JP2018532122A - 基板上で材料を処理するための装置、処理装置のための冷却構成、及び基板上で処理される材料の特性を測定するための方法 - Google Patents

基板上で材料を処理するための装置、処理装置のための冷却構成、及び基板上で処理される材料の特性を測定するための方法 Download PDF

Info

Publication number
JP2018532122A
JP2018532122A JP2018522104A JP2018522104A JP2018532122A JP 2018532122 A JP2018532122 A JP 2018532122A JP 2018522104 A JP2018522104 A JP 2018522104A JP 2018522104 A JP2018522104 A JP 2018522104A JP 2018532122 A JP2018532122 A JP 2018532122A
Authority
JP
Japan
Prior art keywords
substrate
cooling
heat generating
measurement
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018522104A
Other languages
English (en)
Inventor
ウーヴェ ヘルマンス,
ウーヴェ ヘルマンス,
ハンス−ゲオルク ロッツ,
ハンス−ゲオルク ロッツ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2018532122A publication Critical patent/JP2018532122A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N21/8903Optical details; Scanning details using a multiple detector array

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本開示の一態様によれば、基板上で材料を処理するための装置が提供される。該装置は、真空チャンバ(110)と、測定構成(160)であって、基板(15)及び/又は基板上で処理される材料の1以上の特性を測定するように構成され、測定構成の少なくとも1つの熱生成構成要素(161)を冷却するための熱電冷却器(171)を有する冷却デバイス(170)を備えた、測定構成とを備える。別の一態様によれば、そのような装置のための冷却構成(50)が設けられる。冷却構成は、真空チャンバ内に配置された測定構成の少なくとも1つの熱生成構成要素を冷却するための熱電冷却器を有する冷却デバイスと、真空チャンバ内で冷却デバイスを移動させるように構成された、移送デバイスとを含む。
【選択図】図2

Description

本開示の実施形態は、基板上で材料を処理するための装置、基板上で材料を処理するための装置のための冷却構成、更に、基板上で処理される材料の1以上の特性を測定する方法に関する。本開示の実施形態は、特に、基板を処理し、基板上で処理される材料の1以上の特性を測定するための装置に関する。
コーティング、特に、プラスチック膜などの基板上に堆積した光学コーティング及び他の材料は、規定のスペクトル反射率及び透過率の値、並びに結果としての明度によって特徴付けられ得る。コーティングの特性、特に、光学特性は、光源及び光検出器を備え得る測定構成によって測定され得る。コーティングの生産中又は生産後の透過率(T)及び反射率(R)の信頼性のあるインライン測定は、堆積プロセスの制御、及びコーティングされた製品の光学品質の制御に対して考慮する必要がある一態様であり得る。T/R測定のより高度な部分は、反射率の測定である。移動するプラスチック膜での反射率の測定は、膜の平坦性のほんの小さなずれにより、反射された光線の検出器までの経路に幾何学的変化が生じ、結果的に誤りのある測定結果となるため、困難なものとなり得る。堆積装置では、プラスチック膜が装置の案内ローラと機械的に接触している位置で反射率を測定して、プラスチック膜が確実にローラの表面と平坦に接触することを保証し得る。
しかし、この場合、測定は、測定構成の固定された位置に限定され得る。経費の理由で、固定される測定構成又はロールツーロール(R2R)スパッタ機械の測定ヘッドの数は1と5の間に限定され得る。5機の測定構成を有するシステムでさえも、層の均一性、及び基板の幅に沿った光学的仕様の順守について十分な情報を供給しない。したがって、様々な位置における測定を実行することができる測定構成を提供する必要がある。
インライン測定に対して、測定構成は、処理装置の真空チャンバ内、例えば、堆積又はコーティングデバイスの真空チャンバ内に配置され得る。真空条件下での測定構成の熱を生成する構成要素(以下、「熱生成構成要素」)の効率的な冷却は、特に、異なる位置に配置された熱生成構成要素が冷却されるべきであるときに、困難であり得る。効果的な冷却のために、水などの冷却流体は、フレキシブルチューブを通して、冷却が必要であり得る真空チャンバ内の異なる位置へ導かれ得る。しかし、真空環境内での冷却流体の欠点は、流体回路内での漏れのリスクである。漏れが生じたならば、機械内の幾つかの構成要素が、大きな影響を受け又は破壊され得る。乏しい又は非効果的な冷却は、測定の質にマイナスの効果を与え、測定構成の熱生成構成要素の不具合さえもたらし得る。
したがって、基板及び基板上のコーティングの品質検査の向上が達成され得る装置が、未だなお、必要である。高い生産能力を有する処理システムに特に適切な、基板及び/又は基板上で処理される材料の特性を測定する改善された方法も必要である。
上述のことに照らして、基板上で材料を処理するための装置、基板上で材料を処理するための装置のための冷却構成が提供される。更に、基板及び/又は基板上で処理される材料の1以上の特性を測定する方法が提供される。本開示の更なる態様、利点、及び特徴は、特許請求の範囲、明細書の説明、及び添付図面から明らかになる。
本開示の一態様によれば、基板上で材料を処理するための装置が提供される。該装置は、真空チャンバと、測定構成であって、基板及び/又は基板上で処理される材料の1以上の特性を測定するように構成され、測定構成の少なくとも1つの熱生成構成要素を冷却するための熱電冷却器を有する冷却デバイスを備えた、測定構成とを含む。
ある実施形態では、測定構成が、真空チャンバ内で、冷却デバイスを少なくとも1つの熱生成構成要素と共に又はそれらから分離して移動させるように構成された、移送デバイスを更に含み得る。
本開示の更なる一態様によれば、基板上で材料を処理するための装置のための冷却構成が提供される。該冷却構成は、真空チャンバ内に配置された測定構成の少なくとも1つの熱生成構成要素を冷却するための熱電冷却器を有する冷却デバイスと、真空チャンバ内で、少なくとも1つの熱生成構成要素から分離して又はそれらと共に冷却デバイスを移動させるように構成された、移送デバイスとを含む。
本開示の更なる一態様によれば、真空チャンバ内で基板及び/又は基板上で処理される材料の1以上の特性を測定する方法が提供される。該方法は、測定中に、冷却デバイスの熱電冷却器を用いて、測定構成の少なくとも1つの熱生成構成要素を冷却することを含む。冷却デバイスと熱生成構成要素は、真空チャンバ内の測定位置に配置されている。
ある実施形態では、該方法が、真空チャンバ内で、冷却デバイスと共に少なくとも1つの熱生成構成要素を、第2の測定位置又は較正位置へ移動させることを更に含む。
本開示の更なる態様、利点、及び特徴は、従属請求項、明細書の説明、及び添付の図面から明らかである。
本開示の上記の特徴を詳細に理解することができるように、実施形態を参照することによって、上で簡単に概説した本開示のより具体的な説明を得ることができる。添付の図面は本開示の実施形態に関連し、以下の記述において説明される。図面には典型的な実施形態を示しており、その詳細について下記で説明する。
光学コーティングの反射率と透過率の測定の概略図を示す。 本明細書で説明される実施形態による、処理装置の概略図を示す。 本明細書で説明される実施形態による、処理装置の概略図を示す。 本明細書で説明される実施形態による、処理装置の概略図を示す。 本明細書で説明される実施形態による、処理装置の概略図を示す。 真空チャンバ内の測定位置及び2つの較正位置における、図5の基板上で材料を処理するための装置の別の概略図を示す。 本明細書で説明される実施形態による、冷却構成を示す。 本明細書で説明される実施形態による、冷却構成を示す。 本明細書で説明される実施形態による、基板及び/又は処理装置を用いて基板上で処理される材料の1以上の光学特性を測定する方法のフローチャートを示す。
次に、各図に1以上の実施例が示されている、様々な実施形態を細部にわたり参照する。各実施例は、説明として提示されており、限定を意味するものではない。例えば、一実施形態の一部として図示又は説明される特徴は、他の任意の実施形態に使用され、又は任意の実施形態と併せて使用されて、更に別の実施形態を生み出すことが可能である。本開示はかかる修正例及び変形例を含むことが、意図されている。
図面についての以下の説明の中で、同じ参照番号は同じ又は類似の構成要素を指す。概括的に、個々の実施形態に関して相違点のみが説明される。別段の指定がない限り、一実施形態における一部分又は一態様の説明は、別の実施形態における対応する部分又は態様にも同様に当てはまる。
図1は、光学コーティングの反射率及び透過率の測定の概略的な斜視図を示している。
堆積装置では、図1を参照しながら以下でより詳細に説明されるように、プラスチック膜とローラの表面とが確実に平坦に接触するように、基板、例えば、プラスチック膜が装置のローラ(例えば、案内ローラ)と機械的に接触している位置で正反射率が測定され得る。
図1で示されているように、基板15は、(図示せぬ)真空チャンバの内側で、コーティングドラム11、第1のローラ12、及び/又は第2のローラ13によって運ばれ送られる。第1のローラ12と第2のローラ13は、案内ローラであってよい。第1のローラ12と第2のローラ13との間の位置に、透過率測定構成16が設けられている。第1のローラ12と第2のローラ13との間の位置又はエリアは、「自由スパン」又は「自由スパン位置」とも称され得る。更に、基板15、例えば、プラスチック膜が、第2のローラ13と機械的に接触している別の位置には、反射率測定構成14が設けられている。
しかし、入射光線は、基板15の前面と裏面上だけで反射するのではなく、第2のローラ13の表面上でも反射する。金属製ローラの反射率Rはどちらかといえば高い(例えば、R>50%)ため、反射率が低い又は低減されたローラ表面が有益である。第2のローラ13は黒い又は黒ずんだ表面を有するため、第2のローラ13の表面は低い又は低下した反射率を有する。しかし、これら黒い又は黒ずんだ表面の反射率は、不十分に低く不均一な反射率となってしまう。絶対反射率の測定の信頼性はどちらかというと低い。
本明細書で使用される「基板」という用語は、特に、プラスチック膜、ウェブ、又はフォイルなどのフレキシブル基板を包含する。しかし、本開示は、それらに限定されず、「基板」という用語はまた、フレキシブルでない基板、例えば、ウエハ、サファイアなどの透明な結晶の切片、又はガラス板も包含し得る。ある実施形態によれば、基板は、透明基板であってよい。本明細書で使用される「透明な」という用語は、比較的散乱が低い状態で光を透過し、その結果、例えば、構造体を通して透過される光を実質的に明瞭に見ることができるような構造体の性能を特に含むものとする。通常、基板は、ポリエチレンテレフタレート(PET)を含む。
(本明細書で「処理装置」とも称される)基板上で材料を処理するための装置は、基板上に、薄い材料層、例えば、透明な、半透明な、及び/又は不透明な層を堆積させるためのコーティング又は堆積装置であり得る。処理装置は、処理チャンバを含み得る。処理チャンバ内で、コーティングされた基板が、第1のコーティング領域から第2のコーティング領域へ、又はコーティング領域から硬化若しくは貯蔵領域へ移送される。通常、層の品質、例えば、層の均一性を特徴付けるために、基板上での1以上の層の堆積の後で、層の反射率及び/透過率の特性が測定される。透過率及び/又は反射率は、コーティングされた基板の異なる位置において、例えば、基板の幅方向における異なる位置において、測定構成によって測定され得る。幅方向は、移送方向に垂直であり得る。移送方向に沿って、基板が真空チャンバを通って移動する。
通常、測定構成、特に、光学測定構成は、真空チャンバ内で熱を生成する熱生成構成要素、例えば、光源、検出デバイス、電子チップ、センサチップ、CCDチップ、グレーティング、並びに/又は他の光学的、電気的、及び/若しくは光学電気的要素を含む。真空を通る対流熱伝達は存在しないので、熱生成構成要素は、真空内でより速く熱くなる傾向があり、真空チャンバ内での効率的な冷却は困難であり得る。真空チャンバ内での冷却は、輻射及び/又は熱生成構成要素の冷却デバイスとの直接的な熱接触によって実現され得る。通常の冷却デバイスは、熱生成構成要素と直接的に熱接触する循環冷却流体、例えば、水を有する熱交換器を含み得る。
真空環境内での冷却流体を用いた冷却の欠点は、流体回路内での漏れのリスクである。これが生じるならば、例えば、短絡又は急速な圧力変化によって、チャンバ内の幾つかの構成要素(ポンプ、真空ゲージ、堆積源)が、電気的に大きな影響を受け又は破壊され得る。
本明細書で説明される実施形態によれば、(本明細書で「熱源」とも称される)少なくとも1つの熱生成構成要素からの熱伝達の効率は、熱電冷却器の形態を採るヒートポンプを使用することによって増加される。熱電冷却器は、多くの異なる変形例で利用可能である。DC電圧を熱電冷却器に印加することによって、要素の片側(冷却サイド)は冷却され他の側(高温サイド)は熱くなり得る。熱は、高温サイドからヒートシンクに向けて散逸され得る。ある実施形態では、熱電冷却器が、複数のP型とN型の半導体ペレットを交互配置で含み得る。半導体ペレットは、支持構造体上、例えば、セラミック基板上に設けられた導体タブの間に配置され得る。
図2は、本明細書で説明される実施形態による、基板上で材料を処理するための装置100を示している。処理装置100は、真空チャンバ110と、基板15及び/又は基板上で処理される材料17の1以上の特性、例えば、基板上に堆積したコーティング層の光学特性を測定するように構成された測定構成160とを含む。測定構成160は、1以上の熱生成構成要素、例えば、信号輸送及び/又は信号解析のための電子チップ、CCDチップなどの光学センサチップ、グレーティングなどの光学素子を含む。熱生成構成要素のうち少なくとも1つは、熱電冷却器171を含む冷却デバイス170によって冷却される。
熱電冷却器171は、熱生成構成要素161の温度を制御するためにも使用され得る。ある実施形態では、熱生成構成要素の温度に応じて、及び/又は冷却デバイスの温度に応じて、熱電冷却器171によって提供される冷却の量を制御するための制御デバイスが、設けられ得る。例えば、熱電冷却器の冷却サイドの温度は、熱生成構成要素によって提供される熱負荷が変化する場合にも、本質的に一定(+/−5°C)に維持されるように制御され得る。
熱電冷却器は、数秒内で温度変化を提供するように構成され得る。例えば、熱電冷却器は、10秒以下で5°C以下の温度低減を提供するように構成され得る。速い冷却は、敏感な電子要素、例えば、センサチップを含む熱生成構成要素の場合に有益であり得る。ある実施態様では、制御デバイスが、熱電冷却器の冷却サイドの温度を本質的に一定に維持するように構成され得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態では、熱電冷却器171が、熱生成構成要素161と直接的に熱接触し得る。例えば、熱電冷却器171の冷却サイドは、熱生成構成要素161の加熱表面と直接的に機械接触し得る。ある実施形態では、熱生成構成要素161と熱電冷却器171との間に熱電対が配置され得る。熱電対は、優れた熱伝導性を有する材料を備え、熱生成構成要素の加熱表面と熱電冷却器の冷却サイドのうちの少なくとも一方と平坦に接触し得る。
熱電冷却器171は、少なくとも1つのペルチェ素子を含み得る。ペルチェ素子それら自身も、ヒートシンクに伝達される必要がある何らかの熱を生成し得ることに留意されたい。したがって、ペルチェ素子を使用するときに、ヒートシンクに散逸されるべき全体の熱エネルギーは増加され得る。例えば、ある実施形態では、散逸されることが必要な全体の熱エネルギーが、ペルチェ素子を使用するときに、最大10倍まで高くなり得る。驚いたことに、ペルチェ素子によって生成される更なる熱エネルギーを考慮してさえも、熱生成構成要素161からのより効果的な熱伝達が、未だなお、存在する。それによって、本明細書で説明される実施形態による、熱生成構成要素の冷却は改良され得る。特に、温度変化がより素早く平衡し得るので、損傷のリスクは低減され得る。
ある実施態様では、熱電冷却器と熱生成構成要素との間の熱接触が、熱電冷却器と熱生成構成要素との間に、高い熱伝導率のフォイル、例えば、グラファイトフォイルを配置することによって更に改良され得る。例えば、熱電対を、熱生成構成要素と熱接触するように配置することによって、優れた熱接触が提供され得る。グラファイトフォイルは、熱電冷却器の冷却サイドと熱電対との間に配置される。グラファイトフォイルは、優れた熱接触を提供するのに適している。
基板15上に堆積した材料17の光学特性は、検出デバイス162、例えば、分光計及び/又はカメラなどの光検出器を含む、測定構成160によって測定され得る。検出デバイスは、分光計、CCDチップ、CCDカメラ、センサチップ、信号解析のための電子チップ、センサチップに接続されたPCB、1以上のグレーティング、並びに他の電気的、光学的、及び電気光学的な構成要素のうちの少なくとも1つを含み得る。特に、敏感な電子チップは、本質的に一定の温度に維持されることが必要であり得る。それは、真空条件下では困難であり得る。上述した構成要素のうちの少なくとも1つは、本明細書で説明される実施形態のうちの一部において、熱電冷却器171によって冷却される熱生成構成要素を構成し得る。
ある実施形態では、測定構成160が、反射率及び/又は透過率の測定を実行するための光線を生成するための光源163、例えば、レーザー源を備え得る。透過率の測定のために構成された測定構成160に対して、光源163は、基板15の第1の主たるサイドに配置され、冷却デバイスと共に熱生成構成要素は、基板の第2の主たるサイドに配置され得る。反射率の測定のために構成される測定構成に対して、光源は、熱生成構成要素及び冷却デバイスと比べて、基板15の同じ主たるサイドに配置され得る。
本開示のある実施形態によれば、測定構成160は、真空チャンバ110内で、少なくとも1つの熱生成構成要素161と共に冷却デバイス170を移動させるように構成された、移送デバイス180を更に備える。したがって、測定構成160は、コーティングされた基板の異なる位置において測定を実行するように構成され得る。例えば、移送デバイス180は、移送方向に対して垂直な又は横方向の基板15の幅方向において、熱生成構成要素161と共に冷却デバイス170を移動させるように構成され得る。移送方向では、基板が真空チャンバ110を通して移動する。ある実施形態では、移送デバイスが、少なくとも2つの方向、例えば、幅方向と移送方向において、熱生成構成要素と共に冷却デバイス170を移動させるように構成され得る。本明細書で説明される他の実施態様と組み合わされ得る、ある実施態様では、移送デバイス180が、真空チャンバ110内で、例えば、基板15の幅方向において、(光源163、検出デバイス162、及び冷却デバイス170を含む)全体の測定構成160を移動させるように構成され得る。
ある実施態様では、移送デバイス180が、直線的な位置決めステージを含み得る。ある実施態様では、移送デバイスが、測定構成の二又は三次元の動きのために構成された、X‐Yステージ又はX‐Y‐Zステージを含み得る。本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、移送デバイス180は、アクチュエータを含み得る。アクチュエータは、軌道、例えば、直線的な軌道に沿って測定構成160の移動を実行するように構成され得る。
アクチュエータは、エネルギーを運動に変換する電流、油圧、又は空気圧の形態を採るエネルギー源によって操作され得る。ある実施形態によれば、アクチュエータは、電気モータ、リニアモータ、空気圧アクチュエータ、油圧アクチュエータ、又は圧電アクチュエータであってよい。
ある実施形態では、移送デバイス180が、真空チャンバ内で、冷却デバイスを熱生成構成要素から、例えば、第1の熱生成構成要素から分離して、第2の熱生成構成要素へ移動させるように構成され得る。
したがって、本明細書で開示される実施形態によれば、真空チャンバを溢れ(flood)させる必要なしに、1つの測定構成が、第1の測定位置から第2の測定位置へ及び/又は較正位置へ、移動し得る。更に、少なくとも1つの熱生成構成要素は、第1及び第2の測定位置における測定の間に、冷却され得る。更に、必要ならば、熱生成構成要素は、測定構成が較正位置に配置されているときに、較正の間にも冷却され得る。それによって、等しい温度条件が、様々な測定及び/又は較正位置において提供され得る。ある実施形態では、冷却が、熱生成構成要素の移動の間にも提供され得る。これは、増加された測定精度及び増加された測定速度をもたらす。何故ならば、冷却デバイスの位置を変更するために真空チャンバを溢れさせる必要がないからである。更に、熱電冷却器の移動は、流体冷却のためのチューブ又はチャネルの移動よりも容易であり得る。熱電冷却器は、可動な水ホース又はチューブを必要としないので、真空チャンバ内で流体が漏れるリスクはない。したがって、測定プロセスは、簡略化され加速され得る一方で、増加した測定精度を提供する。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、移送デバイス180は、冷却デバイス170と共に熱生成構成要素161を、測定位置、反射率較正位置、及び透過率較正位置のうちの少なくとも1つへ移動させるように構成された、アクチュエータを含む。
ある実施態様では、移送デバイス180のアクチュエータが、電気モータ、リニアモータ、空気圧アクチュエータ、油圧アクチュエータ、及び圧電アクチュエータのうちの少なくとも1つを含み得る。
図3は、本明細書で説明される実施形態による、処理装置200の概略図を示している。処理装置200は、部分的に、図2で示されている処理装置100に相当する。したがって、上述の説明を参照することができ、以下の説明では、それらの差異のみが説明されることとなる。
処理装置200は、真空チャンバ110と、基板15上に堆積したコーティング層の光学特性、例えば、透過率又は反射率の特性を測定するための、測定構成160とを含む。測定構成160は、熱生成構成要素161と直接的に又は間接的に熱接触する、冷却デバイス270を介して散逸されるべき熱を生成する、熱生成構成要素161を含む。
図1で示される実施形態に類似して、熱生成構成要素161は、検出デバイスの一部分、例えば、センサチップ、グレーティング、又は別の電子的及び/若しくは光学的な構成要素のうちの少なくとも1つであり得る。
冷却デバイス270は、熱電冷却器171、及び、熱電冷却器171と熱接触する熱交換器モジュール271を含む。言い換えると、熱電冷却器171は、少なくとも1つの熱生成構成要素161と熱交換器モジュール271との間に連結され得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態では、熱交換器モジュール271が、冷却媒体を循環させるための冷却チャネル272及び/又は冷却チューブを備え、熱電冷却器171の高温サイドから冷却媒体へ熱を伝達するように構成されている。
熱生成構成要素161と熱交換器モジュール271との間に熱電冷却器171をサンドウィッチすることによって、熱生成構成要素161から熱交換器モジュール271への熱伝達の効率は、増加し得る。言い換えると、冷却プレートとして設けられ得る熱交換器モジュールに対する改良された熱交換が、熱電冷却器の形態を採るヒートポンプを使用して実現され得る。熱電冷却器は、ペルチェ素子として設けられ得る。ペルチェ素子の高温サイドからの熱は、熱交換器モジュールへ散逸され得る。
熱電冷却器と熱生成構成要素との間の熱接触を更に改良するために、熱電対275が、それらの間に配置され得る。代替的に又は更に、1以上のグラファイトフォイルが、熱電冷却器の高温サイドと熱交換器モジュールとの間に、及び/又は熱電冷却器の低温サイドと熱電対275との間に、挿入され得る。
漏れの場合の損傷のリスクを避けるために、熱交換器モジュール271は、ガス状冷却媒体が、熱交換器モジュールの冷却チャネル272内で循環するように構成され得る。例えば、冷却媒体は、大気、空気、又は別の冷却ガスであり得る。ある実施態様では、熱交換器モジュールが、ガス状冷却媒体を熱交換器モジュールに供給するためのポンプデバイス277に連結され得る。ポンプデバイス277は、必ずしも真空チャンバ110の内側に配置される必要はない。例えば、熱交換器モジュール271が配置されている真空チャンバ110の壁を通して冷却媒体を供給するためのフィードスルーが設けられ得る。
ある実施形態では、熱電冷却器171に電圧、例えば、DC電圧を供給するための供給ケーブルを供給するためのフィードスルーが設けられ得る。
ある実施形態では、熱交換器モジュール271及び熱電冷却器171を有する冷却デバイス270が、真空チャンバの内側で、熱生成構成要素161と共に冷却デバイスを移動させるための移送デバイス180に固定され得る。冷却デバイスが真空チャンバ110の内側で可動に配置されたときに、ポンプデバイス277から熱交換器デバイス271へ、その逆へ、冷却媒体を移送するためのフレキシブルチューブ278又はホースが設けられ得る。
ガス冷却回路内に漏れがあるならば、電子スイッチが真空ポンプをオフするまで、真空チャンバ内で圧力が上昇し得る。したがって、損傷のリスクが低減される。漏れを修理した後で、真空ポンプは再び開始され得る。水のような流体と比較して、空気のようなガスの熱伝達係数は低い。したがって、散逸されるべき熱の量に応じて、熱電冷却器の高温サイドからの熱を散逸させるために、高いガス流が適切であり得る。例えば、ポンプデバイス277は、1リットル/秒より上のガスのスループットを供給するように構成され得る。
図4は、本明細書で開示される更なる実施形態による、処理装置300を示している。処理装置300の測定構成20は、(図示せぬ)真空チャンバ内に配置された、少なくとも1つの球構造体21、特に、積分球を含む。球構造体21は、例えば、2つのローラの間の基板15又はプラスチック膜のフリースパン位置内の、特に、同じ位置で、同時に反射率測定と透過率測定を可能にするために使用され得る。膜の表面が平坦でない場合でさえも、反射した光は、ほぼ完全に球構造体内に収集される。
球構造体21は、球構造体の内側に均一な光の散乱又は拡散をもたらす。球構造体の内面に入射する光は、球内部で均等に分配される。入射光の方向による影響は最小限となる。これにより、入射光(例えば、基板及び/又は基板上で処理される材料から反射される又はそれらを通して透過される光)を高い精度と信頼性で測定することが可能になる。
ある実施形態によれば、球構造体21は、積分球であり又は積分球を含む。積分球(又はウルブリヒト球)は、少なくとも1つのポート、例えば、少なくとも1つの入口ポート及び/又は少なくとも1つの出口ポートを有する中空の球形空洞を含む、光学デバイスである。中空の球形空洞の内部は、反射コーティング(例えば、白色拡散反射コーティング)で覆われていてよい。積分球により、球内部での光の均一な散乱又は拡散が得られる。内面に入射する光は、球内部で均等に分配される。入射光の方向による影響は最小限となる。積分球は、電力を保存するが、空間的情報を破壊するディフューザーと見なされ得る。
測定構成20は、真空チャンバ内に配置されている。真空チャンバは、コーティングされるべき基板15が配置される処理チャンバであってよく、又はコーティングされるべき基板15が配置される処理チャンバを含んでいてよい。本明細書で説明される実施形態による装置は、蒸着装置(deposition apparatus)、特に、スパッタ装置、物理的気相堆積(PVD)装置、化学気相堆積(CVD)装置、プラズマ化学気相堆積(PECVD)装置であり得る。
図4で概略的に示されているように、本明細書で説明される実施形態による測定構成20は、基板15及び/又は基板15上で処理される材料の1以上の光学特性、特に、反射率及び/又は透過性を測定するように構成されている。本出願書類全体を通して使用される「反射率」という用語は、表面に入射する総放射束が反射する割合を指すものである。表面は、基板上で処理される材料の表面、基板の前面、及び基板の裏面のうちの少なくとも1つを含み得る。「反射率」と「反射性」という語が同意語として使用され得ることを注記したい。本出願書類全体を通して使用される「透過率」という用語は、例えば、その上で処理される材料又は層を有する基板を通過する入射光(電磁放射線)の割合を指すものである。「透過性」及び「透過率」という語は、同義語として使用され得る。
球構造体21は、空洞22を有し得る。ある実施形態によれば、空洞22は中空の球形空洞であってよい。典型的な実施態様では、空洞22の表面が、反射コーティング(例えば、白色反射コーティング)で少なくとも部分的にカバーされている。球構造体21により、球構造体21内部に均一な光の散乱又は拡散が得られる。空洞22の表面に入射する光は、空洞22内部で均等に分配される。
本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、球構造体21、及び特に球構造体21の空洞22は、150mm以下、特に、100mm以下、更に特に、75mm以下の内径を有する。
1以上の光学特性を測定するために、測定構成20は、少なくとも1つの光源23、及び少なくとも1つの検出器を有する構成を含み得る。少なくとも1つの光源と少なくとも1つの検出器の可能な構成を以下で説明する。しかし、他の構成も可能である。
通常の実施態様では、測定構成20が光源23を含む。光源23は、球構造体21の空洞22の中へ光を放射するように構成されている。本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、光源23は、380〜780nmの可視光の範囲、及び/又は780nm〜3000nmの赤外線の範囲、及び/又は200nm〜380nmの紫外線の範囲の光を放射するように構成されている。
本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、光源23は、空洞22の中へ光が放射され得るように配置されている。光源23は、空洞22内に配置され、又は空洞22の内壁又は表面に取り付けられ得る。実施形態によれば、光源23は、球構造体21の外側に配置され、球構造体21の壁は、光源23から放射される光が、球構造体21、特に、空洞22の中へ光り得るように構成された、開口部を含み得る。
本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、光源23は、例えば、フィラメント電球、タングステンハロゲン球、LED、高電力LED、又はキセノンランプ(Xe-Arc-Lamp)として構成され得る。光源23は、光源23を短時間でオンとオフに切り替えることができるように構成され得る。切り替えるために、光源23は、(図示せぬ)制御ユニットに接続され得る。
通常の実施形態では、球構造体21が、少なくとも1つのポート26を有する。ポート26は、入口ポート及び/又は出口ポートとして構成され得る。一実施例として、基板15及び/又は基板15上で処理される材料から反射される、又は基板15及び/又は基板15上で処理される材料を通して透過する光は、ポート26を通って球構造体21に入り得る。別の実施例では、光源23によって供給される光を、例えば、反射率の測定のためにポート26を通して出すことができる。ポート26は、例えば、保護ガラスなどのカバー要素でカバーされ得る。他の実施例では、ポート26が、カバーされていなくてよく又は開いていてよい。
本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、ポート26は、25mm以下、特に、15mm以下、更に特に、10mm以下の直径を有し得る。基板15及び/又は基板15上で処理される材料の少なくとも1つの光学特性の測定を実施するために、ポート26の直径を延ばすことにより、基板15のより大きい部分が照らされ得る。
通常の実施態様では、基板15及び/又は基板15上で処理される材料の少なくとも1つの光学特性を測定するために、ポート26を通して球構造体21から放射される散乱光が、基板15上で光り得る。散乱光で基板15を照らすことにより、基板15上で光る光は、基板15の照らされた部分全体を通して同じ強度である。本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、放射された散乱光は、複数の角度、特に、光強度の均一な角度分布での光の放射によって特徴付けられ得る。例えば、これは球内の材料が散乱反射が得られるように選択された球構造体、例えば、積分球又はウルブリヒト球における散乱反射によって生じ得る。
図4で例示的に示されているように、矢印が光の方向を示している実線として示されている光線は、光線がポート26を出る前に、球構造体21の内面上に原点Pの位置を有し得る。図4で例示的に示されているように、光線は、基板15及び/又は基板上で処理される材料から反射され、反射率の場合、ある反射率角度でポート26に入り得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、測定構成20は、基板15及び/又は基板上で処理される材料の反射率を測定するように構成された球構造体21において、第1の検出デバイス24と第2の検出デバイス27を含む。
第1の検出デバイス24は、(矢印が光の方向を示している実線によって示される)ポート26を通って入る光、特に、基板15及び/又は基板15上で処理される材料から反射される光を受けるように構成され得る。本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、第1の検出デバイス24は、球構造体21の内側から反射された光が、第1の検出デバイス24によって検出されないように構成され配置されている。例えば、第1の検出デバイス24は、例えば、基板15及び/又は基板15上で処理される材料からの反射に起因して、球構造体21のポート26を通って入る光だけが、第1の検出デバイス24によって検出され得るように配置され得る。
第2の検出デバイス27は、空洞22の内壁から散乱する又は反射する光を受けるように構成され得る。一実施例として、第2の検出デバイス27は、基準測定を提供し得る。通常の実施態様では、反射率が、第1の検出デバイス24によって受け入れられ又は測定される第1の光強度と、第2の検出デバイス27によって受け入れられ又は測定される第2の光強度とに基づいて決定される。第1の光強度は、基板15及び/又は基板上で処理される材料から反射され、球構造体21の内部で反射せずに第1の検出デバイス24に直接的に到達する光を含み得る。第2の光強度は、基板15及び/又は基板15上で処理される材料から反射される、そのような直接的な光を実質的に含まない基準光強度であり得る。
本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、第1の検出デバイス24及び/又は第2の検出デバイス27は、光源23からの直接的な光が、第1の検出デバイス及び/又は第2の検出デバイスによって検出されないように、構成され配置されている。例えば、光源23によって放射された光が第1の光検出デバイス及び/又は第2の光検出デバイスに直接的に当たるのを防止する、(図示せぬ)スクリーニング構成が、球構造体21内に設けられ得る。そのようなスクリーニング構成は、例えば、光源23によって放射された光が、第1の光検出デバイス及び/又は第2の光検出デバイスに、直接的に当たらないように構成され配置された、シールド、開孔、又はレンズによって実現され得る。
実施形態によれば、第1の検出デバイス24は、第1のデータ処理又は第1のデータ解析ユニット25を備え、第2の検出デバイス27は、第2のデータ処理又は第2のデータ解析ユニット28を備える。データ処理ユニット又はデータ解析ユニット25、28は、それぞれ、第1の検出デバイス24と第2の検出デバイス27の信号を、検査し解析するように適合され得る。ある実施形態によれば、非正規として定義される、基板15及び/又は基板上で処理される材料の任意の特性が測定されたならば、データ処理ユニット又はデータ解析ユニット25、28は変化を検出して、基板15の処理の停止などの反応をトリガし得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、測定構成20は、基板15及び/又は基板上で処理される材料の透過率を測定するための第3の検出デバイス29を含む。第3の検出デバイス29は、特に、基板15及び/又は基板上で処理される材料の透過率を測定するように構成され得る。通常の実施態様では、第3の検出デバイス29が、第1及び第2の検出デバイスを参照しながら上述されたように、第3のデータ処理又はデータ解析ユニットを備える。
第3の検出デバイス29は、ポート26を通って出る光、及び特に基板15及び/又は基板上で処理される材料を通って透過する光を受けるように構成され得る。本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、第3の検出デバイス29は、球構造体21の外側又は反対側に配置され、第3の検出デバイス29と球構造体21との間には隙間がある。基板15は、透過率、例えば、基板15及び/又は基板上で処理される材料を通して透過される光を測定するために隙間内に位置決めされ得る。
上述の実施例では、光源23、第1の検出デバイス24、第2の検出デバイス27、及び第3の検出デバイス29を有する測定構成20の構成が説明されている。しかし、他の構成も可能である。一実施例として、2つの球構造体が設けられ、第1の球構造体は反射率の測定用に構成され、第2の球構造体は透過率の測定用に構成され得る。反射率の測定のために、第1の球構造体には、第1の光源と第1の検出器が設けられ得る。球構造体のポートを通って入る光、特に、基板及び/又は基板上で処理される材料を通して透過される光を受けるように構成された第2の検出デバイスが、第2の球構造体において設けられ、第2の光源が、第2の球構造体の外側又は反対側に設けられ、第2の光源と第2の球構造体の間には隙間がある。透過率、例えば、基板及び/又は基板上で処理される材料を通して透過される光を測定するために、基板は、隙間の内部に位置決めされ得る。
測定構成20は、球構造体を使用して、反射率及び/又は透過率の測定の改良を提供する。一実施例として、プラスチック膜などのフレキシブル基板の反射率及び/又は透過率は、例えば、自由スパン位置で測定され得る。測定構成は、フレキシブル基板が平坦でないときに、例えば、フレキシブル基板が皺を有する場合にも機能する。
測定構成20は、少なくとも1つの熱生成構成要素を含む。1以上の熱生成構成要素は、熱電冷却器を含む冷却デバイスを用いて冷却される。図4で示されている実施形態では、第1の検出デバイス24の第1のデータ解析ユニット25の電子チップが、第1の冷却デバイス42を用いて冷却され、第2の検出デバイス27の第2のデータ解析ユニット28の電子チップが、第2の冷却デバイス44を用いて冷却され、第3の検出デバイス29のデータ解析ユニットの電子チップが、第3の冷却デバイス46を用いて冷却される。第1、第2、及び第3の冷却デバイスの各々は、少なくとも1つの熱電冷却器を含む。ある実施形態では、第1、第2、及び第3の冷却デバイスのうちの少なくとも1つが、熱交換器モジュールを含み得る。図3で示されているように、熱電冷却器は、熱生成構成要素を構成する電子チップと熱交換器モジュールとの間にサンドウィッチされ得る。ある実施形態では、3つより多くの又は少ない冷却デバイスが設けられ得る。ある実施形態では、代替的に又は更に、第1、第2、及び第3の検出デバイスの、センサチップ、グレーティング、並びに別の電子的及び/又は光学的な構成要素のうちの少なくとも1つが、熱電冷却器を含む冷却デバイスを用いて冷却され得る。
ある実施形態では、球構造体21が、熱電冷却器を含む冷却デバイスを用いて冷却され得る。
本開示の幾つかの実施形態によれば、処理装置300は、真空チャンバ内で測定構成20を移動させるように構成された、移送デバイス129を含む。一実施例として、移送デバイス129は、真空チャンバ110内で、少なくとも球構造体21、第1の検出デバイス24、第2の検出デバイス27、及び第3の検出デバイス29を移動させるように構成されている。ある実施態様では、移送デバイスが、直線的な位置決めステージを含み得る。一実施例として、移送デバイス129は、図5で示されているように、少なくとも3つの位置30、31、及び32の間で、球構造体21、並びに第1、第2、及び第3の検出デバイスを移動させるように構成され得る。第1の位置30は透過率較正位置であってよく、第2の位置31は測定位置であってよく、第3の位置32は反射率較正位置であってよい。少なくとも3つの位置30、31、及び32は、自由スパン位置であってよい。一実施例として、透過率較正位置は開位置であってよい。測定位置は、特に、2つの案内ローラ間の自由スパン位置であってよい。通常、例えば、少なくとも5、及び特に6、7,8、9又は10などの1を超える測定位置が設けられる。ある実施形態によれば、反射率基準要素33は、反射率較正位置に設けられ得る。反射率基準要素33は、周知の反射基準を提供し得る。一実施例として、反射率基準要素33は、シリコン(Si)を含み、又はシリコン(Si)であってよい。
アクチュエータを有する単一の移送デバイスが、真空チャンバの内側で、(球構造体と全ての検出デバイスを含む)測定構成20を移動させるために設けられ得る。ある実施形態では、2以上の移送デバイス、例えば、ある場合では、第1及び第2の検出デバイスと共に球構造体を移動させるための第1の移送デバイス、並びに、第3の検出デバイス29を移動させるための第2の移送デバイスが設けられる。移送デバイスは、それぞれ、検出デバイス及び/又は球構造体と共に、冷却デバイスを移動させるように構成され得る。
図5及び図6は、本明細書で説明される実施形態による、基板15上で材料を処理するための装置の概略図を示している。処理される基板15は、真空チャンバ110内に配置される。本明細書で説明される実施形態による1以上の測定装置が、真空チャンバ110内に設けられる。測定構成は、真空チャンバ110内で、特に、少なくとも3つの位置30、31、及び32の間で可動なように構成されている。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、真空チャンバ110は、真空チャンバ110を排気するための真空ポンプなどの真空システムを連結させるためのフランジを有し得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、真空チャンバは、バッファチャンバ、加熱チャンバ、移送チャンバ、サイクル時間調節チャンバ、堆積チャンバ、処理チャンバなどから成る群から選択されたチャンバであってよい。本明細書で説明される他の実施形態と組み合わされ得る実施形態によれば、真空チャンバは、処理チャンバであり得る。本開示によれば、「処理チャンバ」は、基板を処理するための処理デバイスが配置されているチャンバとして理解され得る。処理デバイスは、基板を処理するのに使用される任意のデバイスとして理解してよい。例えば、処理デバイスは、層を基板上に堆積させるための堆積源を含み得る。したがって、堆積源を含む真空チャンバ又は処理チャンバは、堆積チャンバとも称され得る。堆積チャンバは、化学気相堆積(CVD)チャンバ又は物理的気相堆積(PVD)チャンバであってよい。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、処理装置は、SiO、MgFなどの低い率の材料、SiN、Al、AIN、ITO、IZO、SiOxNy、AlOxNyなどの中間の率の材料、及びNb、TiO、TaOなどの高い率の材料、又はその他の高い率の材料から成る群から選択された材料を堆積させるように構成され得る。
本明細書で説明される他の実施形態と組み合わされ得る、典型的な実施形態によれば、処理装置は、基板15の処理装置への搬入及び/又は搬出、特に、真空チャンバ110への搬入及び/又は搬出を案内するための少なくとも1つのロードロックチャンバを含む。少なくとも1つのロードロックチャンバは、内部の圧力を大気圧から例えば10mbar以下の圧力などの真空へ、又はその逆へ変化させるように構成され得る。実施形態によれば、入口ポートを含む入口ロードロックチャンバと、出口ポートを含む出口ロードロックチャンバが設けられる(図示せず)。
一実施例として、透過率の測定及び反射率の測定の較正は、自由スパン位置において実行され得る。球構造体、第1の検出器(反射率センサ)、及び第2の検出器(透過率センサ)は、同期して移動するように、可動な直線的な位置決めステージに取り付けられ得る。透過率の較正のために、検出器(センサ)は、それぞれの検出器を冷却するように構成された冷却デバイスと共に100%較正のための透過率較正位置へ移動する。透過率の較正位置は、開位置であってよい。反射率の較正のために、検出器(センサ)は、それぞれの検出器を冷却するように構成された冷却デバイスと共に、周知の反射基準(例えば、Si)が提供される反射率較正位置へ移動する。通常、検出器は、駆動機構とも称され得る移送デバイスによって較正位置へ移動し得る。ある実施形態では、測定位置が、例えば、生産の連続稼働中に変更され得る。
上述されたように、ある実施形態によれば、処理装置が、基板の外側の2つの基準位置を利用し得る。ある位置において、反射率は、例えば、較正されたアルミニウム製ミラー又は研磨されたシリコン表面などの周知の基準によって較正され、透過率は他の位置において、球構造体21と第3の検出デバイス29との間に何もない状態で較正され得る。反射率及び透過率の較正は、例えば、ドリフト(drift)を補正するために基板15の外側の較正位置で周期的に繰り返され得る。これは、例えば、数時間の間続く長いコーティングの連続運転の一態様であってよい。
図7は、本明細書で説明される実施形態による、処理装置のための冷却構成50を示している。冷却構成50は、冷却デバイス52と移送デバイス54を含む。冷却デバイス52は、熱電冷却器55、例えば、ペルチェモジュールを含み、真空チャンバ内に配置された測定構成の少なくとも1つの熱生成構成要素56を冷却するように構成されている。
移送デバイス54は、真空チャンバ内で、熱生成構成要素56と共に冷却デバイスを移動させるように構成されている。ある実施形態では、移送デバイスが、真空チャンバ内で、冷却デバイスを熱生成構成要素56から、例えば、第1の熱生成構成要素から分離して、第2の熱生成構成要素へ移動させるように構成され得る。
熱生成構成要素56は、基板上で処理される材料の光学特性を測定するための測定構成の、電気的、光学的、又は光学電気的な構成要素であり得る。ある実施形態では、熱生成構成要素56が、検出デバイスの少なくとも一部分、検出デバイスのデータ解析ユニット、又は球構造体のデータ解析ユニット、例えば、センサ信号を解析するためのセンサチップ又は電子チップである。
測定構成は、本開示において説明される更なる特徴を含み得るが、ここでは繰り返さない。冷却デバイス52は、本開示において説明される更なる特徴を含み得るが、ここでは繰り返さない。移送デバイス54は、本開示において説明される更なる特徴を含み得るが、ここでは繰り返さない。(図示せぬ)真空チャンバは、本開示において説明される更なる特徴を含み得るが、ここでは繰り返さない。
図8は、本明細書で説明される実施形態による、処理装置のための冷却構成60を示している。冷却構成60は、冷却デバイスと移送デバイス54を含む。冷却デバイスは、熱電冷却器55、例えば、ペルチェモジュールを含み、真空チャンバ内に配置された測定構成の少なくとも1つの熱生成構成要素56を冷却するように構成されている。熱生成構成要素56は、冷却構成60の一部分でもあり得る。冷却デバイスは、熱電冷却器55の高温サイドから冷却媒体に、特に、ガス状冷却媒体に熱を伝達するための熱交換器モジュール62を更に含む。
移送デバイス54は、真空チャンバ内で熱生成構成56と共に冷却デバイスを移動させるように構成されている。ある実施形態では、移送デバイスが、真空チャンバ内で、冷却デバイスを熱生成構成要素56から、例えば、第1の熱生成構成要素から分離して、第2の熱生成構成要素へ移動させるように構成され得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態では、熱交換器モジュール62が、冷却媒体を循環させるための冷却チャネル272を備え、熱電冷却器55の高温サイドから冷却媒体へ熱を伝達するように構成されている。熱生成構成要素56と熱交換器モジュール62との間に熱電冷却器55をサンドウィッチすることによって、熱生成構成要素56から熱交換器モジュール62への熱伝達の効率が、増加し得る。熱電冷却器55は、ペルチェ素子として設けられ得る。ペルチェ素子の高温サイドからの熱は、熱交換器モジュール62へ散逸され得る。
ある実施形態では、熱電対275が、熱生成構成要素56と熱電冷却器55との間に配置され得る。代替的に又は更に、1以上のグラファイトフォイル63が、熱電冷却器55の高温サイドと熱交換器モジュール62との間に、及び/又は熱電冷却器55の低温サイドと熱電対275との間に、挿入され得る。
熱交換器モジュール62は、ガス状冷却媒体が、冷却チャネル272内で循環するように構成され得る。例えば、冷却媒体は、大気、空気、又は別の冷却ガスであり得る。ある実施態様では、熱交換器モジュール62が、ガス状冷却媒体を熱交換器モジュールに供給するためのポンプデバイス277に連結され得る。ある実施形態では、熱電冷却器171に電圧、例えば、DC電圧を供給するための供給ケーブルを供給するためのフィードスルーが設けられ得る。フレキシブル連結、例えば、フレキシブルチューブ278又はホースが、ポンプデバイス277から可動に配置された熱交換器モジュール62へ、冷却媒体を供給するために設けられ得る。
測定構成は、本開示において説明される更なる特徴を含み得るが、ここでは繰り返さない。冷却デバイスは、特に、図3で示された実施形態との関連で、本開示において説明される更なる特徴を含み得るが、ここでは繰り返さない。移送デバイス54は、本開示において説明される更なる特徴を含み得るが、ここでは繰り返さない。
図9は、本明細書で説明される実施形態による、真空チャンバ内で基板及び/又は基板上で処理される材料の1以上の光学特性を測定する方法1000のフローチャートを示している。
ブロック1010では、該方法が、測定中に、冷却デバイスの熱電冷却器を用いて、測定構成の少なくとも1つの熱生成構成要素を冷却することを含む。冷却デバイスと熱生成構成要素は、真空チャンバ内の測定位置に配置されている。
ある実施形態では、ブロック1020で、該方法が、真空チャンバ内で、冷却デバイスと共に少なくとも1つの熱生成構成要素を、第2の測定位置又は較正位置へ移動させることを更に含む。
方法1000は、真空チャンバ及び真空チャンバ内に配置された測定構成を含む、本明細書で説明される実施形態のうちの何れかの処理装置で実行され得る。測定構成は、熱電冷却器を含む冷却デバイスによって冷却される、熱生成構成要素を含む。
測定は、基板上に堆積したコーティング層の1以上の光学特性、例えば、透過率及び/又は反射率を測定することを含み得る。測定構成は、真空チャンバ内に配置された少なくとも1つの球構造体を含み得る。
ある実施形態では、方法1000が、冷却デバイスを有する測定構成を、真空チャンバ内の第1の較正位置へ、特に、反射率較正位置へ移動させること、及び測定構成を較正することを含み得る。典型的な実施態様では、方法1000が、冷却デバイスを有する測定構成を、真空チャンバ内の第2の構成位置へ、特に、透過率較正位置へ移動させること、及び測定構成を較正することを含み得る。
本明細書で説明される他の実施形態と組み合わされ得る、ある実施形態によれば、第1の較正位置における較正と第2の較正位置における較正のうちの少なくとも一方が、周期的又は定期的に繰り返される。一実施例として、較正は、処理サイクルの後、処理サイクルの間などに、所定の時間間隔で繰り返され得る。反射率及び透過率の較正は、例えば、ドリフトを補正するために、較正位置で周期的に繰り返され得る。これは、例えば、数時間の間続く長いコーティングの連続運転の一態様であってよい。
本明細書で説明される実施形態によれば、基板及び/又は基板上で処理される材料の1以上の光学特性を測定するための方法は、コンピュータプログラム、ソフトウェア、コンピュータソフトウェア製品、並びに大面積基板を処理するために装置の対応する構成要素と通信している、CPU、メモリ、ユーザインターフェース、及び入出力手段を有し得る、相関コントローラを用いて行われ得る。
本開示は、真空チャンバ内の球構造体を、例えば、2つのローラ間のプラスチック膜などの基板の自由スパン位置における反射率及び/又は透過率の測定に使用する。ある実施形態によれば、反射率及び透過率の測定は同じ位置で実施され得る。膜の表面が平坦でない場合でも、反射した光は、ほぼ完全に球構造体に収集される。ある実施形態によれば、基板の幅に沿った任意の選択位置で測定することを可能にするために、本装置の測定構成は、例えば、モータ駆動の直線的な位置決めステージ上に据付けられ得る。本明細書で説明される実施形態による装置が、透過率の検出器と組み合わされることにより、例えば、コーティング膜などの基板上で処理される材料の既定位置における反射率及び透過率の測定が可能になる。特に反射率の測定は、基板平面の変化(皺)(例えば、+/−5mm)に対して鈍感である。
実施形態では、透過率及び反射率の測定が、同じ位置で、例えば、2つの連結軸を有する1つの直線的な位置決めステージのみを用いて実施可能である。球構造体を使用することにより、反射率の測定精度の改善が得られる。本装置は、例えば、反射防止、不可視ITO、窓用フィルムなどの光学層システムの検査に使用され得る。ウェブの全幅にわたる、顧客のための光学上の品質管理が可能になり得る。ある実施形態によれば、本装置、特に、測定構成は、電磁干渉(EMI)適合性を有し、例えば、スパッタ堆積源(DC、MF、RF)によって誘発される強い電界に対して耐性があり得る。
ある実施形態では、少なくとも測定中に、少なくとも1つの熱生成構成要素の温度が、例えば、ターゲット温度の+/−5°Cの範囲内で、本質的に一定に維持されるように制御される。1以上の熱生成構成要素に熱的に連結された1以上の熱電冷却器を制御するためのコントローラが、その理由で設けられ得る。
以上の説明は本開示の実施形態を対象としているが、本開示の基本的な範囲を逸脱することなく本開示の他の更なる実施形態を考案することができ、本開示の範囲は、以下の特許請求の範囲によって定められる。

Claims (15)

  1. 基板上で材料を処理するための装置であって、
    真空チャンバ(110)、並びに
    前記基板(15)及び/又は前記基板上で処理される前記材料の1以上の特性を測定するように構成された、測定構成(20、160)であって、前記測定構成の少なくとも1つの熱生成構成要素(56、161)を冷却するための熱電冷却器(55、171)を有する冷却デバイス(52、170、270)を備えた、測定構成を備える、装置。
  2. 前記測定構成(20、160)が、前記真空チャンバ(110)内で、前記少なくとも1つの熱生成構成要素から分離して又は前記少なくとも1つの熱生成構成要素と共に、前記冷却デバイスを移動させるように構成された、移送デバイス(54、129、180)を更に備える、請求項1に記載の装置。
  3. 前記移送デバイスが、前記冷却デバイスと共に前記熱生成構成要素を、測定位置(31)、反射率較正位置(32)、及び透過率較正位置(30)のうちの少なくとも1つへ移動させるように構成された、アクチュエータを含む、請求項2に記載の装置。
  4. 前記アクチュエータが、電気モータ、リニアモータ、空気圧アクチュエータ、油圧アクチュエータ、及び圧電アクチュエータのうちの少なくとも1つを備える、請求項3に記載の装置。
  5. 前記測定構成が、検出デバイス(24、27、29、162)を備え、前記熱生成構成要素が、前記検出デバイスの一部分である、請求項1から4のいずれか一項に記載の装置。
  6. 前記熱生成構成要素が、分光計デバイス、カメラデバイス、CCDカメラ、電子チップ、センサチップ、及びグレーティングのうちの少なくとも1つを備える、請求項5に記載の装置。
  7. 前記熱電冷却器(55、171)が、前記少なくとも1つの熱生成構成要素に熱的に連結された、ペルチェモジュールを備える、請求項1から6のいずれか一項に記載の装置。
  8. 前記冷却デバイスが、熱交換器モジュール(62、271)を備え、前記熱電冷却器が、前記少なくとも1つの熱生成構成要素と前記熱交換器モジュールとの間に連結されている、請求項1から7のいずれか一項に記載の装置。
  9. 前記熱交換器モジュール(62、271)が、冷却媒体を循環させるための冷却チャネル(272)及び/又は冷却チューブを備え、前記熱電冷却器の高温サイドから前記冷却媒体へ熱を伝達するように構成されている、請求項8に記載の装置。
  10. 前記熱交換器モジュール(62、271)が、前記熱交換器モジュールを通る、ガス状冷却媒体、特に、冷却空気を供給するように構成された、ポンプデバイス(277)に連結されている、請求項8又は9に記載の装置。
  11. 前記測定構成が、前記基板及び/又は前記基板上で処理される前記材料の光学特性、特に、反射率と透過率のうちの少なくとも一方を測定するように構成されている、請求項1から10のいずれか一項に記載の装置。
  12. 前記測定構成が、前記真空チャンバ(110)内に配置された少なくとも1つの球構造体(21)、特に、積分球を備える、請求項1から11のいずれか一項に記載の装置。
  13. 請求項1から12のいずれか一項に記載の装置のための冷却構成(50、60)であって、
    真空チャンバ内に配置された測定構成の少なくとも1つの熱生成構成要素(56)を冷却するための熱電冷却器(55)を備えた冷却デバイス、及び
    前記真空チャンバ内で、前記少なくとも1つの熱生成構成要素(56)から分離して又は前記少なくとも1つの熱生成構成要素(56)と共に、前記冷却デバイスを移動させるように構成された移送デバイス(54)を備える、冷却構成。
  14. 前記冷却デバイスが、前記熱電冷却器(55)の高温サイドから冷却媒体、特に、ガス状冷却媒体に熱を伝達するための熱交換器モジュール(62)を更に備える、請求項13に記載の冷却構成。
  15. 真空チャンバ内で基板及び/又は基板上で処理される材料の1以上の特性を測定する方法であって、
    測定中に、冷却デバイスの熱電冷却器を用いて、測定構成の少なくとも1つの熱生成構成要素を冷却することを含み、前記冷却デバイスと前記熱生成構成要素が、前記真空チャンバ内の測定位置に配置されている、方法。
JP2018522104A 2015-10-28 2015-10-28 基板上で材料を処理するための装置、処理装置のための冷却構成、及び基板上で処理される材料の特性を測定するための方法 Pending JP2018532122A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/075006 WO2017071748A1 (en) 2015-10-28 2015-10-28 Apparatus for processing of a material on a substrate, cooling arrangement for a processing apparatus, and method for measuring properties of a material processed on a substrate

Publications (1)

Publication Number Publication Date
JP2018532122A true JP2018532122A (ja) 2018-11-01

Family

ID=54848528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018522104A Pending JP2018532122A (ja) 2015-10-28 2015-10-28 基板上で材料を処理するための装置、処理装置のための冷却構成、及び基板上で処理される材料の特性を測定するための方法

Country Status (5)

Country Link
JP (1) JP2018532122A (ja)
KR (1) KR20180075628A (ja)
CN (1) CN108351306A (ja)
TW (1) TW201726960A (ja)
WO (1) WO2017071748A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019168393A (ja) * 2018-03-26 2019-10-03 株式会社Screenホールディングス 電磁波透過測定装置および電磁波透過測定方法
KR20200138391A (ko) * 2018-06-15 2020-12-09 어플라이드 머티어리얼스, 인코포레이티드 증착 영역을 냉각시키기 위한 냉각 시스템, 증착 영역에서 재료를 증착하기 위한 어레인지먼트, 및 증착 영역에서 기판 상에 증착하는 방법
CN109406463A (zh) * 2018-11-30 2019-03-01 宁波凯耀电器制造有限公司 玻璃透光率测试装置
CN111693432A (zh) * 2020-06-04 2020-09-22 山东大学 一种构筑物表面渗漏水自动监测系统及方法
JP2022051062A (ja) 2020-09-18 2022-03-31 株式会社Screenホールディングス 検査装置及びそれを備えたインクジェット印刷装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058740A1 (fr) * 1998-05-14 1999-11-18 Sony Corporation Procede et appareil de formation de films minces
JP2004354853A (ja) * 2003-05-30 2004-12-16 Seiko Epson Corp 冷却装置、この冷却装置を備えた光学装置およびプロジェクタ
US7088456B2 (en) * 2004-04-24 2006-08-08 Honeywell International Inc. Thin film thickness measurement using multichannel infrared sensor
EP1598660B1 (de) * 2004-05-22 2006-12-13 Applied Materials GmbH & Co. KG Beschichtungsanlage mit einer Messvorrichtung für die Messung von optischen Eigenschaften von beschichteten Substraten
US20070291361A1 (en) * 2006-06-19 2007-12-20 Credence Systems Corporation Lens housing with integrated thermal management
US20080271463A1 (en) * 2007-05-02 2008-11-06 Tsz-Lang Chen Heat pipe measuring system
US20090147386A1 (en) * 2007-12-11 2009-06-11 Nikon Corporation Temperature-regulating devices for reflective optical elements
DE102009040642B3 (de) * 2009-09-09 2011-03-10 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zur Messung von optischen Kenngrößen transparenter, streuender Messobjekte
DE102011050969A1 (de) * 2011-06-09 2013-05-16 Carl Zeiss Microscopy Gmbh Vorrichtung zur referenzierten Messung von reflektiertem Licht und Verfahren zum Kalibrieren einer solchen Vorrichtung
DE102011052738A1 (de) * 2011-08-16 2013-02-21 Leica Microsystems Cms Gmbh Detektorvorrichtung
CN103528952B (zh) * 2013-10-25 2016-07-06 中国科学院合肥物质科学研究院 一种开放光路式气体分析仪通量校正测量装置及测量方法
CN103674249A (zh) * 2013-11-28 2014-03-26 浙江龙驰科技有限公司 一种荧光粉光谱测试仪

Also Published As

Publication number Publication date
KR20180075628A (ko) 2018-07-04
WO2017071748A1 (en) 2017-05-04
CN108351306A (zh) 2018-07-31
TW201726960A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP2018532122A (ja) 基板上で材料を処理するための装置、処理装置のための冷却構成、及び基板上で処理される材料の特性を測定するための方法
US20170088941A1 (en) Apparatus for processing of a material on a substrate and method for measuring optical properties of a material processed on a substrate
US6056434A (en) Apparatus and method for determining the temperature of objects in thermal processing chambers
JP3516922B2 (ja) 放射率が波長により変化する物体の温度のアクティブパイロメトリーのための方法および装置
US9207541B2 (en) Arrangement for mirror temperature measurement and/or thermal actuation of a mirror in a microlithographic projection exposure apparatus
US20070076780A1 (en) Devices, systems and methods for determining temperature and/or optical characteristics of a substrate
TWI576570B (zh) 用於輻射測溫計之遠心光學裝置、使用遠心鏡片配置以減少輻射測溫計中雜散輻射之方法及溫度測量系統
KR100340818B1 (ko) 입자 모니터링 센서
KR20100125370A (ko) 근적외선 스펙트럼 반사광 측정을 이용한 개선된 프로세스 감지 및 제어
US9318359B2 (en) Apparatus for substrate treatment and heating apparatus
US9448119B2 (en) Radiation thermometer using off-focus telecentric optics
WO2012177649A1 (en) Compensation of stray light interference in substrate temperature measurement
WO2002035195A1 (fr) Procede de mesure de la temperature, dispositif et procede de traitement thermique, programme informatique et thermometre de mesure du rayonnement
JP2011502262A (ja) X線ウィンドウおよび抵抗ヒータ
US7592588B2 (en) Calibration source infrared assembly for an infrared detector
JP2000266603A (ja) 放射温度測定方法及び放射温度測定装置
JP2002122480A (ja) 温度測定方法および装置、並びにプラズマ処理装置
TWI817021B (zh) 使用光學監視的塗佈系統和方法
JP2018513356A (ja) 試料の比電気抵抗及び/又は比導電率の空間分解測定のための配置
US10760976B2 (en) Thermal imaging of heat sources in thermal processing systems
TW201520539A (zh) 用於處理一大面積基板之設備及方法
US20210183671A1 (en) Optical heating device
TW201929057A (zh) 基板處理設備以及處理基板及製造經處理工件的方法
US20200219739A1 (en) Substrate temperature measurement device and an apparatus having substrate temperature measurement device
JP2004527733A (ja) 空気圧操作式シャッター付き放射線検出装置およびその使用法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204