JP2019004012A - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP2019004012A
JP2019004012A JP2017116650A JP2017116650A JP2019004012A JP 2019004012 A JP2019004012 A JP 2019004012A JP 2017116650 A JP2017116650 A JP 2017116650A JP 2017116650 A JP2017116650 A JP 2017116650A JP 2019004012 A JP2019004012 A JP 2019004012A
Authority
JP
Japan
Prior art keywords
electrode
notch
surface side
thermoelectric element
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017116650A
Other languages
Japanese (ja)
Other versions
JP6909062B2 (en
Inventor
駿介 櫛引
Shunsuke Kushibiki
駿介 櫛引
真人 堀越
Masato Horikoshi
真人 堀越
大久保 英明
Hideaki Okubo
英明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kelk Ltd
Original Assignee
Kelk Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kelk Ltd filed Critical Kelk Ltd
Priority to JP2017116650A priority Critical patent/JP6909062B2/en
Priority to CN201880039629.3A priority patent/CN110770923B/en
Priority to PCT/JP2018/017917 priority patent/WO2018230199A1/en
Priority to KR1020197036581A priority patent/KR102272631B1/en
Priority to US16/621,102 priority patent/US11309474B2/en
Publication of JP2019004012A publication Critical patent/JP2019004012A/en
Application granted granted Critical
Publication of JP6909062B2 publication Critical patent/JP6909062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a thermoelectric module capable of reducing stress occurring at the juncture of a thermoelectric element and an electrode due to thermal expansion of the electrode.SOLUTION: A thermoelectric module 10 includes first and second thermoelectric elements 1P, 1N, a first electrode 21 having a tabular body 211, and joined to the first end faces of the first and second thermoelectric elements 1P, 1N on the first surface of the body 211, a second electrode 22A joined to the second end face of the first thermoelectric element 1P, and a third electrode 22B joined to the second end face of the second thermoelectric element 1N. The first electrode 21 has a first notch 213A formed on the first side 211A in the width direction D, and a second notch 213B formed on the second side 211B in the width direction D. In the width direction D, at least any one of the first and second notches 213A, 213B is formed in a section between the first and second sides 211A, 211B of the first electrode 21.SELECTED DRAWING: Figure 3

Description

本発明は、熱電モジュールに関する。   The present invention relates to a thermoelectric module.

一般的に、熱電モジュールでは熱電素子の端面に電極が接合され、この電極によって隣接する熱電素子が互いに電気的に接続される。このような熱電モジュールは、例えば特許文献1に記載されている。特許文献1では、特に、熱電素子の端面に接合する電極の面積を大きくしながら、熱電素子の端面の四隅での熱応力の集中を防ぐことができる熱電モジュールが提案されている。   Generally, in a thermoelectric module, an electrode is joined to the end face of a thermoelectric element, and adjacent thermoelectric elements are electrically connected to each other by this electrode. Such a thermoelectric module is described in Patent Document 1, for example. Patent Document 1 proposes a thermoelectric module that can prevent concentration of thermal stress at the four corners of the end face of the thermoelectric element while increasing the area of the electrode joined to the end face of the thermoelectric element.

特開2014−112587号公報JP 2014-1112587 A

上記の特許文献1にも記載されているように、熱電モジュールに電流が通電されると、モジュールの一方の面では吸熱現象が生じることによって電極が冷却され、他方の面では放熱現象が生じることによって電極が加熱される。特許文献1では、吸熱側において、熱電素子の端面の四隅から間隔を空けて電極を配置することによって熱応力の集中を防ぐことが提案されている。   As described in the above-mentioned Patent Document 1, when a current is passed through the thermoelectric module, an endothermic phenomenon occurs on one surface of the module to cool the electrode, and a heat dissipation phenomenon occurs on the other surface. As a result, the electrode is heated. In Patent Document 1, it is proposed to prevent concentration of thermal stress by disposing electrodes spaced from four corners of the end face of the thermoelectric element on the heat absorption side.

しかしながら、特許文献1は、熱電素子が矩形の端面を有する場合に端面の四隅で熱応力の集中を防ぐ技術を提案しているにすぎず、それ以外の熱応力に対処する技術を提案しているわけではない。例えば、熱電モジュールの放熱側において加熱された電極が熱膨張することによって生じる熱応力に対処する技術は、特許文献1を含む従来の技術では提案されていない。   However, Patent Document 1 only proposes a technique for preventing thermal stress concentration at the four corners of the end face when the thermoelectric element has a rectangular end face, and proposes a technique for dealing with other thermal stresses. I don't mean. For example, a technique for dealing with thermal stress caused by thermal expansion of an electrode heated on the heat radiation side of a thermoelectric module has not been proposed in the conventional techniques including Patent Document 1.

上記に鑑み、本発明の目的の一つは、電極の熱膨張によって熱電素子と電極との接合部に生じる応力を低減することができる熱電モジュールを提供することにある。   In view of the above, one of the objects of the present invention is to provide a thermoelectric module that can reduce the stress generated at the joint between the thermoelectric element and the electrode due to the thermal expansion of the electrode.

本発明の熱電モジュールは、第1および第2の熱電素子と、板状の本体部を有し、前記本体部の第1の面が前記第1の熱電素子の第1の端面および前記第2の熱電素子の第1の端面に接合されて前記第1および第2の熱電素子を互いに電気的に接続する第1の電極と、前記第1の熱電素子の前記第1の端面とは反対側の第2の端面に接合される第2の電極と、前記第2の熱電素子の前記第1の端面とは反対側の第2の端面に接合される第3の電極とを備え、前記第1の電極は、前記第1および第2の熱電素子のそれぞれの中心を結ぶ長手方向に対応する幅方向の第1の側に形成される第1の切欠部と、前記幅方向の第2の側に形成される第2の切欠部とを有し、前記幅方向について、前記第1の電極の前記第1の側と前記第2の側との間の区間には前記第1の切欠部または前記第2の切欠部の少なくともいずれかが形成されることを特徴とする。   The thermoelectric module of the present invention has first and second thermoelectric elements and a plate-like main body, and the first surface of the main body is the first end surface of the first thermoelectric element and the second A first electrode joined to a first end face of the first thermoelectric element to electrically connect the first and second thermoelectric elements to each other, and a side opposite to the first end face of the first thermoelectric element A second electrode joined to the second end face of the second thermoelectric element, and a third electrode joined to the second end face opposite to the first end face of the second thermoelectric element, One electrode includes a first notch formed on a first side in the width direction corresponding to a longitudinal direction connecting the centers of the first and second thermoelectric elements, and a second in the width direction. A second notch formed on a side of the first electrode and the second side of the first electrode in the width direction. Wherein at least one of said first notch or said second notch is formed in the.

本発明によれば、電極の熱膨張によって生じる熱応力が、電極の幅方向の両側に形成された切欠部における変形によって吸収されるため、熱電素子と電極との接合部に生じる応力を低減することができる。   According to the present invention, since the thermal stress generated by the thermal expansion of the electrode is absorbed by the deformation in the notch portions formed on both sides in the width direction of the electrode, the stress generated at the junction between the thermoelectric element and the electrode is reduced. be able to.

本発明の実施形態に係る熱電モジュールを含むプラズマ処理装置を示す図。The figure which shows the plasma processing apparatus containing the thermoelectric module which concerns on embodiment of this invention. 本発明の実施形態に係る熱電モジュールにおける上面側電極の平面配置の例を示す図。The figure which shows the example of planar arrangement | positioning of the upper surface side electrode in the thermoelectric module which concerns on embodiment of this invention. 図2に示された上面側電極の形状を拡大して示す図。The figure which expands and shows the shape of the upper surface side electrode shown by FIG. 図3に示された上面側電極に熱応力が発生した状態を示す図。The figure which shows the state which the thermal stress generate | occur | produced in the upper surface side electrode shown by FIG. 図4の例に対する比較例として、上面側電極に切欠部が形成されなかった場合に熱応力が発生した状態を示す図。The figure which shows the state which the thermal stress generate | occur | produced when the notch part was not formed in the upper surface side electrode as a comparative example with respect to the example of FIG. 本発明の実施形態において上面側電極に形成されるスリット状の切欠部の深さおよび角度の定義について説明するための図。The figure for demonstrating the definition of the depth and angle of a slit-shaped notch formed in the upper surface side electrode in embodiment of this invention. 図6に示すように定義されたスリット状の切欠部の深さと、上面側電極に発生する応力との関係を示すグラフ。The graph which shows the relationship between the depth of the slit-shaped notch part defined as shown in FIG. 6, and the stress which generate | occur | produces in an upper surface side electrode. 図6に示すように定義されたスリット状の切欠部の角度と、上面側電極に発生する応力との関係を示すグラフ。The graph which shows the relationship between the angle which the slit-shaped notch part defined as shown in FIG. 6 defines, and the stress which generate | occur | produces in an upper surface side electrode.

図1は、本発明の実施形態に係る熱電モジュール10を含むプラズマ処理装置100を示す図である。プラズマ処理装置100は、熱電モジュール10、チャンバ101、プラズマ電極102、高周波発振器103、静電チャック104、および水冷板105を含む。図示された例では、チャンバ101の内部でシリコンウェハ110が静電チャック104によって吸着されている。   FIG. 1 is a diagram showing a plasma processing apparatus 100 including a thermoelectric module 10 according to an embodiment of the present invention. The plasma processing apparatus 100 includes a thermoelectric module 10, a chamber 101, a plasma electrode 102, a high frequency oscillator 103, an electrostatic chuck 104, and a water cooling plate 105. In the illustrated example, the silicon wafer 110 is attracted by the electrostatic chuck 104 inside the chamber 101.

プラズマ電極102は、チャンバ101の内部で静電チャック104に吸着されたシリコンウェハ110と対向するように配置されている。静電チャック104は、上面(図中の上方を向いた面。以下、上面および下面の用語について同様)でシリコンウェハ110を吸着する。一方、静電チャック104の下面には熱電モジュール10および水冷板105が配置される。水冷板105には管路105Aが形成され、管路105A内には冷却流体が循環させられる。   The plasma electrode 102 is disposed so as to face the silicon wafer 110 attracted to the electrostatic chuck 104 inside the chamber 101. The electrostatic chuck 104 adsorbs the silicon wafer 110 on the upper surface (the surface facing upward in the drawing; the same applies to the terms of the upper surface and the lower surface). On the other hand, the thermoelectric module 10 and the water cooling plate 105 are disposed on the lower surface of the electrostatic chuck 104. A pipe 105A is formed in the water cooling plate 105, and a cooling fluid is circulated in the pipe 105A.

熱電モジュール10は、静電チャック104と水冷板105との間に配置され、熱電素子1、電極2、およびポリイミドフィルム3を含む。熱電素子1は、両端面をそれぞれ熱電モジュール10の上面および下面に向けて交互に配列されたP型熱電素子1PおよびN型熱電素子1Nを含む。P型熱電素子1PおよびN型熱電素子1Nのそれぞれの端面に電極2が接合されることによって、P型熱電素子1PとN型熱電素子1Nとは互いに電気的に接続される。   The thermoelectric module 10 is disposed between the electrostatic chuck 104 and the water cooling plate 105, and includes a thermoelectric element 1, an electrode 2, and a polyimide film 3. The thermoelectric element 1 includes P-type thermoelectric elements 1P and N-type thermoelectric elements 1N that are alternately arranged with both end faces facing the upper and lower surfaces of the thermoelectric module 10, respectively. By joining the electrodes 2 to the end faces of the P-type thermoelectric element 1P and the N-type thermoelectric element 1N, the P-type thermoelectric element 1P and the N-type thermoelectric element 1N are electrically connected to each other.

電極2は、熱電モジュール10の上面側に配置される上面側電極21と、下面側に配置される下面側電極22とを含む。なお、本実施形態では、図1に示されるようなプラズマ処理装置100の配置に基づいて、第1の電極を上面側電極21、第2および第3の電極を下面側電極22として説明するが、他の実施形態では、熱電モジュール10の配置が図1の例に対して反転し、第1の電極が下面側電極、第2および第3の電極が上面側電極であってもよい。あるいは、熱電モジュール10は、第1の電極と第2および第3の電極とが上下方向の両側に位置するのではなく、横方向または斜め方向の両側に位置するように配置されてもよい。ポリイミドフィルム3は、熱電モジュール10の上面側に配置され、上面側電極21はポリイミドフィルム3に接合される。ポリイミドは変形しやすい材質であるため、上面側電極21はポリイミドフィルム3を変形させながら熱膨張することができる。一方、下面側電極22は、熱電モジュール10の下面側の基板に固定されている。   The electrode 2 includes an upper surface side electrode 21 disposed on the upper surface side of the thermoelectric module 10 and a lower surface side electrode 22 disposed on the lower surface side. In the present embodiment, the first electrode is described as the upper surface side electrode 21 and the second and third electrodes are described as the lower surface side electrode 22 based on the arrangement of the plasma processing apparatus 100 as shown in FIG. In other embodiments, the arrangement of the thermoelectric module 10 may be reversed with respect to the example of FIG. 1, and the first electrode may be a lower surface side electrode and the second and third electrodes may be upper surface side electrodes. Alternatively, the thermoelectric module 10 may be arranged such that the first electrode and the second and third electrodes are not located on both sides in the vertical direction, but are located on both sides in the lateral direction or oblique direction. The polyimide film 3 is disposed on the upper surface side of the thermoelectric module 10, and the upper surface side electrode 21 is bonded to the polyimide film 3. Since polyimide is a material that easily deforms, the upper surface side electrode 21 can thermally expand while deforming the polyimide film 3. On the other hand, the lower surface side electrode 22 is fixed to the substrate on the lower surface side of the thermoelectric module 10.

上面側電極21と下面側電極22とがそれぞれ異なる組み合わせのP型熱電素子1PおよびN型熱電素子1Nを電気的に接続することによって、P型熱電素子1PおよびN型熱電素子1Nが交互に接続された直列回路が形成される。熱電モジュール10の動作時には、この回路に電流を通電することによって、上面側電極21で吸熱現象を生じさせ、下面側電極22で放熱現象を生じさせることができる。また、通電する電流の向きを逆転させれば、上面側電極21で放熱現象を生じさせ、下面側電極22で吸熱現象を生じさせることができる。このように吸熱現象および放熱現象を生じさせることによって、静電チャック104に吸着されたシリコンウェハ110の温度を制御することができる。   The P-type thermoelectric element 1P and the N-type thermoelectric element 1N are alternately connected by electrically connecting the P-type thermoelectric element 1P and the N-type thermoelectric element 1N in which the upper surface side electrode 21 and the lower surface side electrode 22 are different from each other. A series circuit is formed. During operation of the thermoelectric module 10, current can be supplied to the circuit to cause an endothermic phenomenon at the upper surface side electrode 21 and a heat radiation phenomenon at the lower surface side electrode 22. Further, if the direction of the energized current is reversed, the heat dissipation phenomenon can be caused by the upper surface side electrode 21 and the heat absorption phenomenon can be caused by the lower surface side electrode 22. Thus, the temperature of the silicon wafer 110 adsorbed on the electrostatic chuck 104 can be controlled by causing the heat absorption phenomenon and the heat radiation phenomenon.

プラズマ処理装置100では、シリコンウェハ110を静電チャック104に吸着させた後、チャンバ101の入口101Aから内部にプラズマ発生用の反応性ガスが導入され、プラズマ電極102に高周波発振器103によって高周波が印加されることによってプラズマが発生する。このプラズマによって、シリコンウェハ110にエッチングなどの処理が施される。その後、真空排気によってチャンバ101の出口101Bから反応性ガスが排出される。   In the plasma processing apparatus 100, after the silicon wafer 110 is adsorbed to the electrostatic chuck 104, a reactive gas for generating plasma is introduced from the inlet 101 </ b> A of the chamber 101, and a high frequency is applied to the plasma electrode 102 by the high frequency oscillator 103. As a result, plasma is generated. By this plasma, the silicon wafer 110 is subjected to processing such as etching. Thereafter, the reactive gas is discharged from the outlet 101B of the chamber 101 by evacuation.

上記のようなプラズマ処理の間、シリコンウェハ110の温度を目標温度に制御することによって、プラズマ処理の歩留まりを向上させることができる。プラズマ処理装置100では、上記のように熱電モジュール10において吸熱現象および放熱現象を生じさせることによって静電チャック104に吸着されたシリコンウェハ110の温度を目標温度に制御している。   By controlling the temperature of the silicon wafer 110 to the target temperature during the plasma processing as described above, the yield of the plasma processing can be improved. In the plasma processing apparatus 100, the temperature of the silicon wafer 110 adsorbed on the electrostatic chuck 104 is controlled to the target temperature by causing the endothermic phenomenon and the heat dissipation phenomenon in the thermoelectric module 10 as described above.

図2は、本発明の実施形態に係る熱電モジュール10における上面側電極21の平面配置の例を示す図である。図2には、図1に示された熱電モジュール10をI−I線断面で見た場合の上面側電極21の平面配置が部分的に示されている。なお、図2では、熱電素子1および下面側電極22の図示を省略している。図示されているように、上面側電極21は、二次元的に配列されている。それぞれの上面側電極21は、板状の本体部211を有する。後述するように、本体部211には、幅方向の両側にそれぞれ1つの切欠部213が形成される。   FIG. 2 is a diagram illustrating an example of a planar arrangement of the upper surface side electrode 21 in the thermoelectric module 10 according to the embodiment of the present invention. FIG. 2 partially shows a planar arrangement of the upper surface side electrode 21 when the thermoelectric module 10 shown in FIG. In FIG. 2, illustration of the thermoelectric element 1 and the lower surface side electrode 22 is omitted. As shown in the drawing, the upper surface side electrodes 21 are arranged two-dimensionally. Each upper surface side electrode 21 has a plate-shaped main body 211. As will be described later, the body portion 211 is formed with one notch portion 213 on each side in the width direction.

図3は、図2に示された上面側電極21の形状を拡大して示す図である。図3には、上面側電極21に接合されるP型熱電素子1PおよびN型熱電素子1Nも図示されている。上面側電極21は、これらの熱電素子1のそれぞれの端面の中心C1P,C1Nを結ぶ方向を長手方向Dとした場合に、この長手方向Dに対応する幅方向Dの第1の側211Aに形成されるスリット状の切欠部213Aと、幅方向Dの第2の側211Bに形成されるスリット状の切欠部213Bとを有する。 FIG. 3 is an enlarged view showing the shape of the upper surface side electrode 21 shown in FIG. FIG. 3 also shows a P-type thermoelectric element 1P and an N-type thermoelectric element 1N joined to the upper surface side electrode 21. When the direction connecting the centers C 1P and C 1N of the respective end faces of these thermoelectric elements 1 is the longitudinal direction D 1 , the upper surface side electrode 21 is the first in the width direction D 2 corresponding to the longitudinal direction D 1. with the a slit-shaped cutout portion 213A is formed on the side 211A, and a slit-shaped notch 213B formed in the second side 211B in the width direction D 2.

ここで、図示されているように、切欠部213A,213Bは、いずれも上面側電極21の幅方向Dの中心線CL(長手方向Dを示す線と同じ)まで延びている。つまり、幅方向Dについて、上面側電極21の第1の側211Aから第2の側211Bとの間の区間Sには、切欠部213Aまたは切欠部213Bの少なくともいずれかが形成される。さらに、図示された例では、幅方向Dについて、上面側電極21の第1の側211Aから第2の側211Bとの間の一部の区間Sには、切欠部213Aおよび切欠部213Bの両方が形成される。 Here, as illustrated, notch 213A, 213B are both extend to the center line CL in the width direction D 2 of the upper side electrode 21 (same as the line indicating the longitudinal D 1). That is, the width direction D 2, the section S 1 between the first side 211A of the upper surface electrode 21 and the second side 211B, at least one notch 213A or notch 213B is formed. Further, in the example shown, the width direction D 2, a portion of the section S 2 between the first side 211A of the upper surface electrode 21 and the second side 211B is notch 213A and the notch 213B Both are formed.

図4は、図3に示された上面側電極21に熱応力STが発生した状態を示す図である。図4(b)および図5(b)の側面図には、上面側電極21の本体部211の下面から隆起してP型熱電素子1PおよびN型熱電素子1Nの上端面にそれぞれ接合される1対の台座212が図示されている。また、図4(b)および図5(b)の側面図には、P型熱電素子1Pの下端面に接合される下面側電極22A、およびN型熱電素子1Nの下端面に接合される下面側電極22Bも図示されている。下面側電極22A,22Bは、上面側電極21の本体部211および台座212と同様の本体部221および台座222を有する。なお、図示していないが、下面側電極22Aは図示されたN型熱電素子1Nとは異なるN型熱電素子にも接合され、下面側電極22Bは図示されたP型熱電素子1Pとは異なるP型熱電素子にも接合される。   FIG. 4 is a diagram showing a state in which thermal stress ST is generated in the upper surface side electrode 21 shown in FIG. In the side views of FIG. 4 (b) and FIG. 5 (b), it protrudes from the lower surface of the main body 211 of the upper surface side electrode 21 and is joined to the upper end surfaces of the P-type thermoelectric element 1P and the N-type thermoelectric element 1N, respectively. A pair of pedestals 212 is shown. 4B and 5B, the bottom surface electrode 22A bonded to the lower end surface of the P-type thermoelectric element 1P and the lower surface bonded to the lower end surface of the N-type thermoelectric element 1N are shown. A side electrode 22B is also shown. The lower surface side electrodes 22A and 22B have a main body portion 221 and a pedestal 222 similar to the main body portion 211 and the pedestal 212 of the upper surface side electrode 21. Although not shown, the lower surface side electrode 22A is also joined to an N type thermoelectric element different from the illustrated N type thermoelectric element 1N, and the lower surface side electrode 22B is P different from the illustrated P type thermoelectric element 1P. It is also bonded to the thermoelectric element.

上述のように、熱電モジュール10の動作時には、上面側電極21において吸熱現象または放熱現象を生じさせることによって、シリコンウェハ110の温度が目標温度に制御される。このとき、シリコンウェハ110と上面側電極21との間では静電チャック104およびポリイミドフィルム3を介して熱が交換されるため、上記の目標温度が高温であれば上面側電極21も高温になる。この場合、上面側電極21の本体部211は、上述のようにポリイミドフィルム3を変形させながら、図示された矢印TEに沿って熱膨張する。その一方で、上面側電極21に接合されるP型熱電素子1PおよびN型熱電素子1Nは、それぞれ下面側電極22を介して基板に固定されることによって機械的に拘束されている。それゆえ、P型熱電素子1PとN型熱電素子1Nとの間に位置する上面側電極21の部分には熱応力STが発生する。 As described above, during the operation of the thermoelectric module 10, the temperature of the silicon wafer 110 is controlled to the target temperature by causing an endothermic phenomenon or a heat dissipation phenomenon in the upper surface side electrode 21. At this time, since heat is exchanged between the silicon wafer 110 and the upper surface side electrode 21 via the electrostatic chuck 104 and the polyimide film 3, the upper surface side electrode 21 also becomes high if the above target temperature is high. . In this case, the body portion 211 of the upper surface electrode 21, while deforming the polyimide film 3 as described above, to thermal expansion along the arrow TE 1 illustrated. On the other hand, the P-type thermoelectric element 1P and the N-type thermoelectric element 1N joined to the upper surface side electrode 21 are mechanically constrained by being fixed to the substrate via the lower surface side electrode 22, respectively. Therefore, the thermal stress ST is generated in the portion of the upper surface side electrode 21 located between the P-type thermoelectric element 1P and the N-type thermoelectric element 1N.

しかしながら、本実施形態に係る熱電モジュール10の上面側電極21では、切欠部213A,213Bの部分が変形することによって、P型熱電素子1PおよびN型熱電素子1Nが拘束されていても本体部211の熱膨張が阻害されにくい。この結果として、発生する熱応力STは小さくなる。   However, in the upper surface side electrode 21 of the thermoelectric module 10 according to the present embodiment, the main body portion 211 is formed even when the P-type thermoelectric element 1P and the N-type thermoelectric element 1N are constrained by the deformation of the notches 213A and 213B. The thermal expansion of is difficult to be inhibited. As a result, the generated thermal stress ST is reduced.

これに対して、図5は、図4の例に対する比較例として、上面側電極21に切欠部213A,213Bが形成されなかった場合に熱応力STが発生した状態を示す図である。この場合、上面側電極21の本体部211は図示された矢印TEに沿って熱膨張するが、P型熱電素子1PおよびN型熱電素子1Nが機械的に拘束されていることによって熱膨張が阻害される。その結果、P型熱電素子1PとN型熱電素子1Nとの間に位置する上面側電極21の部分には大きな熱応力STが発生する。図示されているように、熱応力STによって、上面側電極21は長手方向の中心付近が高くなったアーチ状に変形する。この変形によって、上面側電極21の台座212と熱電素子1の上端面との間の接合部P1、および下面側電極22A,22Bの台座222と熱電素子1の下端面との間の接合部P2には大きな応力(引張応力とせん断応力との合応力)が発生する。 On the other hand, FIG. 5 is a diagram showing a state in which thermal stress ST is generated when notches 213A and 213B are not formed in the upper surface side electrode 21 as a comparative example to the example of FIG. In this case, the body portion 211 of the upper surface electrode 21 is thermally expanded along the arrow TE 2 illustrated, the thermal expansion by P-type thermoelectric elements 1P and N-type thermoelectric element 1N is mechanically constrained Be inhibited. As a result, a large thermal stress ST is generated in the upper surface side electrode 21 located between the P-type thermoelectric element 1P and the N-type thermoelectric element 1N. As shown in the drawing, due to the thermal stress ST, the upper surface side electrode 21 is deformed into an arch shape having a height near the center in the longitudinal direction. By this deformation, the joint P1 between the pedestal 212 of the upper surface side electrode 21 and the upper end surface of the thermoelectric element 1, and the joint portion P2 between the pedestal 222 of the lower surface side electrodes 22A and 22B and the lower end surface of the thermoelectric element 1 are obtained. A large stress (combined stress of tensile stress and shear stress) is generated in.

続いて、上記のような切欠部213A,213Bを形成したことによる上面側電極21の応力の変化について、数値解析によって検証した。具体的には、長さ8mm、幅2.9mm、厚さ0.6mm(本体部211が0.4mm、台座212が0.2mm)の上面側電極21に、幅0.3mmの切欠部213A,213Bを形成した場合において、上面側電極21の温度を60℃で固定し、上面側電極21の温度を60℃と120℃との間で振動させた場合に、上面側電極21の台座212と熱電素子1の端面との間の接合部(図5に示した接合部P2)に発生する応力の振幅を算出した。   Subsequently, a change in stress of the upper surface side electrode 21 due to the formation of the notches 213A and 213B as described above was verified by numerical analysis. Specifically, a notch 213A having a width of 0.3 mm is formed on the upper electrode 21 having a length of 8 mm, a width of 2.9 mm, and a thickness of 0.6 mm (the main body 211 is 0.4 mm and the base 212 is 0.2 mm). , 213B, when the temperature of the upper surface side electrode 21 is fixed at 60 ° C. and the temperature of the upper surface side electrode 21 is vibrated between 60 ° C. and 120 ° C., the base 212 of the upper surface side electrode 21 is formed. And the amplitude of the stress generated at the joint between the thermoelectric element 1 and the end face of the thermoelectric element 1 (joint P2 shown in FIG. 5).

図6は、本発明の実施形態において上面側電極21に形成されるスリット状の切欠部213A,213Bの深さdおよび角度θの定義について説明するための図である。図示されているように、切欠部213A,213Bの深さdは、上面側電極21の幅方向Dにおける、中心線CLと切欠部213A,213Bの先端との距離である。以下の説明では、切欠部213A,213Bの先端がちょうど中心線CLに達したときの深さdを0とし、切欠部213A,213Bの先端が中心線CLを越えて延びる場合にd>0、切欠部213A,213Bの先端が中心線CLに達しない場合にd<0とする。なお、以下で説明する解析では、切欠部213A,213Bは同じ深さdであるものとした。 FIG. 6 is a diagram for explaining the definition of the depth d and the angle θ of the slit-like cutouts 213A and 213B formed in the upper surface side electrode 21 in the embodiment of the present invention. As shown, notch 213A, the depth d of the 213B is in the widthwise direction D 2 of the upper surface electrode 21, the center line CL and the notch portion 213A, the distance between the tip of 213B. In the following description, the depth d when the tips of the notches 213A and 213B have just reached the center line CL is 0, and d> 0 when the tips of the notches 213A and 213B extend beyond the center line CL. When the tips of the notches 213A and 213B do not reach the center line CL, d <0. In the analysis described below, the notches 213A and 213B are assumed to have the same depth d.

図7は、図6に示すように定義されたスリット状の切欠部213A,213Bの深さdと、上面側電極21に発生する応力との関係を示すグラフである。なお、深さdに関する解析では、切欠部213A,213Bの角度θは20°とした。図7のグラフに示されるように、d<0の場合、すなわち、幅方向Dで見たときに上面側電極21の第1の側211Aから第2の側211Bまでの間に切欠部213Aも切欠部213Bも形成されない区間がある場合、上面側電極21の台座212と熱電素子1の端面との間の接合部に発生する応力の振幅は比較的大きな値である(d=−0.20mmで64.2MPa、d=0.10mmで63.5MPa)。これに対して、d=0の場合、すなわち、幅方向Dで見たときに上面側電極21の第1の側211Aから第2の側211Bまでの間の区間Sに切欠部213Aまたは切欠部213Bのいずれかが形成される場合、応力の振幅は上記の場合よりも小さくなる(59.9MPa)。さらに、d>0の場合、すなわち、第1の側211Aから第2の側211Bまでの間の一部の区間Sに切欠部213A,213Bの両方が形成される場合、応力の振幅はさらに小さくなる(d=0.10mmで56.0MPa、d=0.18mmで53.9MPa、d=0.20mmで54.2MPa、d=0.30mmで51.7MPa)。 FIG. 7 is a graph showing the relationship between the depth d of the slit-shaped notches 213A and 213B defined as shown in FIG. 6 and the stress generated in the upper surface side electrode 21. As shown in FIG. In the analysis regarding the depth d, the angle θ of the notches 213A and 213B was set to 20 °. As shown in the graph of FIG. 7, in the case of d <0, i.e., notch 213A between the first side 211A of the upper side electrode 21 when viewed in the width direction D 2 to the second side 211B In the case where there is a section in which neither of the notches 213B is formed, the amplitude of the stress generated at the joint between the pedestal 212 of the upper electrode 21 and the end face of the thermoelectric element 1 is a relatively large value (d = −0. 64.2 MPa at 20 mm, 63.5 MPa at d = 0.10 mm). In contrast, the case where d = 0, the other words, the cutout portion 213A or section S 1 between the first side 211A of the upper side electrode 21 to the second side 211B when viewed in the width direction D 2 When any one of the notches 213B is formed, the stress amplitude is smaller than the above case (59.9 MPa). Furthermore, in the case of d> 0, i.e., if the notch portion in a part of the section S 2 between the first side 211A to the second side 211B 213A, both 213B is formed, the amplitude of the stress is further (56.0 MPa at d = 0.10 mm, 53.9 MPa at d = 0.18 mm, 54.2 MPa at d = 0.20 mm, 51.7 MPa at d = 0.30 mm).

上記の結果によれば、幅方向Dで見たときに上面側電極21の第1の側211Aから第2の側211Bまでの間の区間Sに切欠部213Aまたは切欠部213Bのいずれかが形成されることが、上面側電極21の熱膨張によって熱電素子1と電極2との接合部に生じる応力を低減するために有効である。また、第1の側211Aから第2の側211Bまでの間の一部の区間Sに切欠部213A,213Bの両方を形成することによって、上面側電極21の熱膨張によって熱電素子1と電極2との接合部に生じる応力をさらに低減できる。 According to the above results, either from the first side 211A of the upper surface electrode 21 of the second cut-out portion in a section S 1 of until side 211B 213A or notch 213B when viewed in the width direction D 2 It is effective to reduce the stress generated at the joint between the thermoelectric element 1 and the electrode 2 due to the thermal expansion of the upper surface side electrode 21. Further, the cutout portion in a part of the section S 2 between the first side 211A to the second side 211B 213A, by forming both 213B, the thermoelectric element 1 and the electrode due to thermal expansion of the top-side electrode 21 2 can be further reduced.

再び図6を参照すると、切欠部213A,213Bの角度θは、上面側電極21の幅方向Dと、切欠部213A,213Bが延びる方向とがなす角度である。切欠部213A,213Bが幅方向Dと平行に、すなわち長手方向Dに対して垂直に延びる場合、角度θは0になる。切欠部213A,213Bが幅方向Dおよび長手方向Dに対して傾いた方向に、互いに対向して延びる場合、角度θ>0になる。ここで、切欠部213A,213Bが互いに対向して延びる場合、切欠部213A,213Bは中心線CLに近づくにつれて互いに近接する。一方、切欠部213A,213Bが幅方向Dおよび長手方向Dに対して傾いた方向に、互いに背向して延びる場合、角度θ<0になる。ここで、切欠部213A,213Bが互いに背向して延びる場合、切欠部213A,213Bは中心線CLに近づくにつれて互いに離間する。なお、以下で説明する解析では、切欠部213A,213Bは略平行に、すなわち略同じ角度θで延びるものとした。 Referring again to FIG. 6, the cutout portion 213A, the angle θ of 213B, the width direction D 2 of the upper side electrode 21, notch 213A, which is the angle between the direction 213B extend. Notch 213A, 213B in parallel to the width direction D 2, i.e. when extending perpendicularly to the longitudinal direction D 1, the angle θ becomes 0. Notch 213A, in the direction 213B is inclined with respect to the width direction D 2 and longitudinal D 1, when extending facing each other, the angle theta> 0. Here, when the notches 213A and 213B extend facing each other, the notches 213A and 213B approach each other as they approach the center line CL. On the other hand, the cutout portion 213A, in the direction 213B is inclined with respect to the width direction D 2 and longitudinal D 1, if extending back to back with each other, the angle θ becomes <0. Here, when the notches 213A and 213B extend backward from each other, the notches 213A and 213B are separated from each other as they approach the center line CL. In the analysis described below, the notches 213A and 213B are assumed to extend substantially in parallel, that is, at substantially the same angle θ.

図8は、図6に示すように定義されたスリット状の切欠部213A,213Bの角度θと、上面側電極21に発生する応力との関係を示すグラフである。なお、角度θに関する解析では、切欠部213A,213Bの深さdは0.18mmとした。図8のグラフに示されるように、θ≦0の場合、すなわち、切欠部213A,213Bが長手方向Dに対して垂直に延びるか、または互いに背向して延びる場合、上面側電極21の台座212と熱電素子1の端面との間の接合部に発生する応力の振幅は比較的大きな値である(θ=−10度で58.1MPa、θ=0で57.7MPa)。これに対して、θ>0の場合、すなわち、切欠部213A,213Bの長手方向Dに対して傾いた方向に、互いに対向して延びる場合、応力の振幅は、角度θが大きくなるにしたがって小さくなる(θ=10度で55.4MPa、θ=20度で53.9MPa、θ=30度で52.6Mpa)。 FIG. 8 is a graph showing the relationship between the angle θ of the slit-shaped notches 213A and 213B defined as shown in FIG. 6 and the stress generated in the upper surface side electrode 21. As shown in FIG. In the analysis regarding the angle θ, the depth d of the notches 213A and 213B was set to 0.18 mm. As shown in the graph of FIG. 8, if the theta ≦ 0, i.e., notch 213A, if 213B Do extending perpendicularly to the longitudinal direction D 1, or extend back toward one another, the upper surface electrodes 21 The amplitude of the stress generated at the joint between the pedestal 212 and the end face of the thermoelectric element 1 is a relatively large value (θ = −10 degrees, 58.1 MPa, and θ = 0, 57.7 MPa). In contrast, theta> 0, i.e., notch 213A, in a direction inclined with respect to the longitudinal direction D 1 of the 213B, when extending opposite each other, the amplitude of the stresses, according to the angle theta is larger (55.4 MPa at θ = 10 degrees, 53.9 MPa at θ = 20 degrees, and 52.6 MPa at θ = 30 degrees).

上記の結果によれば、切欠部213A,213Bが、上面側電極21の長手方向Dに対して傾いた方向に、互いに対向して延びることが、上面側電極21の熱膨張によって熱電素子1と電極2との接合部に生じる応力を低減するために有効である。 According to the above results, notch 213A, 213B is, in a direction inclined with respect to the longitudinal direction D 1 of the upper surface electrode 21, may extend to face each other, the thermoelectric element 1 by thermal expansion of the top-side electrode 21 This is effective for reducing the stress generated at the joint between the electrode 2 and the electrode 2.

なお、熱電モジュール10において、上面側電極21は、P型熱電素子1PとN型熱電素子1Nとを電気的に接続するとともに、ポリイミドフィルム3と熱電素子1との間で熱を伝達する機能を有する。上記のような切欠部213A,213Bが形成された部分では上面側電極21がポリイミドフィルム3に接触しないため、切欠部213A,213Bが占める面積が大きくなるほど、上面側電極21が伝達可能な熱の量は減少する。また、切欠部213A,213Bの深さdや角度θにもよるが、切欠部213A,213Bが占める面積が大きくなるほど、P型熱電素子1PとN型熱電素子1Nとの間の電気抵抗が増大する。   In the thermoelectric module 10, the upper surface side electrode 21 has a function of electrically connecting the P-type thermoelectric element 1 </ b> P and the N-type thermoelectric element 1 </ b> N and transmitting heat between the polyimide film 3 and the thermoelectric element 1. Have. Since the upper surface side electrode 21 does not come into contact with the polyimide film 3 in the portion where the notches 213A and 213B are formed as described above, the larger the area occupied by the notches 213A and 213B, the larger the heat that the upper surface side electrode 21 can transfer. The amount decreases. Further, although depending on the depth d and the angle θ of the notches 213A and 213B, the electrical resistance between the P-type thermoelectric element 1P and the N-type thermoelectric element 1N increases as the area occupied by the notches 213A and 213B increases. To do.

それゆえ、上面側電極21の長手方向Dおよび幅方向Dを含む平面で考えた場合、上面側電極21の面積(Sd)に対する切欠部213A,213Bの合計面積(Ss)の比率(Ss/Sd)が所定の値以下になるように切欠部213A,213Bの形状を決定することが望ましい。本発明者らの知見によれば、図1に示したプラズマ処理装置100において熱電モジュール10が十分な性能を発揮するためには、上面側電極21の面積(Sd)に対する切欠部213A,213Bの合計面積(Ss)の比率(Ss/Sd)が0.33(1/3)未満であることが望ましい。例えば、図3に示した上面側電極21の面積(Sd)に対する切欠部213A,213Bの合計面積(Ss)の比率(Ss/Sd)は0.18である。 Thus, when considered in a plane containing the longitudinal D 1 and the width direction D 2 of the upper side electrode 21, notch 213A to the area of the upper face side electrode 21 (Sd), the ratio of the total area of 213B (Ss) (Ss It is desirable to determine the shapes of the notches 213A and 213B so that / Sd) is equal to or less than a predetermined value. According to the knowledge of the present inventors, in order for the thermoelectric module 10 to exhibit sufficient performance in the plasma processing apparatus 100 shown in FIG. 1, the notches 213A and 213B with respect to the area (Sd) of the upper surface side electrode 21 are used. It is desirable that the ratio (Ss / Sd) of the total area (Ss) is less than 0.33 (1/3). For example, the ratio (Ss / Sd) of the total area (Ss) of the notches 213A and 213B to the area (Sd) of the upper surface side electrode 21 shown in FIG. 3 is 0.18.

以上で説明したような本発明の実施形態によれば、熱電モジュール10の上面側電極21の熱膨張によって熱電素子1と電極2との接合部に生じる応力を低減することができる。   According to the embodiment of the present invention as described above, it is possible to reduce the stress generated in the joint portion between the thermoelectric element 1 and the electrode 2 due to the thermal expansion of the upper surface side electrode 21 of the thermoelectric module 10.

なお、本発明は上記の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   In addition, this invention is not limited to said embodiment, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.

例えば、上記の実施形態では、上面側電極21がポリイミドフィルム3に接合され、下面側電極22は熱電モジュール10の下面側の基板に固定されることとしていたが、他の実施形態では、下面側電極22もポリイミドフィルムを介して基板に接合されてもよい。この場合、下面側電極22についても、ポリイミドフィルムを変形させながら膨張することが可能になるため、下面側電極22にも上面側電極21と同様の切欠部を形成することによって、熱電素子1と電極2との接合部に生じる応力を低減することができる。上記の場合、切欠部は上面側電極21および下面側電極22の両方に形成されてもよいし、下面側電極22だけに形成されてもよい。   For example, in the above embodiment, the upper surface side electrode 21 is bonded to the polyimide film 3 and the lower surface side electrode 22 is fixed to the lower surface side substrate of the thermoelectric module 10, but in other embodiments, the lower surface side The electrode 22 may also be bonded to the substrate via a polyimide film. In this case, since the lower surface side electrode 22 can also be expanded while deforming the polyimide film, by forming a notch similar to the upper surface side electrode 21 on the lower surface side electrode 22, The stress generated at the joint with the electrode 2 can be reduced. In the above case, the notch may be formed in both the upper surface side electrode 21 and the lower surface side electrode 22, or may be formed only in the lower surface side electrode 22.

また、上記の実施形態では、上面側電極21の幅方向Dの第1の側211Aおよび第2の側211Bのそれぞれに1つの切欠部213A,213Bが形成されたが、第1の側211Aおよび第2の側211Bのそれぞれに複数の切欠部が形成されてもよい。 Further, in the above embodiment, each of the one notch 213A of the first side 211A and second side 211B in the width direction D 2 of the upper side electrode 21, but 213B are formed, a first side 211A A plurality of notches may be formed on each of the second side 211B.

また、上記の実施形態では、上面側電極21に形成される切欠部213A,213Bが同じ深さdであるものとしたが、他の実施形態では、切欠部213Aと切欠部213Bとが異なる深さdで形成されてもよい。同様に、上記の実施形態では、切欠部213A,213Bが略同じ角度θで延びるものとしたが、他の実施形態では、切欠部213Aと切欠部213Bとが異なる角度θで延びてもよい。   In the above embodiment, the notches 213A and 213B formed in the upper surface side electrode 21 have the same depth d. However, in other embodiments, the notches 213A and 213B have different depths. It may be formed with a height d. Similarly, in the above-described embodiment, the notches 213A and 213B extend at substantially the same angle θ, but in other embodiments, the notch 213A and the notch 213B may extend at different angles θ.

また、上記の実施形態では、上面側電極21の第1の側211Aおよび第2の側211Bにそれぞれ形成される切欠部が直線的なスリット状である例について説明したが、切欠部の形状は必ずしも直線的なスリット状でなくてもよい。例えば、切欠部は湾曲した、または屈曲部分を含むスリット状であってもよい。あるいは、上記のように熱の伝達の観点、および熱電素子間の電気抵抗の観点から、電極の切欠部以外の面積を確保した上で、第1の側211Aおよび第2の側211Bに近づくにつれて幅広になるV字形の切欠部を形成してもよい。   In the above embodiment, the example in which the cutout portions formed on the first side 211A and the second side 211B of the upper surface side electrode 21 are linear slits has been described, but the shape of the cutout portion is It does not necessarily have to be a linear slit shape. For example, the notch may be a slit or a slit including a bent portion. Alternatively, from the viewpoint of heat transmission and the viewpoint of electrical resistance between thermoelectric elements as described above, as the area closer to the first side 211A and the second side 211B is secured after securing an area other than the notch portion of the electrode. You may form the V-shaped notch part which becomes wide.

その他、本発明は、本発明の目的を達成できる範囲で、他の構造等を採用してもよい。   In addition, the present invention may employ other structures or the like as long as the object of the present invention can be achieved.

100…プラズマ処理装置、10…熱電モジュール、1…熱電素子、2…電極、21…上面側電極、22…下面側電極、3…ポリイミドフィルム、211A…第1の側、211B…第2の側、213A…切欠部、213B…切欠部、D…長手方向、D…幅方向。 DESCRIPTION OF SYMBOLS 100 ... Plasma processing apparatus, 10 ... Thermoelectric module, 1 ... Thermoelectric element, 2 ... Electrode, 21 ... Upper surface side electrode, 22 ... Lower surface side electrode, 3 ... Polyimide film, 211A ... First side, 211B ... Second side , 213A ... notch, 213B ... notch, D 1 ... longitudinal, D 2 ... width direction.

Claims (5)

熱電モジュールにおいて、
第1および第2の熱電素子と、
板状の本体部を有し、前記本体部の第1の面が前記第1の熱電素子の第1の端面および前記第2の熱電素子の第1の端面に接合されて前記第1および第2の熱電素子を互いに電気的に接続する第1の電極と、
前記第1の熱電素子の前記第1の端面とは反対側の第2の端面に接合される第2の電極と、
前記第2の熱電素子の前記第1の端面とは反対側の第2の端面に接合される第3の電極と
を備え、
前記第1の電極は、前記第1および第2の熱電素子のそれぞれの端面の中心を結ぶ長手方向に対応する幅方向の第1の側に形成される第1の切欠部と、前記幅方向の第2の側に形成される第2の切欠部とを有し、
前記幅方向について、前記第1の電極の前記第1の側と前記第2の側との間の区間には前記第1の切欠部または前記第2の切欠部の少なくともいずれかが形成される
ことを特徴とする熱電モジュール。
In thermoelectric module,
First and second thermoelectric elements;
A first main surface of the first thermoelectric element is joined to the first end surface of the first thermoelectric element and the first end surface of the second thermoelectric element; A first electrode that electrically connects the two thermoelectric elements to each other;
A second electrode joined to a second end surface opposite to the first end surface of the first thermoelectric element;
A third electrode joined to a second end face opposite to the first end face of the second thermoelectric element;
The first electrode includes a first notch formed on a first side in a width direction corresponding to a longitudinal direction connecting centers of end faces of the first and second thermoelectric elements, and the width direction. A second notch formed on the second side of the
In the width direction, at least one of the first notch part or the second notch part is formed in a section between the first side and the second side of the first electrode. A thermoelectric module characterized by that.
前記幅方向について、前記第1の電極の前記第1の側と前記第2の側との間の一部の区間には前記第1の切欠部および前記第2の切欠部の両方が形成される
ことを特徴とする、請求項1に記載の熱電モジュール。
In the width direction, both the first notch and the second notch are formed in a partial section between the first side and the second side of the first electrode. The thermoelectric module according to claim 1, wherein:
前記第1および第2の切欠部は、前記長手方向に対して傾いた方向に、互いに対向して延びる
ことを特徴とする、請求項1または2に記載の熱電モジュール。
The thermoelectric module according to claim 1 or 2, wherein the first and second cutout portions are opposed to each other in a direction inclined with respect to the longitudinal direction.
前記第1および第2の切欠部は、互いに略平行な方向に延びる
ことを特徴とする、請求項1から3のいずれか1項に記載の熱電モジュール。
The thermoelectric module according to any one of claims 1 to 3, wherein the first and second cutouts extend in directions substantially parallel to each other.
前記長手方向および前記幅方向を含む平面において、前記第1の電極の面積に対する前記第1の切欠部および前記第2の切欠部の合計面積の比率は0.33未満である
ことを特徴とする、請求項1から4のいずれか1項に記載の熱電モジュール。
In a plane including the longitudinal direction and the width direction, the ratio of the total area of the first notch and the second notch to the area of the first electrode is less than 0.33. The thermoelectric module according to any one of claims 1 to 4.
JP2017116650A 2017-06-14 2017-06-14 Thermoelectric module Active JP6909062B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017116650A JP6909062B2 (en) 2017-06-14 2017-06-14 Thermoelectric module
CN201880039629.3A CN110770923B (en) 2017-06-14 2018-05-09 Thermoelectric module
PCT/JP2018/017917 WO2018230199A1 (en) 2017-06-14 2018-05-09 Thermoelectric module
KR1020197036581A KR102272631B1 (en) 2017-06-14 2018-05-09 thermoelectric module
US16/621,102 US11309474B2 (en) 2017-06-14 2018-05-09 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116650A JP6909062B2 (en) 2017-06-14 2017-06-14 Thermoelectric module

Publications (2)

Publication Number Publication Date
JP2019004012A true JP2019004012A (en) 2019-01-10
JP6909062B2 JP6909062B2 (en) 2021-07-28

Family

ID=64660838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116650A Active JP6909062B2 (en) 2017-06-14 2017-06-14 Thermoelectric module

Country Status (4)

Country Link
US (1) US11309474B2 (en)
JP (1) JP6909062B2 (en)
KR (1) KR102272631B1 (en)
WO (1) WO2018230199A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024039242A (en) * 2022-09-09 2024-03-22 株式会社Kelk thermoelectric module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012934A (en) * 1996-06-25 1998-01-16 Technova:Kk Thermoelectric converter
JP2012253170A (en) * 2011-06-02 2012-12-20 Toyota Industries Corp Thermoelectric module
JP2013145848A (en) * 2012-01-16 2013-07-25 Kelk Ltd Thermoelectric element and thermoelectric module including the same
JP2015056507A (en) * 2013-09-11 2015-03-23 ヤマハ株式会社 Thermoelectric module
JP2015177048A (en) * 2014-03-14 2015-10-05 日立化成株式会社 thermoelectric conversion module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2745079T3 (en) * 2005-10-14 2020-02-27 Sharp Kk Interconnector, series of solar batteries that use this interconnector
JP4832137B2 (en) * 2006-03-29 2011-12-07 岡野電線株式会社 Thermoelectric conversion module
WO2007119365A1 (en) * 2006-04-14 2007-10-25 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
JP6266206B2 (en) 2012-12-05 2018-01-24 株式会社Kelk Thermoelectric module
US9412929B2 (en) * 2014-08-18 2016-08-09 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion module
NO20141357A1 (en) * 2014-11-12 2016-05-13 Tegma As Process for Pre-Processing Semiconducting Thermoelectric Materials for Metallization, Interconnection and Bonding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012934A (en) * 1996-06-25 1998-01-16 Technova:Kk Thermoelectric converter
JP2012253170A (en) * 2011-06-02 2012-12-20 Toyota Industries Corp Thermoelectric module
JP2013145848A (en) * 2012-01-16 2013-07-25 Kelk Ltd Thermoelectric element and thermoelectric module including the same
JP2015056507A (en) * 2013-09-11 2015-03-23 ヤマハ株式会社 Thermoelectric module
JP2015177048A (en) * 2014-03-14 2015-10-05 日立化成株式会社 thermoelectric conversion module

Also Published As

Publication number Publication date
JP6909062B2 (en) 2021-07-28
KR102272631B1 (en) 2021-07-05
WO2018230199A1 (en) 2018-12-20
CN110770923A (en) 2020-02-07
KR20200007878A (en) 2020-01-22
US11309474B2 (en) 2022-04-19
US20200168778A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6597892B2 (en) Loop heat pipe, manufacturing method thereof, and electronic device
CN111712682B (en) Vapor chamber
JP6266206B2 (en) Thermoelectric module
WO2018230199A1 (en) Thermoelectric module
US6536509B1 (en) Diamond body
US9041193B2 (en) Semiconductor substrate including a cooling channel and method of forming a semiconductor substrate including a cooling channel
JP6395530B2 (en) Semiconductor device
US10629794B2 (en) Thermoelectric power generation device and method for manufacturing same
WO2020095794A1 (en) Temperature control device
CN110770923B (en) Thermoelectric module
JP2012204623A (en) Bonding structure of thermoelectric conversion element
JP2008016598A (en) Thermoelectric module
JP4506692B2 (en) Double-sided cooling type semiconductor device
WO2020095795A1 (en) Temperature control device
JP2018088445A (en) Thermoelectric conversion device, laminate thermoelectric conversion device, and heat radiation structure
JP2018006580A (en) Fin member, temperature regulation device and manufacturing method thereof
JP2007235060A (en) Double-sided cooling semiconductor device, and manufacturing method thereof
US11302536B2 (en) Deflectable platens and associated methods
JP2015177048A (en) thermoelectric conversion module
KR20120070904A (en) Thermoelectric module
US10192847B2 (en) Rapid cooling system for a bond head heater
JP2008166638A (en) Thermoelectric element module
JP4784108B2 (en) Manufacturing method of pressure wave oscillation element
JP6493083B2 (en) Semiconductor device
JPWO2018221436A1 (en) Sample holder

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210702

R150 Certificate of patent or registration of utility model

Ref document number: 6909062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150