JP2018524750A - ストレス状態をモニターするための方法およびシステム - Google Patents

ストレス状態をモニターするための方法およびシステム Download PDF

Info

Publication number
JP2018524750A
JP2018524750A JP2018517461A JP2018517461A JP2018524750A JP 2018524750 A JP2018524750 A JP 2018524750A JP 2018517461 A JP2018517461 A JP 2018517461A JP 2018517461 A JP2018517461 A JP 2018517461A JP 2018524750 A JP2018524750 A JP 2018524750A
Authority
JP
Japan
Prior art keywords
heart rate
subject
sleep
knowledge base
mental state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018517461A
Other languages
English (en)
Inventor
フラックス,マシュー
ウォン,アーロン
プレイヤー,マイケル
ジョリー,トッド
スタンファー,ハンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medibio Ltd
Original Assignee
Medibio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medibio Ltd filed Critical Medibio Ltd
Publication of JP2018524750A publication Critical patent/JP2018524750A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/70ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/60ICT specially adapted for the handling or processing of medical references relating to pathologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Abstract

被験者(106)のストレス状態を評価するコンピュータ実行可能な方法は、被験者の心拍記録(200)を入力として受信する工程(302)を有する。心拍記録は、睡眠前時間間隔(208)、睡眠開始時刻(224)および睡眠終了時刻(226)を含む睡眠中時間間隔(209)、および、睡眠後時間間隔(210)を有する期間にわたって得られた心拍データサンプルのシーケンスを有する。少なくとも睡眠開始時刻および睡眠終了時刻は、心拍記録内で同定(304)される。その後、知識ベース(124)にアクセス(306)され、それは、被験者のトレーニングセットのエキスパート評価を介して得られたデータを含み、ストレス状態と心拍特性との間の関係のコンピュータモデルを具体化する。知識ベース内の情報を使って、被験者のストレス状態に関連する少なくともひとつのメトリックを計算し、かつ、メトリックに基づいてストレス状態の指標を生成するべく、コンピュータモデルが適用される(308)。ストレス状態の指標が出力として与えられる(310)。

Description

本願発明は、概してメンタルヘルスケアの分野に関し、特に、心拍の測定値に基づいてストレスレベルをモニターするための、関連するハードウエアおよびソフトウエアコンポーネントを有する方法およびシステムに関する。
ストレスは、脅しまたは挑戦する状況に直面したときのプレッシャーに対する人間の反応特性である。あるレベルのストレスは正常であり、ピークのパフォーマンスを達成することを可能にする際に有用である。人体は、ストレスが誘導された経験につづく、ある時間間隔の後で、通常の状態に戻るべきである。しかし、個人が周期的にまたは繰り返してストレス状況にさらされるとき、通常の状態へのこの回帰が抑制される。長続きするか、圧倒的なストレスは、健康、幸福、人間関係、仕事および人生の楽しみにネガティブなインパクトを与える。
過度または高いレベルのストレスは、不安、鬱病、心身障害、免疫抑制、エネルギーおよび生産性の一般的な損失、および、健康問題に関するものに影響を与える。職場において、これは、常習的欠勤および病気での出勤の増加を生じさせる。オーストラリアの労働安全省は、2008から2009年の間に、仕事関連のストレスによるコストは、年間約53億豪ドルと見積もった。ストレスによる経済的インパクトの米国での研究によれば、20世紀から21世紀にかけてコストは、年間2000から3000億ドルと見積もった。
トレーニングされたヘルスケア専門家は、ストレス関連の問題の典型的な症状を同定することができる。しかし、過剰なストレスのサインは、精神的および身体的健康のインパクトが重大になるまで、影響を受けた個人によってしばしば検出されない。また、雇用主、健康保険会社、および、より広い社会は、ストレスの早期の検出および管理から有意な経済的および社会的利益を達成することができるが、個人または会社がストレスレベルを管理しモニターすることができる有用なツールは、トレーニングされたヘルスケア専門家との定期的な検診を除けば、非常に限られている。
典型的にアンケートに基づく自己評価方法は、メンタルヘルスをモニターし管理する際に個人をアシストするように開発された。例えば、ホームズおよびレイによって1967年に最初に開発された社会的再適応評定尺度(SRRS)は、不健康な結果に寄与するストレスの多い43個の生活事象のリストを有する。しかし、ホームズおよびレイのストレススケールは、最近の主な生活事象の経験に基づくストレスに対して個人が晒されたことのみを同定する。ニューサウスウェールズ大学で開発された、抑鬱不安ストレス尺度(DASS)のような個人の現在の気分状態の評価を目指したアンケートは、気分の主観的な評価に基づいており、異なるメンタルヘルス状態の区別には適しているが、より深刻な状態に向かって有意に進行していないストレスレベル間の差を、日ごとにモニターすることはできない。
したがって、個人によって自己管理可能で、職場でサポート可能であり、客観的であり、かつ、異なるレベルのストレス間を差別化でき、問題の発生の早期同定を可能にするストレスレベルをモニターしかつ管理するための新規な方法およびシステムを開発することが所望される。
本願発明は、これらの要求に応えるべく考案されたものである。
ひとつの態様において、本願発明は、被験者の精神状態を評価するコンピュータ実行可能な方法を与え、当該方法は、
睡眠前時間間隔、睡眠開始時刻および睡眠終了時刻を含む睡眠中時間間隔、および、睡眠後時間間隔を有する期間にわたって得られた心拍データサンプルのシーケンスを含む被験者の心拍記録を、入力として受信する工程と、
少なくとも睡眠開始時刻および睡眠終了時刻を、心拍記録内で同定する工程と、
被験者のトレーニングセットのエキスパート評価を介して得られたデータを含む知識ベースにアクセスし、メンタル状態と心拍特性との間の関係のコンピュータモデルを実行する工程と、
患者のメンタル状態に関連する少なくともひとつのメトリックを計算し、かつ、当該メトリックに基づいてメンタル状態の指標を生成するべく、知識ベース内の情報を使ってコンピュータモデルを適用する工程と、
出力として、メンタル状態の指標を与える工程と
を有する。
本願発明の実施形態は、機械学習方法論を通じて生成された情報を含むところのエキスパートシステムを有する。例えば、知識ベースは、トレーニングセットを有する複数の被験者に対して測定済み心拍データを、該トレーニングセットの各々の被験者のエキスパート評価の結果とともに実行してもよい。この実施形態において、知識ベースは、対応するコンピュータモデルが後続の見えないテスト被験者のエキスパート評価を予測するのに採用可能な形式で、トレーニングセット内の各被験者のメンタル状態と、測定済みの心拍特性との間の関係に関連する顕著な情報を補足する。
本願発明の実施形態に従い、メンタル状態の指標は、被験者によって経験されたストレスレベルの指標を有する。例えば、メンタル状態の指標は、正常からわずかなストレスレベル、適切なストレスレベル、および、深刻なストレスレベルのような3つのストレスレベル間を区別する。睡眠開始時刻および睡眠終了時刻を同定することは、不安入力データの使用に関連する。ある実施形態において、例えば、入力された心拍記録は、加速度計のような活動モニターを使って計測される被験者の活動の記録によって達成される。
ある実施形態において、知識ベースは、正常または低レベルのストレスを経験しているとして、エキスパート評価者によって評価された人のトレーニングセット内の被験者の、スケーリングされかつ規格化された、心拍特性を平均することにより得られる心拍特性テンプレートを含んでよい。知識ベースは、テンプレート特性から正常として評価されたトレーニングセット内の被験者の心拍特性の平均ディスタンスの測定値を含む正常重心値をさらに有する。知識ベースは、テンプレート特性から正常重心に対するディスタンスの変化を表し、かつ、メンタル状態の異なる指標間の分類境界を画定する、セグメンテーションポイントのセットをさらに有する。例えば、2つのセグメンテーション値は3つの異なるストレスレベルの間の区別を与える。
代替的実施形態において、被験者の心拍特性は、複数の関連メトリクスを計算するために処理される。ある実施形態において、4つのメトリクス、すなわち、平均起床心拍、平均起床心拍と平均睡眠心拍との間の比、睡眠中時間間隔の最初の半分の間の心拍のスロープ、および、睡眠中時間間隔の残りの半分の間の心拍のスロープが採用されてもよい。理解されるように、これらの特定の4つのメトリクスは、区分線形心拍特性モデルを、被験者の受診した心拍記録にフィッティングすることにより計算される。
複数のメトリクスを採用する知識ベースは、上述したように、正常または低ストレスレベルを有するとしてエキスパートによって評価された被験者に基づいたテンプレート特性に対応するメトリクス値のアレイを含む。知識ベースは、正常または低ストレスレベルを有するとしてエキスパートによって評価されたすべての被験者に対するそれぞれのメトリクスの間の差の大きさを平均することにより計算される、複数のメトリクスの各々に対応する正常重心値のアレイ、および、同等のテンプレート特性メトリクスをさらに有する。被験者の受信された心拍記録に対する計算されたメトリクスと、対応する正常重心値との間の比較は、正常なメンタル状態からの患者のメンタル状態のディスタンス値を計算するのに使用されてよい。知識ベースは、メンタル状態分類間の境界に対応するディスタンス値を定義するセグメンテーション値のアレイをさらに含んでよい。
他の実施形態において、k個の最近傍(k−NN)計算モデルに基づいたメンタル状態分類が採用される。この実施形態において、知識ベースは、(M+1)次元ベクトルのアレイを含み、ここで、Mは、採用される複数のメトリクスの数である。各ベクトルは、トレーニングセット内の被験者に対応し、計算されたメトリクスの各々に対する値および被験者の対応するエキスパート評価の値を有する。知識ベースはまた、最近傍パラメータKの数の最適値を含む。
k−NNコンピュータモデルにおいて、被験者のメンタル状態の評価は、受信した心拍記録に基づく複数のメトリクスを計算し、かつ、複数のメトリクスによって定義されるM次元空間内でトレーニングセットからK個の最近傍を決定することにより実行される。K個の最近傍に関連するエキスパート評価はその後、被験者のメンタル状態の指標を生成するのに使用される。ある実施形態において、投票システムが採用される。ここで、被験者のメンタル状態の指標は、トレーニングセットから同定されたK個の最近傍に関連して最も頻繁に発生するメンタル状態として生成される。
他の態様において、本願発明は、被験者のメンタル状態を評価するためのコンピュータ実装システムを与え、当該システムは、
少なくともひとつのマイクロプロセッサと、
被験者のトレーニングセットのエキスパート評価を通じて得られるデータを含む知識ベースを有し、メンタル状態と心拍特性との間の関係の計算モデルを実行する少なくともひとつの不揮発性格納デバイスと、
マイクロプロセッサに動作的に関連づけられた少なくともひとつのコンピュータ読み取り可能なメモリデバイスと、
マイクロプロセッサと動作的に関連づけられた入力/出力インターフェースと、
を有し、
メモリデバイスは、マイクロプロセッサによって実行されたとき、以下の方法をマイクロプロセッサに実行させるコンピュータ読み取り可能なインストラクションコードを含み、当該方法は、
入力/出力インターフェースを通じて、睡眠前時間間隔、睡眠開始時刻および睡眠終了時刻を有する睡眠中時間間隔、および睡眠後時間間隔を含む期間にわたって得られた心拍データサンプルのシーケンスを有する被験者の心拍記録を受信する工程と、
少なくとも睡眠開始時刻および睡眠終了時刻を心拍記録内で同定する工程と、
被験者のメンタル状態に関連する少なくともひとつのメトリックを計算し、かつ、メトリックに基づいてメンタル状態の指標を生成するべく知識ベース内の情報を使って計算モデルを適用する工程と、
入力/出力インターフェースを通じて、被験者のメンタル状態の指標を与える工程と
を有する。
入力/出力インターフェースは、インターネットのようなワイドエリアネットワークへのアクセスを与えるネットワークインターフェースであってよい。
本願発明のある実施形態において、被験者の心拍記録は、睡眠前時間間隔、睡眠中時間間隔、および、睡眠後時間間隔を含む期間の間に、被験者によって着用される心拍モニターデバイスを通じて得られる。心拍モニターは、スマートフォン、タブレットコンピュータ、ノートブックコンピュータ、または、デスクトップコンピュータなどのネットワーク接続デバイスと通信するために、ブルートゥース(登録商標)インターフェースのような無線インターフェースを有する。代替的に、または、付加的に、心拍モニターデバイスは、ネットワーク接続デバイスと接続するために、USBインターフェースのような有線インターフェースを有して良い。
心拍記録の測定実行中に、被験者をアシストするために、ネットワーク接続デバイス上で実行するアプリケーションが与えられる。アシストは、被験者に、心拍モニターデバイスを着用させるインストラクション、および、心拍モニターデバイスからネットワーク接続デバイスへ測定済み心拍データを転送させるインストラクションを与えることを含む。
被験者の心拍記録は、インターネットのようなワイドエリアネットワークを介して、ネットワーク接続デバイスからメンタル状態評価システムへ転送される。
本願発明のさらなる特徴および利点は、上述し、または、特許請求の範囲に定義されるように、本願発明の範囲を制限しない例示した以下の実施形態から明確となる。
本願発明の実施形態は、類似の特徴を同じ符号で示す添付図面を参照して説明される。
図1は、本願発明を実施する被験者のメンタル状態を評価するためのシステムの概略図である。 図2Aは、本願発明を実施する心拍および活動記録の例を示すグラフである。 図2Bは、本願発明を実施する心拍および活動記録の例を示すグラフである。 図3は、本願発明を実施するメンタル状態を評価する方法のフローチャートである。 図4Aは、本願発明を実施する代替的なコンピュータモデルに対応するフローチャートである。 図4Bは、本願発明を実施する代替的なコンピュータモデルに対応するフローチャートである。 図4Cは、本願発明を実施する代替的なコンピュータモデルに対応するフローチャートである。 図5Aは、図4Aのコンピュータモデルに対応する知識ベースのコンテンツを示すブロック図である。 図5Bは、図4Bのコンピュータモデルに対応する知識ベースのコンテンツを示すブロック図である。 図5Cは、図4Cのコンピュータモデルに対応する知識ベースのコンテンツを示すブロック図である。 図6は、本願発明を実施するコンピュータ実行のメインソフトウエア処理コンポーネントを示すブロック図である。 図7Aは、図4Aのコンピュータモデルに対応する知識ベース構築方法のフローチャートである。 図7Bは、図4Bのコンピュータモデルに対応する知識ベース構築方法のフローチャートである。 図7Cは、図4Cのコンピュータモデルに対応する知識ベース構築方法のフローチャートである。 図7Dは、本願発明を実施するコンピュータモデルの例示的パフォーマンスを示す。 図8は、本願発明を実施するスマートフォンアプリケーションの例示的スクリーンディスプレイを示す。 図9は、本願発明を実施するスマートフォンアプリケーションの例示的スクリーンディスプレイを示す。 図10は、本願発明を実施するスマートフォンアプリケーションの例示的スクリーンディスプレイを示す。 図11は、本願発明を実施するスマートフォンアプリケーションの例示的スクリーンディスプレイを示す。 図12は、本願発明を実施するスマートフォンアプリケーションの例示的スクリーンディスプレイを示す。
図1は、本願発明を実施するオンラインシステム100を示すブロック図である。システム100は、それぞれがひとつ以上のコンピュータデバイスを有するシステムの異なるコンポーネント間で通信するために、典型的にインターネットであるワイドエリアネットワーク102を使用する。
システム100は、評価サーバー104および遠隔に配置された評価被験者106を有する。被験者106は、心拍モニター108を備え、それは、スマートフォン110のようなひとつ以上の携帯デバイス、および/または、パーソナルコンピュータ112のようなひとつ以上のデスクトップデバイスと通信することが可能である。心拍モニター108とスマートフォン110との間の通信は、好適には、ブルートゥース(登録商標)のような無線通信チャネルを介した通信である。心拍モニター108とデバイス110、112との間でデータの転送に適した通信チャネルの他のタイプには、WiFi(登録商標)、有線イーサーネット(登録商標)、および、USBのような他の有線接続形式が含まれる。
ここで説明する実施形態において、心拍モニター108によって収集される心拍データは、スマートフォン110またはデスクトップPC112のような他のユーザデバイスに転送され、その後、評価サーバー104に転送される。しかし、本願発明の他の実施形態において、スマート心拍モニター108は、WiFiインターフェースのようなネットワークインターフェースを含んでよく、インターネット102を介して評価サーバー104と接続し、直接データを転送することが可能である。他の実施形態において、評価サーバー104の機能は、被験者のPC112上にインストールするよう作成されたソフトウエアを通じて、評価被験者106の位置で与えられてもよい。したがって、システム100のオンラインアーキテクチャーは、現時点では有利と考えられるが、本願発明が実行される唯一の構成ではない。
評価サーバー104は、概してひとつ以上のコンピュータを有し、その各々は少なくともひとつのマイクロプロセッサ114を含む。コンピュータおよびプロセッサ114の数は、概して、システムに要求される処理能力に依存し、それは、予期されるワークロード、すなわち、サーバー104へのアクセスを有する評価被験者の数および処理すべきデータ量に依存する。ある実施形態において、サードパーティのクラウドコンピューティングプラットフォームがサーバー104として使用され、それにより、物理的ハードウエアリソースと置換可能となり、要求に応じてダイナミックに変更可能となる。しかし、説明の単純化のために、例示する評価サーバー104は単一のマイクロプロセッサ114を有する単一のコンピュータを含むと仮定する。
マイクロプロセッサ114は、不揮発性メモリ/ストレージデバイス116とインターフェースするか、さもなければ動作的に関連づけられる。不揮発性ストレージ116は、ハードディスクドライブであってよく、および/または、読み取り専用メモリ(ROM)、フラッシュメモリ等のような固体不揮発性メモリを含む。マイクロプロセッサ114はまた、サーバー104の動作に関連するプログラムインストラクションおよび一時データを含むランダムアクセスメモリ(RAM)のような揮発性ストレージ118ともインターフェースする。従来の構成において、格納デバイス116は、オペレーティングプログラムおよびデータ、ならびに、評価サーバー104の意図した機能に必要なアプリケーションソフトウエアを実行可能なものを含む。図示した実施形態において、ストレージデバイス116は、プロセッサ114によって実行された時、メンタル状態評価方法、特に、本願発明を実施する被験者106のストレスレベルを評価する方法の実行に関連する動作を、評価サーバー104に実行可能とするプログラムインストラクションを含む。動作中、ストレージデバイス116上のインストラクションおよびデータは、要求を実行するために、揮発性メモリ118へ転送される。
マイクロプロセッサ114は、従来の方法でネットワークインターフェース120と動作的に関連づけられる。ネットワークインターフェース120は、サーバー104と被験者デバイス110、112との間の通信用に採用されたインターネット102のようなひとつ以上のデータ通信ネットワークへのアクセスを容易にする。
使用中、揮発性ストレージ118は、本願発明の特徴を実施する処理および動作を実行するように構成されたプログラムインストラクションに対応するボディ122を有し、それは、図3から7に示すようなフローチャート、データ構造、およびソフトウエアアーキテクチャーを参照して以下で説明されるさまざまな処理ステップを備える。
また、説明する実施形態において、プログラムインストラクション122は、被験者のスマートフォン110上で実行されるアプリケーションのようなひとつ以上のクライアントアプリケーションとの通信を実行するインストラクションを含む。これらの通信動作は、心拍モニター108を使って記録された被験者106の心拍記録を評価サーバー104によって処理のために受信可能とする。
プログラムインストラクション122は、さらに、ウエブサーバーアプリケーションを採用するインストラクションを含んでよい。不揮発性ストレージ116および揮発性ストレージ118内に格納されたデータは、評価サーバーへのウエブベースインターフェースを容易にする被験者デバイス上に与えられ、および/または、実行するためのウエブベースコード(例えば、HTMLまたはJavaScript(登録商標))を含む。例えば、ウエブベースインターフェースは、任意のデバイス(スマートフォン110またはデスクトップPC112を含む)から評価サーバー104への心拍記録データのアップロードを可能にする。ウエブインターフェースは、被験者106に、デバイス110および/または112を通じて、評価サーバー104によって格納されかつ処理された自身のデータにアクセスすることを可能にする。
システム100はまた、被験者のひとつ以上のトレーニングセットのエキスパート評価を通じて得られたデータを使って、および、メンタル状態(すなわち、被験者のストレスレベル)と心拍特性との間の関係のコンピュータモデルを採用する機械学習方法論を通じて生成された情報を含む知識ベース124を有する。
デシジョンツリー学習、関連ルール学習、人工神経ネットワーク、インダクティブロジックプログラミング、サポートベクトルマシン、クラスタ解析、ベイジアンネットワーク、レインフォース学習、リプレゼンテーション学習、類似学習、スパース辞書学習、および/または、遺伝子アルゴリズムを含むさまざまな機械学習方法論が、本願発明の異なる実施形態において採用可能である。
特に、図4から7を参照して説明する実施形態は、メトリック学習およびクラスタリングを含む技術を採用する。しかし、これらのアプローチは、例示に過ぎず、他の学習技術およびコンピュータモデルを本願発明の態様から除外するものではない。
知識ベース124は、不揮発性ストレージ116内に含まれるか、評価サーバー104に直接接続されるか、または、遠隔的に配置された別個のストレージデバイス内に格納されてよい。特に、知識ベース124は非常に大量のトレーニングおよび履歴被験者データを含むよう極限的に増加しているので、知識ベース124にとって、大規模データセンターおよび/またはひとつ以上の分散データベース(例えば、クラウドストレージサービス)内に格納されるのが有利である。以下で説明するように、要求されたデータが評価サーバー104による処理のためにアクセス可能である限り、知識ベース124の厳密な形式および位置は重要ではない。
図2Aにおいて、被験者106の例示的な心拍記録のグラフが示されている。水平軸202は時間を示し、垂直軸は毎分の平均心拍を示す。したがって、グラフ200によって表された被験者の心拍記録は、水平軸202上に示す全期間にわたって一分間に一回の割合で取得されかつ記録された、心拍データサンプルのシーケンスを含む。この特定の例において、心拍記録は、24時間の期間をカバーするが、本願発明の実施形態は、睡眠前時間間隔208、睡眠中時間間隔209、および、睡眠後時間間隔210を含む全記録206の一部のみを要求してもよい。
ある実施形態において、睡眠前時間間隔208、睡眠中時間間隔209および睡眠後時間間隔210は、自動的に同定される。睡眠中時間間隔209の自動的同定のひとつの技術は、心拍モニター108、または、被験者106によって着用される他の着用可能なデバイス内に組み込まれた加速度計のような活動モニターの使用を通じてなされる。図2Bは、図2Aの心拍記録に対応する、活動モニターなどを使った被験者の活動を示すグラフ212である。水平軸216は時間を示し、垂直軸216は記録時間間隔の各々の間に活動モニターによって検出された活動レベルに基づいて計算された活動係数である。活動記録のトレース218は、3つの非常に異なる時間間隔、すなわち、比較的大きい活動の第1ウォーキング時間間隔220、ほとんどまたは活動がない睡眠時間間隔221、および、大きい活動の第2ウォーキング時間間隔222である。
活動の大きい時間間隔220、222と、活動の小さい時間間隔221との間の極端に異なる遷移は、睡眠前時間間隔208、睡眠中時間間隔209、睡眠後時間間隔210を分離して、睡眠開始時刻224および睡眠終了時刻226の比較的単純かつ正確な抽出を可能にする。
活動レベルは、睡眠開始時刻224および睡眠終了時刻226を同定するひとつのメカニズムを提供するが、他の方法が代替的な実施形態で使用可能である。例えば、グラフ200より明らかなように、睡眠中時間間隔209は、心拍の減少に概ね対応している。したがって、心拍記録206の適切な処理は、睡眠開始時刻224および睡眠終了時刻226を同定するのをアシストするために使用され得る。付加的に、または、代替的に、被験者106は、睡眠開始時刻224および終了時刻226の検出をアシストするために就寝および起床時刻の推定を与える。したがって、本願発明の異なる実施形態において、十分な正確性および信頼度を有する遷移時刻を同定するためにさまざまな技術が利用可能であることが理解されよう。
図3は、本願発明の実施形態に従う、被験者106のメンタル状態、すなわち、ストレスレベルを評価するための方法を示すフローチャート300である。最初に、ステップ302において、被験者の心拍記録を入力として受信する。最初の処理304において、睡眠開始時刻224および睡眠終了時刻226を有する睡眠中時間間隔209を同定する。
評価サーバー104のプロセッサ114によって実行される適切なプログラムインストラクションを通じて実行される評価方法300は、被験者のストレスレベルの評価を実行するために心拍記録をさらに解析するよう処理する。これを実行するために、ステップ306において知識ベース内の情報にアクセスする。知識ベースの例示的コンテンツは、図5Aから図5Cを参照して以下で説明され、知識ベースを構築するための対応する例示的トレーニング方法は図7Aから7Cを参照して説明される。この目的のために、知識ベース内でアクセスされる情報は、被験者のトレーニングセットのエキスパート評価に基づくものであり、知識ベースコンテンツに基づいて、被験者106のメンタル状態を推定することを、評価サーバー104が可能となるように解釈されるということを理解すべきである。概して、これは、被験者106のメンタル状態と関連するひとつ以上のメトリクスを計算し、これらのメトリクスに基づいてメンタル状態の指標を生成するプロセス308に関連する。
ステップ310において、メンタル状態、すなわち、ストレスレベルの結果指標、例えば、メンタルヘルス指標が出力される。出力結果は、不揮発性ストレージ116、知識ベース124、または、他のデータベース内の被験者記録内に格納される。代替的に、または付加的に、生成された指標は、スマートフォン110またはデスクトップPC112のような被験者のデバイス上で実行可能なソフトウエアを使って、ウエブインターフェース、または、アプリケーションインターフェースを通じて、被験者へ渡される。
図4Aから4Cは、本願発明を実施する3つの代替的なコンピュータモデルに対応するフローチャートである。図5Aから5Cは、それぞれ、これらのモデルに対する知識ベースの対応するコンテンツを示すブロック図である。
第1のモデルに従い、テンプレートモデルの用語は、メトリックを計算し、フローチャート400および知識ベースコンテンツ500によって表される被験者のストレスレベルの指標を生成するプロセスである。特に、知識ベース124は、正常テンプレート502を含むコンテンツ500を有する。正常テンプレート502は、被験者にストレスがないか、わずかなストレスを感じている状態に対応する代表記録である。正常テンプレート502を得る方法は、図7Aを参照して以下で詳細に説明される。知識ベースコンテンツ500はまた、正常重心と呼ばれる値504を有する。正常重心504は、エキスパート評価者によって診断されるような、トレーニングセット内の被験者がストレスを感じないか、わずかにストレスを感じている状態と、正常テンプレート502との間の典型的な差を表す数である。図4Aを参照して、ステップ402において、評価被験者106に対してメトリックが計算され、それは、被験者の心拍記録と、正常テンプレート502との間の差の計測値を有する。ステップ404において、正常重心504とステップ402で計算されたメトリックとを比較することにより、分類が実行される。正常からわずかなストレス状態、適度なストレス状態、または、深刻なストレス状態のひとつに被験者106を分類するために、差の大きさが使用される。分類は、差の大きさを、知識ベース124のコンテンツ500内のセグメンテーション値506のセットと比較することにより実行される。
フローチャート406および対応する知識ベースコンテンツ508は、マルチパラメータ/ディスタンスモデルと呼ばれる第2のコンピュータモデルを示す。ここで説明するマルチパラメータモデルは、被験者106の入力された心拍記録から計算される4つのメトリクスを使用している。この4つのメトリクスは、
・平均起床心拍、すなわち、睡眠前時間間隔208と睡眠後時間間隔210との間の平均心拍、
・平均起床心拍と、睡眠中時間間隔209の間の平均心拍との比として計算される心拍の比、
・睡眠中時間間隔209の最初の半分の間の被験者の心拍のスロープの計測値(すなわち、時間の関数としての変化)である第1スロープメトリック、および
・睡眠中時間間隔209の残りの半分の間の心拍のスロープの計測値である第2スロープメトリック、である。
理解されるように、これら4つのパラメータは、一定のウォーキング心拍値および睡眠中時間間隔209の最初の半分中での第1スロープメトリックにしたがって、および睡眠中時間間隔209の残りの半分の間の第2スロープメトリックにしたがって変化する睡眠心拍値を有する患者の心拍の区分的線形表示を完全に定義する。本願の発明者らは、この心拍記録の特定のパラメータ化が、トレーニングセット内の被験者のエキスパート評価のアシストとともに、ストレスレベルの機械学習および予測に対する有効な根拠を与えることを見いだした。
したがって、ステップ408、410、412、および、414において、上述した4つのメトリクスが計算される。知識ベース124のコンテンツ508は、正常テンプレートに対応する4つのメトリクス値、すなわち、正常からわずかにストレスを感じる状態のトレーニングセット内の被験者の平均値を有するアレイ510を含む、知識ベースコンテンツ508は、各メトリックに対して対応する正常重心値、すなわち、アレイ510内の平均値と、トレーニングセット内の実際の個々の被験者のすべてとの間の代表差のアレイ512をさらに有する。ステップ416において、被験者106の心拍記録から計算されたメトリクスは、ステップ408から414において、対応する正常重心値512と比較される。差の大きさは、単一のディスタンスを計算するよう組み合わされ、その後、それは知識ベースコンテンツ508内のセグメンテーション値514のセットと比較される。これらのセグメント値は被験者106の状態を、正常からわずかなストレス状態、適度なストレス状態、または、深刻なストレス状態に分類する。
第3のコンピュータモデルに従う被験者106のストレスレベルの分類方法がフローチャート418に示されている。方法は、ステップ420、422、424、および426においてそれぞれ計算される上述した4つのメトリクスに基づいている。ステップ428において、分類はk個の最近傍(k−NN)コンピュータモデルに従って実行される。したがって、このモデルは、マルチパラメータ/k−NNモデルと呼ばれる。
マルチパラメータ/k−NNモデル用の知識ベース124のコンテンツ516が、図5Cに示されている。コンテンツ516は、(M+2)次元アレイ518を有する。アレイ518は、トレーニングセット内の各被験者に対する(M+1)次元ベクトルを含み、ここでMは、マルチパラメータモデル内のメトリクスの数、すなわち、本例ではM=4である。各ベクトルは、個々のトレーニングセットの被験者に対して、エキスパート評価者によって決定されるような対応する評価レーティングとともにM個のメトリクスの計算値を含む。メトリクス値は、M次元のメトリック空間内の点を定義するように関連づけられ、一方、エキスパートレーティングはその点に関連する値を与える。
知識ベースコンテンツ516はまた、最適化された値Kを定義する整数である値520を含む。プロセス418内の分類ステップ428は、ステップ420から426において計算された4つのメトリクスによって定義されたメトリック空間内のポイントへアレイ518からK個の最近傍を見つける工程を有する。このK個の最近傍に関連するエキスパートレーティングの値は、被験者106のストレスレベルを分類するのに使用される。ひとつの実施形態において、多数決アルゴリズムが採用され、それにより、被験者のストレスレベルはK個の最近傍のもっとも頻繁なエキスパートレーティングにしたがって分類される。したがって、k−NNアルゴリズムは、M次元メトリック空間内に存在する類似のエキスパート評価のクラスタに基づいて効果的に動作する。
図6に、本願発明を実施するコンピュータ実行可能なメインソフトウエア処理コンポーネントを示すブロック図600が示されている。入力された心拍記録602は、睡眠開始時刻および睡眠終了時刻を同定するために、睡眠検出モジュール604によって処理される。記録は、付加的に、モジュール606においてリスケーリングすることによってさらに処理されてもよい。リスケーリングモジュール606は、リスケールされた記録を取得するために入力データ602を処理する。ここで、心拍の値は0と1との間で規格化され、時間は標準的スケール、例えば、0から1000の時間ユニットに調節される。上述した実施形態において、リスケーリングはテンプレートモデルに対して要求され、正常テンプレート502と比べられているすべての心拍記録の中に類似性を保証することは重要である。リスケーリングは、本願発明の代替的実施形態に従う他のメトリクスの計算には使用可能であるが、上述した複数パラメータモデルに対して要求されない。
メトリック計算モジュール608は、本願発明の実施形態で使用される特定のコンピュータモデルに関連した関連メトリックまたはメトリクスを計算する。例えば、テンプレートモデルにおいて、メトリック計算モジュール608は、被験者106の心拍記録と正常テンプレート502との間の差を表す値を計算する。複数パラメータモデルにおいて、メトリック計算モジュール608は、図4Bを参照して上述した4つのメトリクスを計算する。
ある実施形態において、メトリックまたはメトリクスを計算するために、メトリック計算モジュール608は知識ベース124にアクセスする。例えば、テンプレートモデルにおいて、メトリック計算モジュール608は、正常テンプレート502を知識ベース124から検索する。
決定モジュール610は、特定のコンピュータモデルに関連するルールにしたがって、被験者106のストレスレベルを分類する。例えば、テンプレートモデルおよびマルチパラメータ/ディスタンスモデルにおいて、決定モジュール610は、計算されたディスタンスメトリックをセグメンテーション値506、514と比較することにより被験者106のストレスレベルを分類する。
マルチパラメータ/k−NNモデルにおいて、決定モジュール610は、K個の最近傍の最も頻度の高いエキスパート評価レーティングに従い、被験者106のストレスレベルを分類する。
典型的に、決定モジュール610は、決定基準を検索するために、知識ベース124へのアクセスを要求する。出力ストレスレベル指標612が決定モジュール610から生成される。
図7Aは、テンプレートモデルに従って、知識ベース構築用のアルゴリズムに対応するフローチャート700を示す。このアルゴリズムに対して、および、図7Bおよび7Cを参照して以下で説明する他の2つのアルゴリズムに対して、前提条件は、知識ベース124がトレーニング記録のデータセットを有するということである。各トレーニング記録は、トレーニングされた医師等のエキスパートによって実行される関連する診断/評価とともに、テスト被験者の心拍記録を有する。この評価は、テスト被験者の心拍記録のエキスパートのレビューに基づいて実行されるか、または、各テスト被験者とエキスパート評価者との間の面接等の他の診断手段によって得られてよい。トレーニングセット内のデータに関連するこれらの実際の評価は、知識ベース内の一次的なエキスパート知識を与える。この情報はその後、このエキスパートの使用するコンピュータモデルを構築するのに使用され、その後それはメンタル状態、すなわち、被験者の入力心拍記録に基づく構造の未知の被験者106のストレスレベルを予想するために使用される。
テンプレートトレーニングアルゴリム700に戻って、ステップ702において、正常からわずかなストレスレベルの評価に関連するすべてのテスト被験者データが知識ベース124から検索される。各記録は、図2Aのグラフに示すような心拍データサンプルのシーケンスを有する。すでに説明したように、ステップ708において、検索された正常データの記録はリスケーリングされ、その結果、心拍は0と1との間で規格化され、睡眠中時間間隔は共通の時間スケールに規格化される。
ステップ706において、検索されリスケーリングされたテスト被験者記録のすべての平均が計算される。これは、サンプル毎に平均化され、それは、正常テンプレートとして知られる、単一の代表心拍記録の生成をもたらす。
ステップ708において、検索された正常テスト被験者記録の各々に対して、正常テンプレートからのディスタンスの計測値が計算される。任意の適切なディスタンス計測方法が使用可能であり、例示的実施形態において、最小二乗ディスタンスが採用される。
ステップ710において、すべてのディスタンス計測値の平均が計算される。この平均値は、正常重心と呼ばれる。
テンプレートモデルは、単一のディスタンス計測値、および、特に正常重心と、被験者106の続く心拍記録に対する同様のディスタンス計測値との間の差が、被験者のストレスレベルを分類するのに使用されてもよい。したがって、セグメンテーション値のセットは、正常からわずかなストレス状態、適度なストレス状態、および深刻なストレス状態との間の境界を画定するのに要求される。この3つのレベルの分類に対して、2つのセグメンテーション値が要求され、それはステップ712で計算される。
本願の発明者らは、異なる提案ストレスレベル分類の間には明確な境界が存在せず、ある混同が存在することを見いだした。しかし、概して、特定の被験者106に対する計算されたディスタンス値と正常重心との間のディスタンスがより大きい場合、被験者に対してより高いストレスがかかる傾向があることを発見した。したがって、ストレスレベルの間の境界を形成するセグメンテーション値を定義するために適当な統計的テクニックを使用する必要がある。ある実施形態において、この目的のために混合ガウスモデル(GMM)が使用される。
図7Bのフローチャートは、マルチパラメータモデル用の知識ベース構築アルゴリズムを示す。テンプレートモデルアルゴリズム700と同様に、アルゴリズム714は、ステップ716においてトレーニングセットから、正常からわずかなストレス状態の被験者に対するすべての記録を検索することにより開始される。4つのメトリックは、検索された記録のすべてに対して、および、ステップ718において計算されたメトリクスの対応する平均値に対して、計算される。
ステップ720において、検索した正常からわずかなストレスレベルのデータ記録の各々に対して、個々のメトリクスと対応する平均との間のディスタンスの計算値が計算される。この個々のディスタンス計測値のすべては、その後、ステップ722において、4つのメトリクスの各ひとつに対応する4つの正常重心のベクトルを生成するべく平均化される。
マルチパラメータ/ディスタンスモデルにおいて、被験者106の心拍記録に対して計算された個々の値のメトリクス間のディスタンスと、対応する正常重心値との間のディスタンスが計算され、その後、単一の距離計測値を形成するべく組み合わされる。このディスタンス計測は、個々の差の大きさの単純和、加重和、ユークリッド差、または他の任意の適当なディスタンス計測値であってよい。ディスタンスデータを単一のディスタンス計測値に単純化した後、ストレスレベル間の境界を画定するセグメンテーション値のセットがその後、テンプレートモデルとして決定される。セグメンテーション値のこの決定はステップ724において実行される。再び、ひとつの実際的なアプローチは、トレーニングデータセット内のデータのすべてを使い、すなわち、正常からわずかなストレス状態の被験者だけでなく、トレーニングセット内の適度なストレス状態および深刻なストレス状態の被験者のすべてに関連するディスタンス計測値を計算する混合ガウスモデルを採用することである。
図7Cに示すフローチャートは、マルチパラメータ/k−NNモデルに対する知識ベース構築アルゴリズムを示す。アルゴリズム726は、トレーニングセットをトレーニングおよびテストパーティションに分割することにより、ステップ728で開始される。例えば、トレーニングセット内の被験者記録の90パーセントは、トレーニング用に使用され、残りの10パーセントは既知のエキスパート評価に対するトレーニングの有効性をテストするためのものである。生成されたコンピュータモデルの有効性は、トレーニングおよびテストパーティションのサイズ、および、各パーティションを形成するテスト被験者の特定の組成に基づいてよい。したがって、トレーニングメンバーおよびテストパーティションのランダム選択、および/または、トレーニングメンバーおよび/またはテストパーティションとして特定の記録の選択を含む、異なるテクニックが、トレーニングセットをパーティション化するために使用されてもよい。以下でさらに説明するように、アルゴリズム726は、計算モデルの効果を最適化するために、トレーニングセットのリパーティション化を採用してもよい。
ステップ730において、Kの初期値(すなわち、k−NN計算で使用される最近傍の数)が選択される。任意の正の整数が選択可能であるが、概してK=1に設定するのは生産的ではない。K=1の場合、トレーニングパーティション内の各々の記録はメンタル状態のそれ自身の予測評価のみを決定し、したがって、それは正しいと保証されるからである。したがって、テストパーティション内の記録のような未知のデータに対する予測の品質に対する任意のコントロールを与えることなく、完璧な結果はトレーニングパーティションに対して達成される。
トレーニングおよびテストパーティションに基づいて結果を評価するための例示的実施形態で使用される品質測定値は、感度および特異性である。感度は、特定のレーティングの正しい分類の割合、例えば、コンピュータモデルによって適度なストレス状態にあるとして正しく同定された人に対する、適度なストレス状態にあるとエキスパートによって評価されたすべての被験者の割合として定義される。特異性は、特定の分類(例えば、適度なストレス状態)内のコンピュータモデルによって誤って分類された人に対する、その特定の分類内にはないとしてエキスパートによって評価されたすべての被験者の割合として定義される。
ステップ732において、したがって、現在の値Kに対して、トレーニングパーティション内のすべての記録に対する感度および特異性が計算される。トレーニングパーティション内の記録に関連する実際のメンタル状態のすべては既知であると仮定されているが、セットの特定のメンバーは、その最近傍によって多数得票されてもよいことに注意すべきである。トレーニングパーティションに対する感度および特異性の計算結果、および、特に100パーセント以下の感度の減少は、メトリック空間の正確な領域内で、トレーニングパーティションの選択されたメンバーが如何によくクラスタ化されているかの計測である。特に興味があるのは、異常値、すなわち、メトリック空間の関連する体積内の最近傍のすべてまたは大多数と異なるメンタル状態の関連評価を有する個々のデータポイントである。
ステップ734において、テストパーティションに対して感度および特異性が計算される。テストパーティション内の記録に関連するメンタル状態は既知ではなく、K個の最近傍分類ルールに従って予測される。その後、予測は、テストパーティションに対する感度および特異性を取得するために、実際のエキスパート評価と比較される。
ステップ736において、さらに異なるK値に対する感度および特異性を計算するステップ732および734を繰り返すか否かが決定される。もしこれが所望されれば、Kの値はステップ738で更新され、ステップ732および734が繰り返される。例えば、プロセスは、Kの値の範囲を通じてスイープするか、または、コンピュータモデルによって作成された予測の品質の計測値を最大化する値に集結するために、Kを調節するための最大化プロシージャを使用してよい。
特に、品質のひとつの計測値は、メンタル状態のすべての分類、すなわち、正常からわずかなストレス状態、適度なストレス状態、および深刻なストレス状態をまたいだ感度および特異性の平均である。トレーニングおよびテストパーティションをまたいだこの計測値を最大化することにより、Kの値は、それに対するモデルの予測が、将来の未知のデータ記録に対して、対応する感度で最適化されるように選択可能である。したがって、ステップ740において、Kの値は、この方法で選択される。結果は、Kの選択値とともに、選択されたトレーニングパーティションを有するモデルであり、それは、未知の心拍記録に関連するメンタル状態の予測に対するk−NNアルゴリズムで使用される。
k−NNアルゴリズムに関連するさらなる見地は、所与の品質のモデルに対して、より大きいK値は、小さいK値より、概してより安定かつ正確なモデルに対応するということである。これは、より大きいK値は、未知の記録の予測した分類を決定するのに使用されるより大きい最近傍の数と関連しているためである。他方で、極端に大きなK値に対しては、これが有意に特異性を減少させるため、高品質モデルは得られない。
しかし、全体として、相対的に大きいK値と組み合わせて、平均的に高い感度/特異性を生成するトレーニングパーティションを同定するために、トレーニングセットの異なる数のパーティションを有するアルゴリズムを実行することが所望される。したがって、ステップ742において、もしK値が小さすぎると考えられると、トレーニングセットはステップ744においてリパーティション化されてよく、ステップ730から740を繰り返すことにより、新しいパーティションを使ってKに対して新しい最適化が実行される。ステップ744におけるリパーティション化はランダムであってよく、または、決定論的であってもよい。例えば、決定論的リパーティション化は、トレーニングセット内の異常値を同定することに関し、それを選択的に除去するか、または、テストパーティションへ移動することに関する。また、決定論的およびランダムなパーティション化の組みあわせが採用されてもよい。例えば、トレーニングセットは、最初にメンタル状態の各々(すなわち、正常からわずかなストレス状態、適度なストレス状態、および、深刻なストレス状態)に対応する記録へパーティション化され、その後、すべてのストレスレベルが両方のパーティションに比例して表されることを保証するべく、同等の割合でトレーニングおよびテストパーティション内にこれらのサブセットの各々をランダムにパーティション化してもよい。また、リパーティションと同時に改良されたトレーニングパーティションを作成するために、適切な最適化テクニックが採用されてもよい。例えば、シミュレーションされたアニーリング、または、その他の適当な最適化テクニックが、利用可能なトレーニングセットにわたって分類の品質を最大化するために連続的パーティションを生成する際に使用されてもよい。
最終トレーニングパーティションおよびK値が選択されると、ステップ748において、知識ベースがこれらの値によって更新される。例示として、図7Dは、特定のトレーニングセットにわたって、アルゴリズム726の実行により得られる例示的な感度および特異性の棒グラムを示す。この場合、全体のトレーニングセットの記録の90パーセントが、トレーニングパーティション内に含まれ、残りの10パーセントがテストパーティション内に含まれる。この例において、K=6であり、異常値は、トレーニングおよびテストパーティションの両方をまたいで分布している。結果として、トレーニングおよびテストパーティションの両方内の3つのすべての分類にわたって、一定して高い平均感度および特異性が達成された。
左側の棒グラフ750は、トレーニングセットに対する感度よび特異性を示し、垂直軸752はパーセントを表す。棒グラフは、正常からわずかなストレス状態に対する感度754および特異性756を示し、適度なストレス状態に対する感度758および特異性760、および、深刻なストレス状態に対する感度762および特性764を示す。右側の棒グラフ766はテストパーティションに対する結果を示し、垂直軸768はパーセントを示す。この図は、正常からわずかなストレス状態に対する感度770および特異性772、適度なストレス状態に対する感度774および特異性776、深刻なストレス状態に対する感度778および特異性780を示す。
注目すべきは、両方の棒グラフ750、766において、得られた最高値は、両方のパーティションにおける深刻なストレス状態の特異性764、780に対してである。これは、コンピュータモデルが深刻なケースの分類をほとんど失敗しないことを暗示している。結果として、コンピュータモデルは、正常からわずかなストレス状態を、適度なストレス状態として、または、その逆として、分類失敗しやすい。得られた3つの結果から、分類ミスは、より高いストレス状態において少なくなると考えられる。それが自己評価用に使用されるか、および/または、ヘルスケアの専門家による評価および治療に関連して使用される場合、これは、コンピュータモデルの所望の性質である。すなわち、モデルにより、個人が、自身のストレスレベルをモニターおよび管理することを可能にし、ストレスレベルが長期間にわたって大きくなるとき、専門家の助けおよびサポートを探すことを薦めるよう使用可能である。
この点を考慮して、例えば、図1に示すシステム100を通じて、ストレス評価が個人により入手可能とすることが所望される。評価サーバー104は、上述したようなコンピュータモデルを実行する。評価被験者106は、適切なアプリケーションを実行するスマートフォン110を通じて、および/または、スマートフォン110またはPC112上のウエブインターフェースを通じて評価サーバー104にアクセス可能である。スマートフォン110を使ったアクセスは、スマートフォンアプリが心拍モニターデバイスと通信可能であり、測定時間間隔にわたってデータを収集し、かつ、生成された心拍データを評価サーバー104へ転送するように開発可能であるため、有利である。
したがって、図8は、本願発明を実施する適当なスマートフォンアプリケーションの例示的スクリーン表示を示す。ディスプレイ800は、アプリケーションへの誘導を与え、ユーザに、評価サーバー104への登録を可能にするタッチスクリーンボタン802、804(すなわち“新しいプロファイルを開始”)を与えるか、評価サーバー104へログイン(すなわち、“既存のプロファイルでサインイン”)することを可能にする。
図9は、例示的な他のスマートフォンアプリケーションのディスプレイ900を示し、それは、ユーザ106に対して、心拍モニターデバイス108を着用するインストラクション902を含む。ユーザが適当な心拍モニターデバイスを持っていない場合、タッチスクリーンボタン904は、例えば、評価サーバー104によって実行されるオーバーフォーム(図示せず)を通じて、または、インターネットに接続された他のイーコマースサーバー(図示せず)によって、心拍モニターデバイスが注文可能となるように与えられる。
図10は、スマートフォンアプリケーションの他の例示的ディスプレイ1000を示し、それは、例えば、ブルートゥース(登録商標)または他の無線接続を介して、心拍モニターデバイス108がうまく接触していることの指標1002、および、モニターデバイスによって測定されるような現在の心拍の代表値1004を含む。心拍モニターデバイス108への接続が確立されると、ユーザは、ボタン1006をタッチして、睡眠中時間間隔を含む期間にわって得られた心拍データサンプルのシーケンスを有する心拍記録の測定を開始する。当該期間は24時間、または、睡眠の開始および終了を同定可能にし、および、上述したアルゴリズムで要求されるような、解析されるべき起床心拍データを有する、十分な睡眠前時間間隔および睡眠後時間間隔を含むより短い時間間隔であってよい。
図11は、測定中のユーザ106に与えられる他の例示的なアプリケーションディスプレイ1100を示す。ディスプレイの上部領域1102は、現在の心拍、測定期間にわたる最小および最大心拍、ならびに、平均心拍を含む、キーデータのサマリを与える。ディスプレイの中央領域1104は、測定期間全体を通じた毎分平均心拍のグラフを示す。残りの測定時間はパネル1106に示されている。最後に、付加的なタッチスクリーンコントロールが、ディスプレイの下側領域1108に与えられ、ユーザ106は、ノートを追加し、測定を一時停止し、または中止することができる。
図12は、測定の完了および評価サーバー104による結果の解析がユーザ106に与えられるディスプレイ1200を示す。ディスプレイ1200は、測定期間にわたるストレスレベルの指標1202、および、結果の単純な言語による解釈および被験者106におけるこのストレスレベルのインパクト傾向を含む。最後に、アプリケーションは、ディスプレイのタブ領域1206を与え、それによりユーザ106は、ストレスレベルを管理する際に補助となるさまざまなリソースへの単純なアクセスを与える。
要約すると、本願発明の実施形態は、サンプルおよび非侵襲的心拍測定を通じて、個々の被験者が経験するメンタル状態および特にストレスレベルの測定、モニターおよび評価を可能する方法およびシステムを提供する。日常的活を普通にこなしながら、個人が自宅で測定を実行可能なようにオンラインサービスが提供される。評価は例えば、エキスパートの評価情報を有する知識ベースを使って、インターネットを介してアクセス可能なサーバー上でコンピュータモデルを使って実行され、自動的に生成される。
本願発明の実施形態にしたがって与えられるサービスおよびアプリケーションは、個々の被験者に利用可能であり、または、従業員の健康を監視するために雇用主に利用可能であってもよい。特に、個人および/または従業員は、自身のストレスレベルをチェックすることができ、過剰または大きなストレスのリスクにあることの早期の警告を受けることができる。また、例えば、スマートフォンアプリケーションまたはウエブインターフェースを介して、評価サーバー104はチャネルとして使用され、教育資料を提供し、かつ、評価されたストレスレベルに基づく個人に対するサポートを提供する。該サポートは、一般開業医または他の専門医の受診を推薦することを含む。評価サーバー104は履歴を保持し、インターネットを介してこれを入手可能とし、個人は、ストレスレベルを連続的にモニターすることができ、その進行をチェックすることができる。
本願発明の潜在的な利益は、特定の職種および役職に関連するストレスレベルの改良した分析を有し、常習的欠勤および病気出勤を減少させることによる生産性の向上、および、ヘルスケアシステムに対するクレームおよびプレッシャーの減少をもたらす。したがって、個人、使用者および社会が、多くの利益が得られる。
特定の実施形態を使って、例示的に説明されてきたが、本願発明の態様の範囲内で多くの変更が可能であることは当業者の知るところである。したがって、例示的実施形態は、限定するものではなく、発明の範囲は添付した特許請求の範囲により画定されるべきである。

Claims (20)

  1. 被験者のメンタル状態を評価するコンピュータ実行可能な方法であって、当該方法は、
    睡眠前時間間隔、睡眠開始時刻および睡眠終了時刻を含む睡眠中時間間隔、および、睡眠後時間間隔を有する期間にわたって得られた心拍データサンプルのシーケンスを有する前記被験者の心拍記録を入力として受信する工程と、
    少なくとも前記睡眠開始時刻および前記睡眠終了時刻を、前記心拍記録内で同定する工程と、
    前記被験者のトレーニングセットのエキスパート評価を介して得られたデータを含む知識ベースにアクセスし、メンタル状態と心拍特性との間の関係のコンピュータモデルを具体化する工程と、
    前記被験者のメンタル状態に関連する少なくともひとつのメトリックを計算し、かつ、前記メトリックに基づいてメンタル状態の指標を生成するべく、前記知識ベース内の情報を使って、前記コンピュータモデルを適用する工程と、
    前記メンタル状態の指標を出力として与える工程と、
    を備える方法。
  2. 前記メンタル状態の指標は、前記被験者が経験するストレスレベルの指標である、ことを特徴とする請求項1に記載の方法。
  3. 前記メンタル状態の指標は、3つのストレスレベルの間を区別する、ことを特徴とする請求項2に記載の方法。
  4. 前記知識ベースは、テンプレート心拍特性を有する、ことを特徴とする請求項2に記載の方法。
  5. 前記テンプレート心拍特性は、正常または低レベルのストレス状態としてエキスパート評価者によって評価された前記トレーニングセット内の被験者の、スケーリングされかつ規格化された心拍特性を平均することにより得られる、ことを特徴とする請求項4に記載の方法。
  6. 前記知識ベースは、正常重心値をさらに有し、前記テンプレート特性から正常として評価されたトレーニングセット内の被験者の心拍特性の平均ディスタンスの計測値を有する、ことを特徴とする請求項5に記載の方法。
  7. 前記知識ベースは、前記正常重心に対するテンプレート特性からのディスタンスの変化を表し、かつ、メンタル状態の異なる指標の間の分類境界を画定するセグメンテーションポイントのセットをさらに有する、ことを特徴とする請求項6に記載の方法。
  8. 前記被験者の心拍特性は複数の関連メトリクスを計算するよう処理される、ことを特徴とする請求項2に記載の方法。
  9. 前記メトリクスは、平均起床心拍、平均起床心拍と平均就寝心拍との間の比、前記睡眠中時間間隔の最初の半分の間の心拍のスロープ、および、前記睡眠中時間間隔の二番目の半分の間の心拍のスロープを有する、ことを特徴とする請求項8に記載の方法。
  10. 前記知識ベースは、正常または低ストレスレベルを有するとしてエキスパートによって評価された被験者に基づいて、テンプレート特性に対応するメトリクス値のアレイを有する、ことを特徴とする請求項8に記載の方法。
  11. 前記知識ベースは、複数のメトリクスの各々に対応し、正常または低レベルのストレスを有するとしてエキスパートによって評価されたすべての被験者に対するそれぞれのメトリクス間の差の大きさを平均化することにより計算された正常重心値のアレイ、および、同等のテンプレート特性メトリクスを有する、ことを特徴とする請求項10に記載の方法。
  12. 正常のメンタル状態からの被験者のメンタル状態のディスタンスの計測値を計算するべく、前記被験者の受診した心拍記録に対して計算されたメトリクスと、対応する正常重心値との間の比較を実行する工程とさらに備え、前記知識ベースは、メンタル状態分類の間の境界に対応するディスタンス測定値を画定するセグメンテーション値のアレイをさらに有する、ことを特徴とする請求項11に記載の方法。
  13. 前記知識ベースは、(M+1)次元ベクトルのアレイを有し、ここで、Mは、使用される前記複数のメトリクスの数であり、各ベクトルは前記トレーニングセット内の被験者に対応し、前記知識ベースは計算されたメトリクスの各々に対する値を有し、前記被験者の対応するエキスパート評価者の値を有する、ことを特徴とする請求項8に記載の方法。
  14. 前記メンタル状態の指標は、k個の最近傍(k−NN)コンピュータモデルを使って生成される、ことを特徴とする請求項13に記載の方法。
  15. 前記知識ベースは、最近傍パラメータKの数の最適値をさらに有する、ことを特徴とする請求項14に記載の方法。
  16. 前記被験者の前記メンタル状態の指標は、前記トレーニングセットから同定されたK個の最近傍に関連する最も頻繁に発生するメンタル状態として生成される、ことを特徴とする請求項14に記載の方法。
  17. 被験者のメンタル状態を評価するコンピュータが実装されたシステムであって、当該システムは、
    少なくともひとつのマイクロプロセッサと、
    被験者のトレーニングセットのエキスパートの評価を介して得られたデータを有する知識ベースを含み、メンタル状態と心拍特性との間の関係のコンピュータモデルを具体化する少なくともひとつの不揮発性ストレージデバイスと、
    前記マイクロプロセッサと動作的に関連づけられた少なくともひとつのコンピュータ読み取り可能メモリデバイスと、
    前記マイクロプロセッサと動作的に関連づけられた入力/出力インターフェースと、
    を備え、
    前記メモリデバイスは、前記マイクロプロセッサを通じて実行されたとき、前記マイクロプロセッサに、方法を実行させるコンピュータ実行可能なインストラクションコードを含み、前記方法は、
    睡眠前時間間隔、睡眠開始時刻および睡眠終了時刻を含む睡眠中時間間隔、および、睡眠後時間間隔を有する就寝時間間隔を含む期間にわたって取得された心拍データのサンプルのシーケンスを有する前記被験者の心拍記録を、前記入力/出力インターフェースを通じて受信する工程と、
    少なくとも前記睡眠開始時刻および前記睡眠終了時刻を、前記心拍記録内で同定する工程と、
    前記被験者の前記メンタル状態に関連する少なくともひとつのメトリックを計算し、前記メトリックに基づいてメンタル状態の指標を生成するべく、前記知識ベース内の情報を使って、前記コンピュータモデルを適用する工程と、
    前記被験者の前記メンタル状態の指標を前記入力/出力インターフェースを介して、提供する工程を有する、ことを特徴とするシステム。
  18. 前記被験者の前記心拍記録は、睡眠前時間間隔、睡眠中時間間隔、および睡眠後時間間隔を含む前記期間の間に、前記被験者によって着用された心拍モニターデバイスを通じて得られる、ことを特徴とする請求項17に記載のシステム。
  19. 前記心拍モニターは、前記被験者のネットワーク接続デバイスと通信するように構成された通信インターフェースを有する、ことを特徴とする請求項18に記載のシステム。
  20. 前記入力/出力インターフェースは、ワイドエリアネットワークへのアクセスを与えるネットワークインターフェースを有し、前記次の記録は、前記被験者の前記ネットワーク接続デバイスから前記ワイドエリアネットワークを通じて受信される、ことを特徴とする請求項19に記載のシステム。
JP2018517461A 2015-06-15 2016-06-15 ストレス状態をモニターするための方法およびシステム Pending JP2018524750A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562175826P 2015-06-15 2015-06-15
US62/175,826 2015-06-15
PCT/AU2016/050491 WO2016201500A1 (en) 2015-06-15 2016-06-15 Method and system for monitoring stress conditions

Publications (1)

Publication Number Publication Date
JP2018524750A true JP2018524750A (ja) 2018-08-30

Family

ID=57544620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018517461A Pending JP2018524750A (ja) 2015-06-15 2016-06-15 ストレス状態をモニターするための方法およびシステム

Country Status (8)

Country Link
US (2) US10638965B2 (ja)
EP (1) EP3307166A4 (ja)
JP (1) JP2018524750A (ja)
CN (1) CN108135548A (ja)
AU (1) AU2016278357A1 (ja)
CA (1) CA2988419A1 (ja)
IL (1) IL256151A (ja)
WO (1) WO2016201500A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6702559B2 (ja) * 2017-02-10 2020-06-03 株式会社東芝 電子機器、方法及びプログラム
WO2019075522A1 (en) * 2017-10-19 2019-04-25 Medibio Limited RISK INDICATOR
CN107874750B (zh) * 2017-11-28 2020-01-10 华南理工大学 脉率变异性和睡眠质量融合的心理压力监测方法及装置
CN108470586A (zh) * 2018-03-15 2018-08-31 柳州康云互联科技有限公司 一种具有普适性和高依从性的健康管理系统及方法
JP7253047B2 (ja) * 2018-06-19 2023-04-05 マイカーディオ エルエルシー 健康状況または健康状態の評価のためのシステムおよび方法
CN109044275B (zh) * 2018-08-07 2021-12-14 华侨大学 基于模糊推论系统的非侵入感测睡眠质量分析系统与方法
JP2022515418A (ja) * 2018-12-24 2022-02-18 コーニンクレッカ フィリップス エヌ ヴェ 感覚刺激を用いてrem睡眠を増強するためのシステム及び方法
CN110025321B (zh) * 2019-03-20 2021-08-31 华为技术有限公司 一种心理压力评估方法及相关设备
US11191466B1 (en) * 2019-06-28 2021-12-07 Fitbit Inc. Determining mental health and cognitive state through physiological and other non-invasively obtained data
US10880763B1 (en) * 2020-02-21 2020-12-29 United States Cellular Corporation Remote antenna coverage change event detection in mobile wireless networks
US11216074B2 (en) 2020-03-13 2022-01-04 OnTracMD, LLC Motion classification user library
US11460921B2 (en) 2020-07-09 2022-10-04 Bank Of America Corporation System for wireless communication between a brain activity monitoring system and a resource
US11467663B2 (en) 2020-07-09 2022-10-11 Bank Of America Corporation System for wireless communication between a brain activity monitoring system and a resource distribution hub
US11526876B2 (en) * 2020-07-09 2022-12-13 Bank Of America Corporation System for calibration of an EEG device for detection of specific brainwave patterns
CN114469089A (zh) * 2021-12-30 2022-05-13 北京津发科技股份有限公司 基于虚拟现实技术的多模态数据抗压能力测评方法及系统

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2501996A1 (fr) 1981-03-19 1982-09-24 Silicone Medicale Procede et appareil de plethysmographie penienne
JPS6054836A (ja) 1983-09-05 1985-03-29 Sanyo Kasei Kogyosho:Kk クッション性を備えた外被体で被覆された中空成形品並びにその成形方法
US4832038A (en) 1985-06-05 1989-05-23 The Board Of Trustees Of University Of Illinois Apparatus for monitoring cardiovascular regulation using heart rate power spectral analysis
US4889422A (en) 1986-01-28 1989-12-26 George Pavlidis Method and means for detecting dyslexia
US4753246A (en) 1986-03-28 1988-06-28 The Regents Of The University Of California EEG spatial filter and method
US4800893A (en) 1987-06-10 1989-01-31 Ross Sidney A Kinesthetic physical movement feedback display for controlling the nervous system of a living organism
US4779100A (en) 1987-07-22 1988-10-18 Lafayette Instrument Co., Inc. Polygraph with control adjustment indicator
JPH0832261B2 (ja) 1988-06-10 1996-03-29 三菱電機株式会社 精神緊張度モニター
DE4138702A1 (de) 1991-03-22 1992-09-24 Madaus Medizin Elektronik Verfahren und vorrichtung zur diagnose und quantitativen analyse von apnoe und zur gleichzeitigen feststellung anderer erkrankungen
US5280793A (en) 1992-05-13 1994-01-25 Rosenfeld J Peter Method and system for treatment of depression with biofeedback using left-right brain wave asymmetry
IL110973A (en) 1994-09-14 2001-12-23 Univ Ramot Apparatus and method for time dependent power spectrum analysis of physiological signals
US5577510A (en) 1995-08-18 1996-11-26 Chittum; William R. Portable and programmable biofeedback system with switching circuit for voice-message recording and playback
JPH105201A (ja) 1996-06-24 1998-01-13 Nissan Motor Co Ltd 心理状態判定装置
US5871517A (en) 1997-01-15 1999-02-16 Somatics, Inc. Convulsive therapy apparatus to stimulate and monitor the extent of therapeutic value of the treatment
AUPO616697A0 (en) 1997-04-11 1997-05-08 Heartlink Pty Ltd Method for diagnosing psychiatric disorders
US6942622B1 (en) 1999-11-10 2005-09-13 Pacesetter, Inc. Method for monitoring autonomic tone
WO2001076459A2 (en) 2000-04-10 2001-10-18 The Research Foundation Of State University Of New York Method for detecting cheyne-stokes respiration in patients with congestive heart failure
US20130158368A1 (en) 2000-06-16 2013-06-20 Bodymedia, Inc. System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability
US7689437B1 (en) 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
MXPA02012643A (es) 2000-06-23 2004-09-10 Bodymedia Inc Sistema para monitorear la salud, el estado general y la condicion fisica.
ATE433163T1 (de) 2001-07-11 2009-06-15 Cns Response Inc Verfahren zur vorhersage der behandlungsresultate
IL147502A0 (en) 2002-01-07 2002-08-14 Widemed Ltd Self-adaptive system, for the analysis of biomedical signals of a patient
US7079888B2 (en) 2002-04-11 2006-07-18 Ansar, Inc. Method and apparatus for monitoring the autonomic nervous system using non-stationary spectral analysis of heart rate and respiratory activity
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US8594948B2 (en) * 2002-09-18 2013-11-26 Ronald C. McGlennen Apparatus and methods for medical testing
SE0202948D0 (sv) 2002-10-04 2002-10-04 Bergfalk & Knagenhjelm Ab Sätt att påvisa aktivitetsmönster som indikerar psykisk sjukdom, och motsvarande arrangemang
CA2817028A1 (en) 2002-10-09 2004-04-22 Bodymedia, Inc. Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters
JP4331977B2 (ja) 2003-05-21 2009-09-16 パイオニア株式会社 精神状態判定装置及び精神状態判定方法
KR101084554B1 (ko) 2003-09-12 2011-11-17 보디미디어 인코퍼레이티드 심장 관련 파라미터를 측정하기 위한 방법 및 장치
US6964641B2 (en) 2003-12-24 2005-11-15 Medtronic, Inc. Implantable medical device with sleep disordered breathing monitoring
US7734334B2 (en) 2004-05-17 2010-06-08 Beth Israel Deaconess Medical Center, Inc. Assessment of sleep quality and sleep disordered breathing based on cardiopulmonary coupling
CN101060809A (zh) 2004-11-23 2007-10-24 皇家飞利浦电子股份有限公司 抑郁症检测系统
EP1833558B1 (en) 2004-12-17 2011-10-05 Medtronic, Inc. System for monitoring or treating nervous system disorders
JP2007007149A (ja) * 2005-06-30 2007-01-18 Daikin Ind Ltd 健康管理装置
WO2007123923A2 (en) * 2006-04-18 2007-11-01 Susan Mirow Method and apparatus for analysis of psychiatric and physical conditions
US8083682B2 (en) 2006-07-19 2011-12-27 Cardiac Pacemakers, Inc. Sleep state detection
US20100113893A1 (en) 2006-10-12 2010-05-06 Massachusetts Institute Of Technology Method for measuring physiological stress
US20080167565A1 (en) 2007-01-09 2008-07-10 Timo Laitio Method and Arrangement for Obtaining Diagnostic Information of a Patient
WO2008094125A1 (en) * 2007-02-02 2008-08-07 Nanyang Polytechnic Method and system for automatic psychiatric disorder detection and classification
US20090006457A1 (en) 2007-02-16 2009-01-01 Stivoric John M Lifeotypes
US20090192399A1 (en) 2008-01-25 2009-07-30 Samsung Electronics Co., Ltd. Apparatus and method to detect heart-rate and air conditioning system having the apparatus
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US9770205B2 (en) 2008-04-15 2017-09-26 Christopher Scheib Method and system for monitoring and displaying physiological conditions
WO2009128000A1 (en) * 2008-04-16 2009-10-22 Philips Intellectual Property & Standards Gmbh Method and system for sleep/wake condition estimation
JP2012502671A (ja) 2008-05-12 2012-02-02 アーリーセンス エルティディ 臨床症状のモニタリング、予測及び治療
US20110184298A1 (en) 2008-09-25 2011-07-28 University Of Miami Portable cardio waveform acquisiton and heart rate variability (hrv) analysis
US8700111B2 (en) 2009-02-25 2014-04-15 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US20100280335A1 (en) * 2009-04-30 2010-11-04 Medtronic, Inc. Patient state detection based on supervised machine learning based algorithm
US9706956B2 (en) 2009-11-03 2017-07-18 Vivaquant Llc Method and apparatus for assessing cardiac and/or mental health
US9075910B2 (en) 2010-03-11 2015-07-07 Philometron, Inc. Physiological monitor system for determining medication delivery and outcome
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US9959549B2 (en) 2010-06-07 2018-05-01 Affectiva, Inc. Mental state analysis for norm generation
US20130245396A1 (en) 2010-06-07 2013-09-19 Affectiva, Inc. Mental state analysis using wearable-camera devices
US20140081090A1 (en) 2010-06-07 2014-03-20 Affectiva, Inc. Provision of atypical brain activity alerts
US20150099987A1 (en) 2010-06-07 2015-04-09 Affectiva, Inc. Heart rate variability evaluation for mental state analysis
US20160379505A1 (en) 2010-06-07 2016-12-29 Affectiva, Inc. Mental state event signature usage
US8679009B2 (en) 2010-06-15 2014-03-25 Flint Hills Scientific, Llc Systems approach to comorbidity assessment
US9017256B2 (en) 2010-09-22 2015-04-28 Milieu Institute, Llc System and method for physiological monitoring
US8568330B2 (en) 2011-03-08 2013-10-29 Pulsaw Informatics, Inc. Composite human physiological stress index based on heart beat and sleep and/or activity history data including actigraphy
EP2524647A1 (en) 2011-05-18 2012-11-21 Alain Gilles Muzet System and method for determining sleep stages of a person
US20140221780A1 (en) 2011-07-22 2014-08-07 President And Fellows Of Harvard College Complexity based methods and systems for detecting depression
EP2758933A4 (en) 2011-09-23 2015-03-25 Affectiva Inc CLINICAL ANALYSIS USING ELECTRODERMIC ACTIVITY
EP2626005A1 (de) 2012-02-08 2013-08-14 PULSE7 GmbH Verfahren zur Bestimmung des physischen und/oder psychischen Zustands eines Probanden anhand einer Analyse seiner Herzratenvariabilität
US20130262155A1 (en) 2012-04-03 2013-10-03 Thomas J. HinKamp System and method for collection and distibution of medical information
JP5492247B2 (ja) 2012-05-08 2014-05-14 株式会社Gm3 心拍変動指標を用いた精神症状及び精神疾患発病リスク評価のための指標生成装置及びそれを用いた指標生成方法
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
WO2014018719A1 (en) 2012-07-25 2014-01-30 Worcester Polytechnic Institute System and method for quantitatively assessing diabetic cardiac autonomic neuropathy in type i diabetic biological subject
US11006874B2 (en) 2012-08-13 2021-05-18 Tata Consultancy Services Limited Real-time stress determination of an individual
JP6047346B2 (ja) * 2012-09-05 2016-12-21 セイコーエプソン株式会社 生体情報処理システム、ウェアラブル装置、サーバーシステム及びプログラム
BR112015008754A2 (pt) 2012-10-23 2017-07-04 Koninklijke Philips Nv sistema de medição de estresse para determinar um nível de estresse de um usuário
US9307908B2 (en) 2012-10-30 2016-04-12 Vital Connect, Inc. Measuring psychological stress from cardiovascular and activity signals
US9980678B2 (en) 2012-10-30 2018-05-29 Vital Connect, Inc. Psychological acute stress measurement using a wireless sensor
KR102011495B1 (ko) 2012-11-09 2019-08-16 삼성전자 주식회사 사용자의 심리 상태 판단 장치 및 방법
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
KR20140095291A (ko) 2013-01-24 2014-08-01 삼성전자주식회사 사용자의 움직임과 심박수에 기초한 스트레스 측정 장치 및 방법
US20140240124A1 (en) * 2013-02-25 2014-08-28 Exmovere Wireless LLC Method and apparatus for monitoring, determining and communicating biometric statuses, emotional states and movement
TWI510216B (zh) 2013-04-15 2015-12-01 Chi Mei Comm Systems Inc 情緒分析顯示系統及方法
US9532748B2 (en) 2013-04-22 2017-01-03 Personal Neuro Devices Inc. Methods and devices for brain activity monitoring supporting mental state development and training
AU2014273790A1 (en) 2013-05-28 2016-01-21 Laszlo Osvath Systems and methods for diagnosis of depression and other medical conditions
US20150148621A1 (en) 2013-11-22 2015-05-28 Grant Joseph Sier Methods and systems for creating a preventative care plan in mental illness treatment
US10321829B2 (en) 2013-12-30 2019-06-18 JouZen Oy Measuring chronic stress
CN104771157A (zh) * 2014-01-15 2015-07-15 精工爱普生株式会社 生物体信息处理系统及处理方法、电子设备及服务器系统
US10478131B2 (en) 2015-07-16 2019-11-19 Samsung Electronics Company, Ltd. Determining baseline contexts and stress coping capacity
US20170127993A1 (en) 2015-11-06 2017-05-11 Lifeq Global Limited Non-Invasive Physiological Quantification of Stress Levels

Also Published As

Publication number Publication date
US10638965B2 (en) 2020-05-05
IL256151A (en) 2018-02-28
EP3307166A4 (en) 2019-01-02
CN108135548A (zh) 2018-06-08
CA2988419A1 (en) 2016-12-22
WO2016201500A1 (en) 2016-12-22
US9861308B2 (en) 2018-01-09
EP3307166A1 (en) 2018-04-18
US20170156657A1 (en) 2017-06-08
AU2016278357A1 (en) 2018-01-04
US20180184960A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP2018524750A (ja) ストレス状態をモニターするための方法およびシステム
US11600390B2 (en) Machine learning clinical decision support system for risk categorization
US10912508B2 (en) Method and system for assessing mental state
US20210035067A1 (en) Method to increase efficiency, coverage, and quality of direct primary care
KR20170023770A (ko) 진단모델 생성 시스템 및 방법
Tervonen et al. Personalized mental stress detection with self-organizing map: From laboratory to the field
KR102053604B1 (ko) 수면 분석 방법 및 이를 이용한 수면 분석 디바이스
Mohammed et al. A Novel Predictive Analysis to Identify the Weather Impacts for Congenital Heart Disease Using Reinforcement Learning
Melnykova et al. Anomalies detecting in medical metrics using machine learning tools
US20230091240A1 (en) System and method of monitoring mental health conditions
CN116739037A (zh) 具有人格特征的人格模型构建方法及装置
US11961204B2 (en) State visualization device, state visualization method, and state visualization program
US20210345915A1 (en) Methods Circuits Devices Systems and Machine Executable Code for Glucose Monitoring Analysis and Remedy
JP2024513618A (ja) 感染症及び敗血症の個別化された予測のための方法及びシステム
KR102650936B1 (ko) 정신건강 위험신호 탐지 시스템, 그리고 이를 이용한 정신건강 위험신호 탐지 방법
US20220342956A1 (en) Systems and methods for removing systemic bias
KR20230019717A (ko) 치매행동심리증상에 대한 예측 방법 및 이를 이용한 디바이스
Gunay Modelling of sleep behaviors of patients with mood disorders
CN117653053A (zh) 一种通过智能手表预测健康风险的方法
Sridevi et al. Health-Related Quality of Life (HRQOL) Analysis Based on Physical Activity and Sleeping Pattern Among Seafarers Using Smartphones: Smartphone Applications for Monitoring Physical Activities Onboard
WO2023237874A1 (en) Health prediction method and apparatus for patients with copd
BABU et al. AN EFFCIET FORCASTING MENTAL HEALTH CONDITION USING MACHINE LEARNING
이보경 Extraction and Measurement of Living Alone Elderlys Daily Activity Routines for Healthcare using Non-intrusive Sensing
CN114240714A (zh) 物联网设备确定方法、装置、计算机设备和存储介质
KR20230068717A (ko) 입원 환자의 퇴원 예측을 위한 장치 및 방법

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180529