JP2018505423A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2018505423A5 JP2018505423A5 JP2017549164A JP2017549164A JP2018505423A5 JP 2018505423 A5 JP2018505423 A5 JP 2018505423A5 JP 2017549164 A JP2017549164 A JP 2017549164A JP 2017549164 A JP2017549164 A JP 2017549164A JP 2018505423 A5 JP2018505423 A5 JP 2018505423A5
- Authority
- JP
- Japan
- Prior art keywords
- nanosensor
- electric field
- alternating electric
- biological
- analyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361911376P | 2013-12-03 | 2013-12-03 | |
| US201361911385P | 2013-12-03 | 2013-12-03 | |
| US14/558,862 US20150316502A1 (en) | 2013-12-03 | 2014-12-03 | Debye length modulation |
| US14/558,862 | 2014-12-03 | ||
| PCT/US2015/041527 WO2016089453A1 (en) | 2013-12-03 | 2015-07-22 | Debye length modulation |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020185939A Division JP2021039114A (ja) | 2013-12-03 | 2020-11-06 | デバイ長変調 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2018505423A JP2018505423A (ja) | 2018-02-22 |
| JP2018505423A5 true JP2018505423A5 (enExample) | 2018-08-30 |
Family
ID=54355077
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017549164A Pending JP2018505423A (ja) | 2013-12-03 | 2015-07-22 | デバイ長変調 |
| JP2020185939A Pending JP2021039114A (ja) | 2013-12-03 | 2020-11-06 | デバイ長変調 |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020185939A Pending JP2021039114A (ja) | 2013-12-03 | 2020-11-06 | デバイ長変調 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20150316502A1 (enExample) |
| JP (2) | JP2018505423A (enExample) |
| WO (1) | WO2016089453A1 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103328981B (zh) | 2010-10-04 | 2017-04-12 | 吉纳普赛斯股份有限公司 | 用于自动化可重复使用的平行生物反应的系统和方法 |
| US9926596B2 (en) | 2011-05-27 | 2018-03-27 | Genapsys, Inc. | Systems and methods for genetic and biological analysis |
| SG11201402760VA (en) | 2011-12-01 | 2014-06-27 | Genapsys Inc | Systems and methods for high efficiency electronic sequencing and detection |
| EP2971141B1 (en) | 2013-03-15 | 2018-11-28 | Genapsys, Inc. | Systems for biological analysis |
| US12222350B1 (en) | 2013-10-09 | 2025-02-11 | Femtodx, Inc. | Differential sensor measurement methods and structures |
| WO2015161054A2 (en) | 2014-04-18 | 2015-10-22 | Genapsys, Inc. | Methods and systems for nucleic acid amplification |
| WO2017156210A1 (en) * | 2016-03-09 | 2017-09-14 | The Regents Of The University Of California | Transient induced molecular electronic spectroscopy method for study of molecule interactions |
| CN109790575A (zh) | 2016-07-20 | 2019-05-21 | 吉纳普赛斯股份有限公司 | 用于核酸测序的系统和方法 |
| SG11202002516WA (en) * | 2017-09-21 | 2020-04-29 | Genapsys Inc | Systems and methods for nucleic acid sequencing |
| EP3891497A4 (en) * | 2018-12-05 | 2022-09-28 | Femtodx | DIFFERENTIAL SENSOR MEASUREMENT METHODS AND DEVICES |
| MY206802A (en) | 2018-12-21 | 2025-01-08 | Illumina Inc | Sensing systems |
| WO2020163099A2 (en) | 2019-01-31 | 2020-08-13 | FemtoDx | Measurement techniques for semiconductor nanowire-based sensors and related methods |
| US12287334B2 (en) | 2019-01-31 | 2025-04-29 | Femtodx, Inc. | Sealed fluid chamber with through semiconductor vias for biomolecular sensors |
| CN115561295B (zh) * | 2022-12-06 | 2023-06-06 | 有研(广东)新材料技术研究院 | 一种硅纳米线场效应葡萄糖传感器及其制备方法 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4583710B2 (ja) * | 2000-12-11 | 2010-11-17 | プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ | ナノセンサ |
| JP4230430B2 (ja) * | 2003-09-25 | 2009-02-25 | 富士通株式会社 | 被検体評価装置および被検体評価方法 |
| DE602007012248D1 (de) * | 2006-06-12 | 2011-03-10 | Harvard College | Nanosensoren und entsprechende technologien |
| WO2008063901A1 (en) * | 2006-11-17 | 2008-05-29 | Trustees Of Boston University | Nanochannel-based sensor system for use in detecting chemical or biological species |
| US20090117571A1 (en) * | 2007-08-15 | 2009-05-07 | State of Oregon by and through the State Board of Higher Education on behalf of Portland State Univ. | Impedance spectroscopy of biomolecules using functionalized nanoparticles |
| FR2930900B1 (fr) * | 2008-05-06 | 2010-09-10 | Commissariat Energie Atomique | Dispositif de separation de biomolecules d'un fluide |
| CN104755917B (zh) * | 2012-09-12 | 2017-10-24 | 哈佛学院院长及董事 | 用于生物分子传感器以及其它应用的纳米级场效应晶体管 |
| CN104838249B (zh) * | 2012-10-16 | 2018-06-22 | 雅培制药有限公司 | 包括局部脱盐系统的生物传感器设备和方法 |
-
2014
- 2014-12-03 US US14/558,862 patent/US20150316502A1/en not_active Abandoned
-
2015
- 2015-07-22 WO PCT/US2015/041527 patent/WO2016089453A1/en not_active Ceased
- 2015-07-22 JP JP2017549164A patent/JP2018505423A/ja active Pending
-
2020
- 2020-11-06 JP JP2020185939A patent/JP2021039114A/ja active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2018505423A5 (enExample) | ||
| Kesler et al. | Going beyond the Debye length: overcoming charge screening limitations in next-generation bioelectronic sensors | |
| Vacic et al. | Determination of molecular configuration by debye length modulation | |
| Poghossian et al. | Label‐free sensing of biomolecules with field‐effect devices for clinical applications | |
| Zheng et al. | Frequency domain detection of biomolecules using silicon nanowire biosensors | |
| Plesa et al. | Fast translocation of proteins through solid state nanopores | |
| Plesa et al. | Detection of individual proteins bound along DNA using solid-state nanopores | |
| Guo et al. | Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy | |
| Chang et al. | Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems | |
| Cui et al. | Rapid and sensitive detection of small biomolecule by capacitive sensing and low field AC electrothermal effect | |
| Rigante et al. | Sensing with advanced computing technology: Fin field-effect transistors with high-k gate stack on bulk silicon | |
| Tai et al. | Design and demonstration of tunable amplified sensitivity of AlGaN/GaN high electron mobility transistor (HEMT)-based biosensors in human serum | |
| Pang et al. | Fixed-gap tunnel junction for reading DNA nucleotides | |
| Estrela et al. | Label-free sub-picomolar protein detection with field-effect transistors | |
| US20170074854A1 (en) | Electro-diffusion enhanced bio-molecule charge detection using electrostatic interaction | |
| Wu et al. | Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer | |
| Nicoliche et al. | Converging multidimensional sensor and machine learning toward high-throughput and biorecognition element-free multidetermination of extracellular vesicle biomarkers | |
| US10684247B2 (en) | Sensing platform for transduction of information | |
| KR20160034434A (ko) | 교차전극 바이오센서 | |
| US10422764B2 (en) | Sensing platform for quantum transduction of chemical information | |
| Tsutsui et al. | Temporal response of ionic current blockade in solid-state nanopores | |
| Esfandyarpour et al. | Nanoelectronic impedance detection of target cells | |
| Wu et al. | Demonstration of the enhancement of gate bias and ionic strength in electric-double-layer field-effect-transistor biosensors | |
| Santos et al. | Label-free detection of biomolecules in microfluidic systems using on-chip UV and impedimetric sensors | |
| Jang et al. | Rapid, sensitive, label-free electrical detection of SARS-CoV-2 in nasal swab samples |