JP2018529867A - Seismic construction method for building slabs - Google Patents

Seismic construction method for building slabs Download PDF

Info

Publication number
JP2018529867A
JP2018529867A JP2018530450A JP2018530450A JP2018529867A JP 2018529867 A JP2018529867 A JP 2018529867A JP 2018530450 A JP2018530450 A JP 2018530450A JP 2018530450 A JP2018530450 A JP 2018530450A JP 2018529867 A JP2018529867 A JP 2018529867A
Authority
JP
Japan
Prior art keywords
slab
block
elastic member
wall body
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018530450A
Other languages
Japanese (ja)
Inventor
ウォンオク チョイ
ウォンオク チョイ
Original Assignee
ウォンオク チョイ
ウォンオク チョイ
クワン ヒャンス
クワン ヒャンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウォンオク チョイ, ウォンオク チョイ, クワン ヒャンス, クワン ヒャンス filed Critical ウォンオク チョイ
Publication of JP2018529867A publication Critical patent/JP2018529867A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/024Structures with steel columns and beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/42Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/42Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities
    • E04B2/50Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities using elements having a general shape differing from that of a parallelepiped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/42Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities
    • E04B2/52Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities the walls being characterised by fillings in some of the cavities forming load-bearing pillars or beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/58Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with elongated members of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/04Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2418Details of bolting
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2454Connections between open and closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2463Connections to foundations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2484Details of floor panels or slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0243Separate connectors or inserts, e.g. pegs, pins or keys
    • E04B2002/0245Pegs or pins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0243Separate connectors or inserts, e.g. pegs, pins or keys
    • E04B2002/0254Tie rods
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2002/565Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with a brick veneer facing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/06Material constitution of slabs, sheets or the like of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Building Environments (AREA)

Abstract

本発明は、コアブロックと外装ブロックとの間を弾性接触するようにする弾性具を挿入し、前記インコーナーブロックと結合されて壁体を成すようになる外郭壁体設置段階;梁の両端側と外郭壁体の内面に離隔領域を有する離隔領域に弾性部材を固定する梁側端の側端弾性部材設置段階;前記梁の上面に設置されるデッキプレートと前記梁の間に介在される梁の上面の上面弾性部材設置段階;前記上面弾性部材の上側にデッキプレートと、乾式暖房パネル、底仕上げパネルを設置するスラブ形成段階;スラブの複数の側端面と外郭壁体の内周面との間の離隔部位をシーリング仕上げ処理するスラブ側端仕上げ段階からなることを特徴とし、スラブの耐震性を確保し、スラブから伝達される衝撃騷音等が下層に伝達されることを防止することができるようにする。The present invention includes an outer wall body installation stage in which an elastic member for elastic contact between the core block and the exterior block is inserted and is combined with the in-corner block to form a wall body; And a side end elastic member installation step of fixing the elastic member to the separation region having a separation region on the inner surface of the outer wall body; a beam interposed between the deck plate installed on the upper surface of the beam and the beam An upper surface elastic member installation step on the upper surface of the slab; a slab formation step in which a deck plate, a dry heating panel, and a bottom finishing panel are installed on the upper surface elastic member; a plurality of side end surfaces of the slab and an inner peripheral surface of the outer wall body It consists of a slab side end finishing stage that seals the separation part between them, ensuring seismic resistance of the slab and preventing shock noise transmitted from the slab from being transmitted to the lower layer Kill so.

Description

本発明は、建築物の施工時に、組立式ブロックを利用して壁体を形成した後、その組立式ブロックで構成される壁体間を横切って設置されるスラブを施工処理する際に、耐震性の優れたスラブを得るための建築物スラブの耐震工法に関する。 The present invention provides a seismic-resistant structure when building a slab that is installed across a wall composed of the assembly-type block after the wall is formed using the assembly-type block during construction. The present invention relates to a seismic method for building slabs to obtain excellent slabs.

建築物の耐震設計は、地震や強風などの災害や、その他外部から建築物に伝達される外力に対応することができるように設計される。通常、柱構造物と梁構造物及び柱と梁の結合部位を構造的に補強し、建築物の空間底または天井を形成するスラブは、梁構造物の上部に支持される形態を有する。 The earthquake-resistant design of a building is designed so that it can cope with disasters such as earthquakes and strong winds and other external forces transmitted to the building from outside. In general, a slab that structurally reinforces a column structure and a beam structure and a connecting portion between the column and the beam and forms a space bottom or a ceiling of the building has a form supported on an upper part of the beam structure.

ここで、前記梁構造物とスラブは、コンクリートの打設によって一体に施工される場合が多いが、このような施工構造では耐震性能が脆弱で、特に高層建築物の場合には構造的安全性を確保しにくくて、耐震安全性を保障しにくい。 Here, the beam structure and the slab are often constructed in one piece by placing concrete, but in such a construction structure, the seismic performance is weak, especially in the case of high-rise buildings, the structural safety. It is difficult to ensure seismic safety.

これとは違って、耐震建築物の施工法の中の他の方法として、スラブが梁構造物の上部に施工されながら、梁構造物とスラブとの間に震動を緩衝することができる免震装置(耐震装置)を介在する形態の構造を有するスラブ施工法が存在する。   In contrast to this, another method in the construction of earthquake-resistant buildings is that the slab is constructed on the top of the beam structure, and the seismic isolation can be used to buffer the vibration between the beam structure and the slab. There is a slab construction method having a structure in which a device (seismic device) is interposed.

しかしながら、このような従来の耐震スラブ施工方法は、スラブが梁構造物の上部に施工されるため、緩衝機能を有する耐震装置を梁構造物とスラブとの間に介在しても建築物の震動及び衝撃の発生時に柱構造物と梁構造物及び耐震装置を通じてスラブにも震動及び衝撃が伝達されて、スラブの搖れ現象を防止することができない。 However, in such conventional seismic slab construction methods, since the slab is constructed on the upper part of the beam structure, even if an earthquake resistant device having a buffer function is interposed between the beam structure and the slab, the vibration of the building In addition, the vibration and impact are transmitted to the slab through the column structure, the beam structure, and the seismic device when the impact occurs, and the slab stagnation phenomenon cannot be prevented.

また、スラブが梁構造物の上部に施工されるため梁構造物とスラブとの間に緩衝機能を有する耐震装置を備えた場合、建築物の層高が低くなるという問題点が発生する。 In addition, since the slab is constructed on the upper part of the beam structure, when a seismic device having a buffer function is provided between the beam structure and the slab, there arises a problem that the height of the building is lowered.

前述した問題点を勘案して、韓国特許登録第10−1404814号(2014.06.12公告)により、「免震スイングスラブ施工方法」が開示されているが、前記特許は、スラブを前記梁構造物の下部に相対的平面遊動可能に懸垂支持される懸垂部材を設置し、前記懸垂部材を前記スラブと前記梁構造物に対して相対遊動可能に結合する遊動結合手段を設置する支持装置設置段階を含むが、前記懸垂部材は前記スラブと前記梁構造物を遊動可能に貫通する棒形状を有しながら長さ方向の両側端部領域に前記遊動結合手段が結合される結合部が形成されており、前記遊動結合手段は前記懸垂部材の両側端部領域が、それぞれ遊動可能に通過する通孔を有する一対の遊動支持体と、前記両遊動支持体を通過した前記懸垂部材の前記結合部に結合されて、前記遊動支持体に対して相対遊動可能に支持される遊動結合部材とを含むことを特徴とする免震スイングスラブ施工方法を開示する。 In consideration of the above-mentioned problems, Korean Patent Registration No. 10-1404814 (announced 2014.06.12) discloses “Seismic Isolation Swing Slab Construction Method”. A support device is installed in which a suspension member that is suspended and supported so as to be relatively plane-movable is installed at a lower portion of the structure, and a floating coupling means that couples the suspension member to the slab and the beam structure is relatively movable. The suspension member has a bar shape penetrating the slab and the beam structure so that the suspension member can freely move, and a coupling portion to which the floating coupling means is coupled to both end regions in the lengthwise direction is formed. The floating coupling means includes a pair of floating support bodies each having a through hole through which both side end regions of the suspension member pass movably, and the coupling portion of the suspension member that has passed through both the floating support bodies. In Is engaged, it discloses a seismic isolation swing slab construction method which comprises a floating coupling member supported so as to be relatively loose with respect to the floating support.

上述した特許の場合、建築物の層高が低くなることを最小化して、スラブが相対的に平面遊動可能に懸垂支持されるようにする効果を期待することができるが、上下震動による耐震性は確保することができなくなるという問題がある。 In the case of the above-mentioned patent, it is possible to expect the effect of minimizing the building height of the building and allowing the slab to be suspended in a relatively plane-movable manner. There is a problem that cannot be secured.

また、韓国特許公開第10−2008−005717号に「スラブ耐震構造」が開示されているが、この技術は、柱部材と梁を成す基本的な構造で前記梁に設置されるスラブの一側面と前記柱部材の一側面との間の空間に弾性部材を介在するようにする技術で、前記弾性部材はゴム、プラスチック、木材及び発泡スチロールの中の何れか一つを選んでなり、前記柱部材の周りに沿って設置されること、スラブと梁との間に介在されるなどの内容が開示されている。 Also, Korean Patent Publication No. 10-2008-005717 discloses a “slab seismic structure”. This technique is a basic structure of a pillar member and a beam, and is one side surface of a slab installed on the beam. And an elastic member interposed in a space between the pillar member and the pillar member, wherein the elastic member is selected from rubber, plastic, wood and polystyrene foam, The content of being installed along the circumference | surroundings, being interposed between a slab and a beam is disclosed.

しかしながら、前述した技術の場合、前記弾性部材として特定しているゴム、プラスチック、木材、発泡スチロールの中の何れか一つを選んでなる弾性部材を利用してスラブの震動による耐衝撃性及び耐震性を充分確保することは不可能である。 However, in the case of the above-described technology, impact resistance and seismic resistance due to the vibration of the slab using an elastic member selected from any one of rubber, plastic, wood, and polystyrene foam specified as the elastic member. It is impossible to secure sufficient.

また、上述した技術以外にPCスラブを利用する建築物の場合、耐震性を確保するため、ハーフスラブ(Half PC Slab)を利用したPRC(Precast Reinforced Layer Construction Method)化する複合化工法などが実施されている。 In addition to the technology described above, in the case of buildings using PC slabs, in order to ensure earthquake resistance, composite construction methods such as PRC (Precast Reinforced Layer Construction Method) using half slabs (Half PC Slab) are implemented. Has been.

前記PRC複合化工法は鉄筋コンクリートラーメン(Rahmen)構造の建物をPC(Precast Concrete)化することで、工場で製作されたPC柱、PC梁、ハーフスラブなどのPC部材を現場に運送、揚重して組立てた後、部材間の接合部とハーフスラブの上部にトッピングコンクリートを現場で打設して構造体を一体化する工法を言う。 In the PRC compounding method, PC buildings such as PC pillars, PC beams, and half slabs manufactured at the factory are transported and lifted by converting the building of reinforced concrete ramen (Rahmen) structure to PC (Precast Concrete). After assembling, topping concrete is placed on site at the joint between the members and the upper part of the half slab to integrate the structure.

しかしながら、現在建築物の施工で、現場打設による工法または工場でPC部材を打設した後、現場に移送して工事することから脱皮して、現場で直接組立式ブロックを利用して建築物を施工処理する工法によって建築される場合が多い。 However, in the construction of the current building, after constructing PC members at the construction method by the site placement or at the factory, the work is transferred from the site to work, and the building is constructed using the assembly block directly at the site. In many cases, it is built by a construction method that applies construction.

本出願人により既出願されて登録された韓国特許登録第10−1365486号の「耐震用組立式外装ブロックユニット生産方法」または韓国特許登録第10−1365487号の「耐震用組立式ブロックユニット」及び韓国特許登録第10−1365485号の「耐震用組立式ブロックユニット構造及びこれを利用した耐震壁体の施工方法」などを開示することで、従来のPC部材のみで建築されたり、または現場で打設される工法とは違って、建築施工工期を格段と短縮し、施工の完成度及び安定性などを考慮して、開示される建築施工方法等が漸次に開発されて現実的な施工方法に採択されているのが実情である。 Korean Patent Registration No. 10-1365486, which has been filed and registered by the present applicant, “Method for Producing Seismic Assembly Type Outer Block Unit” or Korean Patent Registration No. 10-1365487, “Assembling Type Block Unit for Earthquake Resistance” and Korean Patent Registration No. 10-1365485 “Seismic assembling type block unit structure and method of constructing seismic wall using this” etc. Unlike the construction method, the construction period will be dramatically shortened, and the disclosed construction methods will be gradually developed in consideration of the completeness and stability of construction and become a realistic construction method. The fact is that it has been adopted.

しかしながら、このように組立式耐震ブロックを利用して建築物の壁体を施工してもスラブに対する耐震性を確保することは難しい。これを補完するためのものとして前述した梁構造物とスラブを免震装置として適用することが考えられるが、前述した問題点で指摘したように層高が低くなるという問題点は、避けることができない。 However, it is difficult to secure the earthquake resistance against the slab even if the building wall is constructed using the assembly type earthquake resistant block. As a supplement to this, it is conceivable to apply the beam structure and slab described above as seismic isolation devices. However, as pointed out in the above-mentioned problems, the problem of lower layer height should be avoided. Can not.

従って、本発明は、前述した他の技術から提示される問題点を克服し、特に組立式ブロックを利用して建築施工される建築物でスラブの耐震性を確保することができるようにすることにその目的がある。 Therefore, the present invention overcomes the problems presented by the above-mentioned other technologies, and in particular, enables the seismic resistance of slabs to be secured in a building constructed using an assembly-type block. Has its purpose.

また、本発明は、組立式ブロックによって施設される壁体とスラブとの間の連結領域を弾性手段を利用して直接的な衝撃の伝達が緩和されることができるようにして耐震性を有するようにしながらも、スラブから伝達される衝撃騷音等が下層に伝達されることを防止することができるようにする、騷音を遮断する役割も同時に可能にすることに他の目的がある。 In addition, the present invention is seismic-resistant so that a direct impact transmission can be mitigated by using an elastic means for a connection region between a wall body and a slab provided by an assembly type block. However, there is another object to enable the role of blocking the noise, which can prevent the shock noise transmitted from the slab from being transmitted to the lower layer.

上述した目的を達するための本発明は、
コアブロックと外装ブロックとの間を弾性接触するようにする弾性具を挿入し、前記インコーナーブロックと結合されて壁体を成す外郭壁体設置段階と、
梁の両端側と外郭壁体の内面に離隔領域を有する離隔領域に弾性部材を固定する梁側端の側端弾性部材設置段階と、
前記梁の上面に設置されるデッキプレートと前記梁との間に介在される梁の上面の上面弾性部材設置段階と、
前記上面弾性部材の上側にデッキプレート、乾式暖房パネル、底仕上げパネルを設置するスラブ形成段階と、
スラブの側端面と外郭壁体の内周面の間の離隔部位をシーリング仕上げ処理するスラブ側端仕上げ段階とで構成されて本発明の目的を達成することができる。
In order to achieve the above-mentioned object, the present invention
Inserting an elastic tool that makes elastic contact between the core block and the exterior block, and connecting the inner corner block to form a wall body,
Side end elastic member installation stage of the beam side end for fixing the elastic member to the separation region having the separation region on both ends of the beam and the inner surface of the outer wall body;
An upper surface elastic member installation step on the upper surface of the beam interposed between the deck plate and the beam installed on the upper surface of the beam;
A slab forming step of installing a deck plate, a dry heating panel, and a bottom finish panel on the upper surface of the upper elastic member,
The object of the present invention can be achieved by comprising a slab side end finishing step in which a separation portion between the side end face of the slab and the inner peripheral surface of the outer wall is sealed.

従って、本発明は、上述した他の技術から提示される問題点を克服し、特に組立式ブロックを利用して建築施工される建築物でスラブの耐震性を確保することができ、また本発明は組立式ブロックによって施設される壁体とスラブとの間の連結領域を弾性手段を利用して直接的な衝撃の伝達が緩和されることができるようにして耐震性を有するようにしながらも、スラブから伝達される衝撃騷音等が下層に伝達されることを防止することができるようにする、騷音の遮断役割も同時に可能にする効果を期待することができる。 Therefore, the present invention overcomes the problems presented by the above-mentioned other technologies, and can particularly secure the earthquake resistance of the slab in a building constructed using an assembly-type block. While making the connection area between the wall body and the slab provided by the assembly type block elastically used so that direct shock transmission can be mitigated, It is possible to expect an effect of enabling the role of blocking noise, which can prevent shock noise transmitted from the slab from being transmitted to the lower layer.

本発明で外郭壁体設置段階の一例を示した図面である。3 is a diagram illustrating an example of an outer wall body installation stage according to the present invention. 図1によって外郭壁体を構成する外装ブロックが、インコーナー芯部材及び中間の各管パイプなどによって支持されて設置された後、前記外装ブロックの内部ブロック中空部と半中空部側にそれぞれコアブロックが挿入されて弾性具によって固定支持される形態のための作業が行われる状態を示した図面である。After the exterior block constituting the outer wall body shown in FIG. 1 is supported and installed by an in-corner core member and intermediate pipe pipes, the core blocks are respectively provided on the inner block hollow portion and the semi-hollow portion side of the exterior block. It is the figure which showed the state in which the operation | work for the form which is inserted and is fixedly supported by the elastic tool is performed. 図2で外装ブロックとコアブロックのみを拡大分離して示した図面である。FIG. 3 is an enlarged view showing only an exterior block and a core block in FIG. 2. 図1〜図3によって外郭壁体の一列作業が行われた後その上方に連続して作業が繰り返し行われることができることを示した図面である。FIG. 4 is a diagram illustrating that after a single row of outer wall work is performed according to FIGS. 1 to 3, the work can be repeatedly performed continuously above the outer wall body. 図1〜図4による繰り返し作業によって外郭壁体が形成された状態を示した概括的な図面である。FIG. 5 is a general drawing illustrating a state in which an outer wall body is formed by repetitive work according to FIGS. 1 to 4. 図5によって建築物の外郭壁体を設置した後、その内部を区切る内部壁体が形成されることを示した概括的な図面である。FIG. 6 is a schematic diagram illustrating that after an outer wall of a building is installed according to FIG. 5, an inner wall that delimits the interior is formed. 図6によって内部壁体が構成された後、前記内部壁体の上端で支持される梁が設置された状態を示した概括的な図面である。FIG. 7 is a schematic diagram illustrating a state in which a beam supported by an upper end of the inner wall is installed after the inner wall is configured according to FIG. 6. 図7によって内部壁体の上端で支持される梁の端部側と各管パイプとの間の連結状態を示した部分拡大図面である。FIG. 8 is a partially enlarged view showing a connection state between an end side of a beam supported by the upper end of the inner wall body and each pipe pipe in FIG. 7. 図8によって梁の設置が完了された後、前記梁の上面に上面弾性部材を設置する例を示した概括的な図面である。FIG. 9 is a schematic diagram illustrating an example in which an upper surface elastic member is installed on the upper surface of the beam after installation of the beam is completed according to FIG. 8. 本発明における梁端部側の両側にそれぞれ側端弾性部材が備えられたことを示した図面である。4 is a view showing that side end elastic members are provided on both sides of the beam end side in the present invention. 本発明で採択したスラブ弾性具を示した図面である。It is drawing which showed the slab elastic tool adopted by this invention. 本発明の各工程を示した工程図である。It is process drawing which showed each process of this invention.

本発明を実施するための最善の形態は、
組立式ブロックを利用して外郭壁体と内部壁体を施工する壁体設置及び前記内部壁体の上端を横切って支持される梁を設置し、前記梁の上端に耐震性を有するようにするスラブ設置方法において、
前記組立式ブロックを成すもので、建築物の外郭壁体を成すインコーナー側にはインコーナーブロックが位置し、前記インコーナーブロックの中央にはインコーナー芯部材が挿入され、ブロック中空部及び端部側に半中空部がなす外装ブロックと前記外装ブロックのブロック中空部及び半中空部に挿入されるコアブロック及び前記コアブロックと外装ブロックとの間を弾性接触するようにする弾性具を挿入して前記インコーナーブロックと結合されて壁体を成すようになる外郭壁体設置段階と、
前記内部壁体の上端で支持される梁の両端側と外郭壁体の内面に離隔領域を有するように離隔設置され、前記離隔領域に弾性部材を固定する梁側端の側端弾性部材設置段階と、
前記梁の上面に設置されるデッキプレートと前記梁との間に介在される梁上面の上面弾性部材設置段階と、
前記梁上面の弾性部材である上面弾性部材設置段階を完了した後、前記上面弾性部材の上側にデッキプレート、乾式暖房パネル、底仕上げパネルを設置するスラブ形成段階と、
前記スラブ形成段階によって形成されるスラブの側端面と外郭壁体の内周面との間の離隔部位をシーリング仕上げ処理するスラブ側端仕上げ段階とからなることを特徴とする。
The best mode for carrying out the present invention is:
Install a wall body that constructs the outer wall body and the inner wall body using an assembly-type block, and install a beam supported across the upper end of the inner wall body so that the upper end of the beam has earthquake resistance. In the slab installation method,
An in-corner block is located on the in-corner side forming the outer wall of the building, and an in-corner core member is inserted in the center of the in-corner block. Inserting an exterior block formed by a semi-hollow part on the side, a block hollow part of the exterior block, a core block inserted into the semi-hollow part, and an elastic tool for elastic contact between the core block and the exterior block The outer wall body installation stage that is combined with the in-corner block to form a wall body,
Side end elastic member installation step of the beam side end that is spaced apart from both ends of the beam supported by the upper end of the inner wall body and the inner surface of the outer wall body and has an elastic member fixed to the separation area When,
An upper surface elastic member installation step of the beam upper surface interposed between the deck plate and the beam installed on the upper surface of the beam;
After completing the upper surface elastic member installation step, which is an elastic member on the upper surface of the beam, a slab formation step of installing a deck plate, a dry heating panel, and a bottom finish panel on the upper surface elastic member;
It is characterized by comprising a slab side end finishing step in which a separation part between the side end surface of the slab formed by the slab forming step and the inner peripheral surface of the outer wall body is sealed.

以下添付された図面を参照して本発明の好ましい実施例を詳しく説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本明細書及び請求範囲に用いられる用語や単語は、通常的または辞書的な意味に限定して解釈してはならず、発明者はその自分の発明を最も最善の方法で説明するために用語の概念を適切に定義することができるという点に即して、本発明の技術的思想に符合する意味と概念で解釈すべきである。従って、本発明の明細書に記載された実施例及び図面に示された構成は、本発明の最も好ましい一実施例に過ぎなく、本発明の技術的思想を全部代弁するのではない。また、本発明の出願時点においてこれを代替することができる多様な均等物と変形例が可能であるか存在することがあり得ることを理解すべきである。 Terms and words used in this specification and claims should not be construed as limited to ordinary or lexicographic meanings, and the inventor should use terms to describe their invention in the best possible manner. It should be interpreted in the meaning and concept consistent with the technical idea of the present invention in conformity with the fact that the concept can be appropriately defined. Therefore, the embodiments described in the specification of the present invention and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent the technical idea of the present invention. It should also be understood that various equivalents and variations may be possible and exist at the time of filing of the present invention.

本発明は組立式ブロック、特に耐震性を持たせる組立式ブロックを利用して建築物を建築施工する建築物スラブの耐震工法を提示する。 The present invention presents a seismic method for building slabs in which a building is constructed using an assembling block, in particular, an assembling block that provides earthquake resistance.

図1は、本発明によって実施される工程を時系列順で表わした図で、内部壁体の上端で支持される梁と外郭壁体間に側端弾性部材を設置する段階(S100)と、前記梁の上面に設置されるデッキプレートの間に上下震動力を吸収するための上面弾性部材を設置する段階(S200)と、スラブを完成するスラブ形成段階(S300)と、スラブの最外郭と接する外郭壁体間を仕上げるスラブ側端仕上げ段階(S400)とからなる。 FIG. 1 is a diagram showing the steps performed by the present invention in chronological order, and installing a side end elastic member between a beam supported on the upper end of the inner wall body and the outer wall body (S100), Installing a top elastic member for absorbing vertical vibration power between deck plates installed on the top surface of the beam (S200), forming a slab (S300) to complete the slab, It comprises a slab side end finishing step (S400) for finishing the space between the outer wall bodies in contact with each other.

外郭壁体設置段階−S100Outer wall installation stage-S100

本発明では、組立式ブロックを利用して外郭壁体10と内部壁体20を施工した後内部壁体20の上面に支持されるスラブ100を設置施工して、地震などの災害の発生時に耐震性を確保することができるようにするためのものであり、本段階は、まず側端弾性部材を設置する前の段階として、外郭壁体10を設置施工する過程を行う。この際、前記外郭壁体10は図1〜図2に示すように、外郭壁体10自体にも耐震性を確保するための組立式ブロックで施工処理することが好ましい。 In the present invention, after constructing the outer wall body 10 and the inner wall body 20 using an assembly type block, the slab 100 supported by the upper surface of the inner wall body 20 is installed and constructed, and is earthquake resistant when a disaster such as an earthquake occurs. In this stage, a process of installing and constructing the outer wall 10 is performed as a stage before installing the side end elastic member. At this time, as shown in FIGS. 1 to 2, it is preferable that the outer wall body 10 is also constructed by an assembly type block for ensuring the earthquake resistance in the outer wall body 10 itself.

例えば、外郭壁体10の構成は、本出願人の韓国特許登録第10−1365485号に開示された外装ブロック11及び前記外装ブロック11の内部に結合されるコアブロック12の結合による構成と同じ構成を有するが、前記外装ブロック11の内部には複数のブロック中空部11aを成し、側端部には半中空部11bがそれぞれ形成されるようにし、前記外装ブロック11の端部間の結合によって前記半中空部11bは、完成された形態のブロック中空部を成す。 For example, the configuration of the outer wall 10 is the same as the configuration of the exterior block 11 and the core block 12 coupled to the interior of the exterior block 11 disclosed in Korean Patent Registration No. 10-1365485 of the present applicant. However, a plurality of block hollow portions 11 a are formed inside the exterior block 11, and a semi-hollow portion 11 b is formed at each side end portion, and by coupling between the end portions of the exterior block 11. The semi-hollow part 11b forms a block hollow part in a completed form.

このような外装ブロック11を利用して側端部を配置し、外装ブロック11のブロック中空部11a側に垂直に引入されて結合されるようにするコアブロック12を挿入し、引き継き、前記コアブロック12の四つの隅に形成される円弧形態の弾性具挿入孔12a側に長さ方向に切開され弾性力を有する弾性具13を強制的に挿入して、コアブロック12と外装ブロック11との間の直接的な接触を回避し、弾性具13によって外装ブロック11から伝達される震動力などが相殺可能になる。 Using the exterior block 11, the side end portion is disposed, and the core block 12 is inserted and joined to the block hollow portion 11 a side of the exterior block 11 so as to be perpendicularly connected to the block 11. An elastic tool 13 cut in the length direction and having elastic force is forcibly inserted into the arc-shaped elastic tool insertion hole 12 a formed at the four corners of the core block 12, and the core block 12, the exterior block 11, Thus, the seismic power transmitted from the exterior block 11 by the elastic member 13 can be canceled.

前記のような構成を成す外装ブロック11とコアブロック12及び弾性具13の相互結合によって、建築物の全体を成す外郭壁体10を施工する。 The outer wall body 10 constituting the entire building is constructed by mutual coupling of the exterior block 11, the core block 12, and the elastic member 13 having the above-described configuration.

一方、図1、図2または図4で示すように、外装ブロック11及びコアブロック12によって外郭壁体10を成す場合、建築物の四つの隅には外装ブロック11と規格などが異なるブロックを利用して施工することができる。 On the other hand, as shown in FIG. 1, FIG. 2, or FIG. 4, when the outer wall 10 is formed by the exterior block 11 and the core block 12, blocks having different standards from the exterior block 11 are used at the four corners of the building. And can be constructed.

例えば、建築物に堅固性と荷重に対応する応力を持たせるために、インコーナーブロック14を採択することができる。 For example, the in-corner block 14 can be adopted in order to give the building strength and stress corresponding to the load.

勿論、前記インコーナーブロック14の採択有無は施工される建築物の全体的荷重及び構造設計による変数によって採択されるかまたは採択されないこともある。 Of course, whether or not the in-corner block 14 is adopted may or may not be adopted depending on the overall load of the building to be constructed and the structural design variables.

このようなインコーナーブロック14は略「┓」字状を有するようにするが、中央にはHビームや各管パイプが垂直に挿入されて立てられた状態で、その下端部は地盤に固定されるようにする構造を有する。 The in-corner block 14 has a substantially “┓” shape, and the lower end of the in-corner block 14 is fixed to the ground with the H beam and each pipe pipe vertically inserted in the center. It has a structure to make it.

前記インコーナーブロック14にも外装ブロック11と同様に、ブロック中空部14aと半中空部14bがそれぞれ形成される。前記インコーナーブロック14のブロック中空部14aには、剛性をより増加するために内部にH−ビームまたは各管パイプからなるインコーナー芯部材15を施工する。 Similarly to the exterior block 11, the in-corner block 14 is also formed with a block hollow portion 14a and a semi-hollow portion 14b. In the block hollow portion 14a of the in-corner block 14, an in-corner core member 15 made of an H-beam or each pipe pipe is installed inside in order to further increase the rigidity.

前記インコーナーブロック14の中央に形成される前記ブロック中空部14aは前記インコーナー芯部材15を挿入した後底面にその端部が固定結合されるようにした。 The block hollow portion 14a formed at the center of the in-corner block 14 is fixedly coupled at its end to the bottom surface after the in-corner core member 15 is inserted.

同時に、インコーナーブロック14の半中空部14bと接する外装ブロック11の半中空部11bによって形成される完全な中空部側にはコアブロック12及び弾性具13を利用して積層結合されるようにし、全体的に建築物の外郭壁体10を成すようになる。 At the same time, the complete hollow part side formed by the semi-hollow part 11b of the exterior block 11 in contact with the semi-hollow part 14b of the in-corner block 14 is laminated and coupled using the core block 12 and the elastic tool 13. The outer wall 10 of the building is formed as a whole.

側端弾性部材設置段階−S200Side end elastic member installation stage-S200

本側端弾性部材設置段階(S200)は層高を構成する内部壁体20の施工を完了した後、前記内部壁体20の上面によって支持される梁110を形成する時、前記梁110の側端と外郭壁体10との間を連結する作業で前記梁110の側端に側端弾性部材120を設置する過程を意味する。 In the side end elastic member installation step (S200), when the beam 110 supported by the upper surface of the inner wall body 20 is formed after the construction of the inner wall body 20 constituting the layer height is completed, the beam 110 side It means a process of installing the side end elastic member 120 at the side end of the beam 110 in an operation of connecting the end and the outer wall body 10.

上記のように、建築物の基本骨格を構成して外郭を形成する外郭壁体10の施工が、前述した外郭壁体設置段階(S100)を経て行われ、同時に建築物の層高を形成するためのスラブ100が設置施行されるが、本段階は前記スラブ100を設置する前にまず外郭壁体10を成す外装ブロック11とスラブ100を構成するための梁110の側端側に側端弾性部材120を形成するようになる。 As described above, the construction of the outer wall body 10 that forms the basic frame of the building and forms the outer wall is performed through the outer wall body installation step (S100) described above, and at the same time, the height of the building is formed. In this stage, before installing the slab 100, first, the outer block 11 constituting the outer wall body 10 and the side end elasticity on the side end side of the beam 110 for constituting the slab 100 are installed. The member 120 is formed.

ここで、前記外郭壁体10が設置される時、前記スラブ100を支持するための梁110と、外郭壁体10の中間領域に垂直に設置されるHビームまたは各管パイプとその端部が連結される。 Here, when the outer wall 10 is installed, a beam 110 for supporting the slab 100, an H beam or each pipe pipe installed vertically in an intermediate region of the outer wall 10, and an end portion thereof are provided. Connected.

外郭壁体10を構成する時、インコーナー側にはインコーナーブロック14が位置され、外郭壁体10の辺には前記外装ブロック11とコアブロック12との組合によって設置されるが、外郭壁体10の中央領域または等間隔で離隔される位置にある外装ブロック11のブロック中空部11a側に各管パイプ11cを垂直に挿入して固定するが、前記梁110の端部と前記各管パイプ11cとの間の連結作業が行われる。 When the outer wall body 10 is configured, the inner corner block 14 is positioned on the inner corner side, and the outer wall body 10 is installed on the side of the outer wall body 10 by the combination of the exterior block 11 and the core block 12. Each tube pipe 11c is vertically inserted and fixed to the block hollow portion 11a side of the exterior block 11 located at a central region of 10 or spaced apart at equal intervals, but the end of the beam 110 and each tube pipe 11c are fixed. The connection work between is performed.

即ち、図8に示すように、各管パイプ11cの上面に平板11dを熔接固定し、前記平板11dの上面側に前記梁110の端部が安着されるようにし、引き継き、前記梁110の端部側にも平板11dが下端に熔接固定された各管パイプ11c`が上方向側に連結固定される構成を有する。 That is, as shown in FIG. 8, a flat plate 11d is welded and fixed to the upper surface of each pipe pipe 11c, and the end of the beam 110 is seated on the upper surface side of the flat plate 11d. Each pipe pipe 11c ′, in which the flat plate 11d is welded and fixed to the lower end, is also connected and fixed to the upper side on the end side of 110.

同時に、前記平板11dと前記梁110との間をボルトで連結する。 At the same time, the flat plate 11d and the beam 110 are connected by bolts.

このように、各管パイプ11cと梁110との間の端部連結作業が完了されると、前記梁110の端部両側面にそれぞれ側端弾性部材120を形成して、梁110の端部側と外郭壁体10との間の震動力の伝達が吸収、遮断されることができるようにする。 Thus, when the end connection work between each pipe pipe 11c and the beam 110 is completed, the side end elastic members 120 are formed on both side surfaces of the end of the beam 110, and the end of the beam 110 is formed. The transmission of seismic power between the side and the outer wall 10 can be absorbed and blocked.

ここで、前記側端弾性部材120は、図10に示すように、梁110の端部両側にそれぞれ形鋼121を熔接固定し、前記形鋼121の内側にスラブ弾性具122を挿入して梁110の端部側と外郭壁体10との間を前記スラブ弾性具122が接触されるようにした。 Here, as shown in FIG. 10, the side end elastic member 120 is formed by welding and fixing a shape steel 121 to both ends of the beam 110 and inserting a slab elastic tool 122 inside the shape steel 121. The slab elastic member 122 is brought into contact between the end portion side of 110 and the outer wall 10.

前記スラブ弾性具122は、図面に示すように、スラブ弾性具122の長さ方向に沿って全体的に切開される切開部122aを形成し、端部側は内側方向にテーパー面122bを形成するテーパー部122cを形成し、前記テーパー部122cを等間隔に切開するテーパー切開溝122dが複数形成されて弾性片122eを有するようにする。 As shown in the drawing, the slab elastic member 122 forms an incision portion 122a that is entirely incised along the length direction of the slab elastic device 122, and an end portion forms a tapered surface 122b in an inward direction. A tapered portion 122c is formed, and a plurality of tapered incision grooves 122d for incising the tapered portion 122c at equal intervals are formed to have elastic pieces 122e.

このようなスラブ弾性具122を備えてなる側端弾性部材120によって梁110と外郭壁体10を成す外装ブロック11間の直接接触を回避しながら弾性的な物性の提供により、外部からの震動力や地震等による震動力などが提供された時、これを容易に相殺するようにすることで、全体的な建築物の耐震性を確保することができ、本段階によって設置される側端弾性部材120によってスラブの水平震動力の衝撃吸収による耐震性を確保することができる。 By providing elastic properties while avoiding direct contact between the beam 110 and the exterior block 11 forming the outer wall body 10 by the side end elastic member 120 having such a slab elastic member 122, the seismic force from the outside is provided. When the seismic power due to the earthquake or the like is provided, it is possible to ensure the earthquake resistance of the entire building by easily canceling this, and the side end elastic member installed at this stage 120 can ensure earthquake resistance by absorbing the slab's horizontal seismic power.

上面弾性部材設置段階;S300Upper surface elastic member installation stage; S300

本段階の上面弾性部材設置段階(S300)は前述した側端弾性部材設置段階(S200)によって設置された梁110の上面に弾性部材を設置するための段階であり、一般的に、梁110の上面には、デッキプレートと、乾式暖房パネル、底仕上げパネルなどが積層されて施工処理されるが、これは、前記梁110から震動力などがデッキプレート、乾式暖房パネル、底仕上げパネルなどからなるスラブ100に伝達されることを防止するためである。 The upper surface elastic member installation step (S300) in this step is a step for installing an elastic member on the upper surface of the beam 110 installed in the side end elastic member installation step (S200). On the top surface, a deck plate, a dry heating panel, a bottom finish panel, etc. are laminated and processed, but this includes the deck plate, dry heating panel, bottom finish panel, etc. This is to prevent transmission to the slab 100.

このための上面弾性部材130は、図9に示すような構成を有するが、梁110の上面に等間隔で離隔される位置ごとに上平板プレート131及び下平板プレート132を上下に離隔して構成し、前記上平板プレート131及び下平板プレート132を貫通するスプリング補強具133を形成するが、前記スプリング補強具133の内部にスプリング134が内在されるようにして、前記上平板プレート131及び下平板プレート132の離隔状態を保持しながら梁110から伝達される震動をスプリング134で相殺される。 For this purpose, the upper elastic member 130 has a configuration as shown in FIG. 9, and is configured by vertically separating the upper flat plate 131 and the lower flat plate 132 at every position separated from the upper surface of the beam 110 at equal intervals. The spring reinforcing member 133 that penetrates the upper and lower flat plate plates 131 and 132 is formed. The spring reinforcing member 133 includes a spring 134 so that the upper and lower flat plate plates 131 and 131 are inserted. The vibration transmitted from the beam 110 is canceled by the spring 134 while maintaining the separated state of the plate 132.

外郭壁体10から伝達される震動力は前述したようにスラブ100を支持する梁110の側端弾性部材120を構成するスラブ弾性具122でその震動力を耐えることができる横圧力によって安定性を確保することができるが、垂直に伝達される震動力は相殺不可能になる。 As described above, the seismic power transmitted from the outer wall body 10 is stabilized by the lateral pressure that can withstand the seismic power by the slab elastic member 122 that constitutes the side end elastic member 120 of the beam 110 that supports the slab 100. The seismic power transmitted vertically can not be canceled out.

従って、垂直方向に発生される震動力を相殺するために本発明における上面弾性部材130を採択して、梁110を通じて伝達する垂直力を相殺することができる。 Therefore, the vertical elastic force 130 transmitted through the beam 110 can be canceled by adopting the upper elastic member 130 in the present invention in order to cancel the seismic power generated in the vertical direction.

即ち、本段階による上面弾性部材130の施設によって建築物でのスラブ100に提供される垂直震動力を相殺緩衝して垂直震動力の衝撃吸収による耐震性を確保することができる。 That is, the vertical seismic power provided to the slab 100 in the building can be offset and buffered by the facility of the upper surface elastic member 130 at this stage, and the seismic resistance due to the absorption of the vertical seismic power can be ensured.

従って、前述した側端弾性部材設置段階(S200)と上面弾性部材設置段階(S300)によって設置、施工される側面弾性部材120及び上面弾性部材130によってスラブの左右及び上下震動力を吸収、緩和して耐震性を確保することができる。 Therefore, the side elastic member 120 and the upper elastic member 130 installed and constructed in the side end elastic member installation step (S200) and the upper elastic member installation step (S300) described above absorb and mitigate left and right and vertical seismic power of the slab. Seismic resistance.

スラブ形成段階−S400Slab formation stage-S400

前述した上面弾性部材130の設置が完了されると、前記上面弾性部材130の上面にデッキプレート200と、乾式暖房パネル300及び底仕上げパネル400を順次に設置するスラブ形成段階(S400)を行う。 When the installation of the upper elastic member 130 is completed, a slab forming step (S400) is performed in which the deck plate 200, the dry heating panel 300, and the bottom finish panel 400 are sequentially installed on the upper surface of the upper elastic member 130.

前記デッキプレート200を設置する施工方法及び乾式暖房パネル300の設置過程、底仕上げパネル400の設置方法などは公知された技術であって、本発明では詳しい説明は省略する。 The construction method of installing the deck plate 200, the installation process of the dry heating panel 300, the installation method of the bottom finish panel 400, and the like are well-known techniques and will not be described in detail in the present invention.

一方、上記のようにデッキプレート200と乾式暖房パネル300及び底仕上げパネル400で施工処理されて完成されるスラブ100は全体的にその外郭面が外郭壁体10の内側面とは離隔される状態になって、地震などや外力からの衝撃などが建築物に伝達された時、その震動力はスラブ100側に直接伝達されることを回避されることができ、前述したように、その伝達力は側端弾性部材120及び上面弾性部材130によって相殺されることができる。 On the other hand, as described above, the slab 100, which is completed by being processed by the deck plate 200, the dry heating panel 300, and the bottom finish panel 400, is entirely separated from the inner surface of the outer wall body 10. Therefore, when an earthquake or an impact from an external force is transmitted to the building, the seismic power can be avoided from being directly transmitted to the slab 100 side. Can be offset by the side end elastic member 120 and the top elastic member 130.

スラブ側端仕上げ段階−S500Slab side edge finishing stage-S500

本段階は、前記スラブ形成段階(S400)によって形成されるスラブ100の側端面と外郭壁体10の内周面との間の離隔部位をシーリング仕上げ処理する段階を意味する段階で、前記スラブ100の設置が完了されるとスラブ100と外郭壁体10の内周面との間は離隔される状態を保持する。 This step is a step of sealing a separation portion between the side end surface of the slab 100 formed by the slab formation step (S400) and the inner peripheral surface of the outer wall body 10, and the slab 100 is processed. When the installation of is completed, the slab 100 and the inner peripheral surface of the outer wall body 10 are kept separated.

このような離隔状態を保持すれば、前述したように地震などによって建築物に伝達される震動力の中の横力に対しては側端弾性部材120などによってその力を相殺することができるが、層間騷音に対しては脆弱であることがある。 If such a separated state is maintained, the lateral force in the seismic power transmitted to the building by an earthquake or the like as described above can be canceled by the side end elastic member 120 or the like. , May be vulnerable to stuttering between layers.

従って、このような層間騷音を防止するために、スラブ100が完成された後にはスラブ100の側面と外郭壁体10の内周面との間の離隔部位をシリコーン処理またはエポキシモールディング処理によって仕上げ処理される。 Therefore, in order to prevent such interlayer noise, after the slab 100 is completed, a separation portion between the side surface of the slab 100 and the inner peripheral surface of the outer wall body 10 is finished by silicone treatment or epoxy molding treatment. It is processed.

このような仕上げ処理によって、層間騷音を遮断することができ、一般的に発生される層間騷音の伝達形態は柱や壁体に沿って伝達されることを考慮すると、本発明による場合には各部材即ち外郭壁体10と内部壁体20を伝達子として騷音が伝達される現象を完全に排除することができることは勿論、スラブ100と外郭壁体10との間の離隔空間(または離隔部位)の仕上げ処理によって、騷音の伝達経路を完全に遮断、排除することができる。 In consideration of the fact that the interlayer noise can be blocked by such a finishing process, and the transmission form of the interlayer noise that is generally generated is transmitted along the pillars and the wall body, Of course, it is possible to completely eliminate the phenomenon in which the noise is transmitted using each member, that is, the outer wall body 10 and the inner wall body 20 as a transmitter, or the separation space (or the space between the slab 100 and the outer wall body 10). By the finishing process of the separation part, the transmission path of the stuttering can be completely blocked and eliminated.

以上のように、本発明は限定された実施例と図面によって説明されたが、本発明は前記実施例に限定されないことは勿論であり、本発明が属する分野において通常の技術的知識を有する者によって前記記載された内容から多様な修正及び変形が可能であることは勿論である。 As described above, the present invention has been described with reference to the limited embodiments and drawings. However, the present invention is not limited to the above-described embodiments, and those having ordinary technical knowledge in the field to which the present invention belongs. Of course, various modifications and variations can be made from the contents described above.

従って、本発明における技術的思想は以下に記載される請求範囲によって把握するべきであり、これらと均等または等価変形も本発明の技術的思想の範疇に属することは自明である。 Accordingly, the technical idea of the present invention should be understood from the claims described below, and it is obvious that equivalent or equivalent modifications also belong to the category of the technical idea of the present invention.

本発明は、建築物の施工時に、組立式ブロックを利用して壁体を形成した後、その組立式ブロックからなる壁体間を横切って設置されるスラブを施工処理する時、耐震性の優れたスラブを得ることができる産業上有用な利用可能性を有する。 The present invention has excellent seismic resistance when constructing a slab that is installed across a wall consisting of the assembly-type block after forming a wall body using the assembly-type block during construction. Industrially useful applicability to obtain a slab.

Claims (9)

組立式ブロックを利用して外郭壁体(10)と内部壁体(20)を施工する壁体設置をし、その後、前記内部壁体(20)の上端を横切って支持される梁(110)を設置し、前記梁(110)の上端に耐震性を持たせるようにするスラブ設置方法において、
前記組立式ブロックを構成する段階であって、ブロック中空部(11a)及び端部側に半中空部(11b)が形成される外装ブロック(11)を利用して側端部を配置し、前記外装ブロック(11)の前記ブロック中空部(11a)及び前記半中空部(11b)にコアブロック(12)を挿入し、前記コアブロック(12)と前記外装ブロック(11)との間を弾性接触するようにする弾性具(13)とを挿入して外郭壁体を構成する外郭壁体設置段階(S100)と、
前記内部壁体(20)の上端で支持される前記梁(110)の両端側を前記外郭壁体(10)の内面に離隔領域を有するように離隔設置させ、前記離隔領域に側端弾性部材(120)を梁(110)の側端に固定する側端弾性部材設置段階(S200)と、
前記梁(110)の上面にデッキプレート(200)を設置し、前記梁(110)に上面弾性部材(130)を設置する上面弾性部材設置段階(S300)と、
前記梁(110)に前記上面弾性部材(130)を設置する上面弾性部材設置段階(S300)を完了した後、前記上面弾性部材(130)の上側にデッキプレート(200)と、乾式暖房パネル(300)と、底仕上げパネル(400)とを設置するスラブ形成段階(S400)と、
前記スラブ形成段階(S400)によって形成されるスラブ(100)の側端面と外郭壁体(10)の内周面との間の離隔部位をシーリング仕上げ処理するスラブ側端仕上げ段階(S500)とからなることを特徴とする、建築物スラブの耐震工法。
The wall (10) is constructed by constructing the outer wall body (10) and the inner wall body (20) using the assembly type block, and then supported by the upper end of the inner wall body (20). In a slab installation method for providing earthquake resistance to the upper end of the beam (110),
In the step of constructing the assembly type block, the side end portion is arranged using the block hollow portion (11a) and the exterior block (11) in which the semi-hollow portion (11b) is formed on the end side, The core block (12) is inserted into the block hollow portion (11a) and the semi-hollow portion (11b) of the exterior block (11), and elastic contact is made between the core block (12) and the exterior block (11). An outer wall body installation step (S100) of inserting an elastic tool (13) to form an outer wall body;
Both ends of the beam (110) supported by the upper end of the inner wall (20) are spaced apart so as to have a separation region on the inner surface of the outer wall (10), and a side end elastic member is provided in the separation region. A side end elastic member installation step (S200) for fixing (120) to the side end of the beam (110);
An upper surface elastic member installation step (S300) of installing a deck plate (200) on the upper surface of the beam (110) and installing an upper surface elastic member (130) on the beam (110);
After completing the upper surface elastic member installation step (S300) of installing the upper surface elastic member (130) on the beam (110), a deck plate (200) and a dry heating panel ( 300) and a slab forming step (S400) of installing a bottom finish panel (400),
From the slab side end finishing step (S500) in which the separation portion between the side end surface of the slab (100) formed by the slab forming step (S400) and the inner peripheral surface of the outer wall (10) is sealed. A seismic construction method for building slabs.
建築物の前記外郭壁体(10)を構成するインコーナー側にはインコーナーブロック(14)が位置し、前記インコーナーブロック(14)の中央にはインコーナー芯部材(15)が挿入され、前記インコーナーブロック(14)と隣接する前記外装ブロック(11)とが結合されて前記外郭壁体(10)を形成することを含む請求項1に記載の建築物スラブの耐震工法。 An in-corner block (14) is located on the in-corner side constituting the outer wall (10) of a building, and an in-corner core member (15) is inserted in the center of the in-corner block (14), The seismic construction method for a building slab according to claim 1, comprising joining the inner corner block (14) and the adjacent exterior block (11) to form the outer wall (10). 前記インコーナー芯部材(15)はHビームまたは各管パイプの中の何れか一つを選択して形成されることを含む請求項2に記載の建築物スラブの耐震工法。 The method for earthquake-proofing a building slab according to claim 2, wherein the in-corner core member (15) is formed by selecting any one of an H beam and each pipe pipe. 前記外郭壁体(10)の中央領域または等間隔で離隔される位置にある前記外装ブロック(11)のブロック中空部(11a)側に各管パイプ(11c)を垂直に挿入固定し、前記梁(110)の端部と前記各管パイプ(11c)との間を連結することを含む請求項1に記載の建築物スラブの耐震工法。 Each pipe pipe (11c) is inserted and fixed vertically on the block hollow portion (11a) side of the exterior block (11) at a central region of the outer wall body (10) or at a position spaced apart at equal intervals, and the beam The seismic construction method for a building slab according to claim 1, comprising connecting between an end of (110) and each pipe pipe (11c). 前記梁(110)の端部と前記各管パイプ(11c)の連結は、前記各管パイプ(11c)上面に平板(11d)を熔接固定し、前記平板(11d)の上面側に前記梁(110)の端部が安着されるようにし、引き継き前記梁(110)の端部側にも前記平板(11d)の下端に熔接固定された各管パイプ(11c`)が上方向側に連結固定されることを含む請求項4に記載の建築物スラブの耐震工法。 The end of the beam (110) and the pipe pipe (11c) are connected by welding and fixing a flat plate (11d) to the upper surface of the pipe pipe (11c), and connecting the beam (11d) to the upper surface side of the flat plate (11d). 110) and the pipe pipe (11c ') welded and fixed to the lower end of the flat plate (11d) on the end side of the beam (110). The seismic construction method for a building slab according to claim 4, comprising connecting and fixing to the building. 前記平板(11d)と前記梁(110)との間はボルトで連結することを含む請求項5に記載の建築物スラブの耐震工法。 The seismic construction method for a building slab according to claim 5, comprising connecting the flat plate (11d) and the beam (110) with a bolt. 前記側端弾性部材設置段階(S200)において、前記側端弾性部材(120)は前記梁(110)の端部両側にそれぞれ形鋼(121)を熔接固定し、前記形鋼(121)の内側にスラブ弾性具(122)を挿入し、前記梁(110)の端部側と前記外郭壁体(10)との間を前記スラブ弾性具(122)が接触するようにすることを含む請求項1に記載の建築物スラブの耐震工法。 In the side end elastic member installation step (S200), the side end elastic member (120) welds and fixes the shape steel (121) to both sides of the end of the beam (110), and the inside of the shape steel (121). A slab elastic tool (122) is inserted into the slab elastic tool (122) so that the end of the beam (110) and the outer wall (10) are in contact with each other. 1. Seismic construction method for building slabs according to 1. 前記スラブ弾性具(122)は、長さ方向に沿って全体的に切開される切開部(122a)を形成し、端部側は内側方向にテーパー面(122b)を形成するテーパー部(122c)を形成し、前記テーパー部(122c)を等間隔に切開するテーパー切開溝(122d)が複数形成されて弾性片(122e)を有するようにすることを含む請求項7に記載の建築物スラブの耐震工法。 The slab elastic tool (122) forms an incision part (122a) that is entirely incised along the length direction, and the end part side forms a tapered surface (122b) in the inner direction. The building slab according to claim 7, wherein a plurality of tapered cutting grooves (122 d) that cut the tapered portion (122 c) at equal intervals are formed to have elastic pieces (122 e). Seismic construction method. 前記上面弾性部材(130)は、前記梁(110)の上面で等間隔に離隔される位置ごとに上平板プレート(131)及び下平板プレート(132)を上下に離隔して構成し、前記上平板プレート(131)及び前記下平板プレート(132)を貫通するスプリング補強具(133)を形成するが、前記スプリング補強具(133)の内部にスプリング(134)が内在されるようにして、前記上平板プレート(131)及び前記下平板プレート(132)の離隔状態を保持しながら前記梁(110)から伝達される震動を前記スプリング(134)で相殺するようにすることを含む請求項1に記載の建築物スラブの耐震工法。 The upper elastic member (130) is configured by vertically separating the upper flat plate (131) and the lower flat plate (132) for each position spaced at equal intervals on the upper surface of the beam (110). A spring reinforcing member (133) penetrating the flat plate plate (131) and the lower flat plate plate (132) is formed. The spring reinforcing member (133) includes a spring (134), and 2. The method of claim 1, further comprising: canceling vibrations transmitted from the beam (110) by the spring (134) while maintaining the separated state of the upper flat plate (131) and the lower flat plate (132). Seismic construction method for building slabs.
JP2018530450A 2015-08-28 2016-08-19 Seismic construction method for building slabs Pending JP2018529867A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150121461A KR101727817B1 (en) 2015-08-28 2015-08-28 Of a Substitute of Building of Shear-Keyed Half Slab Using Seismic Isolation.
KR10-2015-0121461 2015-08-28
PCT/KR2016/009144 WO2017039196A1 (en) 2015-08-28 2016-08-19 Seismic construction method of building slab

Publications (1)

Publication Number Publication Date
JP2018529867A true JP2018529867A (en) 2018-10-11

Family

ID=58188693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018530450A Pending JP2018529867A (en) 2015-08-28 2016-08-19 Seismic construction method for building slabs

Country Status (5)

Country Link
US (1) US20180245366A1 (en)
JP (1) JP2018529867A (en)
KR (1) KR101727817B1 (en)
CN (1) CN108138483A (en)
WO (1) WO2017039196A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007938B1 (en) * 2017-04-11 2019-10-21 최원옥 earth-quake-resistant construction between the slabs and Wall in Buildings
CN107882208A (en) * 2017-11-29 2018-04-06 蔡立海 A kind of high efficiency heat absorption heat-preserving wall device
CN109024962A (en) * 2018-08-10 2018-12-18 江苏德丰建设集团有限公司 A kind of assembled architecture and assembled architecture building roof system energy-dissipating and shock-absorbing method
JP7206706B2 (en) * 2018-08-31 2023-01-18 積水ハウス株式会社 simulation system
KR102342288B1 (en) * 2019-07-05 2021-12-22 최원옥 Slab construction structure using earthquake-resistant blocks
KR102342271B1 (en) * 2019-07-05 2021-12-22 최원옥 Construction Method of Slab for Building Structures Using Seismic Blocks

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055407A (en) * 1991-04-15 1991-10-16 严传清 Interlinkage building blocks and cover connection building law
JPH08177157A (en) * 1994-12-27 1996-07-09 Ohbayashi Corp Connection of column and slab in steel structure
JP2000034772A (en) * 1998-07-16 2000-02-02 Yamax Corp Fixing method and fixing device for attachment
KR20080005717A (en) 2006-07-10 2008-01-15 주식회사 하이닉스반도체 Alignment key of semiconductor memory device
KR20080057517A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Slab earthquake resistant construction
KR101065469B1 (en) * 2011-06-08 2011-09-19 메트로티엔씨 주식회사 Seismic strenthening structure and working method using the same
KR101365485B1 (en) * 2012-04-24 2014-02-21 최원옥 Earthquake-resistance Assembling Block Unit Structure and Construction Method of earthquake resistant wall using the same
CN202689245U (en) * 2012-08-09 2013-01-23 贵州皆盈科技开发有限公司 Currently wiped skeleton net hollow filling wall
KR101404814B1 (en) 2012-12-06 2014-06-12 조선대학교산학협력단 Construction method of vibration isolation swing slab
RU2656423C2 (en) * 2014-03-26 2018-06-05 Олег Савельевич Кочетов Seismic-resistant brick wall panel

Also Published As

Publication number Publication date
KR20170025255A (en) 2017-03-08
KR101727817B1 (en) 2017-05-02
CN108138483A (en) 2018-06-08
US20180245366A1 (en) 2018-08-30
WO2017039196A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP2018529867A (en) Seismic construction method for building slabs
KR102007938B1 (en) earth-quake-resistant construction between the slabs and Wall in Buildings
JP6245890B2 (en) building
JP2008163646A (en) Method and structure for reinforcing existing column
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP6429652B2 (en) Stress transmission structure between seismic wall and lower beam in concrete column beam frame
JP6171566B2 (en) Extension method
JP6247117B2 (en) Temporary structure during seismic isolation of existing building
JP3130009U (en) Strength structure
JP6427315B2 (en) Column reinforcement structure
JP5475054B2 (en) Seismic shelter reinforcement method and seismic shelter with high seismic strength
JP6816941B2 (en) Foundation structure of seismic isolated building
JP2015227588A (en) Structure
JP6749081B2 (en) Vibration control structure
JP2015086557A (en) Earthquake-proof repair method for existing building
JP5647713B2 (en) Building structure
JP2005188035A (en) Vibration control structure for building structure
CN115680136B (en) Modularized green building construction method
KR102342271B1 (en) Construction Method of Slab for Building Structures Using Seismic Blocks
JP5592288B2 (en) Seismic isolation building
JP5843419B2 (en) Outer frame with eccentric column beam joint
JP3700129B2 (en) Joint structure of composite structure and construction method thereof
JP3015379U (en) Wooden structure with collapse prevention structure section
JP2006083584A (en) Unit building and its construction method
JP4657968B2 (en) Steel structure floor structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180518