JP2018523978A5 - - Google Patents

Download PDF

Info

Publication number
JP2018523978A5
JP2018523978A5 JP2017564379A JP2017564379A JP2018523978A5 JP 2018523978 A5 JP2018523978 A5 JP 2018523978A5 JP 2017564379 A JP2017564379 A JP 2017564379A JP 2017564379 A JP2017564379 A JP 2017564379A JP 2018523978 A5 JP2018523978 A5 JP 2018523978A5
Authority
JP
Japan
Prior art keywords
bacterium
induced
deficiency
gene
genetically engineered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017564379A
Other languages
Japanese (ja)
Other versions
JP6817966B2 (en
JP2018523978A (en
Filing date
Publication date
Priority claimed from US14/960,333 external-priority patent/US9487764B2/en
Priority claimed from PCT/US2016/020530 external-priority patent/WO2016141108A1/en
Application filed filed Critical
Priority claimed from PCT/US2016/034200 external-priority patent/WO2016200614A2/en
Publication of JP2018523978A publication Critical patent/JP2018523978A/en
Publication of JP2018523978A5 publication Critical patent/JP2018523978A5/ja
Application granted granted Critical
Publication of JP6817966B2 publication Critical patent/JP6817966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (17)

アルギニンレギュロンを含む遺伝子操作細菌であって、前記細菌が、同じ条件下の同じ細菌亜型の野生型N−アセチルグルタミン酸シンテターゼと比較して低いアルギニンフィードバック阻害を有する機能性N−アセチルグルタミン酸シンテターゼをコードする遺伝子を含み前記細菌が、機能性ArgRを欠くように遺伝子操作されており、前記細菌が、短鎖脂肪酸を産生することができる生合成経路をコードする遺伝子カセットを含む、遺伝子操作細菌。 A genetically engineered bacterium comprising an arginine regulon, wherein the bacterium encodes a functional N-acetyl glutamic acid synthetase with lower arginine feedback inhibition compared to wild-type N-acetyl glutamic acid synthetase of the same bacterial subtype under the same conditions It includes a gene, the bacteria are genetically engineered to lack a functional ArgR, wherein the bacterium comprises a gene cassette encoding the biosynthetic pathway capable of producing short chain fatty acids, genetic engineering bacteria. アルギニンフィードバック抵抗性N−アセチルグルタミン酸シンテターゼをコードする前記遺伝子が、外因性環境条件により誘導されるプロモーターに作動可能に連結している、及び/又は、短鎖脂肪酸を産生することができる生合成経路をコードする前記遺伝子カセットが、外因性環境条件により誘導されるプロモーターに作動可能に連結している、請求項1に記載の遺伝子操作細菌。 Biosynthetic pathway wherein said gene encoding arginine feedback resistant N-acetyl glutamic acid synthetase is operably linked to a promoter induced by exogenous environmental conditions and / or capable of producing short chain fatty acids The genetically engineered bacterium according to claim 1, wherein the gene cassette coding for is operably linked to a promoter induced by exogenous environmental conditions. 前記低いアルギニンフィードバック阻害を有する機能性N−アセチルグルタミン酸シンテターゼをコードする遺伝子に作動可能に連結したプロモーターと、短鎖脂肪酸を産生することができる生合成経路をコードする前記遺伝子カセットに作動可能に連結したプロモーターが、同じプロモーターの別個のコピーである、請求項2に記載の遺伝子操作細菌。 A promoter operably linked to the gene encoding functional N-acetyl glutamic acid synthetase with low arginine feedback inhibition and the gene cassette encoding a biosynthetic pathway capable of producing short chain fatty acids The genetically engineered bacterium according to claim 2, wherein the selected promoter is a separate copy of the same promoter. 短鎖脂肪酸を産生することができる生合成経路をコードする前記遺伝子カセットが、前記低いアルギニンフィードバック阻害を有する機能性N−アセチルグルタミン酸シンテターゼをコードする遺伝子に作動可能に連結したプロモーターと異なるプロモーターに作動可能に連結している、請求項2に記載の遺伝子操作細菌。 The gene cassette encoding a biosynthetic pathway capable of producing short chain fatty acids acts on a promoter different from the promoter operably linked to the gene encoding functional N-acetyl glutamic acid synthetase with said low arginine feedback inhibition The genetically engineered bacterium according to claim 2 , which is linked as possible. 前記低いアルギニンフィードバック阻害を有する機能性N−アセチルグルタミン酸シンテターゼをコードする遺伝子に作動可能に連結したプロモーター
(a)哺乳動物の小腸に見いだされる外因性環境条件により誘導される
(b)低酸素または嫌気的条件下で誘導される;又は
(c)肝損傷を示す1つもしくは複数の分子または代謝物により誘導される、
請求項24のいずれか一項に記載の遺伝子操作細菌。
Promoter operably linked to a gene encoding a functional N- acetylglutamate synthetase having a low arginine feedback inhibition,
(A) induced by exogenous environmental conditions found in the small intestine of a mammal ;
(B) induced under hypoxic or anaerobic conditions; or
(C) induced by one or more molecules or metabolites indicative of liver damage,
The genetically engineered bacterium according to any one of claims 2 to 4.
短鎖脂肪酸を産生することができる生合成経路をコードする前記遺伝子カセットに作動可能に連結したプロモーターが、
(a)哺乳動物の小腸に見いだされる外因性環境条件により誘導される;
(b)低酸素または嫌気的条件下で誘導される
(c)肝損傷を示す1つもしくは複数の分子または代謝物により誘導される;
(d)活性窒素種の存在により誘導される;
(e)活性酸素種の存在により誘導される;又は
(f)哺乳動物消化管に天然で存在しない環境因子により誘導される、
請求項2〜5のいずれか一項に記載の遺伝子操作細菌。
A promoter operably linked to said gene cassette encoding a biosynthetic pathway capable of producing short chain fatty acids,
(A) induced by exogenous environmental conditions found in the small intestine of a mammal;
(B) induced under hypoxic or anaerobic conditions ;
(C) induced by one or more molecules or metabolites indicative of liver damage;
(D) induced by the presence of reactive nitrogen species;
(E) induced by the presence of reactive oxygen species; or
(F) induced by environmental factors not naturally present in the mammalian digestive tract,
The genetically engineered bacterium according to any one of claims 2 to 5 .
前記低いアルギニンフィードバック阻害を有する機能性N−アセチルグルタミン酸シンテターゼをコードする遺伝子及び/又は短鎖脂肪酸を産生することができる生合成経路をコードする前記遺伝子カセットが、細菌における染色体上又は細菌におけるプラスミド上に存在する、請求項1〜6のいずれか一項に記載の遺伝子操作細菌。 The gene encoding a functional N-acetyl glutamic acid synthetase having low arginine feedback inhibition and / or the gene cassette encoding a biosynthetic pathway capable of producing a short chain fatty acid can be used on chromosomes in bacteria or on plasmids in bacteria The genetically engineered bacterium according to any one of claims 1 to 6 , which is present in 対応する野生型細菌に通常存在する機能性argR遺伝子の各コピーが、1つもしくは複数のヌクレオチドの欠失、挿入または置換により、独立に欠失したまたは不活性にされている、請求項1〜7のいずれか一項に記載の遺伝子操作細菌。 5. Each copy of a functional argR gene normally present in the corresponding wild-type bacterium is independently deleted or rendered inactive by deletion, insertion or substitution of one or more nucleotides . 7. The genetically modified bacterium according to any one of 7 . 前記短鎖脂肪酸酪酸又はプロピオン酸である、請求項1〜8のいずれか一項に記載の遺伝子操作細菌。 The genetically engineered bacterium according to any one of claims 1 to 8 , wherein the short chain fatty acid is butyric acid or propionic acid . リファキシミンに対する耐性を含む、請求項1〜9のいずれか一項に記載の遺伝子操作細菌。10. The genetically engineered bacterium according to any one of claims 1 to 9, which comprises resistance to rifaximin. 前記細菌が、バクテロイデス属、ビフィドバクテリウム属、クロストリジウム属、大腸菌、乳酸桿菌属および乳酸球菌属からなる群から選択されるプロバイオティク細菌である請求項1〜10のいずれか一項に記載の細菌。 11. The probiotic bacterium according to any one of claims 1 to 10 , wherein the bacterium is a probiotic bacterium selected from the group consisting of Bacteroides, Bifidobacterium, Clostridia, E. coli, Lactobacillus and Lactococci. Bacteria described. 前記細菌が、大腸菌ニッスルである、請求項11に記載の細菌。 12. The bacterium according to claim 11 , wherein the bacterium is Escherichia coli nisrel. 前記細菌は、
(a)細菌が、哺乳動物消化管内に存在する場合、補足される遺伝子における栄養要求体である;及び/又は
(b)ジアミノピメリン酸またはチミン生合成経路における酵素における栄養要求体である、
請求項1〜12のいずれか一項に記載の細菌。
The bacteria are
(A) the bacterium is an auxotrophic in the gene to be complemented if present in the mammalian gut ; and / or
(B) auxotrophs for enzymes in the diaminopimelic acid or thymine biosynthetic pathway,
The bacterium according to any one of claims 1 to 12 .
前記細菌は、細菌に対して有毒な物質をコードする追加の遺伝子を有するようにさらに操作され、前記追加の遺伝子が、哺乳動物消化管に天然で存在しない環境因子により直接的または間接的に誘導されるプロモーターの制御下にある、請求項1〜13のいずれか一項に記載の細菌。 The bacterium is further engineered to carry an additional gene encoding a substance toxic to the bacterium, the additional gene being directly or indirectly induced by an environmental factor not naturally present in the mammalian digestive tract The bacterium according to any one of claims 1 to 13 , which is under the control of a promoter which 請求項1〜14のいずれか一項に記載の細菌および薬学的に許容される担体を含む薬学的に許容される組成物。 To any one of claims 1 to 14 including bacteria and a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable compositions. 高アンモニア血症を低減するまたは高アンモニア血症に関連する疾患を治療する方法における使用のための、請求項15に記載の組成物 The composition according to claim 15, for use in a method of reducing hyperammonemia or treating a disease associated with hyperammonemia. (a)前記疾患尿素回路異常症である
(b)前記疾患が、アルギニノコハク酸尿症、アルギナーゼ欠損症、カルバモイルリン酸シンテターゼ欠損症、シトルリン血症、N−アセチルグルタミン酸シンテターゼ欠損症またはオルニチントランスカルバミラーゼ欠損症である;
(c)前記疾患が、肝臓障害;有機酸障害;イソ吉草酸尿症;3−メチルクロトニルグリシン尿症;メチルマロン酸尿症;プロピオン酸尿症;脂肪酸酸化欠損;カルニチン回路欠損症;カルニチン欠損症;β−酸化欠損症;リシン尿性タンパク不耐症;ピロリン−5−カルボン酸シンテターゼ欠損症;ピルビン酸カルボキシラーゼ欠損症;オルニチンアミノトランスフェラーゼ欠損症;炭酸脱水酵素欠損症;高インスリン症−高アンモニア血症症候群;ミトコンドリア障害;バルプロ酸療法;アスパラギナーゼ療法;完全腸管外栄養;グリシン含有溶液を用いた膀胱鏡検査;肺/骨髄移植後;門脈体静脈短絡;尿路感染症;尿管拡張;多発性骨髄腫;化学療法;感染;神経因性膀胱;または腸内細菌過剰増殖である;又は
(d)前記疾患が、肝性脳症、急性肝不全または慢性肝不全である、
請求項16に記載の使用のための組成物
(A) the disease is a urea cycle disorder ;
(B) the disease is argininosuccinic aciduria, arginase deficiency, carbamoyl phosphate synthetase deficiency, citrullineemia, N-acetylglutamate synthetase deficiency or ornithine transcarbamylase deficiency;
(C) liver diseases; organic acid disorders; isovaleric acid uremia; 3-methylcrotonylglycineuria; methylmalonic aciduria; propionic aciduria; fatty acid oxidation defect; carnitine circuit defect; carnitine Deficiency; β-oxidation deficiency; lysine urinary protein intolerance; pyrroline-5-carboxylate synthetase deficiency; pyruvate carboxylase deficiency; ornithine aminotransferase deficiency; carbonic anhydrase deficiency; hyperinsulinism-high Ammoniaemia syndrome; Mitochondrial disorder; Valproic acid therapy; Asparaginase therapy; Complete parenteral nutrition; Cystoscopy with glycine-containing solution; Lung / bone marrow transplantation; Portal vein vein shunting; Urinary tract infection; Ureteral dilation Multiple myeloma; chemotherapy; infection; neurogenic bladder; or intestinal bacterial overgrowth; or
(D) the disease is hepatic encephalopathy, acute liver failure or chronic liver failure,
A composition for use according to claim 16 .
JP2017564379A 2015-06-10 2016-05-25 Bacteria engineered to treat diseases associated with hyperammonemia Expired - Fee Related JP6817966B2 (en)

Applications Claiming Priority (31)

Application Number Priority Date Filing Date Title
US201562173710P 2015-06-10 2015-06-10
US201562173706P 2015-06-10 2015-06-10
US62/173,706 2015-06-10
US62/173,710 2015-06-10
US201562183935P 2015-06-24 2015-06-24
US62/183,935 2015-06-24
US201562184770P 2015-06-25 2015-06-25
US201562184811P 2015-06-25 2015-06-25
US62/184,811 2015-06-25
US62/184,770 2015-06-25
US201562248805P 2015-10-30 2015-10-30
US62/248,805 2015-10-30
US201562256048P 2015-11-16 2015-11-16
US201562256041P 2015-11-16 2015-11-16
US201562256039P 2015-11-16 2015-11-16
US62/256,048 2015-11-16
US62/256,039 2015-11-16
US62/256,041 2015-11-16
US201562263329P 2015-12-04 2015-12-04
US14/960,333 2015-12-04
US62/263,329 2015-12-04
US14/960,333 US9487764B2 (en) 2014-12-05 2015-12-04 Bacteria engineered to treat diseases associated with hyperammonemia
US201662277654P 2016-01-12 2016-01-12
US62/277,654 2016-01-12
US201662291468P 2016-02-04 2016-02-04
US62/291,468 2016-02-04
US201662293749P 2016-02-10 2016-02-10
US62/293,749 2016-02-10
USPCT/US2016/020530 2016-03-02
PCT/US2016/020530 WO2016141108A1 (en) 2015-03-02 2016-03-02 Bacteria engineered to treat diseases that benefit from reduced gut inflammation and/or tightened gut mucosal barrier
PCT/US2016/034200 WO2016200614A2 (en) 2015-06-10 2016-05-25 Bacteria engineered to treat diseases associated with hyperammonemia

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020217391A Division JP2021061846A (en) 2015-06-10 2020-12-25 Engineered bacteria for treating diseases associated with hyperammonemia

Publications (3)

Publication Number Publication Date
JP2018523978A JP2018523978A (en) 2018-08-30
JP2018523978A5 true JP2018523978A5 (en) 2019-06-20
JP6817966B2 JP6817966B2 (en) 2021-01-20

Family

ID=57504262

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017564379A Expired - Fee Related JP6817966B2 (en) 2015-06-10 2016-05-25 Bacteria engineered to treat diseases associated with hyperammonemia
JP2020217391A Pending JP2021061846A (en) 2015-06-10 2020-12-25 Engineered bacteria for treating diseases associated with hyperammonemia

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020217391A Pending JP2021061846A (en) 2015-06-10 2020-12-25 Engineered bacteria for treating diseases associated with hyperammonemia

Country Status (5)

Country Link
EP (1) EP3307879A2 (en)
JP (2) JP6817966B2 (en)
AU (1) AU2016274311A1 (en)
CA (1) CA2988930A1 (en)
WO (1) WO2016200614A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136795A1 (en) 2016-02-04 2017-08-10 Synlogic, Inc. Bacteria engineered to treat diseases associated with tryptophan metabolism
JP2020520677A (en) * 2017-05-24 2020-07-16 テリス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングThoeris GmbH Use of glutamine synthetase to treat hyperammonemia
CN111918960A (en) * 2017-12-05 2020-11-10 比奥普来克斯有限公司 Methods and compositions for preventing microbial infections
CN110446259B (en) * 2018-05-04 2022-04-15 大唐移动通信设备有限公司 Position determination method of paging opportunity and communication equipment
JP2022530503A (en) 2019-04-29 2022-06-29 シンロジック オペレーティング カンパニー インコーポレイテッド Genetically engineered microorganisms
WO2020239882A1 (en) 2019-05-30 2020-12-03 Recordati Industria Chimica E Farmaceutica S.P.A. Pharmaceutical formulation for carglumic acid
AU2020288624A1 (en) 2019-06-04 2022-02-03 Cocoon Biotech Inc. Silk-based products, formulations, and methods of use
US20220409678A1 (en) 2019-11-29 2022-12-29 Jinis Co., Ltd Strain having ability to lower blood ammonia levels and composition comprising same for neuronal protection
EP4256039A2 (en) 2020-12-02 2023-10-11 Synlogic Operating Company, Inc. Engineered microorganisms
WO2022210867A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electrical steel sheet, method for punching non-oriented electrical steel sheet, and die for punching non-oriented electrical steel sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083315B2 (en) * 1990-10-29 2000-09-04 株式会社ヤクルト本社 Blood ammonia lowering agent
GB9107305D0 (en) 1991-04-08 1991-05-22 Unilever Plc Probiotic
IT1290679B1 (en) * 1997-02-14 1998-12-10 Alfa Wassermann Spa USE OF RIFAXIMINE AND OF THE PHARMACEUTICAL COMPOSITIONS THAT CONTAIN IT IN THE TREATMENT OF DIARRHEA FROM CRYPTOSPORIDIOSIS.
US5989463A (en) 1997-09-24 1999-11-23 Alkermes Controlled Therapeutics, Inc. Methods for fabricating polymer-based controlled release devices
US6203797B1 (en) 1998-01-06 2001-03-20 Stephen C. Perry Dietary supplement and method for use as a probiotic, for alleviating the symptons associated with irritable bowel syndrome
AU3108400A (en) 1998-12-02 2000-06-19 Trustees Of Boston University Gene networks for control of gene expression
EP1034787A1 (en) 1999-03-11 2000-09-13 Société des Produits Nestlé S.A. Lactobacillus strains preventing diarrhea caused by pathogenic bacteria
US7731976B2 (en) 2003-08-29 2010-06-08 Cobb And Company, Llp Treatment of irritable bowel syndrome using probiotic composition
WO2009123029A1 (en) * 2008-03-31 2009-10-08 株式会社 大塚製薬工場 Blood ammonia level regulator
CA2926466C (en) * 2013-10-03 2021-11-16 Frederic Bushman Compositions comprising a defined microbiome and methods of use thereof

Similar Documents

Publication Publication Date Title
JP2018523978A5 (en)
JP6768689B2 (en) Bacteria engineered to treat diseases associated with hyperammonemia
US20210095297A1 (en) Bacteria Engineered to Treat Diseases that Benefit from Reduced Gut Inflammation and/or Tighten Gut Mucosal Barrier
EP3307870B1 (en) Bacteria engineered to treat disorders involving the catabolism of a branched chain amino acid
JP7407120B2 (en) synbiotic composition
Nanda et al. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions
AU2022203178A1 (en) Bacteria engineered to treat diseases that benefit from reduced gut inflammation and/or tightened gut mucosal barrier
JP6817966B2 (en) Bacteria engineered to treat diseases associated with hyperammonemia
JP2018515106A5 (en)
JP2020525012A5 (en)
Valle et al. The amino acid valine is secreted in continuous-flow bacterial biofilms
Qiao et al. Metabolic profiles of cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine, alanine and glutathione in Streptococcus thermophilus during pH-controlled batch fermentations
EP3227440B1 (en) Bacteria engineered to treat diseases associated with hyperammonemia
Schöpping et al. Stress response in bifidobacteria
Cho et al. Targeting friend and foe: emerging therapeutics in the age of gut microbiome and disease
WO2016210378A2 (en) Multi-layered control of gene expression in genetically engineered bacteria
van Bokhorst‐van de Veen et al. Genotypic adaptations associated with prolonged persistence of Lactobacillus plantarum in the murine digestive tract
EP3541942B1 (en) Conjugative vectors selectable by fructooligosaccharides
Sulek et al. Metabolic footprint of Lactobacillus acidophilus NCFM at different pH
Jeong et al. Lactobacillus Plantarum LRCC5314 Includes a Gene for a Substance that Stimulates the Secretion of Serotonin
RU2799354C2 (en) Synbiotic compositions
KAUR et al. Mechanism of Endogenous Oxalate Synthesis and Its Degradation by Probiotic Bacteria in Humans.
Shen The Role of Gut Microbiota Urease in the Host with Liver Disease
Cardoso Delgado et al. Understanding gut-liver axis nitrogen metabolism in Fatty Liver Disease
Santos The genetic and molecular characteristics that define a lipA small colony variant of Escherichia coli