JP2018194607A - 撮像装置およびその制御方法 - Google Patents

撮像装置およびその制御方法 Download PDF

Info

Publication number
JP2018194607A
JP2018194607A JP2017096415A JP2017096415A JP2018194607A JP 2018194607 A JP2018194607 A JP 2018194607A JP 2017096415 A JP2017096415 A JP 2017096415A JP 2017096415 A JP2017096415 A JP 2017096415A JP 2018194607 A JP2018194607 A JP 2018194607A
Authority
JP
Japan
Prior art keywords
imaging
focus detection
focus
signal
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017096415A
Other languages
English (en)
Inventor
門原 輝岳
Terutake Kadohara
輝岳 門原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017096415A priority Critical patent/JP2018194607A/ja
Publication of JP2018194607A publication Critical patent/JP2018194607A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)
  • Viewfinders (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

【課題】位相差検出方式のAF機能を有する撮像装置において、より正確な合焦判定を行うこと。【解決手段】撮像装置は、撮像光学系を介して入射される被写体からの光を瞳分割して得られる一対の被写体像から、位相差に基づく焦点検出を行う。撮像装置の制御部は、AFセンサの出力に基づいて焦点検出演算を行う(S103)。焦点検出処理と並行して測光センサを用いた測光処理が行われる。合焦判定(S104)において合焦状態であると判定された場合、測光センサから読み出された信号に基づく評価値の判定処理が行われる(S105)。S106で制御部は、S104での合焦判定の適否を判断する。S106で撮像画像の暈けが大きい状態であることが判定された場合、制御部はS104での合焦判定の結果を無効とし(S107)、またS106で撮像画像の暈けが大きい状態でないことが判定された場合、制御部はS104での合焦判定の結果を有効とする。【選択図】 図1

Description

本発明は、撮像光学系の焦点調節制御に関する。
撮像装置のオートフォーカス(AutoFocus、以下「AF」と記す)機能は焦点検出および調節を自動で行う機能であり、AF用センサの出力に基づいて合焦判定処理が行われる。撮像装置が複数の異なるAF方式を有する場合、どちらを用いるかの判断処理が行われる。特許文献1に開示の装置は、主にファインダ撮影時に用いられる位相差検出方式と、主に撮像面AFで用いられるコントラスト検出方式を使用する。コントラスト検出用センサにより、撮像画像のコントラストに応じた評価値を算出して合焦状態を判定し、方式選択の判断処理が行われる。
特許文献2では、複数のAF方式による焦点検出を同時に行える、「ハイブリッドAF」式のカメラが開示されている。位相差検出方式による複数回の焦点検出時に、コントラスト検出方式による焦点検出の評価値を算出し、位相差検出方式による合焦位置にて合焦状態であるかどうかを判断する処理が実行される。
特開2009−037262号公報 特開2008−147821号公報
主に光学ファインダ撮影時に用いられる位相差検出方式では、例えば、一眼レフ構造のカメラにおいて光学ファインダとは反対側に導かれた光束を、AF専用のラインセンサが受光して撮像面でのピントずれ量(デフォーカス量)が検出される。この方式は、撮像面AFで用いられるコントラスト検出方式に比べて精度面では劣ることがあるが、合焦に至る応答性が良い等の利点を有する。ただし、位相差検出方式の場合、いわゆる「大ボケ合焦」という課題がある。これはファインダ上で観察すると撮像画像が大きく暈けた状態であっても、ピントが合った状態であるとカメラが判断した場合に発生し得る。AF専用のラインセンサの出力から得られる情報には限界があるため、根本的な防止は難しいとされる。
特許文献1に開示された従来技術では、一眼レフ構造のカメラにおいて異なるAF方式による排他的な動作が行われるため、レフレックスミラー(主ミラーとも言われる)を上下させる等の動作制御が必要である。また特許文献2に開示された従来技術は、「ハイブリッドAF」のカメラに適用されるが、光学ファインダを備えた一眼レフ構造のカメラでは成立しない。
本発明の目的は、位相差検出方式のAF機能を有する撮像装置において、より正確な合焦判定を行うことである。
本発明の一実施形態の装置は、撮像光学系を介して被写体を撮像する撮像装置であって、前記撮像光学系を介して入射される光を受光して位相差による焦点検出を行う焦点検出手段と、前記被写体を撮像して撮像信号を取得する取得手段と、前記撮像信号から撮像状態を示す状態信号を出力する信号処理手段と、前記焦点検出による合焦判定が行われた後に、前記状態信号を用いて前記合焦判定が有効であるか否かを判断して前記撮像光学系の焦点調節の制御を行う制御手段と、を有する。
本発明によれば、位相差検出方式のAF機能を有する撮像装置において、より正確な合焦判定を行うことができる。
本発明の実施形態のAF制御を説明するフローチャートである。 本実施形態に係る撮像装置を模式的に示す断面図である。 本実施形態に係る撮像装置の構成を示すブロック図である。 本実施形態に係る焦点検出ユニットの構成を示す概略説明図である。 本実施形態に係る測光センサの測光領域の説明図である。 本実施形態に係る測光制御を説明するフローチャートである。 第3実施例におけるAF制御を説明するフローチャートである。
以下に、本発明の好ましい実施形態を、添付図面に基づいて詳細に説明する。図1に示す基本動作を説明する前に、図2を参照して本実施形態の撮像装置の構成を説明する。図2は、本実施形態にかかわるレンズ交換式デジタル一眼レフカメラの光学配置を説明するための断面図である。本実施形態では撮像素子2108を備えたデジタルカメラを説明する。カメラ本体部2100には、レンズ装置2200を装着可能である。
カメラ本体部2100は、主ミラー2101を備える。主ミラー2101は、光学ファインダ観察状態では撮影光路上に斜設され、撮影状態では撮影光路外に退避する。主ミラー2101はハーフミラーであり、撮影光路上に斜設された状態において、被写体からの光線の約半分を透過させ、後述する焦点検出光学系へ導く。
ピント板2102はファインダ光学系の一部を構成し、レンズ装置2200の予定結像面に配置される。ペンタプリズム2103は光路変更用の光学部材である。ファインダ光学系の接眼レンズ2104は観察窓に対向して配置され、撮影者は接眼レンズ2104を通して観察窓からピント板2102を見ることで撮影画面を観察できる。
結像レンズ2105は測光光学系を構成し、測光センサ2106はファインダ観察画面内の被写体輝度を測定する。結像レンズ2105は、ペンタプリズム2103内の反射光路を介してピント板2102と測光センサ2106とを共役に関係付けている。フォーカルプレーンシャッタ2107は露光時間を調整する光学部材である。
撮像素子2108は、CCD(電荷結合素子)型やCMOS(相補型金属酸化膜半導体)型等のイメージセンサである。撮像素子2108はレンズ装置2200の予定結像面に配置され、撮像光学系を通過して結像される被写体からの光を受光し、光電変換によって電気信号を出力する。
サブミラー2109は、主ミラー2101と同様に、ファインダ観察状態では撮影光路上に斜設され、撮影状態では撮影光路外に退避する。サブミラー2109は、斜設された主ミラー2101を透過した光を下方に反射させて、焦点検出ユニット2110へ導く。
焦点検出ユニット2110は焦点検出用の光センサを備える。焦点検出ユニット2110は、位相差検出方式によってレンズ装置2200の焦点調節状態を検出し、その検出結果は撮像レンズの焦点調節機構を制御するカメラ用のマイクロコンピュータ(図3:3122)に送られる。マイクロコンピュータは撮像システム全体の制御を統括する制御部を構成し、所定のプログラムを実行することで各種処理を実現する。
次に、レンズ装置2200の構成について説明する。
図2に示すように撮像光学系は複数のレンズ群により構成される。1群レンズ2201は焦点調節用のフォーカスレンズであり、光軸上を前後に移動可能である。2群レンズ2202は画角変更を行う変倍レンズであり、光軸上を前後に移動することでレンズ装置2200の焦点距離を変更可能である。3群レンズ2203は光軸上で所定位置とされる固定レンズである。絞り2204は露光量を調整する光学部材である。
AF駆動回路2205は、フォーカスレンズである1群レンズ2201を光軸方向に移動させる。AF駆動回路2205は、DC(直流)モータやステッピングモータの駆動によってAF動作を行う。ズーム駆動回路2206は2群レンズ2202を光軸方向に移動させる。ズーム駆動回路2206は、DCモータやステッピングモータの駆動によって2群レンズ2202を光軸方向に移動させて画角を変更する。絞り駆動回路2207は、DCモータやステッピングモータの駆動によって絞り2204の開口径を変化させる。
レンズマウント接点群2208は、カメラ本体部2100とレンズ装置2200との通信インターフェイス部である。レンズ装置2200がカメラ本体部2100に装着された状態にて、レンズマウント接点群2208を介して両者は通信を行うことができる。
図3は、本実施形態のデジタル一眼レフカメラの構成例を示すブロック図である。図2と同様の構成要素については同じ符号を使用する。図3のレンズ装置2200に関して、複数のレンズ群を含む撮像光学系を単レンズで簡略化して示し、絞り2204との位置関係のみ示している。
マイクロコンピュータ3122は撮像システム全体を司る制御部であり、CPU(中央演算処理装置)を備え、各構成部の動作を制御する。AF駆動回路2205は、マイクロコンピュータ3122の制御指令にしたがってレンズ装置2200のフォーカスレンズ位置を変化させることにより焦点調節動作を行う。ズーム駆動回路2206は、マイクロコンピュータ3122の制御指令にしたがってレンズ装置2200の変倍レンズ位置を変化させることによりレンズ装置2200の焦点距離を変化させる。絞り駆動回路2207は、絞り2204を駆動する。マイクロコンピュータ3122は絞り2204の駆動量を算出して絞り値を変化させる。即ち、絞り値はカメラ本体部2100が決定し、レンズ装置2200はカメラ本体部2100から受信されるコマンドにしたがって絞り値を設定する。
主ミラー2101は、マイクロコンピュータ3122の制御指令にしたがって駆動制御される不図示の機構部により姿勢制御が行われ、レンズ装置2200から入射した光束をファインダ側と撮像素子側とに切り替える。主ミラー2101は、ファインダ観察状態にてファインダへ光束を導く位置にあるが、撮影状態では撮像素子2108へ光束を導くように撮影光路から退避する。また主ミラー2101はハーフミラーとなっており、中央部の光束の一部は透過して、焦点検出用のセンサに入射する。
ペンタプリズム2103はファインダ光学系を構成する。ファインダ光学系は、ペンタプリズム2103、ピント板2102、接眼レンズ2104等によって構成される。測光センサ2106はファインダ光学系に導かれた光束の一部を受光して明るさを測定する検出部である。本実施形態では、測光センサ2106での蓄積信号から得られる情報に基づいて焦点調節状態が判断される。
フォーカルプレーンシャッタ2107は、シャッタ駆動回路3111により駆動される。マイクロコンピュータ3122はシャッタ駆動回路3111を制御し、フォーカルプレーンシャッタ2107の開閉動作を制御して露光時間を調整する。
撮像素子2108は、レンズ装置2200によって結像される被写体像を電気信号に変換する。本実施形態の目的のひとつは、撮像素子2108における大きな暈け画像を、予め測光センサ2106による撮像画像から得られる情報で未然に防ぐ事である。
サブミラー2109は、主ミラー2101を透過した光束を反射させて、焦点検出ユニット2110内にある焦点検出回路3110のセンサに導く。焦点検出回路3110は内部に光電変換を行うセンサを有する。焦点調節に用いるデフォーカス量は、センサの出力の相関量を演算することによって算出される。マイクロコンピュータ3122は相関演算の演算結果を評価し、AF駆動回路2205に指示してフォーカスレンズの駆動制御を行う。
クランプ回路3112およびAGC(自動利得制御)回路3113は、A/D変換前の基本的なアナログ信号処理を行う。映像信号処理回路3115を通して、マイクロコンピュータ3122により、クランプレベルやAGC基準レベルの変更が行われる。A/D変換器3114は撮像素子2108のアナログ出力信号をデジタル信号に変換する。変換後のデジタル信号は撮像画像の信号となる。映像信号処理回路3115はゲートアレイ等のロジックデバイスにより構成され、A/D変換器3114の出力を取得して信号処理を行う。
TFT(Thin Film Transistor)駆動回路3116はTFT液晶モニタ3117を駆動し、画面に画像を表示させる。メモリコントローラ3118はメモリ3119とバッファメモリ3121を制御する。インターフェイス部3120はコンピュータ等の外部装置と接続可能である。
映像信号処理回路3115は、デジタル化された画像データに対し、フィルタ処理、色変換処理、ガンマ処理等を施すと共に、JPEG圧縮処理等を行い、メモリコントローラ3118に出力する。JPEGは“Joint Photographic Experts Group”の略号である。映像信号処理回路3115は、撮像素子2108からの映像信号や、メモリコントローラ3118から入力される画像データを取得し、TFT駆動回路3116を通してTFT液晶モニタ3117に出力可能である。これらの機能切り替えはマイクロコンピュータ3122の指示により行われる。映像信号処理回路3115は、必要に応じて撮像素子2108の信号の露出情報やホワイトバランス等の情報をマイクロコンピュータ3122に出力する。それらの情報に基づいてマイクロコンピュータ3122はホワイトバランスやゲイン調整等の指示を行う。例えば連続撮影動作の場合、一旦、未処理画像のままバッファメモリ3121に画像データが格納された後、映像信号処理回路3115はメモリコントローラ3118を通して未処理の画像データを読み出して、画像処理や圧縮処理を行う。なお、連続撮影可能な画像枚数はバッファメモリ3121の大きさに依存する。
映像信号処理回路3115は、測光センサ2106による撮像信号に基づいて、撮像状態を示す状態信号をマイクロコンピュータ3122に出力する。状態信号とは、その信号値が、焦点検出センサから読み出された信号による合焦判定の適否を判断するための評価値を表し、撮像信号のコントラスト情報または空間周波数情報に基づく信号である。具体的な説明は後述の実施例で行う。
メモリコントローラ3118は、映像信号処理回路3115から入力された未処理のデジタル画像データをバッファメモリ3121に格納し、処理済みのデジタル画像データをメモリ3119に格納する。また、メモリコントローラ3118は逆にバッファメモリ3121やメモリ3119から画像データを読み出して映像信号処理回路3115に出力する。メモリ3119は、例えばカメラ本体部2100から取り外し可能である。メモリコントローラ3118は、インターフェイス部3120を介して、メモリ3119に記憶されている画像データを外部装置へ出力可能である。
操作部材3123は、マイクロコンピュータ3122に操作指示を伝え、マイクロコンピュータ3122は操作部材3123による操作指示信号に応じて各構成部を制御する。一例として、レリーズスイッチは第1スイッチ(SW1と記す)3124および第2スイッチ(SW2)3125を有する。SW1とSW2は、レリーズボタンの操作に応じてオン・オフするスイッチである。レリーズボタンの半押し操作により、SW1がオン状態となり、AF動作や測光動作が行われる。レリーズボタンの全押し操作により、SW1,SW2が共にオン状態となり、撮影動作が開始して撮影後の画像データの記録処理が実行される。またユーザがレリーズボタンを操作してSW1およびSW2のON状態が継続している間、連続撮影動作が行われる。操作部材3123には、この他にISO設定ボタン、画像サイズ設定ボタン、画質設定ボタン、情報表示ボタン等に対応する複数のスイッチが接続されており、各スイッチの状態が検出される。
液晶駆動回路3126は、マイクロコンピュータ3122の表示命令に従って、外部液晶表示部3127やファインダ内液晶表示部3128を駆動する。ファインダ内液晶表示部3128には、LED等で構成されたバックライトが配置されており、LEDは液晶駆動回路3126により駆動される。マイクロコンピュータ3122は、撮影前に設定されているISO感度、画像サイズ、画質に応じた、画像サイズの予測値データに基づき、メモリコントローラ3118を通して、メモリの容量を確認した上で撮影可能残数を演算する。撮影可能残数の情報は、必要に応じて外部液晶表示部3127、ファインダ内液晶表示部3128に表示される。
不揮発性メモリ3129は、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の記憶デバイスである。不揮発性メモリ3129はカメラに電源が供給されていない状態でも、データを保持することができる。電源部3130は、カメラ内の各制御部や信号処理部、駆動系機構部等に必要な電源を供給する。
次に図4を参照して、焦点検出センサを備えた焦点検出ユニット2110の構成について説明する。図4(A)は焦点検出ユニット2110の概略構成を示す斜視図であり、図4(B)は概略断面図である。図示は省略するが、図4(A)および(B)の左端には、撮像素子2108と共役な一次結像面、即ち、レンズ装置2200の予定結像面が存在する。一次結像面から順に、視野マスク4001、フィールドレンズ4002、多孔絞り4003、二次結像レンズユニット4004、焦点検出センサ4005が配設されている。一点鎖線で示すOAは焦点検出光学系の光軸である。
視野マスク4001は薄板状の部品であり、その中央に開口部4001Aが形成されている。開口部4001Aの形状により、焦点検出センサ4005に結像する像視野が定められる。フィールドレンズ4002は凸レンズであり、視野マスク4001の近傍に位置する。図4の右側を被写体側と仮定した場合、フィールドレンズ4002は多孔絞り4003の像をレンズ装置2200の射出瞳近傍に結像させる役割をもつ。射出瞳の大きさは、通常F5.6の領域であり、より高い精度を求める明るい(焦点深度の浅い)レンズに対応する場合にはF2.8の領域にして、基線長が長く設定される。多孔絞り4003は薄板状の部品であり、2か所に開口部4003AおよびBが形成されている。開口部4003AおよびBはフィールドレンズ4002から入射する被写体光束を横方向に分割する。
二次結像レンズユニット4004は略板状の部品であり、焦点検出センサ4005との対向面に複数の凸レンズ形状部を備える。これらの凸レンズ形状部を二次結像レンズ4004AおよびBと呼称する。本実施形態では2つの二次結像レンズ4004AおよびBが、多孔絞り4003の開口部4003AおよびBにそれぞれ対応して配置されている。二次結像レンズ4004AおよびBは、レンズ装置2200によって結像された一次結像面上の被写体像を、焦点検出センサ4005上に再結像させる。多孔絞り4003の開口部4003Aを通過した光束は、二次結像レンズ4004Aによって焦点検出センサ4005上に結像する。同様に、多孔絞り4003の開口部4003Bを通過した光束は、二次結像レンズ4004Bによって焦点検出センサ4005上に結像する。
焦点検出センサ4005は、その表面に結像した被写体像から光量分布を電気信号として検出する。焦点検出センサ4005には、画素部を構成する光電変換素子が2つのライン状に配置されており、これらをラインセンサ4005AおよびBと呼称する。本実施形態では、焦点検出センサ4005の画素部は被写体像が結像する範囲の中心部分、つまりOAで示す光軸上において焦点検出を行うようにラインセンサ4005AおよびBが配設されている。また、撮影前のファインダ観察状態では通常、レンズ装置2200の絞りは開放状態であるので、多孔絞り4003を備える焦点検出ユニット2110は、撮像素子2108や測光センサ2106よりも焦点深度が深い状態となる。なお、焦点検出センサ4005としては、CCD型センサまたはCMOS型センサを使用する。焦点検出センサ4005の画素配置の形態としては、本実施例のようなラインセンサの組み合わせに限らず、同一のセンサアレイを配置してもよい。
ラインセンサ4005Aと4005Bの出力は、合焦状態、前ピン状態、および後ピン状態の何れであるかによりに受光する2像の間隔が異なる。像間隔が合焦状態での間隔になるように、フォーカスレンズを移動させて焦点調節動作が行われることで、被写体のピント合わせが行われる。つまりフォーカスレンズの移動量は、2像のずれ量から計算して求めることができる。なお、2像のずれ量からレンズ駆動量を求める処理である「焦点検出演算」については、公知の方法で行われるので、その詳細な説明を省略する。
一方、測光センサ2106は、撮像素子2108と共役な一次結像面の位置にあるピント板2102に対し、結像レンズ2105により再結像される光を受光し、ファインダ観察画面内の被写体輝度を測定する。本実施形態では、測光センサ2106に撮像素子2108と同様のカラーフィルタを備えたカラーエリアセンサが用いられる。また測光センサ2106の場合、焦点検出センサ4005における多孔絞り4003のような絞り部材は無く、撮像素子2108と同様、レンズ装置2200の絞り2204に左右される光学配置である。従って、ピント板2102を介して撮像動作が行われることとなるが、ピントの推移としては測光センサ2106の方が焦点検出センサ4005よりも撮像素子2108に近いものとなる。
図5を参照して、測光センサ2106がファインダ観察画面内で被写体輝度を測定する範囲を説明する。この範囲は、測光動作に伴う蓄積信号の積分範囲に対応する。図5(A)に示すファインダ観察画面501において、破線枠で示す範囲502は測光センサ2106が被写体輝度を測定する範囲である。括弧記号で示す表示指標は、焦点検出センサ4005が焦点検出している領域503を示すファインダ内表示の指標である。これは図4の視野マスク4001の開口部4001Aで定められているファインダ視野内での像視野となる。
図5(B)の測定範囲504は、カラーフィルタを備えたカラーエリアセンサである測光センサ2106が測定を行う範囲を示す。カラーフィルタは一般的なベイヤーフィルタであり、グリーンフィルタの画素出力が明るさの基準となる。また、測光センサ2106がカラーフィルタを備えることにより、色情報を取得して活用することができ、多数の焦点検出領域を備えるカメラの場合には、AF動作における追尾動制御にも利用できる。
図5(C)の範囲505は、測光センサ2106による測光動作における蓄積信号の積分範囲を示し、ファインダ観察画面内の被写体輝度の測定範囲504に対応する。図5の例では、水平方向および垂直方向において9×7=63分割の範囲(第0〜第62の分割範囲)が設定される。各分割範囲で蓄積信号を積分し、ファインダ観察画面内の輝度分布を算出する処理が行われる。例えば、ファインダ観察画面の中央を重視する測光動作の場合、焦点検出センサ4005での焦点検出領域503に対して、適切な露出制御が行われる。図5(C)の範囲505における63個の分割範囲にて、左上隅の配置位置を基準として第0の分割範囲とすれば、31番目の範囲が中央の分割範囲となる。この位置での被写体輝度に対して撮像素子2108の露光量が適切になるように制御される。
図5(D)の範囲506には、5つの焦点検出領域507〜511の配置例を示す。焦点検出領域507を中央として、左右に焦点検出領域508、509がそれぞれ位置し、上下に焦点検出領域510、511がそれぞれ位置する。各焦点検出領域は当該領域の位置に応じた分割範囲にそれぞれ対応している。
[第1実施例]
以下、図1および図6を参照して、本実施形態に係る第1実施例について説明する。図1は本実施例におけるAF制御を説明するフローチャートである。以下の処理はマイクロコンピュータ3122が所定のプログラムを実行することにより実現される。ユーザがレリーズボタンを操作し、第1スイッチ3124がオンすると、S100からAF制御が開始される。
まず、S101で焦点検出センサ4005の蓄積が開始され、S102の処理に進む。S102では焦点検出センサ4005の蓄積動作が行われて、必要な信号が得られた時点で焦点検出信号が読み出される。続くS103では、焦点検出センサ4005から読み出された信号を用いて位相差検出方式による焦点検出演算が行われる。なお、図1には図示していないが、S101からS103の処理と並行して測光センサ2106の蓄積動作が行われ、読み出した信号を用いて被写体輝度が測定されるものとする。
次のS104では、S103での焦点検出演算結果に基づいて合焦状態であるか否か、即ち、ピントが合っている状態かどうかについて合焦判定処理が行われる。S104で合焦状態でないと判定された場合、S101へ処理を戻して焦点検出動作を続行する。一方、S104にて合焦状態であると判定された場合、S105に処理を進める。
S105でマイクロコンピュータ3122は、測光センサ2106から読み出した信号に基づく評価値の判定を行い、次のS106で、焦点検出センサ4005から読み出した信号による合焦判定の適否を判断する。つまり、S104の合焦判定に関し、判定結果が有効であるか否かについて判断処理が行われる。S106において、画像の暈けが大きい非合焦状態であると判断された場合、S107の処理に進む。S107でマイクロコンピュータ3122は焦点検出センサ4005から読み出した信号による合焦判断を無効にし、S101の処理に戻す。一方、S106において非合焦状態でないと判断された場合には、S104の合焦判定の結果は有効とされ、S108にてAF制御が終了する。
図1のS105に示す評価値判定処理を説明する前に、図6のフローチャートを参照して、測光制御について説明する。レリーズボタンの操作により第1スイッチ3124がオンすると、S600から測光制御が開始される。
まず、S601にて、測光センサ2106の蓄積が開始される。S602では所定の蓄積動作の後、必要な信号が得られた時点で測光センサ2106の信号が読み出される。続くS603にて、測光センサ2106から読み出された信号を用いて、ファインダ観察画面内の被写体輝度の測定が行われる。例えば、図5に示す各分割範囲での蓄積信号の積分値が算出され、ファインダ観察画面の中央を重視する測光値を求める処理が行われる。具体的には、焦点検出領域503に対応する分割領域を重視する重み付けの係数を設定する処理が実行され、重み付けの係数と各分割範囲での蓄積信号の積分値とを乗算した演算値(加重加算値)が算出される。この場合、ファインダ観察画面の周辺領域での積分値が大きくても、中央領域での積分値が小さいと、中央領域の輝度(この場合には低輝度、すなわち暗さ)をより反映した演算値となる。その結果、中央領域に対して露光動作が適切に行われることになる。
その後、S604に処理を進め、AF制御での合焦判断の適否が判定される。合焦状態との判断が得られている場合、S605に処理を進める。合焦状態でないと判断された場合にはS606に移行して処理を終了する。
S605でマイクロコンピュータ3122は、測光センサ2106から読み出した信号に基づく評価値を算出する。算出方法の詳細は後述する。S604にてAF制御での合焦判断が得られない場合には、通常の測光動作が行われ、測光センサ2106の出力に基づく評価値の算出処理は行われない。
次に、図6のS605で行われる評価値の算出処理を説明する。本実施例では、隣接する画素について画素信号の差分絶対値の積分値(積算値)と最大値を用い、積分値を最大値で除算して規格化した評価値を求めて判断処理に用いる。
測光センサ2106により取得される画像の設定座標として(x,y)の座標系を設定し、x座標値を横軸方向(水平方向)の座標値とし、y座標値を縦軸方向(垂直方向)の座標値と定義する。測光センサ2106により取得される画像信号を、I(x,y)と表記する。例えば、座標(l,m)はx=lおよびy=mに対応する画素の位置を表す。座標(l,m)を左上端の位置とし、縦方向および横方向にn画素の範囲を有する矩形領域での評価値をH(l,m,n)と表記する。評価値H(l,m,n)は下記式1により算出される。
Figure 2018194607
式1中、「0≦l, 0≦m, 0<n」である。||は絶対値記号、max()は最大値関数である。
座標(l,m)は、焦点検出に用いる領域に応じて決定される。具体的には、焦点検出領域が図5の領域503である場合、測光センサ2106の中央領域の位置、つまり、63個の積分範囲のうちで31番目の範囲に対応する矩形領域の座標(l,m)が決定される。マイクロコンピュータ3122は決定した座標(l,m)に対応する評価値H(l,m,n)を算出する。
図5(C)の焦点検出領域503は中央位置に対応する1点の測定例であるが、図5(D)の範囲506にて多点の測定を行う場合には、焦点検出領域507〜511にそれぞれ対応する積分範囲の矩形領域で評価値H(l,m,n)が算出される。多点の焦点検出領域507〜511は、左上隅を基準位置0として、それぞれ13、29、31、33、49番目の範囲に対応する。
図1のS105でマイクロコンピュータ3122は、算出した評価値H(l,m,n)を用いて評価値判定を行う。評価値H(l,m,n)を、事前に定めた閾値(Hsと記す)と比較する処理が実行される。その結果、「Hs<H(l,m,n)」と判定された場合、S106にて暈けの大きい状態では無いと判断され、AF動作を終了する(S108)。「Hs≧H(l,m,n)」と判定された場合にはS107の処理に移行する。但し、閾値Hsはあくまで画像の暈けが大きい状態であるか否かの判断基準として使用する値である。つまり、その値から合焦状態に移行する様な判断や制御を行うための閾値では無いという点で、一般的なコントラスト検出方式のAFとは異なる。閾値Hsは単一の値でもよいが、使用するレンズ装置に応じて変更してもよく、あるいは、レンズの開放F値(明るさ)に応じて切り換えてもよいものとする。
なお、図1のS106の判断処理に関して、元々コントラストの無い被写体でも判断が出来るのかという点について説明する。一般的に、焦点検出センサを使用した位相差検出方式は、コントラストが低い被写体の場合にも有効な制御を行うが、そもそもコントラストが無い被写体の場合には合焦状態への制御が困難である。この場合、S106のように画像の暈けが大きい状態であるか否かの判断は必要無い事となる。
本実施例では、撮像信号のコントラスト情報に基づく規格化された評価値を表す状態信号を用いて、より正確な合焦判定を行うことができる。本実施例によれば、光学ファインダを備えた一眼レフ構造の撮像装置において、光学ファインダを用いて撮影する場合の、いわゆる「大ボケ合焦」を未然に防ぐことができる。
[第2実施例]
次に、本発明の第2実施例を説明する。第1実施例では、図1のS106における判断処理において、隣接する画素信号の差分絶対値の積分値をその最大値で規格化した評価値(式1参照)を用いた。規格化を行う理由は、隣接する画素信号の差分絶対値の積分値が明るさの影響を受けるためである。つまり、画像の暈けが大きい状態であるか否かを判断する上で、規格化によって明るさの影響を軽減すれば十分である。
これに対し、第2実施例では明るさの影響を受け難い評価値を用いる点が第1実施例との相違点である。よって、以下では第1実施例と同様の構成や動作等の説明を省略し、相違点を説明する。このような説明の省略の仕方については後述の実施例でも同じである。
本実施例では、マイクロコンピュータ3122は測光センサ2106から読み出された信号を周波数領域に変換し、空間周波数のスペクトルでの判断処理を実行する。周波数領域への変換は離散フーリエ変換である。実際にはFFT(Fast−Fourier−Transform、高速フーリエ変換)処理が二次元で行われる。
測光センサ2106により取得される画像信号I(x,y)は、縦横n画素の矩形領域での二次元複素フーリエ係数をCklと表記すると、下記式2により算出される。
Figure 2018194607
式2中、「n/2≦x, n/2≦y」である。exp()は指数関数であり、jは虚数単位である。
二次元複素フーリエ係数Cklは、一般的には複素数値であり、下記式3で表現される。
Ckl=akl +jbkl (akl、bklは実数値) (式3)
これより、二次元複素フーリエ係数Cklの振幅|Ckl|、つまりCklの絶対値は下記式4となる。
|Ckl|=√(akl+bkl) (式4)
全ての次数について振幅だけに注目した分布は振幅スペクトルと呼ばれている。振幅スペクトルに基づく評価値をF(l,m,n)と表記する。評価値F(l,m,n)は下記式5により算出される。
Figure 2018194607
具体的な演算方法は周知であるため省略するが、周波数領域での評価値F(l,m,n)は、明るさの影響を受け難い評価値である。よって、第1実施例で用いた評価値H(l,m,n)と比較すると、単一の閾値での判断が可能となる。但し、演算負荷が大きいので、より能力の高い処理回路が必要となる。
マイクロコンピュータ3122は、図1のS105で評価値F(l,m,n)を用いて評価値判定を行い、事前に定めた閾値(Fsと記す)と比較する。その結果、「Fs<F(l,m,n)」と判定された場合、S106にて画像の暈けが大きい状態では無いと判断され、AF制御を終了する。「Fs≧F(l,m,n)」と判定された場合にはS107に進む。なお、測光センサ2106から読み出された信号を周波数領域へ変換する場合、対象画像については、いわゆるγ(ガンマ)処理前のリニアな状態が望ましい。また、色情報は不要であるので、処理回路の制約等により白黒、即ち濃淡情報だけをもつ画像でも本実施例の機能を十分に果たす。
本実施例によれば、撮像信号の空間周波数情報に基づく、明るさの影響を受け難い評価値を表す状態信号を用いることで正確な合焦判断を行い、より精度の高いAF制御を実現できる。
[第3実施例]
次に、本発明の第3実施例を説明する。前記実施例では、撮像画像が大きく暈けた状態であるか否かの判断に対するAF動作上の制限を特に設けていない。しかし、図5(D)の範囲506内に示すように、多点の焦点検出領域507〜511が存在し、任意に選んだ1つの焦点検出領域を用いる場合(以下、任意選択という)と、多点(図5(D)では5点)の自動選択が行われる場合とがある。本実施例では、画面内の複数の焦点検出領域を選択する第1のモードと、画面内の複数の焦点検出領域から特定の領域を選択する第2のモードを説明する。例えば第1のモードは多点の自動選択が行われるモードであり、第2のモードは、任意選択が可能なモードである。
任意選択と多点の自動選択とでは、実際の焦点検出に用いるセンサの画素数が異なる場合がある。通常、任意選択の方が実際の焦点検出に用いるセンサの画素数が多くなり、いわゆる「大ボケ合焦」という現象の発生頻度が低くなる可能性もある。そこで、本実施例では、多点の焦点検出領域の場合、任意選択であるか自動選択であるかにしたがって、画像が大きく暈けた状態であるか否かの判断処理の有無を変更する。つまり、任意選択の場合、当該判断処理は行われず、多点の自動選択の場合に当該判断処理が実行される。図7を参照して、処理例を説明する。
図7は本実施例のAF制御を説明するフローチャートである。S700からS704のステップで示す各処理は、図1のS100からS104の処理と同様であり、S706からS709のステップで示す各処理は、図1のS105からS108の処理と同様である。よって、S705の処理を説明する。
S705でマイクロコンピュータ3122は、現在の設定モードが複数の焦点検出領域の自動選択を行う第1のモードであるか否かを判定する。S705で第1のモードであると判定された場合、S706に進み、さらにS707の判断処理が実行される。また、S705で焦点検出領域の任意選択を行う第2モードであると判定された場合、S703での焦点検出演算結果についてS704で行った合焦判定の結果をそのまま採用し、AF制御を終了する(S709)。
本実施例によれば、明暗状態を検出する測光センサの出力信号に基づく評価値を用いて正確な合焦判断を行うことにより、いわゆる「大ボケ合焦」を未然に防ぐことが可能となる。焦点検出領域の任意選択または自動選択が判定され、自動選択の場合に図7のS707の判断処理が実行されるので、より精度の高いAF制御を行うことができる。
以上、本発明の好ましい実施形態について説明したが、本発明は前記実施例に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
2101 主ミラー
2106 測光センサ
2108 撮像素子
2109 サブミラー
2110 焦点検出ユニット
2205 AF駆動回路
3110 焦点検出回路
3115 映像信号処理回路
3122 マイクロコンピュータ

Claims (11)

  1. 撮像光学系を介して被写体を撮像する撮像装置であって、
    前記撮像光学系を介して入射される光を受光して位相差による焦点検出を行う焦点検出手段と、
    前記被写体を撮像して撮像信号を取得する取得手段と、
    前記撮像信号から撮像状態を示す状態信号を出力する信号処理手段と、
    前記焦点検出による合焦判定が行われた後に、前記状態信号を用いて前記合焦判定が有効であるか否かを判断して前記撮像光学系の焦点調節の制御を行う制御手段と、を有することを特徴とする撮像装置。
  2. 前記取得手段は測光センサを有することを特徴とする請求項1に記載の撮像装置。
  3. 前記信号処理手段は、前記撮像信号のコントラスト情報に基づく前記状態信号を出力することを特徴とする請求項1または請求項2に記載の撮像装置。
  4. 前記状態信号は、前記コントラスト情報を規格化した信号であることを特徴とする請求項3に記載の撮像装置。
  5. 前記信号処理手段は、前記撮像信号における隣接する画素信号の差分絶対値の積分値および最大値を算出し、前記積分値を前記最大値で除算して規格化することを特徴とする請求項4に記載の撮像装置。
  6. 前記信号処理手段は、前記撮像信号の空間周波数の情報に基づく前記状態信号を出力することを特徴とする請求項1または請求項2に記載の撮像装置。
  7. 前記信号処理手段は、前記撮像信号に対するフーリエ変換を行い、フーリエ係数の大きさから振幅スペクトルを算出して前記状態信号を出力することを特徴とする請求項6に記載の撮像装置。
  8. 前記制御手段は、前記状態信号の値が閾値より大きい場合に前記合焦判定が有効であると判断することを特徴とする請求項1から7のいずれか1項に記載の撮像装置。
  9. 前記制御手段は、前記焦点検出手段による画面内の複数の焦点検出領域を選択する第1のモードである場合、前記合焦判定が有効であるか否かを判断し、前記複数の焦点検出領域から特定の領域を選択する第2のモードである場合、前記合焦判定が有効であるか否かを判断しないことを特徴とする請求項1から8のいずれか1項に記載の撮像装置。
  10. 前記撮像光学系を介して被写体を観察するためのファインダ光学系と、
    前記被写体からの光を前記ファインダ光学系へ導く第1の光学部材と、
    前記被写体からの光を前記焦点検出手段へ導く第2の光学部材を備え、
    前記焦点検出手段は、複数の開口部を有する絞りを介して、前記第2の光学部材からの光を受光して焦点検出を行うことを特徴とする請求項1から9のいずれか1項に記載の撮像装置。
  11. 撮像光学系を介して被写体を撮像する撮像装置にて実行される制御方法であって、
    前記撮像光学系を介して入射される光を焦点検出手段が受光して位相差に基づく焦点検出を行う工程と、
    前記被写体を撮像して撮像信号を取得手段が取得する工程と、
    信号処理手段が前記撮像信号から撮像状態を示す状態信号を出力する工程と、
    前記焦点検出による合焦判定が行われた後に、制御手段が前記状態信号を用いて前記合焦判定が有効であるか否かを判断して前記撮像光学系の焦点調節の制御を行う工程と、を有することを特徴とする撮像装置の制御方法。

JP2017096415A 2017-05-15 2017-05-15 撮像装置およびその制御方法 Pending JP2018194607A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017096415A JP2018194607A (ja) 2017-05-15 2017-05-15 撮像装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017096415A JP2018194607A (ja) 2017-05-15 2017-05-15 撮像装置およびその制御方法

Publications (1)

Publication Number Publication Date
JP2018194607A true JP2018194607A (ja) 2018-12-06

Family

ID=64570625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017096415A Pending JP2018194607A (ja) 2017-05-15 2017-05-15 撮像装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP2018194607A (ja)

Similar Documents

Publication Publication Date Title
JP6405243B2 (ja) 焦点検出装置及びその制御方法
JP6512810B2 (ja) 撮像装置および制御方法とプログラム
JP5247076B2 (ja) 画像追尾装置、焦点調節装置および撮像装置
JP2008199486A (ja) 一眼レフレックス型の電子撮像装置
US9602716B2 (en) Focus-detection device, method for controlling the same, and image capture apparatus
US7805068B2 (en) Imaging apparatus
JP6300670B2 (ja) 焦点調節装置、焦点調節方法およびプログラム、並びに撮像装置
JP2013254166A (ja) 撮像装置及びその制御方法
JP6960755B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2012208507A (ja) 画像追尾装置
EP3079350A1 (en) Imaging apparatus and method of controlling the same
JP6501536B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2013205675A (ja) 撮像装置
JP5930683B2 (ja) 撮像装置、その制御方法及びプログラム
JP5947489B2 (ja) 焦点調節装置および焦点調節方法
JP2014206711A (ja) 撮像装置およびその制御方法
JP2009219085A (ja) 撮像装置
JP2014197141A (ja) 撮像装置
JP2018194607A (ja) 撮像装置およびその制御方法
JP2004309586A (ja) 撮像装置
JP2016099432A (ja) 焦点検出装置及び方法、プログラム、記憶媒体
JP2015167308A (ja) 顔検出オートフォーカス制御に適する測光方法
JP2016066015A (ja) 焦点検出装置及びその制御方法、プログラム、記憶媒体
JP2018197812A (ja) 撮像装置、その制御方法及びプログラム
JP3180458B2 (ja) 視線検出手段を有するカメラ