JP2018535406A - Rapid detection method of sewage oil by hyperspectral transmission - Google Patents

Rapid detection method of sewage oil by hyperspectral transmission Download PDF

Info

Publication number
JP2018535406A
JP2018535406A JP2018518587A JP2018518587A JP2018535406A JP 2018535406 A JP2018535406 A JP 2018535406A JP 2018518587 A JP2018518587 A JP 2018518587A JP 2018518587 A JP2018518587 A JP 2018518587A JP 2018535406 A JP2018535406 A JP 2018535406A
Authority
JP
Japan
Prior art keywords
oil
hyperspectral
transmission
curve
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018518587A
Other languages
Japanese (ja)
Other versions
JP6748711B2 (en
Inventor
基煥 鄭
基煥 鄭
潤乾 毛
潤乾 毛
宇宏 張
宇宏 張
冰雪 董
冰雪 董
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Institute of Applied Biological Resources
Original Assignee
Guangdong Institute of Applied Biological Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of Applied Biological Resources filed Critical Guangdong Institute of Applied Biological Resources
Publication of JP2018535406A publication Critical patent/JP2018535406A/en
Application granted granted Critical
Publication of JP6748711B2 publication Critical patent/JP6748711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

ハイパースペクトル透過による下水油の迅速検出方法である。白色光ハイパースペクトルで、合格の食用油と検出したい油サンプルそれぞれの透過値データの採取を行い、合格の食用油のハイパースペクトル透過値Yを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、合格の食用油の検量線F(X)とし、そして、検出したい油サンプルのハイパースペクトル透過値Gを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、検出したい油サンプルのハイパースペクトル透過値カーブとして、統計学的方法のT検定で、検出したい油サンプルのハイパースペクトル透過値カーブと検量線における各係数の違いを比較し、検出したい油サンプルのハイパースペクトル透過値カーブが検量線から外れる度合いを分析して、検出したい油サンプルが下水油であるかどうかを判断する。本方法は簡単で、効果的であり、ハイパースペクトル走査で透過値データの採取を行うだけで、迅速で効率よく地溝油サンプルを検出するという要求を満たすことができる。
【選択図】なし
This is a rapid detection method of sewage oil by hyperspectral transmission. Obtain the transmission data of the acceptable edible oil and the oil sample to be detected in the white light hyperspectrum, and fit the equation to the wavelength X using the hyperspectral transmission value Y of the acceptable edible oil. We want to detect the equation obtained by fitting the equation to the wavelength X using the hyperspectral transmission value G of the oil sample we want to detect, using the calibration curve F (X) of the acceptable cooking oil As the hyperspectral transmission curve of the oil sample, the statistical method T-test compares the difference in each coefficient between the hyperspectral transmission curve of the oil sample to be detected and the calibration curve, and the hyperspectral transmission value of the oil sample to be detected. Analyze the degree to which the curve deviates from the calibration curve to see if the oil sample you want to detect is sewage oil The judges. The method is simple and effective, and can meet the requirement of detecting gravel oil samples quickly and efficiently by simply collecting transmission value data by hyperspectral scanning.
[Selection figure] None

Description

本発明は、食品検出分野に属し、具体的には、ハイパースペクトル透過による下水油の迅速検出方法に関する。   The present invention belongs to the field of food detection, and specifically relates to a rapid detection method of sewage oil by hyperspectral transmission.

下水油とは、回収された廃食用油、フライを繰り返した食用油、下水道ゴミから精製された劣悪な油、残りカスから精製された油及び劣悪な動物臓物から精製された油である。商業の利益の駆使で、下水油が食用油の産業チェーンに取り込まれ、食品の安全に深刻な影響を与え、そして、関連する社会的問題を引き起こしている。   Sewage oil is recovered waste edible oil, edible oil repeatedly fried, inferior oil refined from sewage trash, oil refined from remaining residue and oil refined from inferior animal organs. By making full use of commercial interests, sewage oil has been incorporated into the edible oil industry chain, seriously affecting food safety and causing related social problems.

下水油を迅速で効率よく検出することは、現在、中国政府部門の要解決の重要な民生問題の一つである。いままで多数の下水油検出方法が開示されたが、一般的には、比重、屈折率、導電率、赤外分光等のような物理的検出指標によるものであり、より多くの場合は、多環芳香族炭化水素、アフラトキシン、アルデヒド・ケトン類、トリグリセリドポリマー、特定の遺伝子、コレステロール、水分、調味料類物質、ドデシルベンゼンスルホン酸ナトリウム、重金属、脂肪酸組成、けん化価、酸価、カルボニル価、過酸化価、ヨウ素価、脂肪酸の相対的な不飽和度等のような植物油規格に準拠した化学的指標によるもの及び透明度や色合い、匂い、味等の外見で判別するものである。   The rapid and efficient detection of sewage oil is now one of the important consumer issues that need to be resolved by the Chinese government sector. Many sewage oil detection methods have been disclosed so far, but generally they are based on physical detection indices such as specific gravity, refractive index, conductivity, infrared spectroscopy, etc. Cyclic aromatic hydrocarbons, aflatoxins, aldehydes and ketones, triglyceride polymers, specific genes, cholesterol, moisture, seasoning substances, sodium dodecylbenzenesulfonate, heavy metals, fatty acid composition, saponification value, acid value, carbonyl value, excess The determination is based on chemical indices based on vegetable oil standards such as oxidation value, iodine value, and relative degree of unsaturation of fatty acids, and on the appearance of transparency, color, smell, taste, and the like.

残念ながら、下水油に人為的な特殊処理をした後、検出したところ、全ての下水油サンプルではないが、多環芳香族炭化水素、調味物質等が除去され得ることが分かる。食用油の物理・化学的指標の検出には、酸価、過酸化価、油の抽出溶媒残留、遊離フェノール(綿実油)、総ヒ素、鉛、アフラトキシン、ベンゾピレン及び農薬残留などの基本指標の検出が含まれており、しかし、下水油でも、これらの指標に合格する可能性があり、下水油を判別することが不可能である。もっと複雑な場合では、精製した下水油と普通の食用油とが一定の比例で混合されると、下水油と普通の食用油とを正確に区別することが一層難しくなり、これが下水油の正確な検出に極大な困難をもたらすことになる。   Unfortunately, after the artificial special treatment of sewage oil, it is detected that polycyclic aromatic hydrocarbons, seasonings and the like can be removed, although not all sewage oil samples. The detection of physical and chemical indicators for edible oils involves detection of basic indicators such as acid value, peroxidation value, oil extraction solvent residue, free phenol (cotton seed oil), total arsenic, lead, aflatoxin, benzopyrene and pesticide residues. However, even sewage oil may pass these indicators, and it is impossible to distinguish sewage oil. In more complex cases, when refined sewage oil and normal edible oil are mixed in a certain proportion, it becomes more difficult to accurately distinguish between sewage oil and normal edible oil, Will lead to extreme difficulties.

従来の方法の検出結果には、経験が必要であり、主観的な要素に大きく影響され、正確度を保証しづらく、また、物理・化学的分析方法では、手間がかかるだけではなく、高価な分析機器と厳しい実験室条件も必要である。そのため、簡単で、迅速的な食用油と下水油の鑑別技術を考え出すことが要望されている。   The detection results of conventional methods require experience, are greatly influenced by subjective factors, and it is difficult to guarantee accuracy. In addition, physical and chemical analysis methods are not only troublesome but also expensive. Analytical instruments and harsh laboratory conditions are also required. Therefore, it is desired to come up with a simple and rapid technique for distinguishing between cooking oil and sewage oil.

本発明の目的は、簡単で、迅速的なハイパースペクトル透過による下水油の迅速検出方法を提供することにあり、該方法は、従来技術では、下水油をうまく効率よく検出して、下水油と普通の食用油とを区別することが困難であるという技術課題を効果的に解決することを趣旨とする。   An object of the present invention is to provide a simple and rapid method for detecting sewage oil by rapid hyperspectral transmission, which in the prior art detects sewage oil well and efficiently, It is intended to effectively solve the technical problem that it is difficult to distinguish from ordinary cooking oil.

ハイパースペクトルは、波長域が多く、解像度が高いという特徴を有する。食用油が透明な液体である場合が多いことから、複数の分光波長域でハイパースペクトル透過分析を行うことによって、オイルの品質を検出することができる。一般的に、ハイパースペクトル透過値の採取データが連続して、透過値カーブを形成しており、さらに、本発明は、データ分析の結果から迅速にオイルの品質を反映できるデータ分析方法を提供して、本発明の目的を達成した。   The hyperspectrum is characterized by a large wavelength range and high resolution. Since edible oil is often a transparent liquid, the quality of the oil can be detected by performing hyperspectral transmission analysis in a plurality of spectral wavelength regions. In general, the collected data of hyperspectral transmission values are continuous to form a transmission curve, and the present invention provides a data analysis method that can quickly reflect the quality of oil from the results of data analysis. Thus, the object of the present invention has been achieved.

本発明のハイパースペクトル透過による下水油の迅速検出方法は、
白色光ハイパースペクトルで、合格の食用油と検出したい油サンプルそれぞれの透過値データの採取を行い、合格の食用油のハイパースペクトル透過値Yを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、合格の食用油の検量線F(X)とするステップと、検出したい油サンプルのハイパースペクトル透過値Gを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、検出したい油サンプルのハイパースペクトル透過値カーブとして、統計学的方法のT検定で、検出したい油サンプルのハイパースペクトル透過値カーブと検量線における各係数の違いを比較し、検出したい油サンプルのハイパースペクトル透過値カーブが検量線から外れる度合いを分析して、検出したい油サンプルが下水油であるかどうかを判断するステップと、を含む。
The rapid detection method of sewage oil by hyperspectral transmission of the present invention is:
Obtain the transmission data of the acceptable edible oil and the oil sample to be detected in the white light hyperspectrum, and fit the equation to the wavelength X using the hyperspectral transmission value Y of the acceptable edible oil. The equation obtained by fitting the equation to the wavelength X is detected by using the calibration curve F (X) of the edible oil to be passed and the hyperspectral transmission value G of the oil sample to be detected. The hyperspectral transmission curve of the oil sample you want to detect is compared with the difference in each coefficient between the hyperspectral transmission curve of the oil sample you want to detect and the calibration curve using the statistical T test. Analyze the degree of deviation of the value curve from the calibration curve, and check whether the oil sample you want to detect is sewage oil Comprising the steps of determining the emergence, the.

前記の白色光ハイパースペクトルは、波長450〜950nmの白色光ハイパースペクトルであり、さらに好ましくは、波長450〜650nmの白色光ハイパースペクトルである。   The white light hyperspectrum is a white light hyperspectrum having a wavelength of 450 to 950 nm, and more preferably a white light hyperspectrum having a wavelength of 450 to 650 nm.

上記白色光ハイパースペクトル透過値の採取は、関連するハイパースペクトロメータ等で行われる。   The white light hyperspectral transmission value is collected by a related hyperspectrometer or the like.

前記ハイパースペクトルの波長は450〜950nmであり、または透過値の違いによって選ばれる所定の波長域であり、例えば450〜650nmである。   The wavelength of the hyperspectrum is 450 to 950 nm, or a predetermined wavelength range selected according to the difference in transmission value, for example, 450 to 650 nm.

前記カーブフィッティングの方法は、最小二乗法であり、MATLAB等の数学ソフトウェアで行われてもよい。   The curve fitting method is a least square method, and may be performed by mathematical software such as MATLAB.

前記T検定は統計学的な平均の差の検定方法であり、有意水準αが0.05であるが、必要に応じて変更されてもよく、統計分析をSPSS等の統計ソフトウェアで行ってもよく、P<0.05であると、差が大きく、検出したい油サンプルが下水油であると考えられる。   The T test is a statistical average difference test method, and the significance level α is 0.05. However, it may be changed as necessary, and the statistical analysis may be performed by statistical software such as SPSS. Well, if P <0.05, the difference is large and the oil sample to be detected is considered to be sewage oil.

大量の実験により、異なるオイルの透過値は、ある波長域で有意差を有し、得られる透過値カーブも異なることが検証される。本発明の方法によれば、合格の食用油サンプルのハイパースペクトル透過値の検量線を用いて、全てのサンプルのデータベースを作成し、検出したい油サンプルを対比することにより、検出したい油サンプルが合格の食用油であるかどうかを判別することができる。そのため、この特徴では、数理統計の方法で確認を行い、当業者がハイパースペクトル走査を行い、カーブ方程式の違いによってオイルの品質を対比すればよく、操作が簡単で、信頼性が高く、判別しやすい。本発明で用いる方法は、簡単で、効果的であり、ハイパースペクトル走査で透過値データの採取を行うだけで、迅速で効率よく下水油サンプルを検出するという要求を満たすことができる。   A large amount of experiment verifies that the transmission values of different oils have a significant difference in a certain wavelength range, and the transmission value curves obtained are also different. According to the method of the present invention, a calibration curve of hyperspectral transmission values of edible edible oil samples is used to create a database of all samples, and by comparing the oil samples to be detected, the oil samples to be detected pass. It is possible to determine whether or not the edible oil. Therefore, this feature can be confirmed by mathematical statistics, a person skilled in the art can perform a hyperspectral scan, compare the oil quality by the difference in the curve equation, easy operation, high reliability, and discrimination. Cheap. The method used in the present invention is simple and effective, and can satisfy the requirement of detecting a sewage oil sample quickly and efficiently by simply collecting transmission value data by hyperspectral scanning.

以下の実施例が本発明の更なる説明であり、本発明を制限するものではない。   The following examples are further illustrations of the invention and do not limit the invention.

(実施例1)
魯花落花生油と下水油の透過値カーブの違いを比較する。
(Example 1)
Compare the difference in permeation curve between peanut oil and sewage oil.

HEADWALLシステムによって、波長450nmから650nmの白色光ハイパースペクトルで魯花落花生油の透過値データを採取し、5回繰り返した後、MATLABソフトウェアで、魯花落花生油のハイパースペクトル透過値(Y)を用いて、波長(X)に対して方程式をフィッティングして、得られた方程式を魯花落花生油の検量線F(X)とする。   By using the HEADWALL system, the transmission value data of peanut peanut oil was collected with a white light hyperspectrum at a wavelength of 450 nm to 650 nm. Then, the equation is fitted to the wavelength (X), and the obtained equation is taken as a calibration curve F (X) for peanut oil.

5回繰り返して得られたデータフィッティング方程式が、
(x)=−0.0064x4+0.3038x3−4.3174x2+10.68x+703.28 (R2=0.9831)
(x)=−0.0041x4+0.2052x3−3.4192x2+19.75x+638.3 (R2=0.6913)
(x)=−0.0075x4+0.344x3−4.8345x2+14.492x+692.53 (R2=0.9751)
(x)=−0.0033x4+0.1752x3−3.0803x2+18.966x+636.49 (R2=0.57)
(x)=0.0015x4−0.0748x3+1.4277x2−14.566x+718.85 (R2=0.7277)
である。
The data fitting equation obtained by repeating 5 times is
F 1 (x) = − 0.0063x4 + 0.3038x3−4.3174x2 + 10.68x + 703.28 (R2 = 0.9831)
F 2 (x) = − 0.40041x4 + 0.205x3−3.4192x2 + 19.75x + 638.3 (R2 = 0.6913)
F 3 (x) = − 0.0075x4 + 0.344x3−4.8345x2 + 14.492x + 692.53 (R2 = 0.9751)
F 4 (x) = − 0.000033x4 + 0.1852x3-3.8033x2 + 18.966x + 636.49 (R2 = 0.57)
F 5 (x) = 0.0015x4-0.0748x3 + 1.277x2-14.566x + 718.85 (R2 = 0.277)
It is.

下水油についても、上記の魯花落花生油と同様にしてハイパースペクトル透過値の採取を行い、5回繰り返した後、MATLABソフトウェアで、下水油のハイパースペクトル透過値(G)を用いて、波長(X)に対して方程式をフィッティングして、得られた方程式を下水油のカーブG(X)とする。   For the sewage oil, the hyperspectral transmission value was collected in the same manner as the above peanut peanut oil, and after repeating 5 times, using the hyperspectral transmission value (G) of sewage oil, the wavelength ( The equation is fitted to X), and the obtained equation is defined as a sewage oil curve G (X).

5回繰り返して得られたデータフィッティング方程式が、
(x)=−0.0416x4+2.0721x3−31.582x2+92.353x+1681.5 (R2=0.9653)
(x)=−0.0379x4+1.9066x3−29.179x2+83.147x+1661.3 (R2=0.9699)
(x)=−0.0398x4+1.9962x3−30.748x2+94.917x+1627.1 (R2=0.9692)
(x)=−0.0378x4+1.8848x3−28.61x2+78.47x+1653.2 (R2=0.9651)
(x)=−0.0373x4+1.8837x3−29.051x2+85.983x+1637.2 (R2=0.969)
である。
The data fitting equation obtained by repeating 5 times is
G 1 (x) = − 0.0416x4 + 2.0721x3−31.582x2 + 92.353x + 1681.5 (R2 = 0.96553)
G 2 (x) = - 0.0379x4 + 1.9066x3-29.179x2 + 83.147x + 1661.3 (R2 = 0.9699)
G 3 (x) = - 0.0398x4 + 1.9962x3-30.748x2 + 94.917x + 1627.1 (R2 = 0.9692)
G 4 (x) = − 0.0378x4 + 1.848x3−28.61x2 + 78.47x + 1653.2 (R2 = 0.9651)
G 5 (x) = - 0.0373x4 + 1.8837x3-29.051x2 + 85.983x + 1637.2 (R2 = 0.969)
It is.

T検定で各係数の違いを比較すると、有意水準αが0.05であり、有意性検定から明らかなように、カーブの方程式では有意差(P<)0.05を有しているから、下水油と魯花落花生油の間に大きな違いがあると考えられる。そのため、地溝油サンプルが食用油ではなく、下水油であると判定する。   When the difference between each coefficient is compared by the T test, the significance level α is 0.05, and as is clear from the significance test, the curve equation has a significant difference (P <) 0.05. There seems to be a big difference between sewage oil and camellia peanut oil. Therefore, it is determined that the graben oil sample is not edible oil but sewage oil.

(付記)
(付記1)
白色光ハイパースペクトルで、合格の食用油と検出したい油サンプルそれぞれの透過値データの採取を行い、合格の食用油のハイパースペクトル透過値Yを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、合格の食用油の検量線F(X)とするステップと、検出したい油サンプルのハイパースペクトル透過値Gを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、検出したい油サンプルのハイパースペクトル透過値カーブとして、統計学的方法のT検定で、検出したい油サンプルのハイパースペクトル透過値カーブと検量線における各係数の違いを比較し、検出したい油サンプルのハイパースペクトル透過値カーブが検量線から外れる度合いを分析して、検出したい油サンプルが下水油であるかどうかを判断するステップと、を含むことを特徴とする、ハイパースペクトル透過による下水油の迅速検出方法。
(Appendix)
(Appendix 1)
Obtain the transmission data of the acceptable edible oil and the oil sample to be detected in the white light hyperspectrum, and fit the equation to the wavelength X using the hyperspectral transmission value Y of the acceptable edible oil. The equation obtained by fitting the equation to the wavelength X is detected by using the calibration curve F (X) of the edible oil to be passed and the hyperspectral transmission value G of the oil sample to be detected. The hyperspectral transmission curve of the oil sample you want to detect is compared with the difference in each coefficient between the hyperspectral transmission curve of the oil sample you want to detect and the calibration curve using the statistical T test. Analyze the degree of deviation of the value curve from the calibration curve, and check whether the oil sample you want to detect is sewage oil Characterized in that it comprises the steps of: determining the emergence, rapid detection method of the sewage oil by hyperspectral transmission.

(付記2)
前記白色光ハイパースペクトルが波長450〜950nmの白色光ハイパースペクトルであることを特徴とする、付記1に記載のハイパースペクトル透過による下水油の迅速検出方法。
(Appendix 2)
2. The method for quickly detecting sewage oil by hyperspectral transmission according to appendix 1, wherein the white light hyperspectrum is a white light hyperspectrum having a wavelength of 450 to 950 nm.

(付記3)
前記白色光ハイパースペクトルが波長450〜650nmの白色光ハイパースペクトルであることを特徴とする、付記2に記載のハイパースペクトル透過による下水油の迅速検出方法。
(Appendix 3)
The method for quickly detecting sewage oil by hyperspectral transmission according to appendix 2, wherein the white light hyperspectrum is a white light hyperspectrum having a wavelength of 450 to 650 nm.

Claims (3)

白色光ハイパースペクトルで、合格の食用油と検出したい油サンプルそれぞれの透過値データの採取を行い、合格の食用油のハイパースペクトル透過値Yを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、合格の食用油の検量線F(X)とするステップと、検出したい油サンプルのハイパースペクトル透過値Gを用いて、波長Xに対して方程式をフィッティングして得られる方程式を、検出したい油サンプルのハイパースペクトル透過値カーブとして、統計学的方法のT検定で、検出したい油サンプルのハイパースペクトル透過値カーブと検量線における各係数の違いを比較し、検出したい油サンプルのハイパースペクトル透過値カーブが検量線から外れる度合いを分析して、検出したい油サンプルが下水油であるかどうかを判断するステップと、を含むことを特徴とする、ハイパースペクトル透過による下水油の迅速検出方法。   Obtain the transmission data of the acceptable edible oil and the oil sample to be detected in the white light hyperspectrum, and fit the equation to the wavelength X using the hyperspectral transmission value Y of the acceptable edible oil. The equation obtained by fitting the equation to the wavelength X is detected by using the calibration curve F (X) of the edible oil to be passed and the hyperspectral transmission value G of the oil sample to be detected. The hyperspectral transmission curve of the oil sample you want to detect is compared with the difference in each coefficient between the hyperspectral transmission curve of the oil sample you want to detect and the calibration curve using the statistical T test. Analyze the degree of deviation of the value curve from the calibration curve, and check whether the oil sample you want to detect is sewage oil Characterized in that it comprises the steps of: determining the emergence, rapid detection method of the sewage oil by hyperspectral transmission. 前記白色光ハイパースペクトルが波長450〜950nmの白色光ハイパースペクトルであることを特徴とする、請求項1に記載のハイパースペクトル透過による下水油の迅速検出方法。   The method for quickly detecting sewage oil by hyperspectral transmission according to claim 1, wherein the white light hyperspectrum is a white light hyperspectrum having a wavelength of 450 to 950 nm. 前記白色光ハイパースペクトルが波長450〜650nmの白色光ハイパースペクトルであることを特徴とする、請求項2に記載のハイパースペクトル透過による下水油の迅速検出方法。   3. The method for quickly detecting sewage oil by hyperspectral transmission according to claim 2, wherein the white light hyperspectrum is a white light hyperspectrum having a wavelength of 450 to 650 nm.
JP2018518587A 2015-11-10 2015-11-23 Rapid detection method of sewage oil by hyperspectral transmission Expired - Fee Related JP6748711B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510766035.0 2015-11-10
CN201510766035.0A CN105300896B (en) 2015-11-10 2015-11-10 A kind of gutter oil EO-1 hyperion transmission rapid detection method
PCT/CN2015/095324 WO2017079997A1 (en) 2015-11-10 2015-11-23 Method for fast detection of gutter oil by hyperspectral transmittance analysis

Publications (2)

Publication Number Publication Date
JP2018535406A true JP2018535406A (en) 2018-11-29
JP6748711B2 JP6748711B2 (en) 2020-09-02

Family

ID=55198408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518587A Expired - Fee Related JP6748711B2 (en) 2015-11-10 2015-11-23 Rapid detection method of sewage oil by hyperspectral transmission

Country Status (3)

Country Link
JP (1) JP6748711B2 (en)
CN (1) CN105300896B (en)
WO (1) WO2017079997A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866063A (en) * 2016-04-08 2016-08-17 北京工商大学 Detection method for quality grade of sausage
CN106525720B (en) * 2016-11-17 2019-03-29 常熟理工学院 The method that adjacent Single wavelength realization food safety quickly detects is fitted using dual wavelength
CN109871887A (en) * 2019-01-29 2019-06-11 淮阴工学院 A kind of novel trench oil detection method and detection device based on SVM
CN111239056B (en) * 2020-01-17 2021-04-20 浙江大学 Method and device for detecting content of triacylglycerol in oil-producing microalgae
CN112881338B (en) * 2021-01-11 2023-10-17 中国农业科学院油料作物研究所 Mathematical model of peanut oil refractive index and detection method and identifier of high oleic acid peanut

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294337A (en) * 1985-06-24 1986-12-25 Seikosha Co Ltd Oil deterioration detector
JPS62159027A (en) * 1986-01-06 1987-07-15 Mitsubishi Electric Corp Detecting device for degree of deterioration of oil
JPH04340602A (en) * 1991-05-17 1992-11-27 Mitsubishi Kasei Corp Method for estimating dynamic characteristic in dynamic system and method for controlling thin system
US20100028859A1 (en) * 2007-02-15 2010-02-04 Green Vision Systems Ltd. Hyper-Spectral Imaging and Analysis of a Sample of Matter, and Preparing a Test Solution or Suspension Therefrom
WO2015101992A2 (en) * 2014-01-03 2015-07-09 Verifood, Ltd. Spectrometry systems, methods, and applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422083B2 (en) * 1994-08-12 2003-06-30 株式会社明電舎 Method and apparatus for measuring chromaticity in sewage or wastewater treatment
CN100406872C (en) * 2002-11-04 2008-07-30 天津市先石光学技术有限公司 Composite spectral measurement method and its spectral detection instrument
CN104089888B (en) * 2014-03-31 2017-01-11 浙江工商大学 Fast and accurate beef quality detection system and method
CN104111243B (en) * 2014-07-11 2017-01-04 江苏大学 A kind of ratio fluorescent measures system and method
CN204255846U (en) * 2014-11-26 2015-04-08 浙江大学 A kind of transmission high spectrum image collector detected for multiple different algae liquid
CN105203464B (en) * 2015-08-28 2018-06-26 中国农业科学院农产品加工研究所 Method based on high light spectrum image-forming technology detection peanut mid-oleic distribution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294337A (en) * 1985-06-24 1986-12-25 Seikosha Co Ltd Oil deterioration detector
JPS62159027A (en) * 1986-01-06 1987-07-15 Mitsubishi Electric Corp Detecting device for degree of deterioration of oil
JPH04340602A (en) * 1991-05-17 1992-11-27 Mitsubishi Kasei Corp Method for estimating dynamic characteristic in dynamic system and method for controlling thin system
US20100028859A1 (en) * 2007-02-15 2010-02-04 Green Vision Systems Ltd. Hyper-Spectral Imaging and Analysis of a Sample of Matter, and Preparing a Test Solution or Suspension Therefrom
WO2015101992A2 (en) * 2014-01-03 2015-07-09 Verifood, Ltd. Spectrometry systems, methods, and applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 77, no. 10, JPN6019038601, October 2000 (2000-10-01), pages 1083 - 1086, ISSN: 0004128866 *

Also Published As

Publication number Publication date
CN105300896B (en) 2019-05-17
CN105300896A (en) 2016-02-03
JP6748711B2 (en) 2020-09-02
WO2017079997A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP2018535406A (en) Rapid detection method of sewage oil by hyperspectral transmission
Sinelli et al. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity
JP2019095447A (en) Method for multivariate adulteration identification of edible oil based on near-infrared spectroscopy
Du et al. Adulteration detection of corn oil, rapeseed oil and sunflower oil in camellia oil by in situ diffuse reflectance near-infrared spectroscopy and chemometrics
Longobardi et al. Classification of olive oils according to geographical origin by using 1H NMR fingerprinting combined with multivariate analysis
Ozen et al. Detection of hazelnut oil adulteration using FT-IR spectroscopy
Seisonen et al. The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data
Wu et al. Application of Fourier Transform Infrared (FT-IR) Spectroscopy combined with chemometrics for analysis of rapeseed oil adulterated with refining and purificating waste cooking oil
Chen et al. Determination of the degree of degradation of frying rapeseed oil using Fourier-transform infrared spectroscopy combined with partial least-squares regression
CN103913435B (en) Method and device for quickly detecting hogwash oil based on multi-source information fusion
CN102830087A (en) Method for quickly identifying food waste oils based on near infrared spectroscopy
Garhwal et al. Hyperspectral imaging for identification of Zebra Chip disease in potatoes
Öğütcü et al. Determining frying oil degradation by near infrared spectroscopy using chemometric techniques
Jamwal et al. Rapid detection of pure coconut oil adulteration with fried coconut oil using ATR-FTIR spectroscopy coupled with multivariate regression modelling
Liu et al. Near-infrared prediction of edible oil frying times based on Bayesian Ridge Regression
Beltran Ortega et al. Novel technologies for monitoring the in‐line quality of virgin olive oil during manufacturing and storage
Yan et al. Handheld near‐infrared spectroscopy for distinction of extra virgin olive oil from other olive oil grades substantiated by compositional data
Chen et al. Intelligent analysis of excitation-emission matrix fluorescence fingerprint to identify and quantify adulteration in camellia oil based on machine learning
Jiménez-Sotelo et al. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils
CN102998350B (en) Method for distinguishing edible oil from swill-cooked dirty oil by electrochemical fingerprints
Sota-Uba et al. Authentication of edible oils using Fourier transform infrared spectroscopy and pattern recognition methods
CN105548027A (en) Analytical model and method for determining content of tea oil in blend oil based on near infrared spectroscopy
Luo et al. Using surface-enhanced Raman spectroscopy combined with chemometrics for black tea quality assessment during its fermentation process
CN103529026A (en) Detection method and kit of illegal cooking oil as well as production method of detection color comparison card
Wang et al. Spectroscopic studies on thermal degradation and quantitative prediction on acid value of edible oil during frying by Raman spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200807

R150 Certificate of patent or registration of utility model

Ref document number: 6748711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees