JP2018199935A - Strength determination method of foot protection portion - Google Patents

Strength determination method of foot protection portion Download PDF

Info

Publication number
JP2018199935A
JP2018199935A JP2017104764A JP2017104764A JP2018199935A JP 2018199935 A JP2018199935 A JP 2018199935A JP 2017104764 A JP2017104764 A JP 2017104764A JP 2017104764 A JP2017104764 A JP 2017104764A JP 2018199935 A JP2018199935 A JP 2018199935A
Authority
JP
Japan
Prior art keywords
cement
sample
strength
amount
root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017104764A
Other languages
Japanese (ja)
Other versions
JP6979792B2 (en
Inventor
侑也 依田
Yuya Yoda
侑也 依田
俊介 清村
Shunsuke Kiyomura
俊介 清村
浅香 美治
Miharu Asaka
美治 浅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2017104764A priority Critical patent/JP6979792B2/en
Publication of JP2018199935A publication Critical patent/JP2018199935A/en
Application granted granted Critical
Publication of JP6979792B2 publication Critical patent/JP6979792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

To provide a strength determination method of a foot protection portion which can more accurately determine whether a foot protection portion satisfies required compression strength regardless of an amount of excavated sediment included in a sample.SOLUTION: A strength determination method comprises: a first step of collecting a constituent of a layer 12 as first sample from the layer 12 in which a foot protection portion 32 in a subsoil is formed; a second step of producing and solidifying a plurality of kinds of cement milks including the first sample as an aggregate, and obtaining a relational expression between cement-water ratio and compression strength of the cement milk including the first sample as the aggregate from cement-water ratio and compression strength after solidification of the cement milks; a third step of injecting the cement milk 21 into a bottom portion of an excavated pile hole 1, and collecting the injected cement milk 21 as second sample; a fourth step of obtaining a moisture content of a test body; fifth step of obtaining a cement content to be included in the test body; and a sixth step of determining whether a cement content included in the test body satisfies the cement content obtained in the fifth step.SELECTED DRAWING: Figure 2

Description

本発明は、杭の根固め部の強度判定方法に関するものである。   The present invention relates to a method for determining the strength of a root consolidation portion of a pile.

従来、基礎杭を構築する方法としては、支持層まで杭穴を掘削して、杭穴内に既製杭や鉄筋篭を設置するものがある。この方法においては、杭穴内の底部に根固め液を注入し、固化させて根固め部を形成する。根固め部の形成は、地中深くにおいて行うため、強度の測定が難しい。そこで、根固め部の強度を推定する方法が提案されている(例えば、特許文献1参照)。この強度推定方法では、予め、施工現場のN値、地盤性状を計測し、比重−圧縮強度の対応表を作成しておく。そして、固化する前の根固め部から試料を採取して、比重を測定する。この比重と対応表とから根固め部の固化後の圧縮強度を求める。   Conventionally, as a method of constructing a foundation pile, there is a method of excavating a pile hole up to a support layer and installing a ready-made pile or a reinforcing bar in the pile hole. In this method, a root hardening liquid is poured into the bottom of the pile hole and solidified to form a root hardening part. Since the formation of the root consolidation is performed deep in the ground, it is difficult to measure the strength. Therefore, a method for estimating the strength of the root-solidified portion has been proposed (for example, see Patent Document 1). In this strength estimation method, the N value and ground properties at the construction site are measured in advance, and a correspondence table of specific gravity and compressive strength is created. And a sample is extract | collected from the root consolidation part before solidifying, and specific gravity is measured. From this specific gravity and the correspondence table, the compression strength after solidification of the rooted portion is obtained.

特開2010−222799号公報JP 2010-222799 A

比重から圧縮強度を求める場合には、根固め部において根固め液と掘削土砂が均一に混合されている必要がある。しかしながら、杭穴の底部において掘削土砂が均一に混合されているか否かを確認することは困難である。根固め部において、掘削土砂が均一に混合されていない場合、試料を採取する場所により、試料中に含まれる掘削土砂の量が変わる。試料の比重は、試料中に含まれる掘削土砂の量に応じて変わるため、比重から求められる圧縮強度も試料の採取場所により変わることとなる。そうすると、強度の推定の誤差が大きくなる。従って、このような方法で推定された強度に基づいて根固め部が必要圧縮強度を満たすかどうか判定する場合も、その正確性に疑問があるという問題があった。   When the compressive strength is obtained from the specific gravity, it is necessary that the root hardening liquid and the excavated soil are uniformly mixed in the root hardening portion. However, it is difficult to confirm whether or not the excavated soil is uniformly mixed at the bottom of the pile hole. When the excavated soil is not uniformly mixed in the root consolidation part, the amount of excavated sediment contained in the sample varies depending on the location where the sample is collected. Since the specific gravity of the sample varies depending on the amount of excavated sediment contained in the sample, the compressive strength obtained from the specific gravity also varies depending on the sampling location of the sample. Then, the error of intensity estimation becomes large. Therefore, there is a problem that the accuracy is questionable even when it is determined whether or not the rooted portion satisfies the required compressive strength based on the strength estimated by such a method.

本発明は、上記に鑑みてなされたものであって、試料内に含まれる掘削土砂の量に関わらず、より正確に根固め部が必要圧縮強度を満たすかを判定可能な根固め部の強度判定方法を提供することを目的とする。   The present invention has been made in view of the above, and the strength of the root-solidified portion that can determine whether the root-solidified portion satisfies the required compressive strength more accurately regardless of the amount of excavated earth and sand contained in the sample. An object is to provide a determination method.

上述した課題を解決し、目的を達成するために、本発明に係る根固め部の強度判定方法は、地盤を掘削した杭穴の底部にセメントミルクを含む液体を注入、固化することによって形成される根固め部の強度が必要圧縮強度を満たすかを判定する根固め部の強度判定方法であって、前記地盤の前記根固め部が形成される層から前記層の構成物を第一の試料として採取する第一の工程と、前記第一の試料を骨材として含むセメントミルクを複数種類生成して固化させ、それら前記セメントミルクのセメント水比と固化後の圧縮強度とから、前記第一の試料を骨材として含むセメントミルクのセメント水比と圧縮強度との関係式を求める第二の工程と、掘削した杭穴の底部にセメントミルクを注入し、注入後の前記セメントミルクと掘削土砂との混合物を第二の試料として採取する第三の工程と、前記第三の工程で採取した前記第二の試料から試験体を作成し、前記試験体の含有水分量を求める第四の工程と、前記第四の工程で求めた前記水分量、前記根固め部の必要圧縮強度及び前記第二の工程で算出した前記関係式から、前記試験体が前記必要圧縮強度を満たすとした場合に前記試験体中に含まれるべきセメント量を求める第五の工程と、前記試験体中に含まれるセメント量が前記第五の工程で求めたセメント量を満たしているか判定する第六の工程と、を有することを特徴とする。   In order to solve the above-described problems and achieve the object, the root-clamping strength determination method according to the present invention is formed by injecting and solidifying a liquid containing cement milk at the bottom of a pile hole excavated from the ground. A method for determining the strength of a root-solidifying portion for determining whether the strength of the root-solidifying portion satisfies a necessary compressive strength, wherein the constituent of the layer is a first sample from the layer in which the root-solidifying portion of the ground is formed. A plurality of types of cement milk containing the first sample as an aggregate and solidified, and the cement water ratio of the cement milk and the compressive strength after solidification, A second step of obtaining a relational expression between the cement water ratio and the compressive strength of cement milk containing the above sample as an aggregate, cement milk is injected into the bottom of the excavated pile hole, and the cement milk and the excavated soil after the injection Mixed with A third step of collecting an object as a second sample, a fourth step of creating a test body from the second sample collected in the third step, and determining a moisture content of the test body, When the test body satisfies the required compressive strength from the water content obtained in the fourth step, the required compressive strength of the root-solidified portion, and the relational expression calculated in the second step, the test is performed. A fifth step of determining the amount of cement to be contained in the body, and a sixth step of determining whether the amount of cement contained in the test body satisfies the amount of cement obtained in the fifth step. It is characterized by that.

本発明に係る根固め部の強度判定方法においては、酸を使用して前記試験体中に含まれるセメント量が前記第五の工程で求めたセメント量を満たしているかの判定を行うとよい。   In the strength determination method for the root-solidified portion according to the present invention, it is preferable to determine whether or not the amount of cement contained in the specimen satisfies the amount of cement obtained in the fifth step using an acid.

本発明に係る根固め部の強度判定方法においては、前記試験体を作成する際に粒径が1mm以上の骨材を除去する工程を含むとよい。   The strength determination method for a root-solidified portion according to the present invention may include a step of removing an aggregate having a particle size of 1 mm or more when the test body is created.

上述の構成によれば、固化前の根固め部から採取した第二の試料から試験体を作成し、必要圧縮強度における試験体中に含まれるべきセメント量をセメント水比と圧縮強度との関係から求め、試験体中に含まれるセメント量がその求めたセメント量を満たしているかどうかを判定することで、根固め部の強度を判定している。従って、第二の試料に入っている掘削土砂の量に関わらず、根固め部の強度を判定することができ、より正確に、根固め部の強度を判定することができる。   According to the above configuration, a test specimen is prepared from the second sample collected from the root before solidification, and the amount of cement to be included in the test specimen at the required compressive strength is determined between the cement water ratio and the compressive strength. The strength of the root-solidified portion is determined by determining whether the amount of cement contained in the test body satisfies the determined amount of cement. Therefore, regardless of the amount of excavated earth and sand contained in the second sample, the strength of the root consolidation portion can be determined, and the strength of the root consolidation portion can be determined more accurately.

図1は、本発明の実施形態における基礎杭を示した縦断面図である。FIG. 1 is a longitudinal sectional view showing a foundation pile in an embodiment of the present invention. 図2は、本発明の実施形態における施工手順を示した縦断面図である。FIG. 2 is a longitudinal sectional view showing a construction procedure in the embodiment of the present invention. 図3は、本発明の実施形態に係る各種地盤材料による圧縮強度とセメント水比との関係を示す図である。FIG. 3 is a diagram showing the relationship between the compressive strength and the cement water ratio of various ground materials according to the embodiment of the present invention. 図4は、本発明の実施形態に係る酸の滴下量とセメント量との関係を示す図である。FIG. 4 is a diagram showing the relationship between the acid dripping amount and the cement amount according to the embodiment of the present invention. 図5は、本発明の実施形態に係る試験における圧縮強度とセメント水比との関係を示す図である。FIG. 5 is a diagram showing the relationship between the compressive strength and the cement water ratio in the test according to the embodiment of the present invention. 図6は、本発明の実施形態に係る根固め部の強度判定方法の手順の一部を示すフローチャートである。FIG. 6 is a flowchart showing a part of the procedure of the strength determination method for the root-solidifying portion according to the embodiment of the present invention.

以下に添付図面を参照して、本発明に係る根固め部の強度判定方法の好適な実施形態について図1〜図6に基づいて詳細に説明する。この根固め部の強度判定方法は、基礎杭の施工の際に、掘削した杭穴の底部にセメントミルクを含む液体を注入して形成する根固め部が固化後に必要圧縮強度を満たすかを判定するものである。本実施形態においては、図1に示すように、地盤11において、地表から支持層12にかけて掘削した杭穴1の底部に根固め部32を構築した後、杭穴1に基礎杭31を配設する場合において、基礎杭31を配設する以前に根固め部32の強度を判定する方法について例示する。杭穴1を掘削する際に使用する掘削機は、図2Aに示すように、掘削ロッド2の先端に掘削ヘッド3を備えたものである。掘削ヘッド3は、順方向に回転させた場合に掘削歯が閉じた状態となる。一方、逆方向に回転させると掘削歯が広がり、拡大掘りができるようになっている。   With reference to the accompanying drawings, a preferred embodiment of a strength determination method for a rooting portion according to the present invention will be described below in detail with reference to FIGS. This strength determination method of root consolidation part determines whether the root consolidation part formed by injecting a liquid containing cement milk into the bottom of the excavated pile hole satisfies the required compressive strength after solidification when constructing the foundation pile To do. In the present embodiment, as shown in FIG. 1, in the ground 11, a foundation pile 31 is disposed in the pile hole 1 after the root 32 is constructed at the bottom of the pile hole 1 excavated from the ground surface to the support layer 12. In this case, an example of a method for determining the strength of the root consolidation part 32 before the foundation pile 31 is disposed will be described. The excavator used when excavating the pile hole 1 has an excavation head 3 at the tip of an excavation rod 2 as shown in FIG. 2A. When the excavation head 3 is rotated in the forward direction, the excavation teeth are closed. On the other hand, when it is rotated in the reverse direction, the excavating teeth spread and an expanded excavation can be performed.

第一の工程:この根固め部の強度判定方法では、まず根固め部32が形成される支持層12からその構成物を試料(第一の試料)として採取する。試料を採取する場合には、例えば、ボーリングによって行えば良い。   First step: In this method for determining the strength of the root-solidified portion, first, the component is collected as a sample (first sample) from the support layer 12 on which the root-solidified portion 32 is formed. When collecting a sample, for example, it may be performed by boring.

第二の工程:第一の工程で採取した試料を骨材として含むセメントミルクを複数種類生成し、そのセメント水比とそれを固化させたものの圧縮強度とを測定することにより、第一の試料を骨材として含むセメントミルクのセメント水比と圧縮強度の関係式を算出する。より具体的には、第一の試料を骨材として含む試験体としてのセメントミルクを、骨材の量と、セメントの量と、水の量とをそれぞれ変えて、例えば、12パターン(少なくとも2パターン)生成し、それらのセメント水比を算出するとともに、それらを固化させ、材齢28日の圧縮強度を測定する。その結果から、図3に示すように、セメント水比と圧縮強度の関係式(回帰式)を算出する。尚、回帰式は直線となる。Rの2乗は、決定係数を表す。図3は、第一の試料が、礫質砂だった場合(図3A)、砂混じり粘土だった場合(図3B)、砂質粘土だった場合(図3C)、砂混じり礫(図3D)だった場合の第一の試料を骨材として含むセメントミルクのセメント水比と圧縮強度の関係の一例を示している。図3に示すように、第一の試料の材質によって、セメント水比と圧縮強度の関係式は異なる。   Second step: The first sample is obtained by generating a plurality of types of cement milk containing the sample collected in the first step as an aggregate, and measuring the cement water ratio and the compressive strength of the solidified product. The relational expression between the cement water ratio and the compressive strength of cement milk containing as the aggregate is calculated. More specifically, cement milk as a test body including the first sample as an aggregate is changed to, for example, 12 patterns (at least 2) by changing the amount of aggregate, the amount of cement, and the amount of water. Pattern), and the cement water ratio thereof is calculated, and they are solidified, and the compressive strength at the age of 28 days is measured. From the result, as shown in FIG. 3, a relational expression (regression formula) between the cement water ratio and the compressive strength is calculated. The regression equation is a straight line. The square of R represents the coefficient of determination. FIG. 3 shows the case where the first sample was gravel sand (FIG. 3A), the sand mixed clay (FIG. 3B), the sand clay (FIG. 3C), and the sand mixed gravel (FIG. 3D). It shows an example of the relationship between the cement water ratio and the compressive strength of cement milk containing the first sample as an aggregate. As shown in FIG. 3, the relational expression between the cement water ratio and the compressive strength differs depending on the material of the first sample.

第三の工程:図2Aに示すように、基礎杭の施工現場にて、水(掘削液)を注入しながら掘削ロッド2によって杭穴1を掘削する。杭穴1を掘削する際には、図2Bで示すように、練付ドラム4で杭穴1の側壁を均しながら掘削することが好ましい。掘削された杭穴1は、注入した水と掘削土砂(地盤材料)とが混合した泥水13で満たされることになる。支持層12に到達するまで掘削したら、掘削ロッド2を逆転させ、掘削ロッド2の先端部である掘削ヘッド3を拡開させる。その状態で、図2Bに示すように、掘削ロッド2によって、杭穴1の他の部分より大きな径で支持層12を拡大掘削を行い、拡大部1Aを形成する。その後、図2Cに示すように、拡大部1Aにセメントミルク(根固め液)を注入し、泥水13と掘削土砂と撹拌混合する。セメントミルクは、ソイルセメント21となる。セメントミルクを充填した後、掘削ロッド2を杭穴1から引き上げ、図2Dの状態で、ソイルセメント21が固化する前にソイルセメント21(掘削土砂を含んだセメントミルク)から試料(第二の試料)を採取する(ステップS101)。試料の採取方法としては、例えば、掘削ロッド2の先端に試料採取器を取り付け、これにより、試料を採取する。試料の採取量としては、100g程度でよい。尚、第二の試料を採取する前に、セメントミルクと泥水13と掘削土砂とを掘削機の掘削ロッド2によって撹拌混合したが、撹拌しなくともよい。   3rd process: As shown to FIG. 2A, the pile hole 1 is excavated with the excavation rod 2, injecting water (excavation liquid) in the construction site of a foundation pile. When excavating the pile hole 1, it is preferable to excavate the side wall of the pile hole 1 with the kneading drum 4 as shown in FIG. 2B. The excavated pile hole 1 is filled with muddy water 13 in which the injected water and excavated soil (ground material) are mixed. When excavation is performed until the support layer 12 is reached, the excavation rod 2 is reversed and the excavation head 3 that is the tip of the excavation rod 2 is expanded. In this state, as shown in FIG. 2B, the excavation rod 2 performs the excavation of the support layer 12 with a larger diameter than the other part of the pile hole 1 to form the enlarged portion 1A. Thereafter, as shown in FIG. 2C, cement milk (root-setting liquid) is injected into the enlarged portion 1A, and the mud 13 and the excavated earth and sand are stirred and mixed. The cement milk becomes soil cement 21. After the cement milk is filled, the excavation rod 2 is pulled up from the pile hole 1 and, in the state of FIG. 2D, before the soil cement 21 is solidified, a sample (second sample) is obtained from the soil cement 21 (cement milk containing excavated earth and sand). ) Is collected (step S101). As a method for collecting a sample, for example, a sampler is attached to the tip of the excavation rod 2 and thereby a sample is collected. The amount of sample collected may be about 100 g. In addition, before taking the second sample, the cement milk, the muddy water 13 and the excavated earth and sand are agitated and mixed by the excavating rod 2 of the excavator, but may not be agitated.

ここで、後述する酸に対する第一の試料の溶解割合や、第一の試料のpHに与える影響を把握しておくとよい(ステップS102)。第一の試料のpHに与える影響を把握しておくこととは、例えば、所定量のセメントに十分な水を加えたものを中和する量の酸を所定量のセメントと十分な水と所定量の第一の試料とからなる液体に入れた際のpHの値を求めることである。また、第一の試料のpHに与える影響を把握しておくこととは、第一の試料に十分な水を加えたもののpHを測定することであってもよい。   Here, it is preferable to grasp the dissolution rate of the first sample with respect to the acid, which will be described later, and the effect on the pH of the first sample (step S102). Understanding the effect of the first sample on the pH means, for example, that a sufficient amount of acid to neutralize a predetermined amount of cement with sufficient water is added to a predetermined amount of cement and sufficient water. It is to determine the pH value when placed in a liquid consisting of a first sample for quantification. Further, grasping the influence of the first sample on the pH may be measuring the pH of the first sample with sufficient water added.

第四の工程:第三の工程で採取した第二の試料から試験体を作成し、試験体の含有水分量を求める。試験体を作成する際には、第二の試料を目開き1mmの篩にかけ、粒径が1mm以上の骨材を除去する(ステップS103)。篩にかけた第二の試料から、所定量、例えば5g取り出し、試験体とする。試験体の水分量を測定する(ステップS104)。試験体の水分量を測定する方法としては、例えば、赤外線水分計や電子レンジを用いて水分を逸散させる方法、フライパンにより熱して水分を逸散させる方法、有機溶媒を使用する方法等の方法が使用できる。また、水分量の測定は温度が200℃以下の状態で行うとよい。これは、粘土が熱により変性し、酸に溶解する成分となってしまう可能性があるためである。   Fourth step: A test specimen is prepared from the second sample collected in the third process, and the moisture content of the test specimen is determined. When preparing the test body, the second sample is passed through a sieve having an opening of 1 mm, and aggregates having a particle diameter of 1 mm or more are removed (step S103). A predetermined amount, for example, 5 g is taken out from the second sample that has been sieved to obtain a test specimen. The moisture content of the test body is measured (step S104). Methods for measuring the moisture content of the specimen include, for example, a method of dissipating moisture using an infrared moisture meter or a microwave oven, a method of dissipating moisture by heating with a frying pan, a method of using an organic solvent, etc. Can be used. The moisture content is preferably measured at a temperature of 200 ° C. or lower. This is because clay may be denatured by heat and become a component dissolved in acid.

第五の工程:第四の工程で求めた水分量、根固め部32の必要圧縮強度及び第二の工程で算出した関係式から、必要圧縮強度における試験体中に含まれるべきセメント量(第一セメント量と記す)を求める(ステップS105)。根固め部32の必要圧縮強度とは、根固め部32に基礎杭31を配設し、根固め部32が固化した際に必要な圧縮強度であり、設計基準強度から安全率を考慮したものであるとよい。セメント量を求める際には、先ず、第二の工程で算出した関係式に必要圧縮強度を代入し、セメント水比を求める。セメント水比=セメントの質量/水の質量であるので、求めたセメント水比と、第四の工程で求めた水分量とからセメントの質量が求まる。これが、第一セメント量である。   Fifth step: From the amount of water obtained in the fourth step, the necessary compressive strength of the root-solidifying part 32 and the relational expression calculated in the second step, the amount of cement to be contained in the specimen at the required compressive strength (first step) (Referred to as one cement amount) (step S105). The necessary compressive strength of the root consolidation part 32 is a compressive strength required when the foundation pile 31 is disposed in the root consolidation part 32 and the root consolidation part 32 is solidified, and the safety factor is considered from the design standard strength. It is good to be. When determining the amount of cement, first, the required compressive strength is substituted into the relational expression calculated in the second step to determine the cement water ratio. Since the cement water ratio = the mass of cement / the mass of water, the mass of cement can be obtained from the obtained cement water ratio and the amount of water obtained in the fourth step. This is the first cement amount.

第六の工程:試験体中に含まれるセメント量が、第一セメント量を満たしているか判定する。これを判定する方法としては、例えば酸を使用する方法を使用すると良い。酸を使用する方法としては、例えば、次のような方法がある。第一セメント量のセメントを水に溶かしたものを中和するのに必要な量の酸を試験体と混合する(ステップS106)。その結果、中和したかもしくはアルカリ性であるか、例えば、pHが7以上であるかを判定する(ステップS107)。なお、この際、溶解速度を保つ観点から、20℃以上に溶液の温度を保つことが望ましい。中和したかもしくはアルカリ性であった場合(ステップS107,Yes)、第一セメント量のセメントが試験体に含まれていると判定し、根固め部の強度判定を終了する。この際、使用する酸は、毒劇物でない酸、例えば酒石酸を使用すると良い。また、中和しているどうかの判定は、例えば、フェノールフタレイン容液等の指示薬を使用しても良いし、pH試験紙を使用しても良い。   Sixth step: It is determined whether the amount of cement contained in the specimen satisfies the first cement amount. As a method for determining this, for example, a method using an acid may be used. Examples of the method using an acid include the following methods. An amount of acid necessary to neutralize the first cement amount of the cement dissolved in water is mixed with the test specimen (step S106). As a result, it is determined whether it is neutralized or alkaline, for example, whether the pH is 7 or more (step S107). At this time, it is desirable to keep the temperature of the solution at 20 ° C. or higher from the viewpoint of keeping the dissolution rate. When neutralized or alkaline (step S107, Yes), it is determined that the first cement amount of cement is included in the test body, and the strength determination of the rooted portion is terminated. At this time, the acid used is preferably an acid that is not a poisonous substance, such as tartaric acid. In addition, for example, an indicator such as a phenolphthalein solution may be used, or a pH test paper may be used to determine whether neutralization has occurred.

また、第一セメント量のセメントを水に溶かしたものを中和するのに必要な量の酸を求める方法について説明する。予め、使用する所定の濃度に調整した酸と使用するセメントを、溶解させて中和させ、図4のように単位質量の試料中に含まれるセメントの割合と中和に至った酸の滴下量との関係を求める。試料中に含まれるセメントの割合と試料に酸を加えていった際に中和に至った酸の滴下量との関係は、図4に示すように回帰式で表すことができる。従って、試験体の量と試験体中のセメント量がわかれば、試料中に含まれるセメントの割合がわかり、回帰式より、中和に必要な酸の量を求めることができる。尚、中和に必要な酸の量を求める際には、酸に対する第一の試料の溶解割合や、第一の試料のpHに与える影響を考慮に入れても良い。この際には、例えば、試験体中の骨材(第一の試料)の量を求めてもよい。骨材の量を求める方法としては、コンクリートの配合推定の方法を使用することができる。これには、例えば、塩酸を使用する方法、グルコン酸ナトリウムを使用する方法や、誘導結合プラズマ発光分光分析装置を使用する方法等がある。   In addition, a method for obtaining an amount of acid necessary to neutralize a first cement amount of cement dissolved in water will be described. The acid adjusted to the predetermined concentration to be used and the cement to be used are dissolved and neutralized, and the ratio of the cement contained in the unit mass sample as shown in FIG. Seeking relationship with. The relationship between the proportion of cement contained in the sample and the amount of acid dropped to neutralization when acid is added to the sample can be expressed by a regression equation as shown in FIG. Therefore, if the amount of the specimen and the amount of cement in the specimen are known, the proportion of cement contained in the sample can be found, and the amount of acid required for neutralization can be determined from the regression equation. When determining the amount of acid necessary for neutralization, the dissolution rate of the first sample with respect to the acid and the effect on the pH of the first sample may be taken into consideration. In this case, for example, the amount of aggregate (first sample) in the test body may be obtained. As a method for determining the amount of aggregate, a method for estimating the mixing ratio of concrete can be used. This includes, for example, a method using hydrochloric acid, a method using sodium gluconate, a method using an inductively coupled plasma emission spectrometer, and the like.

また、試験体中に含まれるセメント量が、第一セメント量を満たしているかどうかの判定は、試験体中に含まれるセメント量を求めることによって行っても良い。セメント量を求める方法としては、例えば、水分を蒸発させた後の試料を所定量の塩酸に溶解させて水酸化ナトリウムで滴定を行う方法や、酸に溶解させた際の溶解熱の算出により求める方法等の方法を使用することができる。   Moreover, you may determine whether the amount of cement contained in a test body satisfy | fills the amount of 1st cement by calculating | requiring the amount of cement contained in a test body. As a method for obtaining the amount of cement, for example, a method in which a sample after evaporation of water is dissolved in a predetermined amount of hydrochloric acid and titrated with sodium hydroxide, or calculation of heat of dissolution when dissolved in an acid is obtained. Methods such as methods can be used.

第七の工程:酸と試験体の混合液が酸性だった場合、即ち、根固め部32が必要圧縮強度を満たさないと判定された場合(ステップS107,No)、第二の試料の材齢X日強度もしくは、根固め部32のコア強度を測定する(ステップS108)。第二の試料の材齢X日強度もしくは、根固め部32のコア強度が設計基準を満たしているか判定する(ステップS109)。設計基準を満たす場合、根固め部の強度判定を終了する(ステップS109,Yes)。一方、設計基準を満たさない場合(ステップS109,No)、根固め部32の再施工を行う(ステップS110)。その後、ステップS101に戻る。根固め部32の圧縮強度が十分であると判定される場合、図2Eに示すように、杭穴1内の拡大部1Aより上部の部分1Bに杭周固定液22を地表付近にまで注入する。その際に、地上に溢れ出す泥水13は、例えば、セメント系の固化材を添加して固化し、トラックで搬送可能な程度の粘度として産業廃棄物として処分してもよい。その後に、図2Fに示すように、基礎杭31を拡大部1Aに達するまで沈設する。拡大部1Aのソイルセメント21が固まると、固化後の根固め部32となる。   Seventh step: When the mixed solution of the acid and the test specimen is acidic, that is, when it is determined that the root hardening part 32 does not satisfy the necessary compressive strength (Step S107, No), the age of the second sample The X-day strength or the core strength of the root hardening part 32 is measured (step S108). It is determined whether the age X day strength of the second sample or the core strength of the root consolidation part 32 satisfies the design criteria (step S109). When the design standard is satisfied, the strength determination of the rooting portion is terminated (step S109, Yes). On the other hand, when the design standard is not satisfied (No at Step S109), the rooting portion 32 is re-constructed (Step S110). Then, it returns to step S101. When it is determined that the compressive strength of the root consolidation part 32 is sufficient, as shown in FIG. 2E, the pile circumferential fixing liquid 22 is injected to the vicinity of the ground surface into the portion 1B above the enlarged portion 1A in the pile hole 1. . At that time, the muddy water 13 overflowing on the ground may be solidified by adding, for example, a cement-based solidifying material, and may be disposed as industrial waste with a viscosity that can be transported by truck. Then, as shown to FIG. 2F, the foundation pile 31 is sunk until it reaches the enlarged part 1A. When the soil cement 21 of the enlarged portion 1A is hardened, it becomes a root hardening portion 32 after solidification.

上述のように、予め、基礎杭31の支持層12となる個所から試料を採取し、その試料を骨材として含むセメントミルクのセメント水比と、それを固化させたものの圧縮強度との関係式を求める。そして、根固め部32を施工する際に拡大部1Aに注入した固化する前のセメントミルク(ソイルセメント)から試料を採取し、その試料中に根固め部32が必要圧縮強度を満たすだけのセメント量である第一セメント量が含まれているかどうかを判定している。第一セメント量は、前述した関係式から求めている。このようにして、根固め部32が必要圧縮強度を満たすかを判定している。従って、試料に含まれる骨材(掘削土砂)の量に関係なく根固め部の強度判定を行うことができる。   As described above, a relational expression between a cement water ratio of cement milk in which a sample is collected in advance from the portion to be the support layer 12 of the foundation pile 31 and the sample is used as an aggregate, and the compression strength of the solidified product. Ask for. Then, a sample is taken from cement milk (soil cement) before solidification injected into the enlarged portion 1A when constructing the root hardening portion 32, and the cement in which the root hardening portion 32 satisfies the necessary compressive strength in the sample. It is determined whether or not the first cement amount, which is the amount, is included. The first cement amount is obtained from the relational expression described above. In this way, it is determined whether the root hardening part 32 satisfies the required compressive strength. Therefore, it is possible to determine the strength of the solidified portion regardless of the amount of aggregate (excavated earth and sand) included in the sample.

また、水は、掘削土砂と比較して、セメントミルクと均一に混ざりやすく、試料採取場所によるセメント水比の変化は、掘削土砂の試料採取場所による量の変化と比較して、小さいものと考えられる。従って、必要圧縮強度からセメント水比を介して必要なセメント量である第一セメント量を求める本方法は、試料の比重から圧縮強度を求めて根固め部の強度を判定する場合よりも、誤差が少なく根固め部の強度を判定することができる。   In addition, water is more likely to be mixed with cement milk evenly compared to the excavated sediment, and the change in the cement water ratio depending on the sampling location is considered to be small compared to the change in the amount of excavated sediment depending on the sampling location. It is done. Therefore, this method for determining the amount of first cement, which is the required amount of cement via the cement water ratio, from the required compressive strength is more error than when determining the strength of the solidified part by determining the compressive strength from the specific gravity of the sample. There is little, and the intensity | strength of a root hardening part can be determined.

また、圧縮強度の判定にかかる日数も、拡大部1Aにセメントミルクを打設してから1日以内で可能なので、早期に根固め部32の補修が可能となる。また、篩により粗大な骨材を除去してから試験体を作成しているので、試験体に粗大な骨材が混入することを防止でき、誤差を招く要因を削減できる。   Moreover, since the number of days required for the determination of the compressive strength can be within one day after placing the cement milk on the enlarged portion 1A, the rooting portion 32 can be repaired at an early stage. In addition, since the test specimen is prepared after removing coarse aggregate with a sieve, it is possible to prevent the coarse aggregate from being mixed into the test specimen, and to reduce factors that cause errors.

(試験)
上述の根固め部の強度判定方法に関する試験を行った。実際に根固め部を形成し、必要圧縮強度を満たすか判定を行った。方法は上述の通りである。判定強度は、18N/mm2とした。試験体に酸を投入した後、指示薬を用いて判定をおこなったところ、指示薬は発色し、根固め部は必要圧縮強度を満たすと判定された。pHの実測を行ったところ、pH=8.5であった。加えて、水分を測定した乾燥試料(試験体)を分析し、根固め部の強度を推定した。分析方法は次の通りである。
(1)封かん状態の試験体を粗粉砕(1mm 程度)し、105℃乾燥炉で二時間乾燥させた。乾燥前後の質量減少を、自由水の逸散と定義した。(三試験体の平均値)
(2)105℃で乾燥させた試料を、微粉砕し、TG-DTA(分析装置)により、1000℃まで昇温させ、105℃から1000℃における強熱減量を、結合水量として定義した。(二試験体の平均値)なお、600℃〜750℃までの質量減少は、炭酸カルシウムの脱炭酸として、結合水量からは除いた。
(3)105℃で乾燥させた試料を、微粉砕し、1g 測りとり、塩酸(1+100)を用いて溶解させた。この時の不溶残分を、支持層を構成する粘土、土丹、礫、砂などの固形分と定義した。(二試験体の平均値)
(test)
A test related to the above-described strength determination method of the root hardening portion was performed. It was actually determined whether a solidified portion was formed and the required compressive strength was satisfied. The method is as described above. The judgment intensity was 18 N / mm 2 . After the acid was added to the test body, the determination was made using the indicator. As a result, the indicator developed color, and the rooted portion was determined to satisfy the required compressive strength. When pH was measured, it was pH = 8.5. In addition, the dry sample (test body) whose moisture was measured was analyzed, and the strength of the root-solidified portion was estimated. The analysis method is as follows.
(1) The sealed specimen was coarsely pulverized (about 1 mm) and dried in a 105 ° C. drying oven for 2 hours. Mass loss before and after drying was defined as free water dissipation. (Average value of three specimens)
(2) A sample dried at 105 ° C. was finely pulverized and heated to 1000 ° C. by TG-DTA (analyzer), and the loss on ignition from 105 ° C. to 1000 ° C. was defined as the amount of bound water. (Average value of two test specimens) The mass reduction from 600 ° C to 750 ° C was excluded from the amount of bound water as calcium carbonate decarboxylation.
(3) A sample dried at 105 ° C. was finely pulverized, 1 g was measured, and dissolved using hydrochloric acid (1 + 100). The insoluble residue at this time was defined as solids such as clay, dotan, gravel and sand constituting the support layer. (Average value of two specimens)

結果を表1に示す。また、用いた強度の推定式を図5に示す。推定式は、実験室で砂を10%および25%で作成した未固結模擬試験体の強度試験結果より作成した。推定された圧縮強度は、19.5 N/mm2であった。また、実際に採取した未固結試料の材齢28日における圧縮強度は、22.5N/mm2であった。従って、上述の根固め部の強度判定方法でおこなった判定は、正しかったと考えられる。

Figure 2018199935
The results are shown in Table 1. Moreover, the estimation formula of the used intensity | strength is shown in FIG. The estimation formula was created from the strength test results of unconsolidated simulated specimens made with 10% and 25% sand in the laboratory. The estimated compressive strength was 19.5 N / mm 2 . Moreover, the compressive strength at the age of 28 days of the unconsolidated sample actually collected was 22.5 N / mm 2 . Therefore, it is considered that the determination made by the above-described strength determination method for the root-fixed portion was correct.
Figure 2018199935

尚、上述の実施形態では、杭穴1の底部を拡大掘りして、拡大部1Aを形成したが、拡大部1Aを形成せず、他の部分と同じ径とした杭穴1の底部にセメントミルクを注入して根固め部を形成してもよい。上述の実施形態ではセメント水比を使用しているが水セメント比を使用しても良い。セメントの量と水の量との比であればよい。上述の実施の形態における工程の順序は、記載されている順序に限られない。例えば、第三の工程における酸に対する第一の試料の溶解割合の把握は、第六の工程の前であればよい。   In the above-described embodiment, the bottom portion of the pile hole 1 is enlarged and formed to form the enlarged portion 1A. However, the enlarged portion 1A is not formed, and the bottom portion of the pile hole 1 having the same diameter as the other portions is cemented. Milk may be injected to form a root. Although the cement water ratio is used in the above-described embodiment, a water cement ratio may be used. Any ratio between the amount of cement and the amount of water may be used. The order of the steps in the above-described embodiment is not limited to the order described. For example, ascertaining the dissolution ratio of the first sample with respect to the acid in the third step may be before the sixth step.

1 杭穴
1A 拡大部
11 地盤
12 支持層
21 ソイルセメント
31 基礎杭
32 根固め部
DESCRIPTION OF SYMBOLS 1 Pile hole 1A Expansion part 11 Ground 12 Support layer 21 Soil cement 31 Foundation pile 32 Root consolidation part

Claims (3)

地盤を掘削した杭穴の底部にセメントミルクを含む液体を注入、固化することによって形成される根固め部の強度が必要圧縮強度を満たすかを判定する根固め部の強度判定方法であって、
前記地盤の前記根固め部が形成される層から前記層の構成物を第一の試料として採取する第一の工程と、
前記第一の試料を骨材として含むセメントミルクを複数種類生成して固化させ、それら前記セメントミルクのセメント水比と固化後の圧縮強度とから、前記第一の試料を骨材として含むセメントミルクのセメント水比と圧縮強度との関係式を求める第二の工程と、
掘削した杭穴の底部にセメントミルクを注入し、注入後の前記セメントミルクと掘削土砂との混合物を第二の試料として採取する第三の工程と、
前記第三の工程で採取した前記第二の試料から試験体を作成し、前記試験体の含有水分量を求める第四の工程と、
前記第四の工程で求めた前記水分量、前記根固め部の必要圧縮強度及び前記第二の工程で算出した前記関係式から、前記試験体が前記必要圧縮強度を満たすとした場合に前記試験体中に含まれるべきセメント量を求める第五の工程と、
前記試験体中に含まれるセメント量が前記第五の工程で求めたセメント量を満たしているか判定する第六の工程と、
を有することを特徴とする根固め部の強度判定方法。
A method for determining the strength of a root-solidified portion that determines whether the strength of a root-solidified portion formed by injecting and solidifying a liquid containing cement milk into a bottom portion of a pile hole excavating the ground satisfies a required compressive strength,
A first step of collecting a constituent of the layer as a first sample from a layer in which the solidified portion of the ground is formed;
Cement milk containing the first sample as an aggregate from the cement water ratio of the cement milk and the compressive strength after solidification of the cement milk containing the first sample as an aggregate. A second step of obtaining a relational expression between the cement water ratio and the compressive strength of
A third step of injecting cement milk into the bottom of the excavated pile hole and collecting a mixture of the cement milk and the excavated earth and sand after the injection as a second sample;
Creating a test specimen from the second sample collected in the third step, and determining the moisture content of the test specimen;
When the test body satisfies the required compressive strength from the water content obtained in the fourth step, the required compressive strength of the root-solidified portion, and the relational expression calculated in the second step, the test is performed. A fifth step for determining the amount of cement to be contained in the body;
A sixth step of determining whether the amount of cement contained in the specimen satisfies the amount of cement obtained in the fifth step;
A strength determination method for a root-solidified portion, comprising:
前記第六の工程では、酸を使用して前記試験体中に含まれるセメント量が前記第五の工程で求めたセメント量を満たしているかの判定を行うことを特徴とする請求項1に記載の根固め部の強度判定方法。   2. The method according to claim 1, wherein in the sixth step, it is determined whether an amount of cement contained in the test body satisfies an amount of cement obtained in the fifth step using an acid. Strength determination method for roots. 前記試験体を作成する際に粒径が1mm以上の骨材を除去する工程を含むことを特徴とする請求項1に記載の根固め部の強度判定方法。   The strength determination method for a root-solidified portion according to claim 1, further comprising a step of removing an aggregate having a particle size of 1 mm or more when the test body is created.
JP2017104764A 2017-05-26 2017-05-26 Method for determining the strength of the root compaction Active JP6979792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017104764A JP6979792B2 (en) 2017-05-26 2017-05-26 Method for determining the strength of the root compaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017104764A JP6979792B2 (en) 2017-05-26 2017-05-26 Method for determining the strength of the root compaction

Publications (2)

Publication Number Publication Date
JP2018199935A true JP2018199935A (en) 2018-12-20
JP6979792B2 JP6979792B2 (en) 2021-12-15

Family

ID=64667061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104764A Active JP6979792B2 (en) 2017-05-26 2017-05-26 Method for determining the strength of the root compaction

Country Status (1)

Country Link
JP (1) JP6979792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094872A (en) * 2018-12-11 2020-06-18 清水建設株式会社 Strength estimation method and strength estimation device of soil cement
JP2021059851A (en) * 2019-10-03 2021-04-15 清水建設株式会社 Estimation method of cement amount

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322881A (en) * 1992-05-22 1993-12-07 Tokyo Electric Power Co Inc:The Method for discriminating quality of soil mortar in early stage for peristyle continuous underground wall constructing method
US5517868A (en) * 1992-07-20 1996-05-21 Enchem, Inc. Method for obtaining a soil sample
JP2006051437A (en) * 2004-08-11 2006-02-23 Kankyo Shisetsu:Kk System for producing and feeding lightweight fluidization-treated soil
JP2009001981A (en) * 2007-06-19 2009-01-08 Shimizu Corp Soil quality inspection method
JP2011117231A (en) * 2009-12-07 2011-06-16 Maeda Corp Method and device for reducing volume of mud produced during building of cement underground construction body
JP2011255262A (en) * 2010-06-07 2011-12-22 Taihei Sangyo Co Ltd Treatment method of sludge water
JP2012012856A (en) * 2010-07-01 2012-01-19 Shimizu Corp Strength evaluation method of pile foot protection part in pile construction
JP2013122166A (en) * 2013-02-18 2013-06-20 Mitani Sekisan Co Ltd Solidification strength determination method of cement milk, construction method of foundation pile, construction method of cement milk column body, and sampling device
JP2013234535A (en) * 2012-05-10 2013-11-21 Mura Cam Co Ltd Fluidization treatment soil and method of producing the same
JP2014111879A (en) * 2012-10-31 2014-06-19 Japan Pile Corp Method for estimating compression strength of soil cement
JP2015059325A (en) * 2013-09-18 2015-03-30 ジャパンパイル株式会社 Compressive strength estimation method for soil-cement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322881A (en) * 1992-05-22 1993-12-07 Tokyo Electric Power Co Inc:The Method for discriminating quality of soil mortar in early stage for peristyle continuous underground wall constructing method
US5517868A (en) * 1992-07-20 1996-05-21 Enchem, Inc. Method for obtaining a soil sample
JP2006051437A (en) * 2004-08-11 2006-02-23 Kankyo Shisetsu:Kk System for producing and feeding lightweight fluidization-treated soil
JP2009001981A (en) * 2007-06-19 2009-01-08 Shimizu Corp Soil quality inspection method
JP2011117231A (en) * 2009-12-07 2011-06-16 Maeda Corp Method and device for reducing volume of mud produced during building of cement underground construction body
JP2011255262A (en) * 2010-06-07 2011-12-22 Taihei Sangyo Co Ltd Treatment method of sludge water
JP2012012856A (en) * 2010-07-01 2012-01-19 Shimizu Corp Strength evaluation method of pile foot protection part in pile construction
JP2013234535A (en) * 2012-05-10 2013-11-21 Mura Cam Co Ltd Fluidization treatment soil and method of producing the same
JP2014111879A (en) * 2012-10-31 2014-06-19 Japan Pile Corp Method for estimating compression strength of soil cement
JP2013122166A (en) * 2013-02-18 2013-06-20 Mitani Sekisan Co Ltd Solidification strength determination method of cement milk, construction method of foundation pile, construction method of cement milk column body, and sampling device
JP2015059325A (en) * 2013-09-18 2015-03-30 ジャパンパイル株式会社 Compressive strength estimation method for soil-cement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094872A (en) * 2018-12-11 2020-06-18 清水建設株式会社 Strength estimation method and strength estimation device of soil cement
JP7145744B2 (en) 2018-12-11 2022-10-03 清水建設株式会社 SOIL CEMENT STRENGTH ESTIMATING METHOD AND STRENGTH ESTIMATING DEVICE
JP2021059851A (en) * 2019-10-03 2021-04-15 清水建設株式会社 Estimation method of cement amount
JP7330050B2 (en) 2019-10-03 2023-08-21 清水建設株式会社 Method of estimating the amount of cement

Also Published As

Publication number Publication date
JP6979792B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP6197520B2 (en) Method for estimating the compressive strength of soil cement
JP6197571B2 (en) Method for estimating compressive strength of soil cement
JP6384954B2 (en) Method for estimating compressive strength of soil cement and soil cement storage
JP6979814B2 (en) Strength estimation method for root compaction, compressive strength estimation device, compressive strength determination device
JP6979792B2 (en) Method for determining the strength of the root compaction
JP5753242B2 (en) Soil wet density test method
JP6804739B2 (en) Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooted part during pile construction, quality control device
JP6891062B2 (en) Method of estimating the strength of the root compaction
JP2012012856A (en) Strength evaluation method of pile foot protection part in pile construction
JP5717238B2 (en) Estimation method of cement amount in pile hole root consolidation part
JP4228301B2 (en) Quality control test method for cement improved ground
Karlovšek et al. Dielectric measurement method for real-time monitoring of initial hardening of backfill materials used for underground construction
JP6949549B2 (en) Method of estimating the strength of the root compaction
JP6894244B2 (en) Method of estimating the strength of the root compaction
JPH04244939A (en) Method for estimating strength of soil cement
JP3406121B2 (en) Strength prediction method for soil cement
JP4947979B2 (en) Method for estimating the diameter of ground improvement bodies
JP2019035208A (en) Strength estimation method of cement improved soil
JP6969899B2 (en) Strength estimation method for root consolidation
JP7406408B2 (en) Pile strength estimation method
JP2018076648A (en) Strength management method of back filling material and method of back filling in ground
JP2022184338A (en) Cement milk substitution ratio estimation method and soil cement strength estimation method
JP2023009992A (en) Quality management method of fluidization treated soil
JP2023005802A (en) Soil cement dehydration rate estimation method
Bell et al. Comparing the old and new: traditional building materials and the Uch Monument Complex, Pakistan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211116

R150 Certificate of patent or registration of utility model

Ref document number: 6979792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150