7 as a guide. Since the valve stem 4 and the valve body 6 are not fixed in a direction perpendicular to the axial direction, the valve rod 4 and the valve body 6 are repeatedly slid by vibration due to steam pressure.

図5は本発明の一実施形態に係る蒸気弁装置の製造方法が適用された組合せ再熱弁の弁体周辺部の構造を示す縦断面図である。   FIG. 5 is a longitudinal sectional view showing the structure of the periphery of the valve body of the combined reheat valve to which the method for manufacturing the steam valve device according to one embodiment of the present invention is applied.

図5に示す組合せ再熱弁も図4に示す蒸気加減弁と同様に、弁棒4と、この弁棒4に連動する弁体6を軸方向に移動させ、弁の開度を変化させることにより、蒸気流量を調整している。   As in the case of the steam control valve shown in FIG. 4, the combined reheat valve shown in FIG. 5 moves the valve stem 4 and the valve body 6 linked to the valve stem 4 in the axial direction, thereby changing the opening of the valve. The steam flow is adjusted.

一連の流量調整動作の中で、図5に示す組合せ再熱弁の弁棒4は、上蓋12および案内片13の内部に設置されたブッシュ5、およびガイドブッシュ9を、弁体6はスリーブ7を、それぞれガイドとして移動する。弁棒4および弁体6は、軸方向に対して直交する方向に固定されていないので、蒸気圧力による振動により摺動を繰り返すことになる。   In a series of flow rate adjusting operations, the valve rod 4 of the combined reheat valve shown in FIG. 5 has the bush 5 and the guide bush 9 installed inside the upper lid 12 and the guide piece 13, and the valve body 6 has the sleeve 7. , Each move as a guide. Since the valve stem 4 and the valve body 6 are not fixed in a direction perpendicular to the axial direction, the valve rod 4 and the valve body 6 are repeatedly slid by vibration due to steam pressure.

ステライトを肉盛溶接して表面硬化層を形成する部位は、図4および図5に示すようにブッシュ5と接触する弁棒4の外周面、弁棒4をガイドするブッシュ5の内周面、弁体6をガイドするスリーブ7の内周面、スリーブ7の内周面と接触する弁体6の外周面、弁体6の弁シート部10、および弁座8の弁シート部10である。   As shown in FIG. 4 and FIG. 5, the portion where the stellite is build-up welded to form the surface hardened layer includes the outer peripheral surface of the valve stem 4 that contacts the bush 5, the inner peripheral surface of the bush 5 that guides the valve stem 4 The inner peripheral surface of the sleeve 7 that guides the valve body 6, the outer peripheral surface of the valve body 6 that contacts the inner peripheral surface of the sleeve 7, the valve seat portion 10 of the valve body 6, and the valve seat portion 10 of the valve seat 8.

ステライトを肉盛溶接した表面は、非常に硬く、加工性が悪くなるので、弁棒4、ブッシュ5、スリーブ7、弁体6の実際に摺動する面、および弁シート部10のみに加工処理する。   The surface on which the stellite is overlay welded is very hard and has poor workability, so only the valve rod 4, bush 5, sleeve 7 and valve body 6 sliding surface and valve seat portion 10 are processed. To do.

肉盛溶接する母材として例えばブッシュ5では、Crを9%程度含有するフェライト系耐熱鋼のASTM(American Society for Testing and Materials:米国材料試験協会) A182 Grade F91(9%Cr−1%Mo−0.25V鋼)を用い、ブッシュ5の内周面に下盛溶接前の機械加工を施し、下記溶接施工条件にて主要成分として例えば、
18〜22%Cr−≦0.75%Ti−≦1.5%Fe−2〜3%(Nb+Ta)を含有するNi基合金から成る溶接棒で下記条件により、下盛溶接を行った。
As a base material for overlay welding, for example, in Bush 5, ASTM (American Society for Testing and Materials) A182 Grade F91 (9% Cr-1% Mo—) of ferritic heat-resistant steel containing about 9% Cr 0.25V steel), the inner peripheral surface of the bush 5 is subjected to machining before overlay welding, and as a main component under the following welding conditions, for example,
Underlay welding was performed with a welding rod made of a Ni-based alloy containing 18 to 22% Cr− ≦ 0.75% Ti− ≦ 1.5% Fe−2 to 3% (Nb + Ta) under the following conditions.

図3にNi基合金を用いた下盛溶接およびステライトの肉盛溶接を施した表面硬化層3の断面を示す。図3において、符号2が下盛層を示している。   FIG. 3 shows a cross section of the hardened surface layer 3 subjected to underlay welding using a Ni-based alloy and overlaid welding of stellite. In FIG. 3, the code | symbol 2 has shown the underlaying layer.

予熱:300〜350℃、溶接:TIG(Tungsten Inert Gas)溶接 Arガス、後熱処理:740℃×1hr/1inch(空冷)である。   Preheating: 300 to 350 ° C., welding: TIG (Tungsten Inert Gas) welding Ar gas, post-heat treatment: 740 ° C. × 1 hr / 1 inch (air cooling).

次に、ステライトの肉盛溶接は、溶接速度が安定している自動溶接のPTA(Plasma Transferred Arc)溶接にて肉盛成形を行った。また、溶接施工時の予熱、層間、後熱処理の温度管理を徹底した。   Next, overlay welding of stellite was performed by PTA (Plasma Transferred Arc) welding of automatic welding in which the welding speed was stable. Also, thorough temperature control of preheating, interlayer, and post-heat treatment during welding was performed.

肉盛材料は、コバルト基質合金粉末でAWS A5,13 RCoCr−A相当材のステライト(アメリカ溶接協会の規格、主成分:Cr28%−4%W−1%C−残部Co)を使用し、以下の溶接施工条件にてPTA溶接にて肉盛成形を行った。   The build-up material is cobalt substrate alloy powder and uses AWS A5, 13 RCoCr-A equivalent material stellite (American Welding Association standard, main component: Cr 28% -4% W-1% C-balance Co), Overlay molding was performed by PTA welding under the welding conditions described above.

予熱:300〜350℃、溶接:PTA溶接 Arガス、溶接速度:50〜70mm/min、ウィービング幅:10〜15mm、後熱処理:740℃×1hr/1inch(空冷)である。   Preheating: 300 to 350 ° C., welding: PTA welding Ar gas, welding speed: 50 to 70 mm / min, weaving width: 10 to 15 mm, post heat treatment: 740 ° C. × 1 hr / 1 inch (air cooling).

ブッシュ5の内面は、ステライトを肉盛溶接した後、機械加工仕上げを行い、所定の形状、寸法および表面粗さに仕上げた。   The inner surface of the bush 5 was subjected to machining finishing after overlay welding of stellite, and finished to a predetermined shape, size and surface roughness.

このように本実施形態の製造方法により製造したブッシュ5のステライトの肉盛部に割れの発生はみられず、信頼性の高い品質であることが確認された。   In this way, no crack was observed in the stellite overlay of the bush 5 manufactured by the manufacturing method of the present embodiment, and it was confirmed that the quality was highly reliable.

なお、本実施例では、ASTM A182 Grade F91材を合金母材とした場合について説明したが、別途3%以下のCrを含有するフェライト系耐熱鋼についても、同様に本実施例によるNi基合金を下盛溶接し、その後ステライトを肉盛溶接し、その効果を確認したが、割れの発生は確認されずに良好であった。   In this example, the case where the ASTM A182 Grade F91 material was used as the alloy base material was explained. However, the Ni-based alloy according to this example is similarly applied to the ferritic heat-resistant steel containing 3% or less of Cr. Underlay welding and then overlay welding of stellite were confirmed, and the effect was confirmed.

次に、本発明に係る蒸気弁装置の一実施例の作用および効果について説明する。   Next, the operation and effect of an embodiment of the steam valve device according to the present invention will be described.

前述の従来の材料構成における熱膨張係数は、母材である9〜13Crマルテンサイト系耐熱鋼は、約12.0×10−6/℃、下盛溶接材であるオーステナイト系ステンレス鋼は、約19.0×10−6/℃、ステライトは、約15.0×10−6/℃であった。 The thermal expansion coefficient in the above-described conventional material structure is about 12.0 × 10 −6 / ° C. for the 9 to 13 Cr martensitic heat resistant steel which is the base material, and about austenitic stainless steel which is the overlay welding material is about 19.0 × 10 −6 / ° C., and stellite was about 15.0 × 10 −6 / ° C.

これに対し、本発明の一実施例における熱膨張係数は、母材1である9Crフェライト系耐熱鋼は、約13.0×10−6/℃、下盛層2であるNi基合金鋼は、約15.0×10−6/℃、表面硬化層3であるステライトは、約15.0×10−6/℃となっている。 On the other hand, the thermal expansion coefficient in one embodiment of the present invention is about 13.0 × 10 −6 / ° C. for the 9Cr ferritic heat resistant steel which is the base material 1, and the Ni-based alloy steel which is the overlay layer 2 is , About 15.0 × 10 −6 / ° C., and the stellite which is the surface hardened layer 3 is about 15.0 × 10 −6 / ° C.

すなわち、母材1に直接肉盛する下盛層2としては、熱膨張係数がステライトと同程度で、炭素の固溶量が少なく、延性の大きいNi基合金を使用することによって、
(1)母材1との熱膨張係数の差が小さいため、発生する熱応力が小さくなる。
That is, as the underlaying layer 2 directly deposited on the base material 1, by using a Ni-based alloy having a thermal expansion coefficient similar to that of stellite, a small amount of solid solution of carbon, and a large ductility,
(1) Since the difference in thermal expansion coefficient with the base material 1 is small, the generated thermal stress is small.

(2)ステライトとNi基合金との間は、同程度の熱膨張係数にあるので熱応力の発生が少ない。   (2) Since the stellite and the Ni-based alloy have the same thermal expansion coefficient, there is little generation of thermal stress.

(3)下盛層2をNi基合金とすることで、炭素の固溶量が少なく、溶接境界での母材1側からの炭素移行を防止することができ、脱炭層の発生を阻止し、強度低下を防止する。   (3) By making the underlayer 2 an Ni-based alloy, the amount of solid solution of carbon is small, carbon migration from the base material 1 side at the weld boundary can be prevented, and generation of a decarburized layer is prevented. , Prevent strength reduction.

(4)したがって、下盛層2として延性の大きいNi基合金を使用することによって、それが割れの緩衝材となりステライトおよび母材1の割れを防止することが可能となる。   (4) Therefore, by using a Ni-based alloy having high ductility as the underlay layer 2, it becomes a buffer material for cracking, and it becomes possible to prevent cracking of the stellite and the base material 1.

上記(1)〜(4)の要請を満足するNi基合金は、主成分がCr18〜22%−Ti≦0.75%−Fe≦1.5%−(Nb+Ta)2〜3%−Ni残部%の合金鋼やCr21.5%−Mo9%−Fe2.5%−(Nb+Ta)3.7%−Ni61%からなるJIS NCF625などの合金鋼が適しており、さらには下記の組成を含有するものが好ましい。   The Ni-base alloy satisfying the above requirements (1) to (4) has a main component of Cr18-22% -Ti≤0.75% -Fe≤1.5%-(Nb + Ta) 2-3% -Ni balance. Alloy steel such as JIS NCF625, which is composed of 1% alloy steel and Cr21.5% -Mo9% -Fe2.5%-(Nb + Ta) 3.7% -Ni61%, and further contains the following composition: Is preferred.

具体的に、Ni基合金は、Crが18〜22%、より好ましくは20〜22%、Tiが0.75 %以下、より好ましくは0.2〜0.6 %、Feが3%以下、より好ましくは1〜2%、最も好ましくは1.4%、Nb+Taが2〜3%、Niが残部である。   Specifically, the Ni-based alloy has a Cr of 18 to 22%, more preferably 20 to 22%, a Ti of 0.75% or less, more preferably 0.2 to 0.6%, and a Fe of 3% or less. More preferably, it is 1-2%, most preferably 1.4%, Nb + Ta is 2-3%, and Ni is the balance.

また、本実施例において母材1として用いられるCrを9%程度含有するフェライト系耐熱鋼は、例えばASTM A182 Grade F91(9%Cr−1%Mo−0.25V鋼)を代表として、一般に次の組成を有するものを用いるのが好ましい。   Moreover, the ferritic heat resistant steel containing about 9% of Cr used as the base material 1 in this example is typically represented by ASTM A182 Grade F91 (9% Cr-1% Mo-0.25V steel), for example. It is preferable to use one having the composition:

具体的には、Cが0.08〜0.12%、Crが8〜9.5%、Moが0.85〜1.05%、Vが0.18〜0.25%、Mnが0.3〜0.6%、Niが≦0.4%、Nbが0.06〜0.10%、Nが0.03〜0.07%、Feが残部である。   Specifically, C is 0.08 to 0.12%, Cr is 8 to 9.5%, Mo is 0.85 to 1.05%, V is 0.18 to 0.25%, and Mn is 0. 0.3 to 0.6%, Ni is ≦ 0.4%, Nb is 0.06 to 0.10%, N is 0.03 to 0.07%, and Fe is the balance.

ここで、Cが0.08%未満の場合は、溶接性が向上するものの、強度が低下してしまう。また、Cが0.12%を超えると、逆に強度が向上するものの、溶接性が低下することになる。そのため、上記のようにCが0.08〜0.12%の範囲を含有することにより、溶接性および強度の双方が向上する。   Here, when C is less than 0.08%, the weldability is improved, but the strength is lowered. On the other hand, when C exceeds 0.12%, the weldability is lowered although the strength is improved. Therefore, when C contains the range of 0.08 to 0.12% as described above, both weldability and strength are improved.

以上のように本発明の実施形態および実施例を説明したが、これらの実施形態および実施例は、単なる例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態および実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態、実施例やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As described above, the embodiments and examples of the present invention have been described. However, these embodiments and examples are presented merely as examples, and are not intended to limit the scope of the invention. These novel embodiments and examples can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments, examples, and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

なお、上記実施例では、炭素の固溶量が少なく、溶接性が良好なフェライト系耐熱合金鋼であれば、母材1の材料として、前述のASTM A182 Grade F91に限定されず、今後のさらなる蒸気条件の上昇に伴い、新たな材料が開発されても、本発明の本質から逸脱しなければ適用可能である。   In the above embodiment, the material of the base material 1 is not limited to the above-mentioned ASTM A182 Grade F91 as long as it is a ferritic heat resistant alloy steel with a small amount of carbon solid solution and good weldability. Even if new materials are developed as the steam conditions increase, they can be applied without departing from the essence of the present invention.

また、本発明の一実施形態では、下盛溶接したNi基合金の上に、ステライトを肉盛溶接して表面硬化層3を形成しているが、ステライト以外に、例えばCo基硬質合金であるトリバロイ(商品名)材、またはNi基硬質合金であるコルモノイ(商品名)材やクレバロイ(商品名)であっても適用可能である。   Further, in one embodiment of the present invention, the surface hardened layer 3 is formed by overlay welding of stellite on the Ni-based alloy that has been welded under welding, but other than stellite, for example, it is a Co-based hard alloy. Trivalloy (trade name) material, or Kolmonoy (trade name) material and Clervalloy (trade name) which are Ni-based hard alloys are also applicable.

さらに、今後の更なる蒸気条件の上昇に伴い新たな材料が開発されても、耐熱衝撃性および耐酸化性を有し、母材より硬度の高い材質であれば適用可能である。   Furthermore, even if a new material is developed with further increase in steam conditions in the future, any material that has thermal shock resistance and oxidation resistance and has higher hardness than the base material can be applied.

1…母材
1a…開先部
1b…開先部
1c…外周面
2…下盛層
3…表面硬化層
4…弁棒
5…ブッシュ
6…弁体
7…スリーブ
8…弁座
9…ガイドブッシュ
10…弁シート部
11…バルブスタンド
12…上蓋
13…案内片
DESCRIPTION OF SYMBOLS 1 ... Base material 1a ... Groove part 1b ... Groove part 1c ... Outer peripheral surface 2 ... Bottom layer 3 ... Surface hardening layer 4 ... Valve rod 5 ... Bushing 6 ... Valve body 7 ... Sleeve 8 ... Valve seat 9 ... Guide bush DESCRIPTION OF SYMBOLS 10 ... Valve seat part 11 ... Valve stand 12 ... Upper lid 13 ... Guide piece

Claims (6)

高温蒸気の流路に設けられた蒸気弁装置であって、
フェライト系耐熱鋼製の母材と、
前記母材に接して設けられたNi基合金層と、
前記Ni基合金層に接して設けられたCo基硬質合金層と、
を備えることを特徴とする蒸気弁装置。
A provided et the steam valve of the flow path of the high-temperature steam,
A base material made of ferritic heat-resistant steel;
A Ni-based alloy layer provided in contact with the base material;
A Co-based hard alloy layer provided in contact with the Ni-based alloy layer ;
A steam valve device comprising:
前記母材のフェライト系耐熱鋼は、Cを0.08〜0.12%の範囲で含有することを特徴とする請求項1に記載の蒸気弁装置。   The steam valve device according to claim 1, wherein the base material ferritic heat-resistant steel contains C in a range of 0.08 to 0.12%. 前記母材にNi基合金層及びCo基硬質合金層が設けられる部位は、弁棒をガイドするブッシュの内面、前記ブッシュ内面と接触する前記弁棒外面、弁体をガイドするスリーブの内面、前記スリーブ内面と接触する前記弁体外面、前記弁体および弁座の弁シート部のいずれかであることを特徴とする請求項1に記載の蒸気弁装置。 The portion where the base material is provided with the Ni-based alloy layer and the Co-based hard alloy layer includes an inner surface of a bush that guides the valve stem, an outer surface of the valve stem that contacts the inner surface of the bush, an inner surface of the sleeve that guides the valve body, 2. The steam valve device according to claim 1, wherein the steam valve device is one of an outer surface of the valve body that contacts an inner surface of the sleeve, a valve seat of the valve body, and a valve seat. 前記母材にNi基合金層及びCo基硬質合金層が設けられる部位は、少なくとも一部であることを特徴とする請求項3に記載の蒸気弁装置。 Sites Ni base alloy layer and a Co-based hard alloy layer is provided on the base material, steam valve assembly according to claim 3, characterized in that at least part. 高温蒸気の流路に設けられ、母材に溶接部を形成する蒸気弁装置の製造方法であって、  A method of manufacturing a steam valve device that is provided in a flow path of high-temperature steam and forms a weld in a base material,
フェライト系耐熱鋼製の母材にNi基合金製の下盛層を下盛溶接により形成する下盛層形成ステップと、  An underlay layer forming step of forming an underlay layer made of a Ni-based alloy on a base material made of ferritic heat resistant steel by underlay welding;
前記下盛層上にCo基硬質合金製の表面硬化層を肉盛溶接により形成する表面硬化層形成ステップと、  Surface hardened layer forming step of forming a surface hardened layer made of Co-based hard alloy on the underlayed layer by overlay welding,
を有することを特徴とする蒸気弁装置の製造方法。  A method for manufacturing a steam valve device.
前記表面硬化層形成ステップは、PTA溶接により肉盛成形を施すことを特徴とする請求項5に記載の蒸気弁装置の製造方法。 6. The method of manufacturing a steam valve device according to claim 5, wherein the surface hardened layer forming step performs build-up molding by PTA welding .
JP2012138348A 2012-06-20 2012-06-20 Steam valve device and manufacturing method thereof Active JP5917312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138348A JP5917312B2 (en) 2012-06-20 2012-06-20 Steam valve device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138348A JP5917312B2 (en) 2012-06-20 2012-06-20 Steam valve device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014001702A JP2014001702A (en) 2014-01-09
JP5917312B2 true JP5917312B2 (en) 2016-05-11

Family

ID=50035099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138348A Active JP5917312B2 (en) 2012-06-20 2012-06-20 Steam valve device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5917312B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244267B2 (en) 2014-06-11 2017-12-06 株式会社神戸製鋼所 Overlay welded body
JP6654497B2 (en) * 2016-04-05 2020-02-26 三菱日立パワーシステムズ株式会社 Steam turbine plant
CN109514059A (en) * 2018-11-23 2019-03-26 东方电气集团东方汽轮机有限公司 A kind of sliding surface manufacturing method of valve parts
JP7160694B2 (en) 2019-01-08 2022-10-25 日立Geニュークリア・エナジー株式会社 FLUID CONTACT MEMBER AND METHOD FOR MANUFACTURING FLUID CONTACT MEMBER
CN111594627B (en) * 2020-05-06 2024-07-02 中国空气动力研究与发展中心超高速空气动力研究所 Thermal valve and manufacturing method thereof
JP7488788B2 (en) 2021-04-28 2024-05-22 株式会社神戸製鋼所 Kneading rotor, kneading machine, method for kneading rubber material, and method for manufacturing kneading rotor
WO2022230329A1 (en) * 2021-04-30 2022-11-03 三菱重工業株式会社 Steam valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174765A (en) * 1982-04-05 1983-10-13 Hitachi Ltd Steam valve
JPS63128154A (en) * 1986-11-17 1988-05-31 Nkk Corp Heat resistant high chromium steel having superior toughness
JPH0830251B2 (en) * 1989-02-23 1996-03-27 日立金属株式会社 High temperature strength ferritic heat resistant steel
JP2703726B2 (en) * 1994-09-02 1998-01-26 株式会社神戸製鋼所 Cobalt-based alloy powder for powder plasma welding
JPH08215842A (en) * 1995-02-15 1996-08-27 Mitsubishi Heavy Ind Ltd High temp. sliding member
JP4661002B2 (en) * 2001-08-07 2011-03-30 Jfeスチール株式会社 High tensile hot-rolled steel sheet excellent in bake hardenability and ductility and method for producing the same
JP2005048265A (en) * 2003-07-31 2005-02-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone, and manufacturing method therefor
JP4486336B2 (en) * 2003-09-30 2010-06-23 新日本製鐵株式会社 High yield ratio high strength cold-rolled steel sheet and high yield ratio high strength hot-dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high-strength galvannealed steel sheet, and manufacturing method thereof
JP5092358B2 (en) * 2006-11-09 2012-12-05 Jfeスチール株式会社 Manufacturing method of high strength and tough steel sheet
JP2010236385A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Steam valve
JP2012107593A (en) * 2010-11-19 2012-06-07 Hitachi Ltd Steam turbine valve

Also Published As

Publication number Publication date
JP2014001702A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP5917312B2 (en) Steam valve device and manufacturing method thereof
JP4542490B2 (en) High-strength martensitic heat-resistant steel, its production method and its use
EP2497596B1 (en) Method of fabricating a component and a component
JP4908137B2 (en) Turbine rotor and steam turbine
JP5011931B2 (en) Steam turbine welding rotor
US20090308847A1 (en) Erosion prevention method and member with erosion preventive section
US20190071759A1 (en) Cobalt-free, galling and wear resistant austenitic stainless steel hard-facing alloy
JP5487376B2 (en) Laser cladding method and tool material
JP4844188B2 (en) casing
US8961144B2 (en) Turbine disk preform, welded turbine rotor made therewith and methods of making the same
Masuyama Low-alloyed steel grades for boilers in ultra-supercritical power plants
JP6122319B2 (en) Dissimilar material joint
JP6189737B2 (en) Steam turbine low pressure rotor and method for manufacturing the same
JP4392376B2 (en) Method for producing composite roll for hot rolling
CN109158786B (en) Welding process for C12A cast steel valve body sealing surface
JPH08215842A (en) High temp. sliding member
JP7163009B2 (en) High temperature sliding parts and steam turbines
JP5734894B2 (en) Turbine blade repair method and turbine blade
JP2008275035A (en) Steam valve for steam turbine
JP3800630B2 (en) Final stage blades for steam turbine power plant and low pressure steam turbine and their manufacturing method
JP7258678B2 (en) steel, turbine rotors and steam turbines
Krstevska et al. Welding technology of martensitic steel P91 and austenitic steel 304H–State of the art
JP3220329B2 (en) Fluid equipment
JPH0885848A (en) High chromium ferritic heat resistant steel
JP6815979B2 (en) Nozzle and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R151 Written notification of patent or utility model registration

Ref document number: 5917312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151