JP2018204812A - Heat exchange system and method of controlling the same - Google Patents

Heat exchange system and method of controlling the same Download PDF

Info

Publication number
JP2018204812A
JP2018204812A JP2017107622A JP2017107622A JP2018204812A JP 2018204812 A JP2018204812 A JP 2018204812A JP 2017107622 A JP2017107622 A JP 2017107622A JP 2017107622 A JP2017107622 A JP 2017107622A JP 2018204812 A JP2018204812 A JP 2018204812A
Authority
JP
Japan
Prior art keywords
flow path
heat exchanger
stage compressor
refrigerant
switching means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017107622A
Other languages
Japanese (ja)
Other versions
JP6932551B2 (en
Inventor
洋平 葛山
Yohei Katsurayama
洋平 葛山
小林 隆之
Takayuki Kobayashi
隆之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2017107622A priority Critical patent/JP6932551B2/en
Publication of JP2018204812A publication Critical patent/JP2018204812A/en
Application granted granted Critical
Publication of JP6932551B2 publication Critical patent/JP6932551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide a heat exchange system that can be placed in defrosting operation while heat exchange loss of the heat exchange system having a plurality of outdoor heat exchangers is suppressed, and a method of controlling the same.SOLUTION: An air conditioner 10 comprises a low stage-side compressor 3a, a high stage-side compressor 3b further compressing a refrigerant compressed by the low stage-side compressor 3a, and a plurality of outdoor heat exchangers 6 and an indoor heat exchangers 5, and is equipped with: a four-way valve 7 which is connected to the indoor heat exchanger 5 and one end side of the respective outdoor heat exchangers 6, a discharge side of the high stage-side compressor 3b, and a connection point between the low stage-side compressor 3a and high stage-side compressor 3b, and switches a flow passage of a refrigerant to be circulated; a three-way valve 8 which is provided between the four-way valve 7 and the respective outdoor heat exchangers 6, and switches a flow passage of a refrigerant to be circulated to the four-way valve 7, the respective outdoor heat exchangers 6, and a suction side of the low stage-side compressor 3a; and a control part which controls the switching of the flow passages by the four-way valve 7 and three-way valve 8.SELECTED DRAWING: Figure 4

Description

本発明は、熱交換システム及びその制御方法に関するものである。   The present invention relates to a heat exchange system and a control method thereof.

例えば、空気調和機が暖房状態で運転している場合に、蒸発器として運転している熱交換器の吹込空気が0℃を下回ると、熱交換器が着霜し、蒸発能力が低下するフロストが発生する。そこで、空気調和機の冷媒回路の冷媒の流れ方向を切り替える四方弁を切り替え、一時的に冷房サイクルで運転させることで、蒸発器として運転していた熱交換器を凝縮器として運転させるように役割を反転させたリバースサイクル運転を実施し、着霜した熱交換器を除霜する運転(デフロスト運転)が行われている。
また、ヒートポンプ式暖房給湯機のように加熱温度が高い機器の場合では、低圧と高圧の差が大きいために圧縮機が1台では能力が足りず、圧縮機を2台直列で接続して昇圧する多段圧縮方式の機器構成とする場合がある(例えば、特許文献1参照)。
For example, when the air conditioner is operating in a heating state, if the blown air of a heat exchanger operating as an evaporator falls below 0 ° C., the heat exchanger forms frost and the evaporation capacity decreases. Will occur. Therefore, by switching the four-way valve that switches the refrigerant flow direction in the refrigerant circuit of the air conditioner and temporarily operating in the cooling cycle, the role of operating the heat exchanger that was operating as an evaporator as a condenser An operation (defrosting operation) is performed in which a reverse cycle operation is performed by inverting the heat exchanger, and the frosted heat exchanger is defrosted.
In addition, in the case of equipment with a high heating temperature such as a heat pump type heating / water heater, the difference between the low pressure and the high pressure is large, so the capacity of one compressor is insufficient, and two compressors are connected in series to increase the pressure. In some cases, the multi-stage compression system is configured (see, for example, Patent Document 1).

リバースサイクルでのデフロスト運転時は、暖房運転時の冷媒回路の冷媒流れが逆転され、除霜するために室外機側の熱交換器が高温にされ、室内機側の熱交換器が低温にされるため、加熱能力が低下する。このような室内機の能力低下を防ぐために、下記特許文献2では、室外機に設ける蒸発器を2台設け、利用側熱交換器33と熱源側熱交換器52の暖房運転するサイクルと、熱源側熱交換器51と熱源側熱交換器52の除霜運転するサイクルの2つのサイクルを構成し、着霜した熱交換器の除霜する技術が開示されている。   At the time of defrost operation in the reverse cycle, the refrigerant flow in the refrigerant circuit during heating operation is reversed, and the heat exchanger on the outdoor unit side is heated to defrost and the heat exchanger on the indoor unit side is cooled to defrost. For this reason, the heating capacity is reduced. In order to prevent such a decrease in the capacity of the indoor unit, in Patent Document 2 below, two evaporators are provided in the outdoor unit, a cycle in which the use side heat exchanger 33 and the heat source side heat exchanger 52 are heated, and a heat source The technology which comprises two cycles of the cycle which defrosts the side heat exchanger 51 and the heat source side heat exchanger 52, and defrosts the frosted heat exchanger is disclosed.

特開2004−85047号公報JP 2004-85047 A 特開2014−224644号公報JP 2014-224644 A

しかしながら、上記特許文献2の方法では、多段圧縮方式の空気調和機で暖房運転時に、室外機に設けられた複数の蒸発器が同一の圧縮機に接続されており、それぞれの蒸発器の蒸発温度が異なる場合には、蒸発温度が高い蒸発器は、蒸発温度が低い蒸発器に蒸発温度を合わせるように運転制御される。そうすると、高い蒸発温度で運転できる蒸発器の運転能力が抑制され、ロスが生じるという問題があった。また、特許文献2の方法では、室外機では蒸発器が2台以上同時に機能していることを前提としているので、例えば、室外機の熱交換器の一方の熱源が無い場合には除霜することができない。また、特許文献1の方法においては、室外熱交換器が1つしか設けられていないので、多段圧縮方式で蒸発器が複数ある場合については考慮されていない。   However, in the method of Patent Document 2, a plurality of evaporators provided in an outdoor unit are connected to the same compressor during heating operation in a multistage compression air conditioner, and the evaporation temperatures of the respective evaporators. Are different from each other, the evaporator with a high evaporation temperature is controlled to match the evaporation temperature with the evaporator with a low evaporation temperature. If it does so, there existed a problem that the driving | running capability of the evaporator which can be drive | operated with high evaporation temperature was suppressed, and a loss produced. Moreover, in the method of patent document 2, since it presupposes that two or more evaporators are functioning simultaneously in the outdoor unit, for example, when there is no one heat source of the heat exchanger of the outdoor unit, defrosting is performed. I can't. Moreover, in the method of patent document 1, since only one outdoor heat exchanger is provided, the case where there are a plurality of evaporators in the multistage compression method is not considered.

本発明は、このような事情に鑑みてなされたものであって、複数の室外熱交換器を有する熱交換システムの熱交換ロスを抑制しつつ、熱交換システムの除霜運転することができる熱交換システム及びその制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and heat capable of performing a defrosting operation of the heat exchange system while suppressing a heat exchange loss of the heat exchange system having a plurality of outdoor heat exchangers. An object is to provide an exchange system and a control method thereof.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムであって、前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機と前記高段側圧縮機との間の接続点とに接続され、流通させる前記冷媒の流路を切り替える第1流路切替手段と、前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機の吸入側とに流通させる前記冷媒の流路を切り替える第2流路切替手段と、前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する制御手段とを具備する熱交換システムを提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention includes a low-stage compressor, a high-stage compressor that further compresses the refrigerant compressed by the low-stage compressor, a plurality of heat source-side heat exchangers, and a use-side heat exchanger. A heat exchange system comprising: the use side heat exchanger; one end side of each heat source side heat exchanger; the discharge side of the high stage compressor; the low stage side compressor and the high stage side. A first flow path switching means that is connected to a connection point between the compressor and switches the flow path of the refrigerant to be circulated; the first flow path switching means; and the heat source side heat exchangers. A second flow path switching means for switching between the first flow path switching means, each of the heat source side heat exchangers, and the flow path of the refrigerant flowing to the suction side of the low stage compressor; A heat exchange system comprising control means for controlling flow path switching between the first flow path switching means and the second flow path switching means. To provide.

本発明の構成によれば、熱源側熱交換器から出た冷媒は、第2流路切替手段の流路の切替えによって低段側圧縮機への流路と第1流路切替手段への流路に分けられ、第1流路切替手段の切替えによって、高段側圧縮機から吐出された冷媒は、第1流路切替手段を介して利用側熱交換器側と、低段側圧縮機と高段側圧縮機との接続点に接続される流路と、各熱源側熱交換器側の一端側とに流路が切り替えられる。
本発明の構成により、複数の熱源側熱交換器から出た冷媒は、低段側圧縮機の入力側に流通させる経路と、第1流路切替手段を介して低段側圧縮機を流通させずに高段側圧縮機の入力側に流通させる経路とに分けることができる。このように、複数の熱源側熱交換器から出た冷媒を、低段側圧縮機と高段側圧縮機に個別に冷媒を流入させることができるので、熱源側熱交換器を蒸発器として使用する場合には、複数の熱源側熱交換器を異なる蒸発温度で運転させることができ、複数の熱源側熱交換器を同じ蒸発温度で運転させる場合と比較して効率よく運転できる。
According to the configuration of the present invention, the refrigerant discharged from the heat source side heat exchanger flows to the low-stage compressor and to the first channel switching unit by switching the channel of the second channel switching unit. The refrigerant discharged from the high-stage compressor by the switching of the first flow path switching unit is divided into a path, the use-side heat exchanger side through the first flow path switching unit, the low-stage side compressor, The flow path is switched between a flow path connected to a connection point with the high stage compressor and one end side on each heat source side heat exchanger side.
According to the configuration of the present invention, the refrigerant discharged from the plurality of heat source side heat exchangers circulates through the low stage compressor via the path through which the refrigerant flows to the input side of the low stage compressor and the first flow path switching unit. Without being divided, it can be divided into a route that circulates to the input side of the high-stage compressor. In this way, the refrigerant from the plurality of heat source side heat exchangers can be individually introduced into the low stage side compressor and the high stage side compressor, so the heat source side heat exchanger is used as an evaporator. In this case, the plurality of heat source side heat exchangers can be operated at different evaporation temperatures, and can be operated more efficiently than when the plurality of heat source side heat exchangers are operated at the same evaporation temperature.

上記熱交換システムにおいて、一の前記熱源側熱交換器と接続される前記第2流路切替手段を第1の第2流路切替手段とし、一の前記熱源側熱交換器以外の他の前記熱源側熱交換器と接続される前記第2流路切替手段を第2の第2流路切替手段とし、暖房運転時、前記制御手段は、前記第1の第2流路切替手段を介して前記低段側圧縮機に前記冷媒を流入させ、前記第2の第2流路切替手段を介して前記高段側圧縮機に前記冷媒を流入させてもよい。   In the heat exchange system, the second flow path switching means connected to one heat source side heat exchanger is a first second flow path switching means, and other than the one heat source side heat exchanger, the other The second flow path switching means connected to the heat source side heat exchanger is used as a second second flow path switching means, and during the heating operation, the control means is connected via the first second flow path switching means. The refrigerant may be caused to flow into the low-stage compressor, and the refrigerant may be caused to flow into the high-stage compressor via the second second flow path switching unit.

これにより、蒸発温度が低い熱源側熱交換器から出力された冷媒は、低段側圧縮機と高段側圧縮機で圧縮させ、蒸発温度が高い熱源側熱交換器から出力された冷媒は、高段側圧縮機で圧縮させることができるので、異なる蒸発温度の熱源側熱交換器があっても、ロスなく運転させることができる。   Thereby, the refrigerant output from the heat source side heat exchanger with a low evaporation temperature is compressed by the low stage side compressor and the high stage side compressor, and the refrigerant output from the heat source side heat exchanger with a high evaporation temperature is Since it can compress with a high stage side compressor, even if there is a heat source side heat exchanger of different evaporation temperature, it can be operated without loss.

上記熱交換システムにおいて、一の前記熱源側熱交換器と接続される前記第2流路切替手段を第1の第2流路切替手段とし、一の前記熱源側熱交換器以外の他の前記熱源側熱交換器と接続される前記第2流路切替手段を第2の第2流路切替手段とし、複数の前記熱源側熱交換器のうち一の前記熱源側熱交換器が着霜した場合に、前記制御手段は、一の前記熱源側熱交換器を凝縮器として運転させ、他の前記熱源側熱交換器を蒸発器として運転させ、前記第1の第2流路切替手段は前記高段側圧縮機からの冷媒を一の前記熱源側熱交換器に流通させ、前記第2の第2切替手段は他の前記熱源側熱交換器からの前記冷媒を前記低段側圧縮機に流通させてもよい。   In the heat exchange system, the second flow path switching means connected to one heat source side heat exchanger is a first second flow path switching means, and other than the one heat source side heat exchanger, the other The second flow path switching means connected to the heat source side heat exchanger is used as a second second flow path switching means, and one of the heat source side heat exchangers is frosted. In this case, the control means causes one of the heat source side heat exchangers to operate as a condenser, causes the other heat source side heat exchanger to operate as an evaporator, and the first second flow path switching means includes the The refrigerant from the high stage side compressor is circulated through the one heat source side heat exchanger, and the second second switching means passes the refrigerant from the other heat source side heat exchanger to the low stage side compressor. It may be distributed.

このように、熱源側熱交換器が複数設けられることにより、そのうち1つの熱源側熱交換器が着霜した場合には、着霜した熱源側熱交換器を凝縮器として運転させ、着霜していない熱源側熱交換器を蒸発器として運転させることにより、熱源側の熱交換器だけで除霜(デフロスト)運転を実施することができる。これにより、利用側熱交換器には低温の冷媒が流通することが無く、利用側における冷媒の温度低下を抑制することができる。   Thus, by providing a plurality of heat source side heat exchangers, when one of the heat source side heat exchangers is frosted, the frosted heat source side heat exchanger is operated as a condenser and frosted. By operating the heat source side heat exchanger that is not used as an evaporator, the defrosting (defrost) operation can be performed only with the heat source side heat exchanger. Thereby, a low temperature refrigerant | coolant does not distribute | circulate to a utilization side heat exchanger, and it can suppress the temperature fall of the refrigerant | coolant in a utilization side.

本発明は、低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムであって、前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機の吸入側に接続され、流通させる前記冷媒の流路を切り替える第1流路切替手段と、前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機と前記高段側圧縮機の接続点に流通させる前記冷媒の流路を切り替える第2流路切替手段と、前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する制御手段とを具備する熱交換システムを提供する。   The present invention includes a low-stage compressor, a high-stage compressor that further compresses the refrigerant compressed by the low-stage compressor, a plurality of heat source-side heat exchangers, and a use-side heat exchanger. A heat exchange system comprising: the use side heat exchanger; one end side of each heat source side heat exchanger; the discharge side of the high stage compressor; and the suction side of the low stage compressor And provided between the first flow path switching means for switching the flow path of the refrigerant to be circulated, the first flow path switching means, and each heat source side heat exchanger, and the first flow path switching means. Each of the heat source side heat exchangers, a second flow path switching means for switching a flow path of the refrigerant to be circulated to a connection point between the low stage side compressor and the high stage side compressor, and the first flow path Provided is a heat exchange system comprising a switching means and a control means for controlling switching of the flow path between the second flow path switching means. .

本発明の構成によれば、熱源側熱交換器から出た冷媒は、第2流路切替手段の流路の切替えによって高段側圧縮機への流路と第1流路切替手段への流路に分けられ、第1流路切替手段の切替えによって、高段側圧縮機から吐出された冷媒は、第1流路切替手段を介して利用側熱交換器側と、低段側圧縮機側に接続される流路と、各熱源側熱交換器側の一端側とに流路が切り替えられる。
本発明の構成により、複数の熱源側熱交換器から出た冷媒は、高段側圧縮機の入力側に流通させる経路と、第1流路切替手段を介して低段側圧縮機の入力側に流通させる経路とに分けることができる。このように、複数の熱源側熱交換器から出た冷媒を、低段側圧縮機と高段側圧縮機に個別に冷媒を流入させることができるので、複数の熱源側熱交換器を異なる蒸発温度で運転させることができる。
According to the configuration of the present invention, the refrigerant discharged from the heat source side heat exchanger flows to the high-stage compressor and to the first channel switching unit by switching the channel of the second channel switching unit. The refrigerant discharged from the high-stage compressor by the switching of the first flow path switching means is divided into the use side heat exchanger side and the low-stage compressor side via the first flow path switching means. The flow path is switched between a flow path connected to the one end side and one end side on each heat source side heat exchanger side.
According to the configuration of the present invention, the refrigerant discharged from the plurality of heat source side heat exchangers is circulated to the input side of the high stage compressor, and the input side of the low stage compressor via the first flow path switching unit. It is possible to divide it into a route for distribution to As described above, since the refrigerants from the plurality of heat source side heat exchangers can be individually flowed into the low stage side compressor and the high stage side compressor, the plurality of heat source side heat exchangers are differently evaporated. It can be operated at temperature.

上記熱交換システムにおいて、一の前記熱源側熱交換器と接続される前記第2流路切替手段を第1の第2流路切替手段とし、一の前記熱源側熱交換器以外の他の前記熱源側熱交換器と接続される前記第2流路切替手段を第2の第2流路切替手段とし、複数の前記熱源側熱交換器のうち一の前記熱源側熱交換器が着霜した場合に、着霜した前記熱源側熱交換器を凝縮器として運転させ、着霜していない前記熱源側熱交換器を蒸発器として運転させ、前記制御手段は、前記高段側圧縮機から吐出された前記冷媒を前記凝縮器として運転される前記熱源側熱交換器に流通させるように前記第1の第2流路切替手段を制御し、前記凝縮器を流通後に前記蒸発器として運転される前記熱源側熱交換器を介して、前記高段側圧縮機に前記冷媒を流通させるように前記第2の第2流路切替手段を制御してもよい。   In the heat exchange system, the second flow path switching means connected to one heat source side heat exchanger is a first second flow path switching means, and other than the one heat source side heat exchanger, the other The second flow path switching means connected to the heat source side heat exchanger is used as a second second flow path switching means, and one of the heat source side heat exchangers is frosted. The frosted heat source side heat exchanger is operated as a condenser, the non-frosted heat source side heat exchanger is operated as an evaporator, and the control means discharges from the high stage compressor. The first second flow path switching means is controlled so as to distribute the refrigerant to the heat source side heat exchanger operated as the condenser, and the refrigerant is operated as the evaporator after distribution through the condenser. The refrigerant is circulated through the high stage compressor through the heat source side heat exchanger. Sea urchin may control the second of the second flow path switching unit.

除霜運転時には、低段側圧縮機と高段側圧縮機の冷媒の圧縮差が小さくなる傾向があるため、除霜運転時には、蒸発器の出力後の冷媒を高段側圧縮機に吸入させ単段圧縮とすることにより、冷媒圧縮の効率低下を防ぐ。
熱源側熱交換器が複数設けられることにより、そのうち1つの熱源側熱交換器が着霜した場合には、着霜した熱源側熱交換器を凝縮器として運転させ、着霜していない熱源側熱交換器を蒸発器として運転させることにより、熱源側の熱交換器だけで除霜(デフロスト)運転を実施することができる。これにより、利用側熱交換器には低温の冷媒が流通することが無く、利用側における冷媒の温度低下を抑制することができる。
During the defrosting operation, the refrigerant compression difference between the low-stage compressor and the high-stage compressor tends to be small. Therefore, during the defrosting operation, the refrigerant output from the evaporator is sucked into the high-stage compressor. By adopting single-stage compression, a reduction in refrigerant compression efficiency is prevented.
When one of the heat source side heat exchangers is frosted by providing a plurality of heat source side heat exchangers, the frosted heat source side heat exchanger is operated as a condenser, and the heat source side that is not frosted By operating the heat exchanger as an evaporator, the defrosting operation can be performed only with the heat exchanger on the heat source side. Thereby, a low temperature refrigerant | coolant does not distribute | circulate to a utilization side heat exchanger, and it can suppress the temperature fall of the refrigerant | coolant in a utilization side.

上記熱交換システムにおいて、暖房運転時に、前記利用側熱交換器の出口の液冷媒と、該液冷媒の一部を膨張させた二相冷媒を熱交換させる液ガス熱交換器を備え、熱交換後の前記二相冷媒を前記低段側圧縮機または前記高段側圧縮機に流入させてもよい。   The heat exchange system includes a liquid gas heat exchanger for exchanging heat between the liquid refrigerant at the outlet of the use-side heat exchanger and a two-phase refrigerant obtained by expanding a part of the liquid refrigerant during heating operation. The latter two-phase refrigerant may flow into the low-stage compressor or the high-stage compressor.

利用側熱交換器の出口の液冷媒と液冷媒の一部を膨張させた二相冷媒を熱交換させ、熱交換後の二相冷媒を圧縮機側に流入させることにより、冷媒回路に循環する冷媒循環量を低減することができ、入力の低減を図ることができるので、性能の向上に繋がる。   Heat exchange is performed between the liquid refrigerant at the outlet of the use-side heat exchanger and the two-phase refrigerant obtained by expanding a part of the liquid refrigerant, and the two-phase refrigerant after heat exchange flows into the compressor side to circulate in the refrigerant circuit. Since the refrigerant circulation amount can be reduced and the input can be reduced, the performance is improved.

上記熱交換システムにおいて、前記高段側圧縮機から吐出された前記冷媒を、前記熱源側熱交換器に戻すバイパス経路を設け除霜してもよい。   In the heat exchange system, a defrost path may be provided by returning a bypass of the refrigerant discharged from the high-stage compressor to the heat source side heat exchanger.

このような構成によれば、圧縮機と熱源側熱交換器で構成された回路となるため、除霜するための制御が容易となる。   According to such a structure, since it becomes a circuit comprised with the compressor and the heat source side heat exchanger, control for defrosting becomes easy.

本発明は、低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムの制御方法であって、前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機と前記高段側圧縮機との間の接続点とに接続された第1流路切替手段において流通させる前記冷媒の流路を切り替える第1工程と、前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機の吸入側とに接続された第2流路切替手段において流通させる前記冷媒の流路を切り替える第2工程と、前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する第3工程とを具備する熱交換システムの制御方法を提供する。   The present invention includes a low-stage compressor, a high-stage compressor that further compresses the refrigerant compressed by the low-stage compressor, a plurality of heat source-side heat exchangers, and a use-side heat exchanger. A heat exchange system control method comprising: the use side heat exchanger; one end side of each heat source side heat exchanger; the discharge side of the high stage side compressor; the low stage side compressor; A first step of switching a flow path of the refrigerant to be circulated in a first flow path switching means connected to a connection point between the high stage side compressor, the first flow path switching means, and each heat source side A second flow path switching means provided between the heat exchanger and connected to the first flow path switching means, the heat source side heat exchangers, and the suction side of the low stage compressor; A second step of switching a flow path of the refrigerant to be circulated; a flow of the first flow path switching means and the second flow path switching means; A control method of the heat exchange system and a third step of controlling the switching of.

本発明は、低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムの制御方法であって、前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機の吸入側に接続された第1流路切替手段に流通させる前記冷媒の流路を切り替える第1工程と、前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機と前記高段側圧縮機の接続点に接続された第2流路切替手段に流通させる前記冷媒の流路を切り替える第2工程と、前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する第3工程とを具備する熱交換システムの制御方法を提供する。   The present invention includes a low-stage compressor, a high-stage compressor that further compresses the refrigerant compressed by the low-stage compressor, a plurality of heat source-side heat exchangers, and a use-side heat exchanger. A heat exchange system control method comprising: the use side heat exchanger; one end side of each heat source side heat exchanger; the discharge side of the high stage side compressor; and the suction of the low stage side compressor A first step of switching the flow path of the refrigerant to be circulated to the first flow path switching means connected to the side, provided between the first flow path switching means and each of the heat source side heat exchangers, The refrigerant to be circulated through the first flow path switching means, each of the heat source side heat exchangers, and the second flow path switching means connected to a connection point of the low-stage compressor and the high-stage compressor. A second step of switching the flow path, and a first step of controlling flow path switching between the first flow path switching means and the second flow path switching means. A control method of the heat exchange system and a process.

本発明は、複数の室外熱交換器を有する熱交換システムの熱交換ロスを抑制しつつ、熱交換システムの除霜運転できるという効果を奏する。   The present invention has an effect that a defrosting operation of a heat exchange system can be performed while suppressing heat exchange loss of a heat exchange system having a plurality of outdoor heat exchangers.

本発明の第1実施形態に係る空気調和機の冷媒系統図である。It is a refrigerant | coolant system | strain diagram of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機の制御装置の機能ブロック図である。It is a functional block diagram of the control apparatus of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機の第2暖房運転時の冷媒の流れを説明するための図である。It is a figure for demonstrating the flow of the refrigerant | coolant at the time of the 2nd heating operation of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空気調和機のデフロスト運転時の冷媒の流れを説明するための図である。It is a figure for demonstrating the flow of the refrigerant | coolant at the time of the defrost driving | operation of the air conditioner which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る空気調和機の冷媒系統図であり、デフロスト運転時の冷媒流れを示した図である。It is a refrigerant | coolant system | strain diagram of the air conditioner which concerns on 2nd Embodiment of this invention, and is the figure which showed the refrigerant | coolant flow at the time of a defrost driving | operation. 本発明の第3実施形態に係る空気調和機の冷媒系統図である。It is a refrigerant | coolant system | strain diagram of the air conditioner which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る空気調和機の冷媒系統図である。It is a refrigerant | coolant system | strain diagram of the air conditioner which concerns on 4th Embodiment of this invention.

以下に、本発明に係る熱交換システム及びその制御方法の実施形態について、図面を参照して説明する。本発明の熱交換システムは、熱媒を加熱して出力するものであり、例えば、空気調和機や給湯器等を含むヒートポンプが一例として挙げられる。熱媒は、気体、液体を問わない。また、熱交換システムは、熱媒を加熱する機能のみを有していてもよいし、加熱・冷却の両方の機能を有していてもよい。以下の説明においては、熱交換システムの一例として、空気調和機を例に挙げて説明する。   Hereinafter, an embodiment of a heat exchange system and a control method thereof according to the present invention will be described with reference to the drawings. The heat exchange system of the present invention heats and outputs a heat medium. For example, a heat pump including an air conditioner, a water heater, and the like can be given as an example. The heat medium may be gas or liquid. Moreover, the heat exchange system may have only the function of heating the heat medium, or may have both functions of heating and cooling. In the following description, an air conditioner will be described as an example of the heat exchange system.

〔第1実施形態〕
図1は、本実施形態に係る空気調和機10の冷媒系統図である。空気調和機10は、冷媒を圧縮する圧縮機3と、室内空気と冷媒とが熱交換する室内熱交換器(利用側熱交換器)5と、外気と冷媒とが熱交換する室外熱交換器(熱源側熱交換器)6と、レシーバ4と、四方弁(第1流路切替手段)7と、三方弁(第2流路切替手段)8と、温度検出部2とを備えている。レシーバ4と室内熱交換器5との間の冷媒配管には第1膨張弁9が設けられ、レシーバ4と室外熱交換器6との間の冷媒配管には第2膨張弁11がそれぞれ設けられている。上記構成において、例えば、圧縮機3、レシーバ4、室外熱交換器6、四方弁7、三方弁8、及び第2膨張弁11は、室外機に設けられ、室内熱交換器5及び第1膨張弁9は室内機に設けられている。
[First Embodiment]
FIG. 1 is a refrigerant system diagram of an air conditioner 10 according to the present embodiment. The air conditioner 10 includes a compressor 3 that compresses refrigerant, an indoor heat exchanger (use side heat exchanger) 5 that exchanges heat between indoor air and refrigerant, and an outdoor heat exchanger that exchanges heat between outside air and refrigerant. (Heat source side heat exchanger) 6, receiver 4, four-way valve (first flow path switching means) 7, three-way valve (second flow path switching means) 8, and temperature detector 2. The refrigerant pipe between the receiver 4 and the indoor heat exchanger 5 is provided with a first expansion valve 9, and the refrigerant pipe between the receiver 4 and the outdoor heat exchanger 6 is provided with a second expansion valve 11. ing. In the above configuration, for example, the compressor 3, the receiver 4, the outdoor heat exchanger 6, the four-way valve 7, the three-way valve 8, and the second expansion valve 11 are provided in the outdoor unit, and the indoor heat exchanger 5 and the first expansion valve are provided. The valve 9 is provided in the indoor unit.

本実施形態においては室外熱交換器6が室外熱交換器6a,6bとして2個あることとして説明するが、室外熱交換器の数は特に限定されない。
本実施形態においては、凝縮器(室内熱交換器5)に比べて各蒸発器(室外熱交換器6a,6b)のサイズ(熱交換量)が小さいものとする。1台の蒸発器で熱が十分に供給できる場合には、運転させていない蒸発器は使用しなくてもよいが、要求熱量が1台で供給できない場合には、運転させていない蒸発器を使用することで不足分を補う。
温度検出部2、三方弁8、及び第2膨張弁11はそれぞれ室外熱交換器6毎に対応して設けられており、本実施形態においては、それぞれを区別するときは温度検出部2a,2b、三方弁8a,8b、及び第2膨張弁11a,11bとして示すが、特に区別しないときにはa,bの符号を省略して示す。
In the present embodiment, description will be made assuming that there are two outdoor heat exchangers 6 as the outdoor heat exchangers 6a and 6b, but the number of outdoor heat exchangers is not particularly limited.
In the present embodiment, it is assumed that the size (heat exchange amount) of each evaporator (outdoor heat exchanger 6a, 6b) is smaller than that of the condenser (indoor heat exchanger 5). If a single evaporator can supply sufficient heat, it is not necessary to use an evaporator that is not operated. However, if the required amount of heat cannot be supplied by a single evaporator, an evaporator that is not operated is not used. Use to make up for the shortage.
The temperature detector 2, the three-way valve 8, and the second expansion valve 11 are provided corresponding to each outdoor heat exchanger 6, and in this embodiment, the temperature detectors 2a and 2b are used to distinguish each of them. The three-way valves 8a and 8b and the second expansion valves 11a and 11b are shown with the symbols a and b omitted when not particularly distinguished.

圧縮機3は、低段側圧縮機3aと、高段側圧縮機3bとを備える2段圧縮機とされている。低段側圧縮機3aで圧縮された中間圧力の冷媒をさらに高段側圧縮機3bで圧縮して高圧として吐出するものである。低段側圧縮機3a及び高段側圧縮機3bは、ローリングピストンタイプあるいはスイングタイプのロータリ式圧縮機構およびスクロール圧縮機構等の公知の形式の圧縮機構を適用できる。
低段側圧縮機3aは、吐出側から冷媒配管を介して高段側圧縮機3bに接続されており、高段側圧縮機3bは、低段側圧縮機3aで圧縮された中間圧の冷媒ガスを吸入して2段圧縮する。
空気調和機10は、圧縮機3から吐出されて四方弁7に流れる冷媒の圧力(高圧圧力:凝縮圧力)を測定する圧力センサ(図示略)、及び四方弁7から圧縮機3へ戻される冷媒の圧力(低圧圧力:蒸発圧力)を測定する圧力センサ(図示略)を備える。
The compressor 3 is a two-stage compressor including a low-stage compressor 3a and a high-stage compressor 3b. The intermediate pressure refrigerant compressed by the low stage compressor 3a is further compressed by the high stage compressor 3b and discharged as a high pressure. As the low-stage compressor 3a and the high-stage compressor 3b, a known type of compression mechanism such as a rolling piston type or a swing type rotary compression mechanism and a scroll compression mechanism can be applied.
The low-stage compressor 3a is connected to the high-stage compressor 3b from the discharge side via a refrigerant pipe, and the high-stage compressor 3b is an intermediate-pressure refrigerant compressed by the low-stage compressor 3a. Inhaled gas and compressed in two stages.
The air conditioner 10 includes a pressure sensor (not shown) that measures the pressure (high pressure: condensation pressure) of the refrigerant that is discharged from the compressor 3 and flows to the four-way valve 7, and the refrigerant that is returned from the four-way valve 7 to the compressor 3. A pressure sensor (not shown) for measuring the pressure (low pressure: evaporation pressure) is provided.

空気調和機10は、低段側圧縮機3aと高段側圧縮機3bを接続する配管L1と、高段側圧縮機3bと四方弁7を接続する配管L2と、四方弁7と室内熱交換器5を接続する配管L3と、第1膨張弁9を介して室内熱交換器5とレシーバ4を接続する配管L4と、第2膨張弁11a,11bを介してレシーバ4と室外熱交換器6a,6bを接続する配管L5と、室外熱交換器6aと三方弁8aを接続する配管L6と、室外熱交換器6bと三方弁8bを接続する配管L7と、三方弁8aと低段側圧縮機3aとを接続する配管L12と、三方弁8bと低段側圧縮機3aとを接続する配管L11と、低段側圧縮機3aの吐出側と高段側圧縮機3bの吸入側との間に設けられる接続点Xと四方弁7とを接続する配管L8と、四方弁7と三方弁8aを接続する配管L9と、四方弁7と三方弁8bを接続する配管L10とを備え、冷媒が循環する冷媒回路を構成する。   The air conditioner 10 includes a pipe L1 that connects the low-stage compressor 3a and the high-stage compressor 3b, a pipe L2 that connects the high-stage compressor 3b and the four-way valve 7, and a four-way valve 7 and indoor heat exchange. A pipe L3 for connecting the vessel 5, a pipe L4 for connecting the indoor heat exchanger 5 and the receiver 4 via the first expansion valve 9, and a receiver 4 and the outdoor heat exchanger 6a via the second expansion valves 11a and 11b. , 6b, a pipe L5 connecting the outdoor heat exchanger 6a and the three-way valve 8a, a pipe L7 connecting the outdoor heat exchanger 6b and the three-way valve 8b, the three-way valve 8a and the low-stage compressor Between the pipe L12 connecting the 3a, the pipe L11 connecting the three-way valve 8b and the low-stage compressor 3a, and the discharge side of the low-stage compressor 3a and the suction side of the high-stage compressor 3b A pipe L8 that connects the provided connection point X and the four-way valve 7 is connected to the four-way valve 7 and the three-way valve 8a. A pipe L9 which, and a pipe L10 connecting the four-way valve 7 and a three-way valve 8b, constituting the refrigerant circuit in which the refrigerant circulates.

レシーバ4は、冷媒の気液分離が行われるとともに循環する冷媒量の調整が行われる。
四方弁7は、室内熱交換器5と、三方弁8a,8b(室外熱交換器6a,6bの一端側)と、高段側圧縮機3bの吐出側と、低段側圧縮機3aの吐出側と高段側圧縮機3bの吸入側との間に設けられる接続点Xとに接続され、流通させる冷媒の流路を切り替える。
三方弁8aは、四方弁7と室外熱交換器6bとが接続される経路上の接続点Yと室外熱交換器6aとの間に設けられ、四方弁7と、室外熱交換器6aと、低段側圧縮機3aの吸入側とに流通させる冷媒の流路を切り替える。つまり、三方弁8aは、配管L6と配管L9と配管L12の冷媒流路を切り替える。
三方弁8bは、四方弁7と三方弁8aとが接続される経路上の接続点Yと室外熱交換器6bとの間に設けられ、四方弁7と、室外熱交換器6bと、低段側圧縮機3aの吸入側とに流通させる冷媒の流路を切り替える。つまり、三方弁8bは、配管L7と配管L10と配管L11の冷媒流路を切り替える。
The receiver 4 performs gas-liquid separation of the refrigerant and adjusts the circulating refrigerant amount.
The four-way valve 7 includes an indoor heat exchanger 5, three-way valves 8a and 8b (one end side of the outdoor heat exchangers 6a and 6b), a discharge side of the high-stage compressor 3b, and a discharge of the low-stage compressor 3a. Is connected to a connection point X provided between the suction side of the high-stage compressor 3b and the flow path of the refrigerant to be circulated.
The three-way valve 8a is provided between a connection point Y on the path where the four-way valve 7 and the outdoor heat exchanger 6b are connected to the outdoor heat exchanger 6a, and the four-way valve 7, the outdoor heat exchanger 6a, The flow path of the refrigerant to be circulated to the suction side of the low-stage compressor 3a is switched. That is, the three-way valve 8a switches the refrigerant flow paths of the pipe L6, the pipe L9, and the pipe L12.
The three-way valve 8b is provided between a connection point Y on the path where the four-way valve 7 and the three-way valve 8a are connected and the outdoor heat exchanger 6b, and the four-way valve 7, the outdoor heat exchanger 6b, The flow path of the refrigerant circulated to the suction side of the side compressor 3a is switched. That is, the three-way valve 8b switches the refrigerant flow paths of the pipe L7, the pipe L10, and the pipe L11.

温度検出部2a,2bは、例えばセンサであり、蒸発器として運転する室外熱交換器6a,6bの温度(以下「蒸発器の温度」ともいう)を検出し、制御装置20に出力する。本実施形態においては、蒸発器の配管温度、つまり、暖房運転時の室外熱交換器6a,6bの配管温度を検出することにより蒸発器の温度とする場合を例に挙げて説明するが、蒸発器の温度の検出方法はこれに限定されない。蒸発器の温度は、例えば、蒸発器の熱源温度、つまり、暖房運転時の室外熱交換器6a,6bの熱源温度を検出して得てもよく、熱源が空気であれば、温度検出部2は外気温を検出し、熱源が水であれば、温度検出部2は水の温度を検出する。温度検出部2a,2bで検出した室外熱交換器6a,6bのそれぞれの蒸発器の温度情報は、制御装置20に出力される。   The temperature detectors 2 a and 2 b are sensors, for example, and detect the temperatures of the outdoor heat exchangers 6 a and 6 b operating as evaporators (hereinafter also referred to as “evaporator temperatures”) and output them to the control device 20. In the present embodiment, the case where the temperature of the evaporator is determined by detecting the pipe temperature of the evaporator, that is, the pipe temperature of the outdoor heat exchangers 6a and 6b during the heating operation will be described as an example. The method for detecting the temperature of the vessel is not limited to this. The temperature of the evaporator may be obtained, for example, by detecting the heat source temperature of the evaporator, that is, the heat source temperature of the outdoor heat exchangers 6a and 6b during heating operation. If the heat source is air, the temperature detector 2 Detects the outside air temperature, and if the heat source is water, the temperature detector 2 detects the temperature of the water. The temperature information of the evaporators of the outdoor heat exchangers 6a and 6b detected by the temperature detectors 2a and 2b is output to the control device 20.

このような空気調和機10において、圧縮機3の制御、四方弁7の切り替え、三方弁8a,8bの切り替え、第1膨張弁9及び第2膨張弁11a,11bの開度制御等は、制御装置20(図2参照)によって行われる。
制御装置20は、例えば、マイクロプロセッサであり、後述する各部により実現される各種機能は、ROM等の記録媒体に格納されているプログラムをCPUがRAM等のメモリに読み出して実行することにより実現される。具体的には、制御装置20は、制御部(制御手段)21、蒸発温度算出部22、及び判定部23を主な構成として備えている。
In such an air conditioner 10, the control of the compressor 3, the switching of the four-way valve 7, the switching of the three-way valves 8a and 8b, the opening control of the first expansion valve 9 and the second expansion valves 11a and 11b, etc. are controlled. This is done by the device 20 (see FIG. 2).
The control device 20 is, for example, a microprocessor, and various functions realized by each unit described later are realized by the CPU reading a program stored in a recording medium such as a ROM into a memory such as a RAM and executing it. The Specifically, the control device 20 includes a control unit (control means) 21, an evaporation temperature calculation unit 22, and a determination unit 23 as main components.

蒸発温度算出部22は、温度検出部2で検出された蒸発器(各室外熱交換器6a,6b)の温度情報を取得し、蒸発器の温度情報に基づいて蒸発温度を算出し、各室外熱交換器6a,6bの蒸発温度の情報を判定部23に出力する。または、冷媒配管に圧力検出部(図示略)を設け、蒸発温度算出部22は、圧力検出部により圧力情報を取得し、飽和温度に基づいて蒸発温度を算出しても良い。
判定部23は、各室外熱交換器6a,6b間での蒸発温度の差と、記憶部(図示略)に記憶されている蒸発器の所定温度差(閾値温度)とを比較する。比較の結果、判定部23は、室外熱交換器6a,6bの蒸発温度差が所定温度差未満の場合には、第1暖房運転指令を出力し、所定温度差以上の場合には第2暖房運転指令を出力する。
また、判定部23は、室外熱交換器6a,6bが着霜したか否かを判定し、着霜を検出した場合には、デフロスト(除霜)運転指令を制御部21に出力する。
The evaporation temperature calculation unit 22 acquires the temperature information of the evaporator (each outdoor heat exchanger 6a, 6b) detected by the temperature detection unit 2, calculates the evaporation temperature based on the temperature information of the evaporator, Information on the evaporation temperature of the heat exchangers 6 a and 6 b is output to the determination unit 23. Alternatively, a pressure detector (not shown) may be provided in the refrigerant pipe, and the evaporation temperature calculator 22 may obtain pressure information by the pressure detector and calculate the evaporation temperature based on the saturation temperature.
The determination unit 23 compares the difference in evaporation temperature between the outdoor heat exchangers 6a and 6b with a predetermined temperature difference (threshold temperature) of the evaporator stored in the storage unit (not shown). As a result of the comparison, the determination unit 23 outputs the first heating operation command when the difference in evaporation temperature between the outdoor heat exchangers 6a and 6b is less than the predetermined temperature difference, and outputs the second heating operation when the difference is equal to or greater than the predetermined temperature difference. Outputs the operation command.
The determination unit 23 determines whether or not the outdoor heat exchangers 6a and 6b have formed frost. If the frost is detected, the determination unit 23 outputs a defrost (defrost) operation command to the control unit 21.

例えば、空気調和機10が暖房運転時において、判定部23は、2つの室外熱交換器6a,6bの蒸発温度差が所定温度差(例えば、20℃)以上か否かを判定し、蒸発器温度差が所定温度(例えば、20℃)より小さい場合は第1暖房運転指令を出力し、蒸発器温度差が所定温度(例えば、20℃)以上である場合には、第2暖房運転指令を出力する。   For example, when the air conditioner 10 is in the heating operation, the determination unit 23 determines whether or not the evaporation temperature difference between the two outdoor heat exchangers 6a and 6b is equal to or greater than a predetermined temperature difference (for example, 20 ° C.). When the temperature difference is smaller than a predetermined temperature (for example, 20 ° C.), the first heating operation command is output. When the evaporator temperature difference is equal to or greater than the predetermined temperature (for example, 20 ° C.), the second heating operation command is output. Output.

制御部21は、取得した指令に基づいて、四方弁7の切り替え、三方弁8a,8bの切り替え及び開度制御を行う。例えば、一の室外熱交換器6と接続される三方弁8を第1三方弁とし、一の室外熱交換器6以外の他の室外熱交換器6と接続される三方弁8を第2三方弁とすると、制御部21は、第2暖房運転時、第1三方弁を介して低段側圧縮機3aに冷媒を流入させ、第2三方弁を介して高段側圧縮機3bに冷媒を流入させる。   The control unit 21 performs switching of the four-way valve 7, switching of the three-way valves 8a and 8b, and opening control based on the acquired command. For example, a three-way valve 8 connected to one outdoor heat exchanger 6 is a first three-way valve, and a three-way valve 8 connected to another outdoor heat exchanger 6 other than one outdoor heat exchanger 6 is a second three-way valve. When the valve is used, the control unit 21 causes the refrigerant to flow into the low-stage compressor 3a through the first three-way valve and the refrigerant to the high-stage compressor 3b through the second three-way valve during the second heating operation. Let it flow.

具体的には、制御部21は、冷房運転指令を取得すると、冷房運転に応じて三方弁8a,8b及び四方弁7の開閉を制御する。
例えば、三方弁8bは、四方弁7側と室外熱交換器6b側の流路を開状態にさせ低段側圧縮機3a側の流路を閉状態にさせ、三方弁8aは、四方弁7側と室外熱交換器6a側の流路を開状態にさせ、低段側圧縮機3a側の流路を閉状態にさせる。これにより、高段側圧縮機3bから吐出された冷媒が、三方弁8bを介して室外熱交換器6bに流入し、三方弁8aを介して室外熱交換器6aに流入し、レシーバ4、室内熱交換器5と流通して、四方弁7を介して高段側圧縮機3bに流入される経路となる。
Specifically, when acquiring the cooling operation command, the control unit 21 controls opening and closing of the three-way valves 8a and 8b and the four-way valve 7 according to the cooling operation.
For example, the three-way valve 8b opens the flow paths on the four-way valve 7 side and the outdoor heat exchanger 6b side, and closes the flow path on the low-stage compressor 3a side, and the three-way valve 8a includes the four-way valve 7b. The flow path on the side and the outdoor heat exchanger 6a side is opened, and the flow path on the low-stage compressor 3a side is closed. As a result, the refrigerant discharged from the high-stage compressor 3b flows into the outdoor heat exchanger 6b via the three-way valve 8b, and flows into the outdoor heat exchanger 6a via the three-way valve 8a. It becomes a path | route which distribute | circulates with the heat exchanger 5 and flows in into the high stage side compressor 3b via the four-way valve 7. FIG.

第1暖房運転時、制御部21は、三方弁8a,8bは、四方弁7側の流路を閉状態にさせ低段側圧縮機3a側の流路を開状態にさせるように制御し、室外熱交換器6a,6bから出た冷媒の流入先を低段側圧縮機3aとする。
第2暖房運転時、制御部21は、例えば、蒸発器温度が低い室外熱交換器6aと接続される三方弁8a(第1三方弁)は、四方弁7側の流路を閉状態にさせ低段側圧縮機3a側の流路を開状態にさせるように制御し、蒸発器温度が高い室外熱交換器6bと接続される三方弁8b(第2三方弁)は、四方弁7側の流路を開状態にさせ低段側圧縮機3a側の流路を閉状態にさせるように制御し、室外熱交換器6a,6bから出た冷媒の流入先の圧縮機を異ならせる。これにより、蒸発器温度が低い室外熱交換器6から出力された冷媒は、低段側圧縮機3aと高段側圧縮機3bで圧縮され、蒸発器温度が高い室外熱交換器6から出力された冷媒は、高段側圧縮機3bで圧縮させることができるので、異なる蒸発器温度の室外熱交換器6があっても、無駄なく運転させることができる。
During the first heating operation, the control unit 21 controls the three-way valves 8a and 8b to close the flow path on the four-way valve 7 side and open the flow path on the low-stage compressor 3a side, The inflow destination of the refrigerant discharged from the outdoor heat exchangers 6a and 6b is a low-stage compressor 3a.
During the second heating operation, for example, the three-way valve 8a (first three-way valve) connected to the outdoor heat exchanger 6a having a low evaporator temperature closes the flow path on the four-way valve 7 side. The three-way valve 8b (second three-way valve) connected to the outdoor heat exchanger 6b having a high evaporator temperature is controlled so as to open the flow path on the low-stage compressor 3a side. Control is performed so that the flow path is opened and the flow path on the low-stage compressor 3a side is closed, and the compressor to which the refrigerant flowing out of the outdoor heat exchangers 6a and 6b flows is made different. Thereby, the refrigerant output from the outdoor heat exchanger 6 having a low evaporator temperature is compressed by the low-stage compressor 3a and the high-stage compressor 3b, and output from the outdoor heat exchanger 6 having a high evaporator temperature. Since the refrigerant can be compressed by the high-stage compressor 3b, even if there are outdoor heat exchangers 6 having different evaporator temperatures, the refrigerant can be operated without waste.

また、制御部21は、デフロスト運転指令を取得すると、複数の室外熱交換器6のうち着霜のおそれがあると判定された室外熱交換器6を凝縮器として運転させ、着霜のおそれがあると判定されていない室外熱交換器6を蒸発器として運転させる。制御部21は、例えば、三方弁8b(第1三方弁)は、低段側圧縮機3a側の流路を閉状態にし、室外熱交換器6b側の流路を開状態にすることで高段側圧縮機3bからの冷媒を室外熱交換器6bに流通させ、三方弁8a(第2三方弁)は四方弁7側の流路を閉状態にし、低段側圧縮機3a側の流路を開状態にすることで室外熱交換器6aからの冷媒を低段側圧縮機3aに流通させる。なお、デフロスト運転においては、周知のリバースサイクル運転により実施しても良い。   Moreover, if the control part 21 acquires a defrost operation instruction | command, it will drive | operate the outdoor heat exchanger 6 determined that there exists a possibility of frost formation among several outdoor heat exchangers 6 as a condenser, and there exists a possibility of frost formation. The outdoor heat exchanger 6 that has not been determined to be present is operated as an evaporator. For example, the control unit 21 is configured such that the three-way valve 8b (first three-way valve) is closed by closing the flow path on the low-stage compressor 3a side and opening the flow path on the outdoor heat exchanger 6b side. The refrigerant from the stage side compressor 3b is circulated to the outdoor heat exchanger 6b, the three-way valve 8a (second three-way valve) closes the flow path on the four-way valve 7 side, and the flow path on the low-stage compressor 3a side. Is opened to allow the refrigerant from the outdoor heat exchanger 6a to flow to the low-stage compressor 3a. The defrost operation may be performed by a well-known reverse cycle operation.

このように、室外熱交換器6a,6bが複数設けられることにより、そのうち1つの室外熱交換器6a,6bが着霜した場合であっても、着霜した室外熱交換器6a,6bを凝縮器として運転させ、着霜していない室外熱交換器6a,6bを蒸発器として運転させることにより、室外機側の熱交換器だけで除霜(デフロスト)運転を実施することができる。これにより、室内熱交換器5には低温の冷媒が流通することが無く、利用側における冷媒の温度低下を抑制することができる。   As described above, by providing a plurality of outdoor heat exchangers 6a and 6b, even if one of the outdoor heat exchangers 6a and 6b is frosted, the frosted outdoor heat exchangers 6a and 6b are condensed. By operating the outdoor heat exchangers 6a and 6b that are not frosted as evaporators, the defrosting operation can be performed only by the heat exchanger on the outdoor unit side. Thereby, a low temperature refrigerant | coolant does not distribute | circulate through the indoor heat exchanger 5, and it can suppress the temperature fall of the refrigerant | coolant in a utilization side.

ここで、空気調和機10の冷房運転、暖房運転のときの冷媒の流れについて説明する。
本実施形態に係る空気調和機10の冷房運転時においては、室内熱交換器5から出た冷媒は、四方弁7を介して高段側圧縮機3bに送られる。高段側圧縮機3bにおいて圧縮された冷媒は、四方弁7を介して三方弁8a,8bを経て室外熱交換器6a,6bに送られ、ここで外気と熱交換することによって凝縮液化して液冷媒となる。液冷媒となった冷媒は、第2膨張弁11により中間圧に調整され、レシーバ4に送られる。レシーバ4において冷媒は気液分離され、液冷媒は、第1膨張弁9を通過する過程で断熱膨張した後、室内熱交換器5に送られ、ここで室内空気を冷却することによって蒸発気化する。室内熱交換器5において、吸熱してガスになった冷媒は、四方弁7を介して高段側圧縮機3bに送られる。高段側圧縮機3bによって圧縮された冷媒が四方弁7に送られる。このように、空気調和機10の冷房運転時には、室外熱交換器6が凝縮器として、室内熱交換器5が蒸発器として機能する。
Here, the flow of the refrigerant during the cooling operation and the heating operation of the air conditioner 10 will be described.
During the cooling operation of the air conditioner 10 according to the present embodiment, the refrigerant discharged from the indoor heat exchanger 5 is sent to the high-stage compressor 3b via the four-way valve 7. The refrigerant compressed in the high-stage compressor 3b is sent to the outdoor heat exchangers 6a and 6b via the four-way valve 7 and the three-way valves 8a and 8b, where it is condensed and liquefied by exchanging heat with the outside air. It becomes a liquid refrigerant. The refrigerant that has become liquid refrigerant is adjusted to an intermediate pressure by the second expansion valve 11 and sent to the receiver 4. In the receiver 4, the refrigerant is separated into gas and liquid, and the liquid refrigerant undergoes adiabatic expansion in the process of passing through the first expansion valve 9, and then is sent to the indoor heat exchanger 5 where it evaporates and vaporizes by cooling the indoor air. . In the indoor heat exchanger 5, the refrigerant that has absorbed heat into gas is sent to the high-stage compressor 3 b via the four-way valve 7. The refrigerant compressed by the high stage side compressor 3 b is sent to the four-way valve 7. Thus, during the cooling operation of the air conditioner 10, the outdoor heat exchanger 6 functions as a condenser, and the indoor heat exchanger 5 functions as an evaporator.

一方、暖房運転の場合には、本実施形態においては、第1暖房運転と第2暖房運転の2つの暖房運転方式を切り替えられるようになっている。第1暖房運転は、室外熱交換器6a,6bの蒸発温度の差が所定温度差未満の場合に選択され、第2暖房運転は、室外熱交換器6a,6bの蒸発温度差が所定温度以上の場合に選択される。   On the other hand, in the case of the heating operation, in the present embodiment, the two heating operation methods of the first heating operation and the second heating operation can be switched. The first heating operation is selected when the difference in evaporation temperature between the outdoor heat exchangers 6a and 6b is less than a predetermined temperature difference, and the second heating operation is performed when the difference in evaporation temperature between the outdoor heat exchangers 6a and 6b is equal to or higher than a predetermined temperature. It is selected in the case of.

以下に、本実施形態に係る暖房運転について説明する。ここでは、複数の室外熱交換器6a,6bの運転が必要となる熱量が要求されており、複数の室外熱交換器6a,6bを蒸発器として運転している場合を例に挙げて説明する。
空気調和機10の第1暖房運転時には、室外熱交換器6a,6bから流出した冷媒は、三方弁8a,8bを介して低段側圧縮機3aに流入され、高段側圧縮機3bから吐出され、四方弁7から室内熱交換器5に流入される。室内熱交換器5で室内空気に放熱することによって凝縮液化し、高圧低温の液冷媒となる。この液冷媒は、第1膨張弁9によって中間圧に調整され、レシーバ4に送られる。レシーバ4において中間圧冷媒は気液分離され、第2膨張弁を通過する過程で断熱膨張した後、室外熱交換器6a,6bに送られ、ここで外気を冷却することによって蒸発気化する。室外熱交換器6a,6bにおいて吸熱してガスになった冷媒は、三方弁8a、四方弁7等を経て圧縮機に送られる。
Below, the heating operation which concerns on this embodiment is demonstrated. Here, the amount of heat required to operate the plurality of outdoor heat exchangers 6a and 6b is required, and the case where the plurality of outdoor heat exchangers 6a and 6b are operated as an evaporator will be described as an example. .
During the first heating operation of the air conditioner 10, the refrigerant flowing out of the outdoor heat exchangers 6a and 6b flows into the low stage compressor 3a via the three-way valves 8a and 8b and is discharged from the high stage compressor 3b. Then, the air flows into the indoor heat exchanger 5 from the four-way valve 7. The indoor heat exchanger 5 radiates heat to the room air to condense and liquefy it to become a high-pressure and low-temperature liquid refrigerant. This liquid refrigerant is adjusted to an intermediate pressure by the first expansion valve 9 and sent to the receiver 4. The intermediate-pressure refrigerant is separated into gas and liquid in the receiver 4 and adiabatically expanded in the process of passing through the second expansion valve, and then sent to the outdoor heat exchangers 6a and 6b, where it evaporates and vaporizes by cooling the outside air. The refrigerant that has absorbed heat in the outdoor heat exchangers 6a and 6b and turned into gas is sent to the compressor through the three-way valve 8a, the four-way valve 7 and the like.

蒸発温度差が検出されており、蒸発温度差が所定温度差以上か否かが判定され、所定温度差以上と判定された場合には、空気調和機10の暖房運転が、第2暖房運転に切り替えられる。ここでは、室外熱交換器6aの蒸発器の温度に基づいて算出された蒸発温度が第1温度(例えば、20℃)とし、室外熱交換器6bの蒸発器の温度に基づいて算出された蒸発温度が第2温度(例えば、0℃)である場合を例に挙げて説明する。   If the evaporating temperature difference is detected and it is determined whether the evaporating temperature difference is equal to or greater than the predetermined temperature difference. Can be switched. Here, the evaporation temperature calculated based on the temperature of the evaporator of the outdoor heat exchanger 6a is the first temperature (for example, 20 ° C.), and the evaporation calculated based on the temperature of the evaporator of the outdoor heat exchanger 6b is used. A case where the temperature is the second temperature (for example, 0 ° C.) will be described as an example.

例えば、空気調和機10の第2暖房運転時には、室外熱交換器6aより蒸発器温度が低い室外熱交換器6bから流出した冷媒は、例えば、図3の点線矢印で示すように、三方弁8bを経て低段側圧縮機3aに送られる。室外熱交換器6bより蒸発器温度が高い室外熱交換器6aから出た冷媒は、図3の実線矢印で示すように、三方弁8aを経て四方弁7を介し、接続点Xで合流して、高段側圧縮機3bに送られる。高段側圧縮機3bから吐出された冷媒は、室内熱交換器5に送られ、第1膨張弁9、レシーバ4、第2膨張弁11、室外熱交換器6a,6bの順に送られる。   For example, during the second heating operation of the air conditioner 10, the refrigerant flowing out of the outdoor heat exchanger 6b whose evaporator temperature is lower than that of the outdoor heat exchanger 6a is, for example, the three-way valve 8b as shown by the dotted line arrow in FIG. And then sent to the low-stage compressor 3a. As shown by the solid arrow in FIG. 3, the refrigerant that has come out of the outdoor heat exchanger 6a, whose evaporator temperature is higher than that of the outdoor heat exchanger 6b, joins at the connection point X via the three-way valve 8a and the four-way valve 7. Then, it is sent to the high stage side compressor 3b. The refrigerant discharged from the high-stage compressor 3b is sent to the indoor heat exchanger 5, and is sent in the order of the first expansion valve 9, the receiver 4, the second expansion valve 11, and the outdoor heat exchangers 6a and 6b.

ここでは、三方弁8aは低段側圧縮機3a側の流路を閉状態にして四方弁7側の流路を開状態にし、三方弁8bは低段側圧縮機3a側の流路を開状態にして四方弁7側の流路を閉状態にすることとして説明しているが、これに限定されない。例えば、三方弁8aは低段側圧縮機3a側の流路を開状態にして四方弁7側の流路を閉状態にし、三方弁8bは低段側圧縮機3a側の流路を閉状態にして四方弁7側の流路を開状態にして暖房運転させてもよい。本実施形態においては、各三方弁8a,8bが接続される室外熱交換器6a,6bが蒸発器として運転するときのそれぞれの蒸発温度に応じて、四方弁7側を開状態にするか低段側圧縮機3aの流路を開状態にするかが決定される。   Here, the three-way valve 8a closes the flow path on the low-stage compressor 3a side and opens the flow path on the four-way valve 7 side, and the three-way valve 8b opens the flow path on the low-stage compressor 3a side. Although it has been described that the flow path on the four-way valve 7 side is closed in a state, it is not limited to this. For example, the three-way valve 8a opens the flow path on the low-stage compressor 3a side and closes the flow path on the four-way valve 7 side, and the three-way valve 8b closes the flow path on the low-stage compressor 3a side. Thus, the heating operation may be performed by opening the flow path on the four-way valve 7 side. In this embodiment, depending on the respective evaporation temperatures when the outdoor heat exchangers 6a and 6b to which the three-way valves 8a and 8b are connected operate as evaporators, the four-way valve 7 side is opened or low. Whether to open the flow path of the stage side compressor 3a is determined.

低段側圧縮機3aにおいて圧縮された冷媒は、接続点Xにおいて配管L8を流通した室外熱交換器6からの冷媒と合流して高段側圧縮機3bに吸い込まれ、高段側圧縮機3bによって更に圧縮された冷媒が四方弁7に送られる。
このように、空気調和機10の暖房運転時には、室内熱交換器5が凝縮器として、室外熱交換器6a,6bが蒸発器として機能する。
なお、本実施形態では、室内熱交換器5及び室外熱交換器6ともに気体との熱交換としているが、これに限られず、液体(例えば、水)との熱交換としてもよい。
The refrigerant compressed in the low-stage compressor 3a merges with the refrigerant from the outdoor heat exchanger 6 that has circulated through the pipe L8 at the connection point X, and is sucked into the high-stage compressor 3b. Then, the refrigerant further compressed is sent to the four-way valve 7.
Thus, during the heating operation of the air conditioner 10, the indoor heat exchanger 5 functions as a condenser, and the outdoor heat exchangers 6a and 6b function as an evaporator.
In the present embodiment, both the indoor heat exchanger 5 and the outdoor heat exchanger 6 are heat exchanges with gas. However, the heat exchange is not limited to this and may be heat exchange with a liquid (for example, water).

また、暖房運転時、蒸発器として運転している室外熱交換器6a,6bがフロスト(着霜)したか否かが判定されており、例えば、室外熱交換器6bでフロストが検出された場合には、図4の実線に示されるように冷媒を流す。すなわち、四方弁7は、室内熱交換器5側の流路と接続点Xへの流路とを閉状態にし、三方弁8bは、低段側圧縮機3a側の流路を閉状態にし、室外熱交換器6b側の流路を開状態にし、三方弁8aは、四方弁7側の流路を閉状態にし、低段側圧縮機3a側の流路を開状態にし、室外熱交換器6a側の流路を開状態にする。   In addition, it is determined whether or not the outdoor heat exchangers 6a and 6b operating as evaporators have been frosted (frosted) during the heating operation. For example, when the frost is detected by the outdoor heat exchanger 6b In this case, the refrigerant is allowed to flow as shown by the solid line in FIG. That is, the four-way valve 7 closes the flow path on the indoor heat exchanger 5 side and the flow path to the connection point X, and the three-way valve 8b closes the flow path on the low-stage compressor 3a side, The flow path on the outdoor heat exchanger 6b side is opened, the three-way valve 8a closes the flow path on the four-way valve 7 side, opens the flow path on the low-stage compressor 3a side, and the outdoor heat exchanger The flow path on the 6a side is opened.

そして、室外熱交換器6bを凝縮器として運転させ、室外熱交換器6aを蒸発器として運転させることで、高段側圧縮機3bから吐出された冷媒を三方弁8bを介して室外熱交換器6bに流入させ、室外熱交換器6bから出た冷媒を室外熱交換器6aに流入させ、室外熱交換器6aから出た冷媒は低段側圧縮機3a、高段側圧縮機3bに流入させる。このように、室外機に複数の室外熱交換器6が設けられ、複数の室外熱交換器6を凝縮器と蒸発器として運転させることにより、室内機を冷媒が流通することなく、室外機側でデフロスト運転ができるようになる。このとき、暖房は停止させているので、室内機が配置される空間(室内)には、冷風が吹出すことがないので、室内は体感温度を維持した状態で、空気調和機10をデフロスト運転できる。   Then, the outdoor heat exchanger 6b is operated as a condenser and the outdoor heat exchanger 6a is operated as an evaporator, whereby the refrigerant discharged from the high-stage compressor 3b is passed through the three-way valve 8b to the outdoor heat exchanger. 6b, the refrigerant discharged from the outdoor heat exchanger 6b flows into the outdoor heat exchanger 6a, and the refrigerant discharged from the outdoor heat exchanger 6a flows into the low-stage compressor 3a and the high-stage compressor 3b. . In this way, the outdoor unit is provided with a plurality of outdoor heat exchangers 6, and the plurality of outdoor heat exchangers 6 are operated as a condenser and an evaporator, so that the refrigerant is not circulated through the indoor unit, and the outdoor unit side. With defrost operation becomes possible. At this time, since the heating is stopped, cold air does not blow out into the space (indoor) where the indoor unit is placed. Therefore, the air conditioner 10 is defrosted while maintaining the sensible temperature inside the room. it can.

以上説明してきたように、本実施形態に係る空気調和機10及びその制御方法によれば、室外熱交換器6a,6bから出た冷媒は、三方弁8a,8bの流路の切替えによって低段側圧縮機3aへの流路と四方弁7への流路に分けられ、四方弁7の切替えによって、高段側圧縮機3bから吐出された冷媒は、四方弁7を介して室内熱交換器5側と、低段側圧縮機3aと高段側圧縮機3bとの接続点Xに接続される流路と、三方弁8a,8b(各室外熱交換器6a,6b側の一端側に接続される三方弁)とに流路が切り替えられる。
本実施形態の構成により、複数の室外熱交換器6a,6bから出た冷媒は、低段側圧縮機3aの入力側に流通させる経路と、四方弁7を介して、低段側圧縮機3aを流通させずに(バイパスして)高段側圧縮機3bの入力側に流通させる経路とに分けることができる。
As described above, according to the air conditioner 10 and the control method thereof according to the present embodiment, the refrigerant discharged from the outdoor heat exchangers 6a and 6b is low-stage by switching the flow paths of the three-way valves 8a and 8b. The refrigerant discharged from the high-stage compressor 3b by the switching of the four-way valve 7 is divided into a flow path to the side compressor 3a and a flow path to the four-way valve 7, and the indoor heat exchanger passes through the four-way valve 7 5 side, a flow path connected to a connection point X between the low-stage compressor 3a and the high-stage compressor 3b, and three-way valves 8a and 8b (connected to one end of each of the outdoor heat exchangers 6a and 6b) The three-way valve) is switched.
According to the configuration of the present embodiment, the refrigerant discharged from the plurality of outdoor heat exchangers 6a and 6b passes through the path to the input side of the low-stage compressor 3a and the four-way valve 7, and the low-stage compressor 3a. Without being distributed (bypassed), and can be divided into a path for distributing to the input side of the high-stage compressor 3b.

このように、複数の室外熱交換器6a,6bから出た冷媒を、低段側圧縮機3aと高段側圧縮機3bに個別に冷媒を流入させることができるので、複数の室外熱交換器6a,6bを異なる蒸発温度で運転させることができる。
従来は、蒸発温度が異なる複数の蒸発器を用いる場合には、高い蒸発温度の蒸発器は低い蒸発温度の蒸発器に合わせる必要があったので、高い蒸発温度の蒸発器は能力が低下していた。本実施形態によれば、蒸発温度が低い室外熱交換器6から出力された冷媒は、低段側圧縮機3aと高段側圧縮機3bで圧縮させ、蒸発温度が高い室外熱交換器6から出力された冷媒は、高段側圧縮機3bで圧縮させることができる。このように、蒸発器を出た冷媒に対し、単段圧縮または二段圧縮を選択できるので、低い蒸発温度の蒸発器に合わせる必要がなく、異なる蒸発温度の室外熱交換器6があっても、無駄なく運転させることができる。
Thus, since the refrigerant | coolant which came out from the several outdoor heat exchangers 6a and 6b can be separately made to flow in into the low stage side compressor 3a and the high stage side compressor 3b, a some outdoor heat exchanger 6a and 6b can be operated at different evaporation temperatures.
In the past, when using a plurality of evaporators with different evaporation temperatures, it was necessary to match the evaporator with a high evaporation temperature to the evaporator with a low evaporation temperature, so the capacity of the evaporator with a high evaporation temperature has decreased. It was. According to this embodiment, the refrigerant output from the outdoor heat exchanger 6 having a low evaporation temperature is compressed by the low-stage compressor 3a and the high-stage compressor 3b, and from the outdoor heat exchanger 6 having a high evaporation temperature. The outputted refrigerant can be compressed by the high stage compressor 3b. Thus, since the single-stage compression or the two-stage compression can be selected for the refrigerant that has left the evaporator, it is not necessary to match the evaporator with a low evaporation temperature, and there is an outdoor heat exchanger 6 with a different evaporation temperature. , You can drive without waste.

また、室外熱交換器6が複数設けられることにより、そのうち1つの室外熱交換器6が着霜した場合には、着霜した室外熱交換器6を凝縮器として運転させ、着霜していない室外熱交換器6を蒸発器として運転させることにより、熱源側の熱交換器だけで除霜(デフロスト)運転を実施することができる。これにより、室内熱交換器5には低温の冷媒が流通することが無く、利用側(例えば、室内)における冷媒の温度低下を抑制することができ、室内の温度低下を防ぐ。
本実施形態においては、第1流路切替手段は四方弁とし、第2流路切替手段は三方弁であることを例に挙げて説明していたが、本発明はこれに限定されない。例えば、第2流路切替手段は、冷媒方向を切り替えられるバルブ(例えば、電動、手動を問わない。)等であってもよい。
Moreover, when one of the outdoor heat exchangers 6 is frosted by providing a plurality of outdoor heat exchangers 6, the frosted outdoor heat exchanger 6 is operated as a condenser and is not frosted. By operating the outdoor heat exchanger 6 as an evaporator, the defrosting (defrost) operation can be performed only by the heat exchanger on the heat source side. Thereby, a low temperature refrigerant | coolant does not distribute | circulate through the indoor heat exchanger 5, the temperature fall of the refrigerant | coolant in a utilization side (for example, indoor) can be suppressed, and the indoor temperature fall is prevented.
In the present embodiment, the first flow path switching unit is a four-way valve and the second flow path switching unit is a three-way valve. However, the present invention is not limited to this. For example, the second flow path switching unit may be a valve (for example, electric or manual) that can switch the refrigerant direction.

〔第2実施形態〕
以下、本発明の第2実施形態について説明する。本実施形態の空気調和機10の冷媒回路の四方弁(第1流路切替手段)と三方弁(第2流路切替手段)の設けられる位置が第1実施形態と異なる。本実施形態の熱交換システムについて、第1実施形態と共通する点については説明を省略し、図5を用いて異なる点について主に説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described. The positions where the four-way valve (first flow path switching means) and the three-way valve (second flow path switching means) of the refrigerant circuit of the air conditioner 10 of the present embodiment are different from the first embodiment. About the heat exchange system of this embodiment, description is abbreviate | omitted about the point which is common in 1st Embodiment, and a different point is mainly demonstrated using FIG.

四方弁7は、室内熱交換器5と、(室外熱交換器6a,6bの一端側と接続される)三方弁8a,8bと、高段側圧縮機3bの吐出側と、低段側圧縮機3aに接続され、流通させる冷媒の流路を切り替える。
三方弁8aは、四方弁7と室外熱交換器6bとが接続される経路上の接続点Yと室外熱交換器6aとの間に設けられ、低段側圧縮機3aの吐出側と高段側圧縮機3bの吸入側の間に設けられる接続点Qと、四方弁7と、室外熱交換器6aとに流通させる冷媒の流路を切り替える。
三方弁8bは、四方弁7と三方弁8aとが接続される経路上の接続点Yと室外熱交換器6bとの間に設けられ、四方弁7と、室外熱交換器6bと、低段側圧縮機3aの吐出側と高段側圧縮機3bの吸入側の間に繋がる接続点P側に流通させる冷媒の流路を切り替える。
The four-way valve 7 includes an indoor heat exchanger 5, three-way valves 8a and 8b (connected to one end side of the outdoor heat exchangers 6a and 6b), a discharge side of the high-stage compressor 3b, and a low-stage compression. The refrigerant flow path connected to the machine 3a and circulated is switched.
The three-way valve 8a is provided between a connection point Y on the path where the four-way valve 7 and the outdoor heat exchanger 6b are connected and the outdoor heat exchanger 6a, and is connected to the discharge side and the high stage of the low-stage compressor 3a. The flow path of the refrigerant | coolant distribute | circulated to the connection point Q provided between the suction sides of the side compressor 3b, the four-way valve 7, and the outdoor heat exchanger 6a is switched.
The three-way valve 8b is provided between a connection point Y on the path where the four-way valve 7 and the three-way valve 8a are connected and the outdoor heat exchanger 6b, and the four-way valve 7, the outdoor heat exchanger 6b, The flow path of the refrigerant circulated to the connection point P connected between the discharge side of the side compressor 3a and the suction side of the high stage compressor 3b is switched.

第2暖房運転の場合には、第1実施形態の場合と同様に、室外熱交換器6a,6bに蒸発温度差が所定温度差以上となった場合に、三方弁8a,8bの開閉状態を切り替え、異なる圧縮機に室外熱交換器6a,6bからの冷媒を流入させる。
本実施形態に係るデフロスト運転の場合には、以下のように三方弁8a,8b及び四方弁7を制御する。ここで、室外熱交換器6bがフロストした場合を例に挙げて説明する。
四方弁7は、室内熱交換器5側の流路及び低段側圧縮機3a側の流路を閉状態にし、室外熱交換器6側の流路を開状態にする。三方弁8aは、室外熱交換器6a側の流路を開状態にし、四方弁7側の流路を閉状態にし、低段側圧縮機3aと高段側圧縮機3bとの間の接続点Qへの流路を開状態にする。
In the case of the second heating operation, as in the case of the first embodiment, when the difference in evaporation temperature between the outdoor heat exchangers 6a and 6b exceeds a predetermined temperature difference, the open / close state of the three-way valves 8a and 8b is changed. The refrigerant from the outdoor heat exchangers 6a and 6b is caused to flow into different compressors.
In the case of the defrost operation according to the present embodiment, the three-way valves 8a and 8b and the four-way valve 7 are controlled as follows. Here, the case where the outdoor heat exchanger 6b is frosted will be described as an example.
The four-way valve 7 closes the flow path on the indoor heat exchanger 5 side and the flow path on the low-stage compressor 3a side, and opens the flow path on the outdoor heat exchanger 6 side. The three-way valve 8a opens the flow path on the outdoor heat exchanger 6a side, closes the flow path on the four-way valve 7 side, and connects the low-stage compressor 3a and the high-stage compressor 3b. Open the flow path to Q.

三方弁8bは、四方弁7側の流路を開状態にし、室外熱交換器6b側の流路を開状態にし、低段側圧縮機3aと高段側圧縮機3bとの間の接続点Qへの流路を閉状態にする。そして、室外熱交換器6aを蒸発器とし、フロストしたことを検出した室外熱交換器6bを凝縮器として運転させ、高段側圧縮機3bから吐出された冷媒が四方弁7を介して三方弁8bを経て、凝縮器として運転する室外熱交換器6bに流入する。室外熱交換器6bから出た冷媒は室外熱交換器6aに流入され、三方弁8aを介して、高段側圧縮機3bに吸入される。   The three-way valve 8b opens the flow path on the four-way valve 7 side, opens the flow path on the outdoor heat exchanger 6b side, and is a connection point between the low-stage compressor 3a and the high-stage compressor 3b. Close the flow path to Q. Then, the outdoor heat exchanger 6a is operated as an evaporator, the outdoor heat exchanger 6b that has detected the frosting is operated as a condenser, and the refrigerant discharged from the high stage side compressor 3b is passed through the four-way valve 7 to the three-way valve. After passing through 8b, it flows into the outdoor heat exchanger 6b that operates as a condenser. The refrigerant discharged from the outdoor heat exchanger 6b flows into the outdoor heat exchanger 6a, and is sucked into the high stage compressor 3b through the three-way valve 8a.

こうして、着霜した蒸発器(例えば、室外熱交換器6b)を凝縮器として運転させ、温かい冷媒を流すことにより除霜する。
以上説明したように、本実施形態に係る空気調和機10及びその制御方法によれば、室外熱交換器6が複数設けられ、そのうち1つの室外熱交換器6が着霜した場合には、着霜した室外熱交換器6を凝縮器として運転させ、着霜していない室外熱交換器6を蒸発器として運転させることにより、熱源側の熱交換器だけで除霜(デフロスト)運転を実施することができる。これにより、室内熱交換器5には低温の冷媒が流通することが無く、利用側における冷媒の温度低下を抑制することができる。また、除霜運転時には、低段側圧縮機3aと高段側圧縮機3bの冷媒の圧縮差が小さくなる傾向があるため、除霜運転時には、蒸発器の出力後の冷媒を高段側圧縮機に吸入させ単段圧縮とすることにより、2段圧縮する場合と比較して、冷媒圧縮の効率低下を防ぐ。
In this way, the frosted evaporator (for example, outdoor heat exchanger 6b) is operated as a condenser, and defrosting is performed by flowing warm refrigerant.
As described above, according to the air conditioner 10 and the control method thereof according to the present embodiment, a plurality of outdoor heat exchangers 6 are provided, and when one of the outdoor heat exchangers 6 is frosted, By operating the frosted outdoor heat exchanger 6 as a condenser and operating the non-frosted outdoor heat exchanger 6 as an evaporator, a defrosting operation is performed only with the heat source side heat exchanger. be able to. Thereby, a low temperature refrigerant | coolant does not distribute | circulate through the indoor heat exchanger 5, and it can suppress the temperature fall of the refrigerant | coolant in a utilization side. In addition, during the defrosting operation, the refrigerant compression difference between the low-stage compressor 3a and the high-stage compressor 3b tends to be small. Therefore, during the defrosting operation, the refrigerant after the output of the evaporator is compressed to the high stage. By reducing the efficiency of refrigerant compression, compared with the case of two-stage compression, the refrigerant is sucked into the machine and single-stage compression is performed.

〔第3実施形態〕
以下、本発明の第3実施形態について説明する。本実施形態の空気調和機10は、液ガス熱交換器を設ける点で、第1実施形態、第2実施形態と異なる。本実施形態の熱交換システムについて、第1実施形態、第2実施形態と共通する点については説明を省略し、図6を用いて異なる点について主に説明する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described. The air conditioner 10 of this embodiment differs from 1st Embodiment and 2nd Embodiment by the point which provides a liquid gas heat exchanger. About the heat exchange system of this embodiment, description is abbreviate | omitted about the point which is common in 1st Embodiment, 2nd Embodiment, and a different point is mainly demonstrated using FIG.

図6は、図1の構成に加え、室外機に液ガス熱交換器30と、第3膨張弁31とを備えている。
液ガス熱交換器30は、室内熱交換器5の出口の液冷媒と、該液冷媒を分流し、第3膨張弁31で膨張した一部の二相冷媒を熱交換させる。また、液ガス熱交換器30は、対向流でも平行流でもよく、特に限定されない。
6 includes a liquid gas heat exchanger 30 and a third expansion valve 31 in the outdoor unit in addition to the configuration of FIG.
The liquid gas heat exchanger 30 diverts the liquid refrigerant at the outlet of the indoor heat exchanger 5 and the liquid refrigerant, and partially exchanges heat between the two refrigerants expanded by the third expansion valve 31. The liquid gas heat exchanger 30 may be a counter flow or a parallel flow, and is not particularly limited.

室内熱交換器5で室内空気に放熱することによって凝縮液化し、高圧低温の液冷媒は、第1膨張弁9によって圧力調整され、一部の液冷媒が液ガス熱交換器30に流入される。液ガス熱交換器30において、室内熱交換器5の出口の液冷媒と、第3膨張弁31で膨張した一部の二相冷媒が熱交換され、ガス冷媒は高段側圧縮機3bの吸入側へ流入される(配管L20参照)。ここでは、配管L20の連結部は高段側圧縮機3bの吸入側としているが、本発明はこれに限定されず、例えば、低段側圧縮機3aの吸入側であってもよい。   The indoor heat exchanger 5 condenses and liquefies by releasing heat to the indoor air, and the pressure of the high-pressure and low-temperature liquid refrigerant is adjusted by the first expansion valve 9, and a part of the liquid refrigerant flows into the liquid-gas heat exchanger 30. . In the liquid gas heat exchanger 30, the liquid refrigerant at the outlet of the indoor heat exchanger 5 and a part of the two-phase refrigerant expanded by the third expansion valve 31 are heat-exchanged, and the gas refrigerant is sucked into the high stage compressor 3b. (Refer to piping L20). Here, the connecting portion of the pipe L20 is the suction side of the high stage compressor 3b, but the present invention is not limited to this, and may be, for example, the suction side of the low stage compressor 3a.

また、図6においては、液ガス熱交換器30は、室内熱交換器5とレシーバ4との間に設けられているが、液ガス熱交換器30の位置はこれに限定されず、例えば、レシーバ4と室外熱交換器6との間に設けても良い。
このように、液ガス熱交換器30を設けることにより、液ガス熱交換器30がインジェクションの役割を果たすので、低段側圧縮機3aへの冷媒の循環量を減らすことができ、入力の低減を図ることができる。これにより、暖房運転性能のさらなる向上を期待できる。
Moreover, in FIG. 6, although the liquid gas heat exchanger 30 is provided between the indoor heat exchanger 5 and the receiver 4, the position of the liquid gas heat exchanger 30 is not limited to this, For example, You may provide between the receiver 4 and the outdoor heat exchanger 6. FIG.
Thus, by providing the liquid gas heat exchanger 30, the liquid gas heat exchanger 30 plays the role of injection, so that the amount of refrigerant circulating to the low-stage compressor 3a can be reduced, and the input can be reduced. Can be achieved. Thereby, the further improvement of heating operation performance can be expected.

〔第4実施形態〕
以下、本発明の第4実施形態について説明する。本実施形態の空気調和機10は、高段側圧縮機の吐出側から室外熱交換器の区間にバイパス経路を設ける点で、第1実施形態、第2実施形態、第3実施形態と異なる。本実施形態の熱交換システムについて、第1実施形態、第2実施形態、第3実施形態と共通する点については説明を省略し、図7を用いて異なる点について主に説明する。
[Fourth Embodiment]
The fourth embodiment of the present invention will be described below. The air conditioner 10 of the present embodiment is different from the first embodiment, the second embodiment, and the third embodiment in that a bypass path is provided in the section of the outdoor heat exchanger from the discharge side of the high stage compressor. About the heat exchange system of this embodiment, description is abbreviate | omitted about the point which is common in 1st Embodiment, 2nd Embodiment, and 3rd Embodiment, and a different point is mainly demonstrated using FIG.

図7は、図1の構成に加え、第2膨張弁11a,11bと室外熱交換器6a,6bの間の接続点A,Bと、高段側圧縮機3bの吐出側に設けられる接続点Zとを接続するバイパス経路L40を備えている。例えば、バイパス経路L40は、蒸発器として運転していた室外熱交換器6がフロストした場合に使用される。
例えば、室外熱交換器6aに着霜した場合には、図7の実線矢印のように、冷媒の全量を室外熱交換器6a、三方弁8a、低段側圧縮機3a、高段側圧縮機3b、バイパス経路L40、室外熱交換器6aの順で循環させる。また例えば、室外熱交換器6bに着霜した場合には、室外熱交換器6b、三方弁8b、低段側圧縮機3a、高段側圧縮機3b、バイパス経路L40、室外熱交換器6bの順で循環させてもよい。
さらに、例えば、複数の室外熱交換器6a,6bがいずれもフロストした場合に、複数の室外熱交換器6a,6b、三方弁8a,8b、低段側圧縮機3a、高段側圧縮機3b、バイパス経路L40、室外熱交換器6a,6bのように複数の室外熱交換器6に冷媒を流通させてもよい。
FIG. 7 shows the connection points A and B between the second expansion valves 11a and 11b and the outdoor heat exchangers 6a and 6b and the connection points provided on the discharge side of the high stage compressor 3b in addition to the configuration of FIG. A bypass path L40 connecting Z is provided. For example, the bypass path L40 is used when the outdoor heat exchanger 6 operating as an evaporator has frosted.
For example, when the outdoor heat exchanger 6a is frosted, as shown by the solid line arrow in FIG. 7, the entire amount of refrigerant is transferred to the outdoor heat exchanger 6a, the three-way valve 8a, the low-stage compressor 3a, and the high-stage compressor. 3b, the bypass path L40, and the outdoor heat exchanger 6a are circulated in this order. For example, when the outdoor heat exchanger 6b is frosted, the outdoor heat exchanger 6b, the three-way valve 8b, the low-stage compressor 3a, the high-stage compressor 3b, the bypass path L40, and the outdoor heat exchanger 6b You may circulate in order.
Furthermore, for example, when all of the plurality of outdoor heat exchangers 6a and 6b are frosted, the plurality of outdoor heat exchangers 6a and 6b, the three-way valves 8a and 8b, the low-stage compressor 3a, and the high-stage compressor 3b. The refrigerant may be circulated through the plurality of outdoor heat exchangers 6 such as the bypass path L40 and the outdoor heat exchangers 6a and 6b.

三方弁8a,8bは、バイパス経路L40を使用し、室外熱交換器6a,6b側の流路と低段側圧縮機3a側の流路を開状態にした場合には、四方弁7側の流路は閉状態にする。四方弁7は、高段側圧縮機3bの吐出側の流路を閉状態にする。これにより、室外熱交換器6a,6bから出た冷媒は、低段側圧縮機3aに流入し、さらに高段側圧縮機3bに流入し、バイパス経路L40を通って室外熱交換器6a,6bに戻る。   The three-way valves 8a and 8b use the bypass path L40, and when the flow path on the outdoor heat exchangers 6a and 6b side and the flow path on the low-stage compressor 3a side are opened, the four-way valve 7 side The flow path is closed. The four-way valve 7 closes the discharge-side flow path of the high-stage compressor 3b. As a result, the refrigerant discharged from the outdoor heat exchangers 6a and 6b flows into the low-stage compressor 3a, further flows into the high-stage compressor 3b, passes through the bypass path L40, and the outdoor heat exchangers 6a and 6b. Return to.

また、三方弁8a,8bは、バイパス経路L40を使用し、室外熱交換器6a,6b側の流路と四方弁7側の流路を開状態にした場合には、低段側圧縮機3a側の流路を閉状態にする。四方弁7は、三方弁8a,8b側の流路と接続点Xへの流路を開状態とし、高段側圧縮機3bの吐出側の流路を閉状態とする。これにより、室外熱交換器6a,6bから出た冷媒は、高段側圧縮機3bに流入し、バイパス経路L40を通って室外熱交換器6a,6bに戻る。
このように、室外熱交換器6a,6bから出た冷媒は、低段側圧縮機3aに流入させてもよいし、高段側圧縮機3bに流入させるようにしてもよい。
The three-way valves 8a and 8b use the bypass path L40, and when the flow path on the outdoor heat exchangers 6a and 6b side and the flow path on the four-way valve 7 side are opened, the low-stage compressor 3a Close the flow path on the side. The four-way valve 7 opens the flow path on the side of the three-way valves 8a and 8b and the flow path to the connection point X, and closes the flow path on the discharge side of the high-stage compressor 3b. Thereby, the refrigerant | coolant which came out of the outdoor heat exchangers 6a and 6b flows into the high stage side compressor 3b, returns to the outdoor heat exchangers 6a and 6b through the bypass path L40.
As described above, the refrigerant discharged from the outdoor heat exchangers 6a and 6b may flow into the low-stage compressor 3a or may flow into the high-stage compressor 3b.

バイパス経路L40を用いる場合には、室外熱交換器6a,6bは蒸発器や凝縮器として運転させるものでなく、ホットガスを流通させるときに用いられるものであるため、ここでは「ホットガスサイクル」と呼ぶ。
図7においてバイパス経路L40は、高段側圧縮機3bの吐出側から、接続点A,Bまでの区間としているが、バイパス経路L40の配置位置はこれに限定されない。例えば、低段側圧縮機3aの吐出側に接続点を設け、低段側圧縮機3aの吐出側の接続点から接続点A,Bを接続する経路としてもよい。
When the bypass path L40 is used, the outdoor heat exchangers 6a and 6b are not operated as an evaporator or a condenser, but are used when circulating hot gas. Call it.
In FIG. 7, the bypass path L40 is a section from the discharge side of the high-stage compressor 3b to the connection points A and B, but the arrangement position of the bypass path L40 is not limited to this. For example, a connection point may be provided on the discharge side of the low-stage compressor 3a and the connection points A and B may be connected from the discharge-side connection point of the low-stage compressor 3a.

このような構成により、従来のデフロスト運転が実施出来ない場合であっても、圧縮機から吐出される冷媒を直接に室外熱交換器6に流入させることで、室外熱交換器6の除霜を実施することができる。これにより、デフロスト時に凝縮器を必要としない。また、圧縮機3と室外熱交換器6のみの回路となるため、デフロスト制御が他の実施例と比較して容易である。   Even if it is a case where the conventional defrost driving | operation cannot be implemented by such a structure, the defrost of the outdoor heat exchanger 6 is carried out by making the refrigerant | coolant discharged from a compressor flow in into the outdoor heat exchanger 6 directly. Can be implemented. This eliminates the need for a condenser during defrosting. Moreover, since it becomes a circuit only of the compressor 3 and the outdoor heat exchanger 6, defrost control is easy compared with another Example.

以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更なども含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

2a,2b 温度検出部
3a 低段側圧縮機
3b 高段側圧縮機
5 室内熱交換器(利用側熱交換器)
6a,6b 室外熱交換器(熱源側熱交換器)
7 四方弁(第1流路切替手段)
8a,8b 三方弁(第2流路切替手段)
10 空気調和機
X,Y,Z,A,B 接続点

2a, 2b Temperature detector 3a Low stage compressor 3b High stage compressor 5 Indoor heat exchanger (use side heat exchanger)
6a, 6b Outdoor heat exchanger (heat source side heat exchanger)
7 Four-way valve (first flow path switching means)
8a, 8b Three-way valve (second flow path switching means)
10 Air conditioner X, Y, Z, A, B Connection point

Claims (9)

低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムであって、
前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機と前記高段側圧縮機との間の接続点とに接続され、流通させる前記冷媒の流路を切り替える第1流路切替手段と、
前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機の吸入側とに流通させる前記冷媒の流路を切り替える第2流路切替手段と、
前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する制御手段と
を具備する熱交換システム。
A heat exchange system comprising: a low stage compressor; a high stage compressor that further compresses the refrigerant compressed by the low stage compressor; a plurality of heat source side heat exchangers; and a use side heat exchanger. Because
The use side heat exchanger, one end side of each heat source side heat exchanger, the discharge side of the high stage compressor, and a connection point between the low stage compressor and the high stage compressor And a first flow path switching means for switching the flow path of the refrigerant to be circulated.
Provided between the first flow path switching means and the heat source side heat exchangers, respectively, the first flow path switching means, the heat source side heat exchangers, and the suction of the low stage compressor Second flow path switching means for switching the flow path of the refrigerant to be circulated to the side,
A heat exchange system comprising a control means for controlling the switching of the flow path between the first flow path switching means and the second flow path switching means.
一の前記熱源側熱交換器と接続される前記第2流路切替手段を第1の第2流路切替手段とし、一の前記熱源側熱交換器以外の他の前記熱源側熱交換器と接続される前記第2流路切替手段を第2の第2流路切替手段とし、
暖房運転時、前記制御手段は、前記第1の第2流路切替手段を介して前記低段側圧縮機に前記冷媒を流入させ、前記第2の第2流路切替手段を介して前記高段側圧縮機に前記冷媒を流入させる請求項1に記載の熱交換システム。
The second flow path switching means connected to one heat source side heat exchanger is a first second flow path switching means, and other heat source side heat exchangers other than the one heat source side heat exchanger The second flow path switching means to be connected is a second second flow path switching means,
During the heating operation, the control means causes the refrigerant to flow into the low-stage compressor via the first second flow path switching means, and the high pressure via the second second flow path switching means. The heat exchange system according to claim 1, wherein the refrigerant flows into the stage-side compressor.
一の前記熱源側熱交換器と接続される前記第2流路切替手段を第1の第2流路切替手段とし、一の前記熱源側熱交換器以外の他の前記熱源側熱交換器と接続される前記第2流路切替手段を第2の第2流路切替手段とし、複数の前記熱源側熱交換器のうち一の前記熱源側熱交換器が着霜した場合に、
前記制御手段は、一の前記熱源側熱交換器を凝縮器として運転させ、他の前記熱源側熱交換器を蒸発器として運転させ、前記第1の第2流路切替手段は前記高段側圧縮機からの前記冷媒を一の前記熱源側熱交換器に流通させ、前記第2の第2流路切替手段は他の前記熱源側熱交換器からの前記冷媒を前記低段側圧縮機に流通させる請求項1または請求項2に記載の熱交換システム。
The second flow path switching means connected to one heat source side heat exchanger is a first second flow path switching means, and other heat source side heat exchangers other than the one heat source side heat exchanger When the second flow path switching means to be connected is a second second flow path switching means, and one of the heat source side heat exchangers is frosted,
The control means operates one heat source side heat exchanger as a condenser, operates the other heat source side heat exchanger as an evaporator, and the first second flow path switching means is the high stage side. The refrigerant from the compressor is circulated to the one heat source side heat exchanger, and the second second flow path switching unit passes the refrigerant from the other heat source side heat exchanger to the low stage compressor. The heat exchange system according to claim 1 or 2, wherein the heat exchange system is distributed.
低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムであって、
前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機の吸入側に接続され、流通させる前記冷媒の流路を切り替える第1流路切替手段と、
前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機と前記高段側圧縮機の接続点に流通させる前記冷媒の流路を切り替える第2流路切替手段と、
前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する制御手段と
を具備する熱交換システム。
A heat exchange system comprising: a low stage compressor; a high stage compressor that further compresses the refrigerant compressed by the low stage compressor; a plurality of heat source side heat exchangers; and a use side heat exchanger. Because
The flow of the refrigerant to be circulated connected to the use side heat exchanger, one end side of each heat source side heat exchanger, the discharge side of the high stage compressor, and the suction side of the low stage compressor First flow path switching means for switching the path;
Provided between the first flow path switching means and the heat source side heat exchangers, respectively, the first flow path switching means, the heat source side heat exchangers, the low stage compressor, and the Second flow path switching means for switching the flow path of the refrigerant to be circulated to the connection point of the high stage compressor;
A heat exchange system comprising a control means for controlling the switching of the flow path between the first flow path switching means and the second flow path switching means.
一の前記熱源側熱交換器と接続される前記第2流路切替手段を第1の第2流路切替手段とし、一の前記熱源側熱交換器以外の他の前記熱源側熱交換器と接続される前記第2流路切替手段を第2の第2流路切替手段とし、複数の前記熱源側熱交換器のうち一の前記熱源側熱交換器が着霜した場合に、
着霜した前記熱源側熱交換器を凝縮器として運転させ、着霜していない前記熱源側熱交換器を蒸発器として運転させ、
前記制御手段は、前記高段側圧縮機から吐出された前記冷媒を前記凝縮器として運転される前記熱源側熱交換器に流通させるように前記第1の第2流路切替手段を制御し、前記凝縮器を流通後に前記蒸発器として運転される前記熱源側熱交換器を介して、前記高段側圧縮機に前記冷媒を流通させるように前記第2の第2流路切替手段を制御する請求項4に記載の熱交換システム。
The second flow path switching means connected to one heat source side heat exchanger is a first second flow path switching means, and other heat source side heat exchangers other than the one heat source side heat exchanger When the second flow path switching means to be connected is a second second flow path switching means, and one of the heat source side heat exchangers is frosted,
The frosted heat source side heat exchanger is operated as a condenser, the heat source side heat exchanger not frosted is operated as an evaporator,
The control means controls the first second flow path switching means so that the refrigerant discharged from the high stage side compressor flows to the heat source side heat exchanger operated as the condenser, The second second flow path switching unit is controlled so that the refrigerant flows through the high-stage compressor via the heat source side heat exchanger operated as the evaporator after flowing through the condenser. The heat exchange system according to claim 4.
暖房運転時に、前記利用側熱交換器の出口の液冷媒と、該液冷媒の一部を膨張させた二相冷媒を熱交換させる液ガス熱交換器を備え、熱交換後の前記二相冷媒を前記低段側圧縮機または前記高段側圧縮機に流入させる請求項1から請求項5のいずれかに記載の熱交換システム。   A liquid gas heat exchanger that exchanges heat between the liquid refrigerant at the outlet of the use side heat exchanger and the two-phase refrigerant obtained by expanding a part of the liquid refrigerant during heating operation, and the two-phase refrigerant after heat exchange The heat exchange system according to any one of claims 1 to 5, wherein the refrigerant flows into the low-stage compressor or the high-stage compressor. 前記高段側圧縮機から吐出された前記冷媒を、前記熱源側熱交換器に戻すバイパス経路を設け除霜する請求項1から請求項6のいずれかに記載の熱交換システム。   The heat exchange system according to any one of claims 1 to 6, wherein a defrost path is provided to return the refrigerant discharged from the high stage side compressor to the heat source side heat exchanger. 低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムの制御方法であって、
前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機と前記高段側圧縮機との間の接続点とに接続された第1流路切替手段において流通させる前記冷媒の流路を切り替える第1工程と、
前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機の吸入側とに接続された第2流路切替手段において流通させる前記冷媒の流路を切り替える第2工程と、
前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する第3工程と
を具備する熱交換システムの制御方法。
A heat exchange system comprising: a low stage compressor; a high stage compressor that further compresses the refrigerant compressed by the low stage compressor; a plurality of heat source side heat exchangers; and a use side heat exchanger. Control method,
The use side heat exchanger, one end side of each heat source side heat exchanger, the discharge side of the high stage compressor, and a connection point between the low stage compressor and the high stage compressor A first step of switching the flow path of the refrigerant to be circulated in the first flow path switching means connected to
Provided between the first flow path switching means and the heat source side heat exchangers, respectively, the first flow path switching means, the heat source side heat exchangers, and the suction of the low stage compressor A second step of switching the flow path of the refrigerant to be circulated in the second flow path switching means connected to the side;
A control method for a heat exchange system, comprising: a third step of controlling switching of the flow path between the first flow path switching means and the second flow path switching means.
低段側圧縮機と、前記低段側圧縮機で圧縮された冷媒をさらに圧縮する高段側圧縮機と、複数の熱源側熱交換器と、利用側熱交換器と、を備える熱交換システムの制御方法であって、
前記利用側熱交換器と、各前記熱源側熱交換器の一端側と、前記高段側圧縮機の吐出側と、前記低段側圧縮機の吸入側に接続された第1流路切替手段に流通させる前記冷媒の流路を切り替える第1工程と、
前記第1流路切替手段と、各前記熱源側熱交換器との間にそれぞれ設けられ、前記第1流路切替手段と、各前記熱源側熱交換器と、前記低段側圧縮機と前記高段側圧縮機の接続点に接続された第2流路切替手段に流通させる前記冷媒の流路を切り替える第2工程と、
前記第1流路切替手段と前記第2流路切替手段との流路の切替えを制御する第3工程と
を具備する熱交換システムの制御方法。

A heat exchange system comprising: a low stage compressor; a high stage compressor that further compresses the refrigerant compressed by the low stage compressor; a plurality of heat source side heat exchangers; and a use side heat exchanger. Control method,
First flow path switching means connected to the use side heat exchanger, one end side of each heat source side heat exchanger, the discharge side of the high stage compressor, and the suction side of the low stage compressor A first step of switching the flow path of the refrigerant to be circulated to
Provided between the first flow path switching means and the heat source side heat exchangers, respectively, the first flow path switching means, the heat source side heat exchangers, the low stage compressor, and the A second step of switching the flow path of the refrigerant flowing through the second flow path switching means connected to the connection point of the high stage compressor;
A control method for a heat exchange system, comprising: a third step of controlling switching of the flow path between the first flow path switching means and the second flow path switching means.

JP2017107622A 2017-05-31 2017-05-31 Heat exchange system and its control method Active JP6932551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107622A JP6932551B2 (en) 2017-05-31 2017-05-31 Heat exchange system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107622A JP6932551B2 (en) 2017-05-31 2017-05-31 Heat exchange system and its control method

Publications (2)

Publication Number Publication Date
JP2018204812A true JP2018204812A (en) 2018-12-27
JP6932551B2 JP6932551B2 (en) 2021-09-08

Family

ID=64956847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107622A Active JP6932551B2 (en) 2017-05-31 2017-05-31 Heat exchange system and its control method

Country Status (1)

Country Link
JP (1) JP6932551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606840A (en) * 2021-08-06 2021-11-05 珠海格力电器股份有限公司 Refrigerating system, control method and device thereof, storage medium and processor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186123A (en) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp Air conditioner
JP2014085098A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Freezer device
JP2014224644A (en) * 2013-05-16 2014-12-04 シャープ株式会社 Heat pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186123A (en) * 2008-02-08 2009-08-20 Mitsubishi Electric Corp Air conditioner
JP2014085098A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Freezer device
JP2014224644A (en) * 2013-05-16 2014-12-04 シャープ株式会社 Heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606840A (en) * 2021-08-06 2021-11-05 珠海格力电器股份有限公司 Refrigerating system, control method and device thereof, storage medium and processor
CN113606840B (en) * 2021-08-06 2022-05-17 珠海格力电器股份有限公司 Refrigerating system, control method and device thereof, storage medium and processor

Also Published As

Publication number Publication date
JP6932551B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6351848B2 (en) Refrigeration cycle equipment
JP5871959B2 (en) Air conditioner
KR100544983B1 (en) Freezing device
JP7186845B2 (en) air conditioner
JP4001171B2 (en) Refrigeration equipment
US10724776B2 (en) Exhaust heat recovery type of air-conditioning apparatus
JP2004044921A (en) Refrigerating device
JP5963971B2 (en) Air conditioner
JP2011112233A (en) Air conditioning device
WO2017138108A1 (en) Air conditioning device
JP2004037006A (en) Freezing device
JP2019066086A (en) Refrigeration device
JP2006098044A (en) Refrigeration device
JP2010002112A (en) Refrigerating device
JP3998035B2 (en) Refrigeration equipment
CN111919073A (en) Refrigerating device
JP6932551B2 (en) Heat exchange system and its control method
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JPH10176869A (en) Refrigeration cycle device
JP4023386B2 (en) Refrigeration equipment
JP6042037B2 (en) Refrigeration cycle equipment
JP2009115336A (en) Refrigeration system
JP2007163011A (en) Refrigeration unit
JP4618313B2 (en) Refrigeration equipment
JP2019066088A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210818

R150 Certificate of patent or registration of utility model

Ref document number: 6932551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350