JP2019000945A - Workpiece machining method of machine tool - Google Patents

Workpiece machining method of machine tool Download PDF

Info

Publication number
JP2019000945A
JP2019000945A JP2017118343A JP2017118343A JP2019000945A JP 2019000945 A JP2019000945 A JP 2019000945A JP 2017118343 A JP2017118343 A JP 2017118343A JP 2017118343 A JP2017118343 A JP 2017118343A JP 2019000945 A JP2019000945 A JP 2019000945A
Authority
JP
Japan
Prior art keywords
tool
tool post
machining
machine
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017118343A
Other languages
Japanese (ja)
Other versions
JP2019000945A5 (en
JP6982291B2 (en
Inventor
賢一 中西
Kenichi Nakanishi
賢一 中西
真 朝倉
Makoto Asakura
真 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2017118343A priority Critical patent/JP6982291B2/en
Publication of JP2019000945A publication Critical patent/JP2019000945A/en
Publication of JP2019000945A5 publication Critical patent/JP2019000945A5/ja
Application granted granted Critical
Publication of JP6982291B2 publication Critical patent/JP6982291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)

Abstract

To correct a machining error caused by a time delay before a temperature change in a machine is detected by a temperature sensor provided in a machine due to heat transfer delay, concerning a machining method capable of correcting a machining error based on heat deformation of a machine tool more accurately.SOLUTION: A main shaft 1 is fixed in a predetermined phase when a tool for finish machining of a workpiece is indexed or in a predetermined timing, and a cutting edge of a tool T is brought into contact with a peripheral surface of a spindle chuck 2 or the workpiece w. Preferably, the detection of the contact may be detected by the change of a servo current value of a feed motor 4x of a tool post 3, the load fluctuation of the feed motor 4x is detected by the force (number N) not damaging a tool cutting edge, and the coordinate of the tool post 3 at the time when detecting the contact is stored. The coordinate of the tool post 3 at the time when detecting the contact is corrected by being compared with the coordinate obtained when corrected only by conventional means or the coordinate obtained when measured last time, and thereby a correction value is updated automatically.SELECTED DRAWING: Figure 3

Description

この発明は、工作機械の熱変形に起因する加工誤差を補正してワークを加工する方法に関するもので、特に主軸台側の熱変形に基づく加工誤差をより正確に補正することが可能な加工方法に関するものである。   The present invention relates to a method for machining a workpiece by correcting a machining error caused by thermal deformation of a machine tool, and in particular, a machining method capable of more accurately correcting a machining error based on thermal deformation on the headstock side. It is about.

工作機械を運転すると、加工熱、モータや軸受部の発熱、作動油や切削液の温度上昇などにより、機械温度が上昇し、それに伴う工作機械各部の熱変形がワークの加工精度を低下させる。そこで工作機械の各部の温度を計測し、そのとき加工されたワークの加工誤差を計測することにより、機械各部の温度と加工誤差の関係を求めて、加工プログラムの指令値を補正する演算式ないし演算テーブルを作成し、これを制御器に登録して、加工プログラムの指令値を補正することにより、加工誤差が生じないようにしている。   When the machine tool is operated, the machine temperature rises due to the processing heat, the heat generation of the motor and the bearing part, the temperature rise of the hydraulic oil and the cutting fluid, and the thermal deformation of each part of the machine tool accompanying it decreases the machining accuracy of the workpiece. Therefore, by measuring the temperature of each part of the machine tool and measuring the machining error of the workpiece that was machined at that time, the relationship between the temperature of each part of the machine and the machining error is obtained, and an arithmetic expression or correction for correcting the command value of the machining program An arithmetic table is created, registered in the controller, and the machining program command value is corrected to prevent machining errors.

工作機械の熱変形量は、温度に比例すると見做してよいので、一般的には図1に示すように、工作機械のベッド11、主軸台12、刃物台3の要所要所に温度センサs1、s2・・・snを取付け、各センサの検出値t1、t2・・・tnに乗ずる係数α1、α2・・・αnと定数βとを試験加工により決定して、補正値δを次式(以下、「従来式」と言う。)
δ=α1t1+α2t2+・・・αntn+β
で演算するというような方法が採用されている。
Since the amount of thermal deformation of the machine tool may be considered to be proportional to the temperature, generally, as shown in FIG. s1, s2,..., sn are attached, and coefficients α1, α2,..., αn and constant β are multiplied by the detected values t1, t2,. (Hereafter referred to as “conventional”)
δ = α1t1 + α2t2 ++ αntn + β
The method of calculating with is adopted.

工作機械は、ワークを3次元形状に加工するので、上記の補正値δも3次元の各軸方向の補正値として演算される。例えば旋盤であれば、主軸方向であるZ軸方向、工具の切り込み送り方向であるX軸方向の補正値が演算され、回転工具をY軸方向にも移動させる旋盤では、Y軸方向の補正値も演算される。また、上記の演算式における係数αや定数βは刃物台の位置により異なる値となるので、例えば旋盤であれば、係数αと定数βを刃物台の位置の関数として設定するか、あるいは複数箇所における値を設定してその中間位置での補正値は両側の補正値から補間演算で求めるというようにして、刃物台の位置に応じた補正値を定めている。   Since the machine tool processes the workpiece into a three-dimensional shape, the correction value δ is also calculated as a three-dimensional correction value in each axial direction. For example, in the case of a lathe, correction values in the Z-axis direction that is the main axis direction and the X-axis direction that is the cutting feed direction of the tool are calculated, and in a lathe that moves the rotary tool in the Y-axis direction, the correction value in the Y-axis direction Is also computed. In addition, the coefficient α and the constant β in the above arithmetic expression are different values depending on the position of the tool rest. For example, in a lathe, the coefficient α and the constant β are set as a function of the position of the tool rest, or a plurality of positions A correction value corresponding to the position of the tool post is determined in such a manner that the correction value at the intermediate position is obtained and the correction value at the intermediate position is obtained by interpolation calculation from the correction values on both sides.

上記のような演算による補正値の精度を高める手段として、例えば特許文献1では、所定の時間間隔毎に演算した補正値δの値と前回の補正値δfの値との差が予め登録した隣接設定値を超えているときは、前回補正値δfに隣接設定値を加えた値を補正値とすること、最大値δmaxと最小値δminとを登録しておき、演算した補正値δが当該最大値より大きいか又は最小値より小さいときは、当該最大値又は最小値を補正値とすることが提案されている。   As a means for improving the accuracy of the correction value by the above calculation, for example, in Patent Document 1, the difference between the correction value δ calculated every predetermined time interval and the previous correction value δf is registered in advance. When the set value is exceeded, the value obtained by adding the adjacent set value to the previous correction value δf is used as the correction value, the maximum value δmax and the minimum value δmin are registered, and the calculated correction value δ is the maximum value. When the value is larger than the minimum value or smaller than the minimum value, it has been proposed to use the maximum value or the minimum value as a correction value.

また特許文献2には、環境温度の変化に基づく補正量を演算するための係数と環境温度がワークの加工誤差として影響する際の時間差とを予め制御器に登録しておいて、加工時に計測された機械各部の温度と、加工時から時間差だけ隔たった時刻における環境温度とにより補正値を演算することが提案されている。   In Patent Document 2, a coefficient for calculating a correction amount based on a change in the environmental temperature and a time difference when the environmental temperature affects a workpiece machining error are registered in a controller in advance, and measured during machining. It has been proposed to calculate a correction value from the temperature of each part of the machine and the ambient temperature at a time separated from the time of machining by a time difference.

特開2005-014109号公報Japanese Patent Laid-Open No. 2005-014109 特開2006-055919号公報JP 2006-055919 A

機械を熱変形させる主な熱源は、主軸や回転工具軸のモータ及び軸受、油圧シリンダなどの油圧機器及びワークの加工部である。ワークの加工部で発生した熱は、加工部から流下する切削油によってベッドやテーブルに伝えられる。主要な熱源の位置は、工作機械の種類によって異なり、例えば旋盤であれば、主軸軸受、刃物台に搭載されている工具モータや油圧装置及び加工部である。加工部から流下する切削油は、通常はベッド上面に設けられているカバーの上に流下し、このカバーが加熱されることによってその内側にあるベッド上面が間接的に加熱される。   Main heat sources for thermally deforming the machine are motors and bearings of main shafts and rotary tool shafts, hydraulic devices such as hydraulic cylinders, and workpiece processing parts. The heat generated in the workpiece processing part is transferred to the bed or table by the cutting oil flowing down from the processing part. The position of the main heat source varies depending on the type of machine tool. For example, in the case of a lathe, it is a spindle motor, a tool motor mounted on a tool post, a hydraulic device, and a machining unit. The cutting oil that flows down from the processing portion normally flows down on a cover provided on the upper surface of the bed, and the upper surface of the bed inside is indirectly heated by heating the cover.

機械の熱変形を計測するために設けられるセンサは、主軸台、ベッド、刃物台などの機械部材の表面に取り付けられている。一方、主軸軸受やタレット刃物台のインデックス装置に設けられている油圧装置の熱は、機械の内部で発生する。そのため、機械内部で発生した熱が機械表面のセンサで検出されるまでに時間遅れが生ずる。機械内部の温度変化が熱伝達の遅れのためにセンサで検出されなくても、機械内部では熱変形が起こっており、その変形は、時間遅れを生ずることなく、機械全体に影響を与えるので、上述したような従来の方法では、機械内部の発熱の変化がセンサで検出されるまでの時間遅れによる熱変形の誤差を補正することはできない。   A sensor provided for measuring thermal deformation of a machine is attached to the surface of a machine member such as a headstock, a bed, or a tool post. On the other hand, the heat of the hydraulic device provided in the index device of the spindle bearing or the turret tool post is generated inside the machine. Therefore, there is a time delay until the heat generated in the machine is detected by the sensor on the machine surface. Even if a temperature change inside the machine is not detected by the sensor due to a delay in heat transfer, thermal deformation occurs inside the machine, and the deformation affects the entire machine without causing a time delay. With the conventional method as described above, it is not possible to correct an error in thermal deformation due to a time delay until a change in heat generation in the machine is detected by a sensor.

主軸が常時回転している旋削のみを行う旋盤では、主軸軸受の温度上昇に大きな変動はないと考えられる。しかし、主軸を停止した状態で刃物台に取り付けた回転工具でワークを加工することのできる、いわゆる複合旋盤では、1個のワークの加工中に主軸が回転したり、停止したりするので、主軸軸受で発生する熱が急激に変動するということが頻繁に起こる。従って、刃物台に回転工具を装着した複合旋盤では、主軸軸受が熱源となって主軸台を熱変形させる熱変形誤差の補正を従来手段では十分に補正することができない。   In a lathe that performs only turning with the main spindle rotating at all times, it is considered that there is no significant fluctuation in the temperature rise of the main spindle bearing. However, in a so-called compound lathe that can machine a workpiece with a rotary tool attached to the tool post while the spindle is stopped, the spindle rotates or stops during machining of one workpiece. Frequently, the heat generated in the bearing fluctuates rapidly. Therefore, in a compound lathe with a rotating tool mounted on the tool post, the conventional means cannot sufficiently correct the thermal deformation error that causes the main shaft bearing to be a heat source and thermally deforms the main head.

この発明は、伝熱遅れによって機械内部の温度変化が機械に設けた温度センサで検出されるまでの時間遅れに起因する加工誤差を補正することが可能なワークの加工方法を提供することを課題としている。   It is an object of the present invention to provide a workpiece machining method capable of correcting a machining error caused by a time delay until a temperature change in a machine is detected by a temperature sensor provided in the machine due to a heat transfer delay. It is said.

ワークの仕上げ加工用の工具が割り出されたとき又は予め定めたタイミングで、主軸1を予め定めた任意の位相に固定し、当該主軸に装着したチャック2又はワークwの周面に工具Tの刃先を接触させる。接触させる工具Tは、次の加工を行うために割り出された工具であり、仕上げ工具であることが望ましい。   When the tool for finishing the workpiece is determined or at a predetermined timing, the spindle 1 is fixed at a predetermined arbitrary phase, and the chuck 2 mounted on the spindle or the tool T on the peripheral surface of the workpiece w is fixed. Touch the cutting edge. The tool T to be contacted is a tool determined for performing the next machining, and is preferably a finishing tool.

接触の検出は、工具Tを装着した刃物台3の送りモータ4xのサーボ電流値の変化により検知するのが好ましく、接触させる工具Tの刃先に損傷を与えない力(数N)で送りモータ4xの負荷変動を検知し、接触が検知されたときの刃物台3の座標(旋盤ではX座標又はX−Y座標)を記憶する。刃先を接触させるZ軸方向の位置は、予め定めた2位置A、Bとする。   The contact is preferably detected by a change in the servo current value of the feed motor 4x of the tool post 3 on which the tool T is mounted, and the feed motor 4x with a force (several N) that does not damage the cutting edge of the tool T to be contacted. And the coordinates of the tool post 3 when the contact is detected (X coordinate or XY coordinate on a lathe) are stored. The positions in the Z-axis direction with which the cutting edge is brought into contact are two predetermined positions A and B.

接触を検出したときの刃物台3の座標を、従来手段のみで補正したときの座標、より実用的には、前回計測したときの座標と比較して修正することで、熱変形を正確に補正することができ、計測するときの動作を予め制御器6に登録しておくことにより、自動的に補正値を更新する。   Correct the thermal deformation by correcting the coordinates of the tool post 3 when contact is detected by correcting the coordinates of the tool post 3 only with the conventional means, and more practically compared with the coordinates of the last measurement. The correction value is automatically updated by registering the operation for measurement in the controller 6 in advance.

例えばこの発明での熱変形の補正値δは、
δ=α1t1+α2t2+α3t3+・・・+αntn+β+γ+εSのような式で演算される。ここで、γは主軸の変位を計測して設定される補正項、εは主軸の傾斜角を計測して設定される補正係数、Sは計測位置(A又はB)から加工位置PまでのZ軸方向の距離である。γ及びεは、ワーク加工中の所定のタイミングで逐次更新される。
For example, the thermal deformation correction value δ in the present invention is
δ = α1t1 + α2t2 + α3t3 +... + αntn + β + γ + εS Here, γ is a correction term set by measuring the displacement of the spindle, ε is a correction coefficient set by measuring the tilt angle of the spindle, and S is a Z from the measurement position (A or B) to the machining position P. Axial distance. γ and ε are sequentially updated at a predetermined timing during workpiece machining.

この発明のワーク加工方法は、機械各部の温度を温度センサs1、s2・・・snで計測して機械の熱変形を間接的に計測して補正する従来方法に加えて、機械の変位を直接計測して従来方法で補正したときと実際の変位と差(ずれ)を求めて補正値を修正する。   In addition to the conventional method of measuring the temperature of each part of the machine with temperature sensors s1, s2,..., Sn and indirectly measuring and correcting the thermal deformation of the machine, the workpiece machining method of the present invention directly measures the displacement of the machine. The correction value is corrected by obtaining a difference (deviation) between the actual displacement and the actual displacement measured and corrected.

工具Tの刃先を接触させる位置は、主軸方向に所定距離離れた2位置A、Bとすることで、位置ずれと傾きのずれを検出することができ、位置を検出した位置A、Bと加工位置Pとが離れている場合の補正値の修正をより正確に行うことができる。工具の刃先をワークwの周面に接触させて修正値を求める方法では、ワークと工具の刃先との硬度の差により、ワークwが傷つくが、ずれの検出は、ワークwの仕上げ加工の前に行われるので、当該傷は、仕上げ加工で除去できる。ワークの一部に高精度加工が指定されているときは、当該指定された位置でずれを検出すればよい。   The positions where the cutting edge of the tool T is brought into contact are two positions A and B that are separated by a predetermined distance in the main axis direction, so that it is possible to detect positional deviation and inclination deviation. The correction value can be corrected more accurately when the position P is away from the position P. In the method of obtaining the correction value by bringing the tool edge into contact with the peripheral surface of the work w, the work w is damaged due to the difference in hardness between the work and the tool edge, but the deviation is detected before finishing the work w. Therefore, the scratch can be removed by finishing. When high-precision machining is specified for a part of the workpiece, it is only necessary to detect the deviation at the specified position.

この発明では、機械表面の温度を用いて間接的に熱変形を補正するだけでなく、間接的に補正した熱変形を更に所定間隔毎に逐次更新される実際の変形に基づく修正を加えて補正するので、機械内部の急激な温度変化にも対応した補正が可能である。そして、切削工具を使って刃先の位置をチャックやワークに接触して補正値を逐次修正するので、ツールセッターを使う必要がなく、機械を止める必要がなく、連続加工中でも正確な加工寸法の補正が可能になる。   In the present invention, not only the thermal deformation is indirectly corrected using the temperature of the machine surface, but also the corrected thermal deformation is further corrected by adding a correction based on an actual deformation that is sequentially updated at predetermined intervals. Therefore, correction corresponding to a sudden temperature change in the machine is possible. The correction value is sequentially corrected by using the cutting tool to contact the position of the cutting edge with the chuck or workpiece, so there is no need to use a tool setter, no need to stop the machine, and accurate machining dimension correction even during continuous machining. Is possible.

更に、新たに計測装置を用意する必要がなく、測定を短時間でかつ自動で行うことができるので、加工サイクルに及ぼす影響は小さく、無人運転中でも必要な補正を逐次行わせることができる。   Furthermore, since it is not necessary to prepare a new measuring device and the measurement can be performed automatically in a short time, the influence on the machining cycle is small, and necessary corrections can be sequentially performed even during unmanned operation.

実施例のブロック図Example block diagram スラント型の旋盤の模式的な側面図Schematic side view of slant type lathe チャックの周面で計測する例を示した図Diagram showing an example of measurement on the chuck surface 図3における補正値と修正値との関係を示す説明図Explanatory drawing which shows the relationship between the correction value and correction value in FIG. ワークの周面で計測する例を示した図Diagram showing an example of measuring on the peripheral surface of a workpiece 図5における補正値と修正値との関係を示す説明図Explanatory drawing which shows the relationship between the correction value and correction value in FIG. より実際的な実施例における図1と同様な図Figure similar to Figure 1 in a more practical embodiment

以下、図面を参照して、この発明を更に説明する。図1及び図2は、最も簡単な構造のスラント型のタレット旋盤を模式的に示した図である。スラント型の旋盤は、上面が傾斜したベッド11を備えている。主軸台12は、ベッド11から垂直に立ち上がっており、その上部に図に点線で示す主軸軸受13で主軸1が軸支されている。主軸1の先端には、チャック2が取り付けられ、後端にはチャック開閉シリンダ14が取り付けられている。主軸を回転する主軸モータ15は、主軸台12に取り付けられており、主軸モータ15の回転軸と主軸1は、同期ベルト装置16で連結されている。   The present invention will be further described below with reference to the drawings. 1 and 2 are views schematically showing a slant turret lathe having the simplest structure. The slant type lathe includes a bed 11 whose upper surface is inclined. The headstock 12 stands vertically from the bed 11, and the main shaft 1 is pivotally supported by a main shaft bearing 13 indicated by a dotted line in the drawing. A chuck 2 is attached to the front end of the main shaft 1, and a chuck opening / closing cylinder 14 is attached to the rear end. A spindle motor 15 that rotates the spindle is attached to the spindle stock 12, and the rotating shaft of the spindle motor 15 and the spindle 1 are connected by a synchronous belt device 16.

スラント型旋盤の主軸1は、主軸台12のベッド11からの図2における左右の立ち上がり高さの差や主軸モータ15の発熱により、X軸方向に変位する傾向があり、Z軸方向の温度のアンバランスによる熱変形で、X軸に対して斜めになることがある(図4及び図6の一点鎖線d1及び二点鎖線d2参照)。   The spindle 1 of the slant lathe tends to be displaced in the X-axis direction due to the difference between the left and right rising heights in FIG. 2 from the bed 11 of the headstock 12 and the heat generated by the spindle motor 15, and the temperature of the Z-axis lathe Due to thermal deformation due to imbalance, it may become oblique with respect to the X-axis (see the one-dot chain line d1 and the two-dot chain line d2 in FIGS. 4 and 6).

刃物台3は、ベッド11上にZ軸方向(主軸軸線方向)に移動自在な横移動台21にX軸方向(工具の切込み送り方向)に移動自在に設けられている。横移動台21は、Z軸送りモータ4zで正逆回転するZ軸送りねじ26zに螺合している。刃物台3は、横移動台21に搭載されたX軸モータ4xで正逆回転されるX軸送りねじ26xに螺合している。刃物台3には、割出装置22を介してタレット23が搭載されている。割出装置22は、タレット23の割出位置を固定する油圧装置を内蔵しており、タレットの割出回転用のモータ24と、タレットに取り付けた回転工具を駆動する工具モータ25とを備えている。   The tool post 3 is provided on a bed 11 so as to be movable in the X-axis direction (cutting feed direction of the tool) on a lateral movement table 21 that is movable in the Z-axis direction (spindle axis direction). The lateral movement table 21 is screwed to a Z-axis feed screw 26z that is rotated forward and backward by a Z-axis feed motor 4z. The tool post 3 is screwed to an X-axis feed screw 26 x that is rotated forward and backward by an X-axis motor 4 x mounted on the lateral movement table 21. A turret 23 is mounted on the tool post 3 via an indexing device 22. The indexing device 22 has a built-in hydraulic device that fixes the indexing position of the turret 23, and includes a motor 24 for indexing rotation of the turret and a tool motor 25 that drives a rotary tool attached to the turret. Yes.

Z軸送りモータ4z及びX軸送りモータ4xは、サーボアンプ5z、5xを介して制御器6で制御されている。制御器6は、加工プログラム31に基づいてサーボアンプ5z、5xにそれぞれのモータに対する位置指令ez、exを出力している。一方、送りモータ4z、4xからは、フィードバック信号fz、fxがサーボアンプ5z、5xに返されている。X軸送りモータ4xの指令信号exとフィードバック信号fxとの差信号である位置偏差cが接触検出器7に与えられている。接触検出器7は、位置偏差cが予め設定された設定値を越えたときに、接触信号hを制御器6に送る。接触信号hを受けたとき、制御器6は、X軸送りモータ4xに停止指令iを送って直ちに停止させる。位置偏差cを検出するサーボアンプ5xは、0.1ミリ秒台の時間間隔で位置偏差を検出できるものを用いるのが望ましい。   The Z-axis feed motor 4z and the X-axis feed motor 4x are controlled by the controller 6 via servo amplifiers 5z and 5x. The controller 6 outputs position commands ez and ex for the respective motors to the servo amplifiers 5z and 5x based on the machining program 31. On the other hand, feedback signals fz and fx are returned from the feed motors 4z and 4x to the servo amplifiers 5z and 5x. A position deviation c, which is a difference signal between the command signal ex of the X-axis feed motor 4x and the feedback signal fx, is given to the contact detector 7. The contact detector 7 sends a contact signal h to the controller 6 when the position deviation c exceeds a preset set value. When receiving the contact signal h, the controller 6 sends a stop command i to the X-axis feed motor 4x and immediately stops it. As the servo amplifier 5x for detecting the position deviation c, it is desirable to use a servo amplifier that can detect the position deviation at a time interval of 0.1 millisecond.

ベッド11、主軸台12及び刃物台3の適宜箇所には、温度センサs1、s2・・・snが取り付けられており、制御器6は、これらの温度センサの検出値t1、t2・・・tnに基づいて補正値を演算する補正手段32を備えている。   Temperature sensors s1, s2,... Sn are attached to appropriate portions of the bed 11, the spindle stock 12 and the tool post 3, and the controller 6 detects the detected values t1, t2,. The correction means 32 which calculates a correction value based on this is provided.

機械が運転されると、各部の熱源からの熱によって機械に熱変形が生じる。機械各部の温度は、温度センサs1、s2・・・snで検出され、これらの温度センサの検出温度に基づく熱変形の補正値δの演算式が補正手段32に登録されている。理解を容易にするため、図1では補正手段32に従来と同様な演算式
δx=αx1t1+αx2t2+αx3t3+・・・+αxntn+βx
が登録されているとして説明する。高い精度を必要としないワークの加工や粗加工は、加工プログラム31で指定された指定値を上式に基づいて計算された補正値δz、δxで補正して各モータ4z、4xの位置指令ez、exとする。
When the machine is operated, the machine is thermally deformed by the heat from the heat source of each part. The temperature of each part of the machine is detected by temperature sensors s1, s2,... Sn, and an arithmetic expression of a thermal deformation correction value δ based on the detected temperature of these temperature sensors is registered in the correction means 32. In order to facilitate understanding, in FIG. 1, the correction means 32 has an arithmetic expression similar to that in the prior art: δx = αx1t1 + αx2t2 + αx3t3 +.
Will be described as being registered. For machining and rough machining of workpieces that do not require high accuracy, the specified values specified in the machining program 31 are corrected with correction values δz and δx calculated based on the above formula, and the position commands ez of the motors 4z and 4x are corrected. , Ex.

図1の補正手段32によって補正された後の、すなわち従来方法によって補正された後の刃物台3から見た主軸台12、チャック2及びワークwの位置は、例えば図4、6に一点鎖線d1で示すようになる。すなわち、ワークwの加工点pを加工するときの従来方法で補正された後の工具刃先の位置は点p1の位置となり、工具刃先を点p1に設定することにより、ワークの点pの加工が行われるとしている。なお、図6の点p1の位置は、次工程の加工が行われる前の位置である。製品の外周はこの位置から例えば仕上げ代だけ切除された位置となる。また、計測位置A、Bでのワークの径は同一である必要はない。   The positions of the head stock 12, the chuck 2 and the workpiece w as viewed from the tool post 3 after being corrected by the correcting means 32 in FIG. 1, that is, after being corrected by the conventional method, are shown in FIG. As shown in That is, the position of the tool edge after being corrected by the conventional method when machining the machining point p of the workpiece w becomes the position of the point p1, and the machining of the point p of the workpiece can be performed by setting the tool edge to the point p1. Is going to be done. Note that the position of the point p1 in FIG. 6 is the position before the next process is performed. The outer periphery of the product is a position cut from this position, for example, by a finishing allowance. Moreover, the diameter of the workpiece | work in measurement position A and B does not need to be the same.

しかし前述したような理由により、従来の演算式による補正手段32の補正演算のみでは、熱変形を完全に補正することはできない。すなわち、刃物台から見た実際の主軸台、チャック及びワークの位置は、例えば図4、6に二点鎖線d2で示すように、補正手段32が演算した一点鎖線d1との間にずれがある。このずれΔa及びΔbは、補正手段32で補正された値から更にX軸方向に補正(修正)すべきずれである。なお、図4、6にはΔa、Δbとδa、δbとを略等しい間隔で示しているが、実際にはΔa、Δbはδa、δbより小さい。   However, for the reasons described above, the thermal deformation cannot be completely corrected only by the correction calculation of the correction means 32 using the conventional calculation formula. That is, the actual positions of the headstock, chuck, and workpiece as viewed from the tool post are deviated from the one-dot chain line d1 calculated by the correcting means 32 as shown by a two-dot chain line d2 in FIGS. . The deviations Δa and Δb are deviations that should be further corrected (corrected) in the X-axis direction from the values corrected by the correction means 32. 4 and 6, Δa, Δb and δa, δb are shown at substantially equal intervals, but in reality, Δa, Δb are smaller than δa, δb.

制御器6は、予め定めた主軸の位相、例えば原点位相と、チャック2又はワークwの周面の予め定めた2箇所のZ軸位置A、B(図3、5参照)とを設定する設定器を備えた計測動作設定手段33と、補正手段32で補正された補正値を更に補正(修正)する修正手段34とを備えている。   The controller 6 is configured to set a predetermined spindle phase, for example, an origin phase, and two predetermined Z-axis positions A and B (see FIGS. 3 and 5) on the peripheral surface of the chuck 2 or the workpiece w. Measurement operation setting means 33 provided with a measuring device, and correction means 34 for further correcting (correcting) the correction value corrected by the correction means 32.

機械の熱変形の補正をより正確に行う必要があるのは、仕上げ加工のときである。計測動作設定手段33は、仕上げ加工用の工具Tが割り出されたとき、又は加工中の予め定めたタイミングで、主軸1を設定された位相に固定し、そのとき割り出されている工具の刃先を設定されたZ軸位置A、Bの一方Aに移動して、工具刃先を当該位置でチャック2又はワークwの外周に向けて低速接近させる。この低速接近中に位置偏差cが設定値を越えたときに接触検出器7が接触信号を出力する。このとき検出された刃物台の位置は、補正手段32で補正された後の工具刃先がチャック2又はワークwに接触するはずの位置からΔa及びΔbだけずれている。接触信号hを受けた計測動作設定手段33は、X送りモータ4xを停止し、そのときの刃物台3のX座標(点a2のX座標)と補正手段32で補正した後の当該計測位置におけるX座標の指令値(点a1のX座標)との差Δxaを演算して記憶する。   It is during finishing that it is necessary to more accurately correct the thermal deformation of the machine. The measuring operation setting means 33 fixes the spindle 1 to the set phase when the finishing tool T is indexed or at a predetermined timing during machining, and the tool that is indexed at that time is fixed. The cutting edge is moved to one of the set Z-axis positions A and B, and the tool cutting edge is approached at a low speed toward the outer periphery of the chuck 2 or the workpiece w at the position. When the position deviation c exceeds the set value during this low speed approach, the contact detector 7 outputs a contact signal. The position of the tool post detected at this time is deviated by Δa and Δb from the position where the tool edge after being corrected by the correcting means 32 should be in contact with the chuck 2 or the workpiece w. Upon receiving the contact signal h, the measurement operation setting means 33 stops the X feed motor 4x, and the X coordinate (X coordinate of the point a2) of the tool post 3 at that time and the measurement position after correction by the correction means 32. The difference Δxa from the X coordinate command value (the X coordinate of the point a1) is calculated and stored.

計測動作設定手段33は、次に工具刃先をX軸方向に後退させた後、他方の計測位置Bに移動し、同様な操作で刃物台3のX座標(点b2のX座標)と補正手段32で補正した後のX座標の指令値(点b1のX座標)との差Δxbを演算して記憶する。   The measurement operation setting means 33 next retracts the tool blade edge in the X-axis direction and then moves to the other measurement position B, and the X coordinate of the tool post 3 (X coordinate of the point b2) and the correction means by the same operation. The difference Δxb from the X coordinate command value (the X coordinate of the point b 1) after correction at 32 is calculated and stored.

修正手段34は、検出したX軸方向のずれγ=Δxaと、主軸の傾斜角(Δxa−Δxb)/Lにγとした計測位置(図の例ではA位置)からワークの加工位置Pまでの距離Sを乗じた値とで、加工位置Pにおけるx軸方向の修正値を
γ+εS=Δxa+(Δxa−Δxb)S/L
で演算する。
The correction means 34 detects from the detected position γ = Δxa in the X-axis direction and the measurement position (position A in the example in the figure) from the tilt angle (Δxa−Δxb) / L of the spindle to the machining position P of the workpiece. The correction value in the x-axis direction at the machining position P is obtained by multiplying the distance S by γ + εS = Δxa + (Δxa−Δxb) S / L
Calculate with.

上記の動作において、工具刃先をチャック周面に接近させる方向は、水平方向が最も良いが、スラント型の場合には、上方から下方へ移動させるようにして接近させる。これはX軸モータ4xに作用する送り負荷と刃物台の重量との関係で工具刃先とチャック周面との接触がより速やかに検出されるからである。   In the above operation, the direction in which the tool edge approaches the chuck peripheral surface is best in the horizontal direction, but in the case of the slant type, the tool blade tip is moved from the upper side to the lower side. This is because contact between the tool blade edge and the chuck peripheral surface is detected more quickly based on the relationship between the feed load acting on the X-axis motor 4x and the weight of the tool post.

その後の加工においては、加工プログラムの指定値を補正手段32に設定された演算式と修正手段34に設定された修正値とで補正して、x軸送りモータ4xに与える位置指令exとする。そして、次に仕上げ用の工具が割り出されたとき、又は設定されたタイミングが来たときに、同様な動作で修正手段34の設定値を変更してワークの自動連続加工を行う。   In the subsequent machining, the specified value of the machining program is corrected with the arithmetic expression set in the correction means 32 and the correction value set in the correction means 34 to obtain a position command ex to be given to the x-axis feed motor 4x. When the finishing tool is next determined or when the set timing comes, the set value of the correction means 34 is changed by the same operation to perform automatic continuous machining of the workpiece.

上記の説明では、理解を容易にするために、補正手段32で従来方法による補正値を演算し、修正手段34で本願発明による修正値を演算して、両者を加えて指令値を補正すると説明したが、補正手段32に修正値を付加した演算式を登録しておくのがより実用的である。この場合の補正手段32に登録する演算式は、
δx=αx1t1+αx2t2+αx3t3+・・・+αxntn+βx+Δx+(Δxa−Δxb)×S/L
となる。そしてこの場合には、図4及び図6のδa、δbは上式で演算したδの値、Δa、Δbは、図4、6に括弧書きで示すように、前回計測時のΔaf、Δbfの値と今回計測時のΔag、Δbgの値との差となるので、修正手段34は、この差を演算して補正手段32に登録されているδを求める演算式のγとεを更新するという動作になる(図7参照)。
In the above description, for the sake of easy understanding, the correction means 32 calculates the correction value according to the conventional method, the correction means 34 calculates the correction value according to the present invention, and adds both to correct the command value. However, it is more practical to register an arithmetic expression with a correction value added to the correction means 32. In this case, the arithmetic expression to be registered in the correction means 32 is
δx = αx1t1 + αx2t2 + αx3t3 + ... + αxntn + βx + Δx + (Δxa−Δxb) × S / L
It becomes. In this case, δa and δb in FIGS. 4 and 6 are the values of δ calculated by the above equation, and Δa and Δb are the values of Δaf and Δbf at the previous measurement as shown in parentheses in FIGS. Since this is the difference between the value and the values of Δag and Δbg at the time of the current measurement, the correction means 34 calculates the difference and updates γ and ε in the calculation formula for obtaining δ registered in the correction means 32. Operation is performed (see FIG. 7).

上式は刃物台3側の熱変形誤差が補正手段32で演算された補正値で正しく補正されていると仮定した場合の幾何学的な演算に基づく補正値であるが、実際には上記のような考え方を基準として実際にワークを加工したときの寸法誤差を計測することにより、γ及びεに必要な係数を乗ずる等して、より正確な補正を行うことができるようにすべきである。   The above equation is a correction value based on a geometric calculation when it is assumed that the thermal deformation error on the tool post 3 side is correctly corrected with the correction value calculated by the correction means 32. It should be possible to perform more accurate correction by multiplying γ and ε by the necessary coefficient by measuring the dimensional error when the workpiece is actually machined based on such a concept. .

なお、刃物台3がY軸方向にも移動する旋盤であれば、上述したX軸方向の検出動作と同様な検査をY軸方向にも行って、Y軸方向の修正値を演算する。また、旋盤が2主軸対向旋盤で、長尺ワークの両端を対向するチャックで把持して加工を行うときは、左右L−Rの主軸の補正手段32で補正した後の位置からのずれγL、γRとεL、εRをそれぞれ検出し、X軸方向のずれは両端のX方向のずれΔxL、ΔxRを加工点の位置で補間した量であるとし、主軸の傾斜によるずれは、例えば機械力学の便覧などで周知の両端支持梁の演算式で両端の位置ずれと傾斜角のずれからワークの加工点における撓み量を演算して補正すればよい。   If the tool post 3 is a lathe that also moves in the Y-axis direction, the inspection similar to the detection operation in the X-axis direction described above is also performed in the Y-axis direction, and a correction value in the Y-axis direction is calculated. Further, when the lathe is a two-spindle opposed lathe and grips both ends of a long workpiece with opposing chucks, a deviation γL from the position after correction by the correction means 32 of the left and right L-R spindles, γR, εL, and εR are detected respectively, and the deviation in the X-axis direction is an amount obtained by interpolating the deviations ΔxL and ΔxR in the X direction at both ends at the position of the machining point. It is only necessary to calculate and correct the amount of deflection at the machining point of the workpiece from the positional deviation of both ends and the deviation of the inclination angle by a well-known calculation formula for both-end support beams.

1 主軸
2 チャック
3 刃物台
4x 送りモータ
6 制御器
T 工具
w ワーク
1 Spindle 2 Chuck 3 Tool post 4x Feed motor 6 Controller T Tool w Workpiece

Claims (4)

温度変化に伴う熱変形に起因する加工誤差の補正手段を備えた工作機械のワーク加工方法において、
仕上げ工程などの精度の高い加工工程が開始されるとき又は予め制御器に登録した所定のタイミングで、主軸を所定の位相で停止し、当該機械の刃物台に装着された工具の刃先を予め定めた計測位置で主軸チャックの周面又は当該主軸チャックに把持されたワークの周面に向けて低速で送り、送りモータの負荷が設定された負荷に達したときに当該送りモータを停止し、そのときの刃物台の座標と当該工具刃先が前記計測位置に位置するときの刃物台のあるべき位置との差に基づく修正値で補正値を修正し、次の計測タイミングまでの間、当該修正された補正値で刃物台の位置を補正して加工を行うことを特徴とする、工作機械のワーク加工方法。
In a workpiece machining method of a machine tool provided with a means for correcting a machining error caused by thermal deformation accompanying a temperature change,
When a highly accurate machining process such as a finishing process is started or at a predetermined timing registered in the controller in advance, the spindle is stopped at a predetermined phase, and the cutting edge of the tool mounted on the tool post of the machine is determined in advance. Feeds at a low speed toward the peripheral surface of the main spindle chuck or the peripheral surface of the workpiece gripped by the main spindle chuck at the measured position, and stops the feed motor when the load of the feed motor reaches the set load. The correction value is corrected with a correction value based on the difference between the coordinates of the tool post at the time and the position of the tool post when the tool edge is located at the measurement position, and the correction is made until the next measurement timing. A workpiece machining method for a machine tool, wherein machining is performed by correcting the position of the tool post with the corrected value.
計測位置が主軸軸線方向に所定距離離れた2箇所の位置であり、当該2箇所の位置で検出した刃物台の座標と工具刃先が当該計測位置に位置するときの刃物台のあるべき位置との差に基づいて前記修正値を演算する、請求項1記載の工作機械のワーク加工方法。   The measurement positions are two positions separated by a predetermined distance in the spindle axis direction, and the coordinates of the tool post detected at the two positions and the position where the tool post should be when the tool edge is located at the measurement position. The workpiece machining method for a machine tool according to claim 1, wherein the correction value is calculated based on a difference. 前記工具刃先が前記計測位置に位置するときの刃物台のあるべき位置が、前回の計測に基づいて修正された補正値で補正した刃物台の位置である、工作機械のワーク加工方法。   A work machining method for a machine tool, wherein a position where the tool post should be when the tool cutting edge is located at the measurement position is a position of the tool post corrected with a correction value corrected based on a previous measurement. 刃物台の送りモータの負荷変動をサーボモータである刃物台送りモータに与える位置指令と位置のフィードバック信号との差信号である位置偏差により検出するものにおいて、工具の計測点に接近させる方向を上方から下方又は水平方向とした、工作機械のワーク加工方法。   Detects the load fluctuation of the tool post feed motor based on the position deviation that is the difference signal between the position command given to the tool post feed motor, which is a servo motor, and the position feedback signal. Machine tool work machining method from bottom to bottom or horizontal.
JP2017118343A 2017-06-16 2017-06-16 Machine tool work processing method Active JP6982291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017118343A JP6982291B2 (en) 2017-06-16 2017-06-16 Machine tool work processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118343A JP6982291B2 (en) 2017-06-16 2017-06-16 Machine tool work processing method

Publications (3)

Publication Number Publication Date
JP2019000945A true JP2019000945A (en) 2019-01-10
JP2019000945A5 JP2019000945A5 (en) 2019-07-25
JP6982291B2 JP6982291B2 (en) 2021-12-17

Family

ID=65005328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118343A Active JP6982291B2 (en) 2017-06-16 2017-06-16 Machine tool work processing method

Country Status (1)

Country Link
JP (1) JP6982291B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019013996A (en) * 2017-07-05 2019-01-31 中村留精密工業株式会社 Workpiece machining method in machine tool
US20200269458A1 (en) * 2019-02-26 2020-08-27 National University Corporation Nagoya University Cutting apparatus and contact position specifying program
JP2021065936A (en) * 2019-10-17 2021-04-30 シチズン時計株式会社 Machine tool
JP2021091091A (en) * 2021-03-18 2021-06-17 国立大学法人東海国立大学機構 Cutting device
CN113126566A (en) * 2021-06-18 2021-07-16 四川大学 Numerical control machine tool spindle axial thermal error physical modeling method
CN113341878A (en) * 2021-06-23 2021-09-03 重庆理工大学 Thermal error measuring method of five-axis numerical control machine tool
JP2022040415A (en) * 2017-08-29 2022-03-10 国立大学法人東海国立大学機構 Vibration cutting device
CN114689197A (en) * 2022-05-31 2022-07-01 成都飞机工业(集团)有限责任公司 A online temperature measuring device for metal surface function is rebuild
JP7233791B1 (en) * 2022-03-24 2023-03-07 国立大学法人東海国立大学機構 Cutting device and positional relationship identification method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417490A (en) * 1981-06-09 1983-11-29 Hurco Mfg. Co., Inc. Lathe tool calibrator and method
JPS6254653A (en) * 1985-09-03 1987-03-10 Toshiba Corp Phase alignment method
JPH04102760U (en) * 1991-02-06 1992-09-04 三菱重工業株式会社 Thermal displacement measurement correction device
JPH0655415A (en) * 1992-08-11 1994-03-01 Nakamura Tome Precision Ind Co Ltd Measuring method for and secular change of machine tool
JPH06155239A (en) * 1992-11-25 1994-06-03 Hisashi Matsuzaki Machine tool
JPH07186006A (en) * 1993-12-27 1995-07-25 Murata Mach Ltd Tool edge position correction method and device in nc machine tool
JPH07266194A (en) * 1994-03-30 1995-10-17 Hitachi Seiki Co Ltd Tool cutting edge measurement compensator
JPH08197309A (en) * 1995-01-19 1996-08-06 Fanuc Ltd Ion implanted diamond cutting tool
JPH1020911A (en) * 1996-07-02 1998-01-23 Mitsubishi Electric Corp Tool length correcting method for numerical controller, work center position detecting method, and tool wear degree estimating method and numerical controller
JPH11165241A (en) * 1997-12-05 1999-06-22 Nakamura Tome Precision Ind Co Ltd Work machining device on lathe
JPH11212618A (en) * 1998-01-23 1999-08-06 Nakamura Tome Precision Ind Co Ltd Work machining method for nc lathe
JP2012213840A (en) * 2011-04-01 2012-11-08 Murata Machinery Ltd Machine tool
WO2016147979A1 (en) * 2015-03-17 2016-09-22 東芝機械株式会社 Machine tool
WO2016203569A1 (en) * 2015-06-17 2016-12-22 富士機械製造株式会社 Machine tool

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417490A (en) * 1981-06-09 1983-11-29 Hurco Mfg. Co., Inc. Lathe tool calibrator and method
JPS6254653A (en) * 1985-09-03 1987-03-10 Toshiba Corp Phase alignment method
JPH04102760U (en) * 1991-02-06 1992-09-04 三菱重工業株式会社 Thermal displacement measurement correction device
JPH0655415A (en) * 1992-08-11 1994-03-01 Nakamura Tome Precision Ind Co Ltd Measuring method for and secular change of machine tool
JPH06155239A (en) * 1992-11-25 1994-06-03 Hisashi Matsuzaki Machine tool
JPH07186006A (en) * 1993-12-27 1995-07-25 Murata Mach Ltd Tool edge position correction method and device in nc machine tool
JPH07266194A (en) * 1994-03-30 1995-10-17 Hitachi Seiki Co Ltd Tool cutting edge measurement compensator
JPH08197309A (en) * 1995-01-19 1996-08-06 Fanuc Ltd Ion implanted diamond cutting tool
JPH1020911A (en) * 1996-07-02 1998-01-23 Mitsubishi Electric Corp Tool length correcting method for numerical controller, work center position detecting method, and tool wear degree estimating method and numerical controller
JPH11165241A (en) * 1997-12-05 1999-06-22 Nakamura Tome Precision Ind Co Ltd Work machining device on lathe
JPH11212618A (en) * 1998-01-23 1999-08-06 Nakamura Tome Precision Ind Co Ltd Work machining method for nc lathe
JP2012213840A (en) * 2011-04-01 2012-11-08 Murata Machinery Ltd Machine tool
WO2016147979A1 (en) * 2015-03-17 2016-09-22 東芝機械株式会社 Machine tool
WO2016203569A1 (en) * 2015-06-17 2016-12-22 富士機械製造株式会社 Machine tool

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019013996A (en) * 2017-07-05 2019-01-31 中村留精密工業株式会社 Workpiece machining method in machine tool
JP2022040415A (en) * 2017-08-29 2022-03-10 国立大学法人東海国立大学機構 Vibration cutting device
US20200269458A1 (en) * 2019-02-26 2020-08-27 National University Corporation Nagoya University Cutting apparatus and contact position specifying program
WO2020174585A1 (en) * 2019-02-26 2020-09-03 国立大学法人東海国立大学機構 Cutting device and contact position identification program
JPWO2020174585A1 (en) * 2019-02-26 2021-03-11 国立大学法人東海国立大学機構 Cutting equipment and contact position identification program
JP2021100784A (en) * 2019-02-26 2021-07-08 国立大学法人東海国立大学機構 Cutting device and contact location specification program
US11883973B2 (en) 2019-02-26 2024-01-30 National University Corporation Tokai National Higher Education And Research System Cutting apparatus and contact position specifying program
JP2021065936A (en) * 2019-10-17 2021-04-30 シチズン時計株式会社 Machine tool
JP7309563B2 (en) 2019-10-17 2023-07-18 シチズン時計株式会社 Machine Tools
JP2021091091A (en) * 2021-03-18 2021-06-17 国立大学法人東海国立大学機構 Cutting device
CN113126566B (en) * 2021-06-18 2021-08-24 四川大学 Numerical control machine tool spindle axial thermal error physical modeling method
CN113126566A (en) * 2021-06-18 2021-07-16 四川大学 Numerical control machine tool spindle axial thermal error physical modeling method
CN113341878B (en) * 2021-06-23 2023-04-18 重庆理工大学 Thermal error measuring method of five-axis numerical control machine tool
CN113341878A (en) * 2021-06-23 2021-09-03 重庆理工大学 Thermal error measuring method of five-axis numerical control machine tool
JP7233791B1 (en) * 2022-03-24 2023-03-07 国立大学法人東海国立大学機構 Cutting device and positional relationship identification method
CN114689197A (en) * 2022-05-31 2022-07-01 成都飞机工业(集团)有限责任公司 A online temperature measuring device for metal surface function is rebuild

Also Published As

Publication number Publication date
JP6982291B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
JP6982291B2 (en) Machine tool work processing method
JP4229698B2 (en) Measuring method and apparatus for cutting edge position of tool, workpiece processing method, and machine tool
TWI381902B (en) Working Machinery
JP5673855B2 (en) Machine Tools
JP2942547B2 (en) Method and apparatus for correcting thermal displacement of machine tool
CN109195742B (en) Machining center
JP6913920B2 (en) Machine tool work processing method
CN107580535A (en) Method for running gear cutting machine
JP2011093068A (en) Machine tool and displacement measurer
JP4172614B2 (en) Ball screw feed drive correction method
WO2016147979A1 (en) Machine tool
JP2001030141A (en) Thin pipe machining method and its device
JP6842146B2 (en) How to correct machine tool machining errors
US11376667B2 (en) Machining tool and workpiece measurement method
JP5846400B2 (en) Machine tool and its thermal deformation correction method
JP2019104082A (en) Nc grinding device and method of grinding workpiece
WO2011024838A1 (en) Method for thermal displacement correction in machine tool and thermal displacement correction device
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JP2004154907A (en) Thermal displacement correction method and device for multishaft machining tool
JP3839197B2 (en) Cutting edge position alignment method for pre-use and post-use tools in machine tools
JP5266020B2 (en) Machine tool and error correction method in machine tool
JP4242229B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JPH0569276A (en) Thermal displacement correcting method for lathe
JP3684137B2 (en) Machine tool positioning error correction method and correction device
KR20170079274A (en) Device for compensating thermal displacement of feed driver for a machine tool and method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211112

R150 Certificate of patent or registration of utility model

Ref document number: 6982291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150