JP2018194472A - In-hole probe, and in-hole ground layer detection device and method using the same - Google Patents

In-hole probe, and in-hole ground layer detection device and method using the same Download PDF

Info

Publication number
JP2018194472A
JP2018194472A JP2017099283A JP2017099283A JP2018194472A JP 2018194472 A JP2018194472 A JP 2018194472A JP 2017099283 A JP2017099283 A JP 2017099283A JP 2017099283 A JP2017099283 A JP 2017099283A JP 2018194472 A JP2018194472 A JP 2018194472A
Authority
JP
Japan
Prior art keywords
probe
hole
tube
sensor
borehole logging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017099283A
Other languages
Japanese (ja)
Inventor
淳一 榊原
Junichi Sakakibara
淳一 榊原
彰大 田子
Akihiro Tago
彰大 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Civil Engineering and Construction Corp
Original Assignee
JFE Civil Engineering and Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Civil Engineering and Construction Corp filed Critical JFE Civil Engineering and Construction Corp
Priority to JP2017099283A priority Critical patent/JP2018194472A/en
Publication of JP2018194472A publication Critical patent/JP2018194472A/en
Pending legal-status Critical Current

Links

Abstract

To measure an elastic wave speed and an attenuation factor accurately at low cost regardless of the presence of water.SOLUTION: A transmission probe 20S includes a cylindrical container 22 having openings on side faces, an expandable tube 24 installed in the cylindrical container 22, a transmission sensor 26S inserted inside the tube 24, an injection and discharge pipe 30 for injecting and discharging a liquid 28 into and from the tube 24, and a signal line 32 connecting the transmission sensor 26S with the outside. The transmission probe is inserted into a hole (12) of ground (10) together with similarly configured reception probes 20R1, 20R2 including reception sensors 26R1, 26R2, and the liquid 28 inside the transmission probe 20S and reception probes 20R1, 20R2 is pressurized to cause the tube 24 to be expanded and abut against a hole wall. Thereafter, a signal is detected, which is received at the reception sensors 26R1, 26R2 when a high-frequency continuous wave is generated by the transmission sensor 26S, and thereby an elastic wave speed and an attenuation factor propagating in the hole wall are detected.SELECTED DRAWING: Figure 4

Description

本発明は、孔内プローブ並びに、これを用いた地盤の孔内検層装置及び方法に係り、特に、トンネル前方の岩盤の健全性評価に用いるのに好適な、地盤の弾性波速度と減衰率を低い費用で正確に測定することが可能な、孔内プローブ並びに、これを用いた地盤の孔内検層装置及び方法に関する。   The present invention relates to an in-hole probe, and an in-hole logging apparatus and method using the same, and particularly suitable for use in evaluating the soundness of a rock in front of a tunnel. The present invention relates to an in-hole probe capable of accurately measuring a low-cost and a ground borehole logging apparatus and method using the same.

新オーストラリアトンネル工法(NATM)など、山岳トンネルの前方探査は、トンネルの崩落を防ぐために重要である。最近では、博多でトンネルの崩落により地表面が陥没し、大きな被害を出している。トンネルの崩落を防ぐためには、適切な前方調査を行い、適切な施工方法を選定する必要がある。このためには、弾性波速度や亀裂の有無を調査する必要があるが、現状の前方探査手法は、これらを正確に把握することが難しい。   Forward exploration of mountain tunnels, such as the New Australian Tunnel Method (NATM), is important to prevent tunnel collapse. Recently, the ground collapsed due to the collapse of the tunnel in Hakata, causing great damage. In order to prevent the collapse of the tunnel, it is necessary to conduct an appropriate forward survey and select an appropriate construction method. To this end, it is necessary to investigate the elastic wave velocity and the presence or absence of cracks, but it is difficult to accurately grasp the current forward exploration method.

例えば、トンネルナビと呼ばれる、水平削孔を行う際にドリルジャンボの先端に取り付けた削孔ロッドの加速度を計測し、削孔エネルギーを取得して、変換式を用いて弾性波速度を計測する切羽前方探査手法(特許文献1、2参照)があり、手間がかからないという長所がある。   For example, a face called tunnel navigation that measures acceleration of a drilling rod attached to the tip of a drill jumbo when performing horizontal drilling, acquires drilling energy, and measures elastic wave velocity using a conversion formula There is a forward exploration method (see Patent Documents 1 and 2), and there is an advantage that it does not take time and effort.

又、コアボーリングと称する、水平にコア(岩心)を採取しつつ行うコア抜きボーリングを行い、取得したコアの物理試験を行い弾性波速度や亀裂情報を取得する方法もあり、物性を直接正確に取得できるという長所がある。   There is also a method called core boring, in which core boring is performed while collecting cores (rock cores) horizontally, and physical tests of the acquired cores are performed to obtain elastic wave velocity and crack information. There is an advantage that it can be acquired.

又、PS検層と称する、水平ボーリングを行って、P波、S波速度の計測装置を挿入し、速度を取得する方法もある。   There is also a method for obtaining the velocity by performing horizontal boring called PS logging and inserting a P-wave and S-wave velocity measuring device.

特開平11−182171号公報JP-A-11-182171 特開2004−132084号公報JP 2004-132804 A

しかしながら、トンネルナビでは、パラメータを推定して計算を行うため、誤差、ばらつきが大きいだけでなく、細かい亀裂は見えない。又、コアボーリングは、コストが高く、工期が余分にかかるため、測定に使える休止時間が、例えば1週間に1回8時間程度しかないという現場工程に合わせて実施することが難しい。更に、PS検層は、装置の外形が大きいため、別途ボーリングが必要であるだけなく、水がないと使えない、孔壁が凸凹していると使えない、得られた速度の精度が悪いなどの問題点を有する。   However, in tunnel navigation, since parameters are estimated and calculation is performed, not only errors and variations are large, but also fine cracks cannot be seen. Moreover, since core boring is expensive and requires an extra work period, it is difficult to implement in accordance with the on-site process in which the downtime that can be used for measurement is, for example, about 8 hours once a week. Furthermore, PS logging has a large external device, so it requires not only additional boring, but it cannot be used without water, cannot be used if the hole wall is uneven, and the accuracy of the obtained speed is poor. Have the following problems.

本発明は、前記従来の問題点を解消するべくなされたもので、弾性波速度を低い費用で正確に計測すると共に、亀裂があると弾性波の振幅が減衰し減衰率が大きくなることを利用し、弾性波の減衰率を計測することで亀裂の有無などの情報も把握可能とすることを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and accurately measures the elastic wave velocity at a low cost, and utilizes the fact that if there is a crack, the amplitude of the elastic wave is attenuated and the attenuation factor is increased. Then, it is an object to be able to grasp information such as the presence or absence of cracks by measuring the attenuation rate of elastic waves.

本発明は、孔内に挿入可能な、側面に開口が設けられた筒状容器と、該筒状容器に設置される膨張可能なチューブと、該チューブ内に挿入されるセンサと、前記チューブ内に液体を注入し排出するための注排出管と、前記センサを外部と接続する信号線と、を備えたことを特徴とする孔内プローブにより、前記課題を解決するものである。   The present invention includes a cylindrical container that can be inserted into a hole and provided with an opening on a side surface, an inflatable tube that is installed in the cylindrical container, a sensor that is inserted into the tube, The above-mentioned problem is solved by an in-hole probe comprising an injection / discharge tube for injecting and discharging a liquid to and a signal line connecting the sensor to the outside.

本発明は、又、孔内に挿入可能な、側面に開口が設けられた筒状容器、該筒状容器に設置される膨張可能なチューブ、該チューブ内に挿入される送信センサ、前記チューブ内に液体を注入し排出するための注排出管、前記送信センサを外部と接続する信号線を有する送信プローブと、孔内に挿入可能な、側面に開口が設けられた筒状容器、該筒状容器に設置される膨張可能なチューブ、該チューブ内に挿入される受信センサ、前記チューブ内に液体を注入し排出するための注排出管、前記受信センサを外部と接続する信号線を有する受信プローブと、前記送信プローブ及び受信プローブ内の液体を加圧し、前記送信プローブと受信プローブのチューブを膨張させて孔壁に当接させる加圧手段と、前記送信センサに高周波数の連続波を発生させる手段と、前記受信センサで受信される信号を検出する手段と、該受信された信号から孔壁を伝播する弾性波の速度と減衰率を検出する手段と、を備えたことを特徴とする地盤の孔内検層装置により、同様に前記課題を解決するものである。   The present invention also provides a cylindrical container which can be inserted into a hole and has an opening on a side surface, an inflatable tube installed in the cylindrical container, a transmission sensor inserted into the tube, and the inside of the tube An injection / discharge tube for injecting and discharging liquid, a transmission probe having a signal line for connecting the transmission sensor to the outside, a cylindrical container having an opening on a side surface, which can be inserted into the hole, and the cylindrical shape An inflatable tube installed in a container, a receiving sensor inserted into the tube, a pouring tube for injecting and discharging liquid into the tube, and a receiving probe having a signal line connecting the receiving sensor to the outside Pressurizing means for pressurizing the liquid in the transmitting probe and the receiving probe, expanding the tubes of the transmitting probe and the receiving probe to contact the hole wall, and generating a high-frequency continuous wave in the transmitting sensor. Means for detecting a signal received by the receiving sensor, and means for detecting a velocity and an attenuation rate of an elastic wave propagating through the hole wall from the received signal. The above-mentioned problem is similarly solved by this borehole logging device.

ここで、前記送信プローブと受信プローブの間隔を所定間隔とする連結棒を更に備えることができる。   Here, a connecting rod having a predetermined interval between the transmission probe and the reception probe can be further provided.

又、前記連結棒の長さを可変とすることができる。   Further, the length of the connecting rod can be made variable.

又、前記連続波を疑似ランダム波とすることができる。   Further, the continuous wave can be a pseudo random wave.

又、前記連続波の周波数を可変とすることができる。   Further, the frequency of the continuous wave can be made variable.

本発明は、又、前記地盤の孔内検層装置を、地盤の孔に挿入し、送信プローブと受信プローブの液体を加圧してチューブを孔壁に当接させ、送信センサに高周波の連続波を発生させた時に受信センサで受信される信号を検出して、孔壁を伝播する弾性波の速度と減衰率を検出することにより同様に前記課題を解決するものである。   According to the present invention, the borehole logging device of the ground is inserted into the hole of the ground, the liquid of the transmitting probe and the receiving probe is pressurized to bring the tube into contact with the hole wall, and the high frequency continuous wave is applied to the transmitting sensor. The above-mentioned problem is similarly solved by detecting the signal received by the receiving sensor at the time of occurrence and detecting the velocity and attenuation rate of the elastic wave propagating through the hole wall.

ここで、前記連結棒で連結した前記送信プローブと受信プローブを同じ孔に挿入することができる。   Here, the transmitting probe and the receiving probe connected by the connecting rod can be inserted into the same hole.

又、前記連結棒の長さを変えて測定することができる。   Moreover, it can measure by changing the length of the connecting rod.

又、前記送信プローブと受信プローブを別の孔に挿入することができる。   Further, the transmitting probe and the receiving probe can be inserted into different holes.

又、前記連続波を疑似ランダム波とすることができる。   Further, the continuous wave can be a pseudo random wave.

又、前記連続波の周波数を変えて測定することができる。   Moreover, it can measure by changing the frequency of the continuous wave.

本発明によれば、弾性波速度と減衰率を低い費用で、誤差やばらつきが極めて少なく、正確に計測することができる。又、水の有無に関わらず計測できる。現場作業時間は1〜2時間程度、解析時間は1〜2時間程度と極めて短時間で、機械の休止時間(例えば8時間)以内に計測できる。更に、速度だけでなく減衰率から亀裂情報も把握できる。又、ボーリング孔削孔により緩んだボーリング孔の孔壁近傍だけでなく、削孔の影響を受けていない孔壁から離れた健全な部分の弾性波速度と減衰率から亀裂情報を計測することもできる。   According to the present invention, it is possible to accurately measure the elastic wave velocity and the attenuation rate at low cost with very little error and variation. It can be measured with or without water. The on-site work time is about 1 to 2 hours, the analysis time is about 1 to 2 hours, and it can be measured within a machine downtime (for example, 8 hours). Furthermore, not only the speed but also the crack information can be grasped from the attenuation rate. It is also possible to measure crack information not only in the vicinity of the hole wall of a boring hole that has been loosened by boring hole drilling, but also from the elastic wave velocity and damping rate of a healthy part away from the hole wall not affected by drilling. it can.

本発明に係る孔内プローブの実施形態の基本構成を示す断面図Sectional drawing which shows the basic composition of embodiment of the probe in a hole which concerns on this invention 同じく計測時を示す断面図Cross-sectional view showing the same measurement 同じく凸凹を有する岩盤に挿入した状態を示す断面図Cross-sectional view showing a state where it is inserted into a bedrock that also has unevenness 本発明の第1実施形態を用いて同一孔内で計測している状態を示す断面図Sectional drawing which shows the state which is measuring in the same hole using 1st Embodiment of this invention 同じく孔壁より離れた場所を計測している状態を示す断面図Similarly, a cross-sectional view showing a state where a place away from the hole wall is being measured 同じくボーリング孔の奥の方に挿入している状態を示す断面図Cross-sectional view showing a state where it is also inserted in the back of the borehole 本発明による実験結果の一例を示す線図Diagram showing an example of experimental results according to the present invention 同じく他の例を示す線図Diagram showing another example 同じく更に他の例を示す線図A diagram showing still another example 同じく更に他の例を示す線図A diagram showing still another example 同じく更に他の例を示す線図A diagram showing still another example 本発明の第2実施形態により2つの孔を用いて計測している状態を示す断面図Sectional drawing which shows the state which is measuring using two holes by 2nd Embodiment of this invention

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, the constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

本発明の実施形態で用いる孔内プローブの基本構成を図1に示す。この孔内プローブ20は、例えば岩盤10に掘られたボーリング孔12内に挿入可能な、側面(図の上下面)に開口が設けられた、例えば金属製の筒状容器22と、該筒状容器22に設置される、膨張可能な例えばゴム製のチューブ(以下、ゴムチューブと称する)24と、該ゴムチューブ24内に挿入される、例えば圧電素子製のセンサ26と、前記ゴムチューブ24内に液体(例えば水)28を注入・排出するための注排出管30と、前記センサ26と接続される信号線32とを備えている。   A basic configuration of the in-hole probe used in the embodiment of the present invention is shown in FIG. The in-hole probe 20 includes, for example, a metal cylindrical container 22 having an opening provided on a side surface (upper and lower surfaces in the figure) that can be inserted into a boring hole 12 dug in the bedrock 10 and the cylindrical shape. An expandable, for example, rubber tube (hereinafter referred to as a rubber tube) 24 installed in the container 22, a sensor 26 made of, for example, a piezoelectric element inserted into the rubber tube 24, and the rubber tube 24 In addition, an injection / discharge pipe 30 for injecting and discharging a liquid (for example, water) 28 and a signal line 32 connected to the sensor 26 are provided.

図において、34は、前記液体28を外部から加圧するためのポンプ、36は、前記信号線32を介して入出力されたセンサ26の信号により、必要な演算処理を行うコンピユータである。   In the figure, 34 is a pump for pressurizing the liquid 28 from the outside, and 36 is a computer that performs necessary arithmetic processing according to the signal of the sensor 26 input / output via the signal line 32.

前記ボーリング孔12の内径Aは例えば4cm、前記筒状容器22の外径Bは例えば2cm、長さCは例えば15cmとすることができる。   The inner diameter A of the boring hole 12 may be 4 cm, the outer diameter B of the cylindrical container 22 may be 2 cm, and the length C may be 15 cm, for example.

このような孔内プローブ20を例えば岩盤10に設けられたボーリング孔12に挿入する際には、先ず図1に示したように、ゴムチューブ24内には液体を注入せずゴムチューブ24が縮んだ状態で挿入する。   When such an in-hole probe 20 is inserted into, for example, a boring hole 12 provided in the rock 10, first, as shown in FIG. 1, the rubber tube 24 contracts without injecting liquid into the rubber tube 24. Insert in the state.

ボーリング孔12内の所定の計測位置に到達した時点で注排出管30から、液体28を注水し、ゴムチューブ24を膨張させて、図2に示す如く、ボーリング孔12の壁面に圧着させる。ゴムチューブ24内の液体28は、所定の圧力、例えば0.1Mpaを維持する。   When reaching a predetermined measurement position in the boring hole 12, the liquid 28 is poured from the pouring / discharging pipe 30, the rubber tube 24 is expanded, and is crimped to the wall surface of the boring hole 12, as shown in FIG. The liquid 28 in the rubber tube 24 maintains a predetermined pressure, for example, 0.1 Mpa.

ゴムチューブ24は、孔壁の形状に合わせて変形するため、孔壁が図3に示すように凸凹していても、ゴムチューブ24は孔壁に密着する。従って、ボーリング孔12内に液体が有っても無くても音波を送信・受信することができる。   Since the rubber tube 24 is deformed according to the shape of the hole wall, the rubber tube 24 is in close contact with the hole wall even if the hole wall is uneven as shown in FIG. Therefore, sound waves can be transmitted / received with or without liquid in the borehole 12.

以下、計測に2つ以上の孔内プローブを用い、1つは送信、残りは受信に用いる第1実施形態を説明する。この第1実施形態は、図4に示す如く、送信センサ26Sとしての圧電素子を挿入した送信プローブ20Sと、受信センサ26R1、26R2としての圧電素子をそれぞれ挿入した例えば2つの受信プローブ20R1、20R2を、長さが可変の伸縮可能な連結棒(以下、伸縮棒と称する)40A、40Bで互いに連結してボーリング孔12内に挿入し、孔壁を伝搬する弾性波の速度を測定するようにしたものである。センサ間の距離は、例えば25cm、50cm、100cmなどとすることができる。   Hereinafter, a first embodiment will be described in which two or more in-hole probes are used for measurement, one for transmission and the rest for reception. In the first embodiment, as shown in FIG. 4, a transmission probe 20S having a piezoelectric element as a transmission sensor 26S inserted therein and two reception probes 20R1 and 20R2 having piezoelectric elements as reception sensors 26R1 and 26R2 inserted therein, for example, These are connected to each other by connecting rods 40A and 40B having variable lengths that can be expanded and contracted (hereinafter referred to as telescopic rods) and inserted into the borehole 12, and the velocity of the elastic wave propagating through the hole wall is measured. Is. The distance between the sensors can be, for example, 25 cm, 50 cm, 100 cm, and the like.

送信する信号の周波数と孔内プローブ間の距離を変えて計測することで、図5に示す如く、音波の伝搬する深度を変えることができる。これにより、孔壁付近の緩み領域10Aと孔壁から離れた健全領域10Bの2種類の弾性波速度と減衰率を計測することができる。例えば、緩み領域10Aの場合、周波数5kHz〜10kHz、センサ間距離1.00m〜2.00mとし、健全領域10Bの場合、周波数30kHz〜60kHz、センサ間距離0.30m〜0.50mとすることができる。   By changing the frequency of the signal to be transmitted and the distance between the probes in the hole, the depth of propagation of the sound wave can be changed as shown in FIG. Thereby, two types of elastic wave velocities and attenuation rates of the loose region 10A near the hole wall and the healthy region 10B separated from the hole wall can be measured. For example, in the case of the loose region 10A, the frequency is 5 kHz to 10 kHz and the distance between the sensors is 1.00 m to 2.00 m, and in the case of the healthy region 10B, the frequency is 30 kHz to 60 kHz and the distance between the sensors is 0.30 m to 0.50 m. it can.

実際には、図6に示す如く、調査するボーリング孔12に、長さを調節できる、例えば塩化ビニール製の管又は棒42などを用いて、人44の力又はドリルジャンボ等の機械の油圧の力で所定の位置に、例えば全長Dが1m程度のプローブ20S+20R1+20R2を押し込んで設置する。棒42の長さを変えることで、例えばE=1m〜200m先までの調査を行うことができる。   In practice, as shown in FIG. 6, the length of the borehole 12 to be investigated can be adjusted using, for example, a vinyl chloride pipe or rod 42, the force of a person 44 or the hydraulic pressure of a machine such as a drill jumbo. For example, the probe 20S + 20R1 + 20R2 having a total length D of about 1 m is pushed into a predetermined position by force and installed. By changing the length of the rod 42, for example, an investigation from E = 1 m to 200 m ahead can be performed.

なお、受信プローブの数は2つに限定されず、1つ又は3つ以上であってもよい。   Note that the number of reception probes is not limited to two, and may be one or three or more.

本実施形態によれば、高周波数の疑似ランダム波などの連続波を用いて周波数と発振振幅を制御することで、適切な単一の周波数(例えば5kHz、10kHz、50kHz、100kHzなど)を送信でき、速度と減衰率という2種類の情報、孔壁近傍と孔壁から離れた部分の情報を高精度で取得することができる。   According to this embodiment, an appropriate single frequency (for example, 5 kHz, 10 kHz, 50 kHz, 100 kHz, etc.) can be transmitted by controlling the frequency and oscillation amplitude using a continuous wave such as a high-frequency pseudorandom wave. Two types of information, speed and attenuation rate, and information on the vicinity of the hole wall and the part away from the hole wall can be obtained with high accuracy.

又、水平削孔は、孔壁が凸凹していることが問題であったが、液体28で満たしたゴムチューブ24内から送信、受信する機構を持ち、ゴムチューブ24が孔壁の凸凹に応じて変形するため、孔壁が凸凹していても計測できる。なお、チューブ24の材質はゴムに限定されず、類似の伸縮性を持つ他の素材であってもよい。   The horizontal drilling has a problem that the hole wall is uneven, but has a mechanism for transmitting and receiving from the inside of the rubber tube 24 filled with the liquid 28, and the rubber tube 24 responds to the unevenness of the hole wall. Therefore, measurement is possible even if the hole wall is uneven. The material of the tube 24 is not limited to rubber, and may be another material having similar stretchability.

又、上記の機構を持つため孔内を水で満たす必要が無い。更に、振幅を正確に計測でき、亀裂による減衰も計測できる。更に、計測装置が小型であるため、既存の水平削孔を用いることができる。又、周波数とセンサ距離を変えることで、孔壁近傍と孔壁から離れた場所の速度の両方を取得することができる。   Further, since the above mechanism is provided, it is not necessary to fill the hole with water. Furthermore, the amplitude can be measured accurately, and the attenuation due to cracks can also be measured. Furthermore, since the measuring device is small, existing horizontal drilling can be used. In addition, by changing the frequency and the sensor distance, it is possible to acquire both the vicinity of the hole wall and the speed at a place away from the hole wall.

又、センサに圧電素子を用いているので、送信センサと受信センサを共用できる。なお、センサは圧電素子に限定されない。   Moreover, since the piezoelectric element is used for the sensor, the transmission sensor and the reception sensor can be shared. The sensor is not limited to a piezoelectric element.

又、連結棒として伸縮棒を用いているので、センサ間距離を容易に変えることができる。なお、伸縮できない棒を用いることもできる。   In addition, since the telescopic rod is used as the connecting rod, the distance between the sensors can be easily changed. It is also possible to use a rod that cannot be expanded and contracted.

棒の材質も塩化ビニールに限定されない。   The material of the rod is not limited to vinyl chloride.

発明者が、対象となる部材、接触面の状態、センサ間距離及び発振周波数を変えて実験を行った結果を示す。   The inventor changes the target member, the state of the contact surface, the distance between sensors and the oscillation frequency, and shows the results of experiments.

図7は、コンクリート床版に対して接触面をドライとして、センサ間距離0.60m、発振周波数39kHzで測定した結果である。P波の弾性波速度2.7km/s(音圧55dB)、表面波の弾性波速度1.7km/s(音圧76dB)が測定できている。   FIG. 7 shows the results of measurement with a distance between sensors of 0.60 m and an oscillation frequency of 39 kHz with the contact surface being dry with respect to the concrete slab. The elastic wave velocity of the P wave is 2.7 km / s (sound pressure 55 dB), and the elastic wave velocity of the surface wave is 1.7 km / s (sound pressure 76 dB).

又、同じコンクリート床版に対して接触面をウェットとして、センサ間距離0.55m、発振周波数39kHzで実験した結果を図8に示す。P波の弾性波速度2.7km/s(音圧70dB)が測定できていることが分かる。表面波の弾性波速度はスケールオーバーしてしまっているが、表面波の弾性波速度も図7と同様に測定できている。   Further, FIG. 8 shows the results of an experiment conducted on the same concrete floor slab with the contact surface wet, with a sensor distance of 0.55 m and an oscillation frequency of 39 kHz. It can be seen that an elastic wave velocity of P wave of 2.7 km / s (sound pressure 70 dB) can be measured. Although the surface acoustic wave velocity has scaled over, the surface acoustic wave velocity can also be measured as in FIG.

図9に、コンクリート床版に対して接触面をウェットとして、センサ間距離0.70m、発振周波数39kHzで測定した結果を示す。P波の弾性波速度2.7km/s(音圧57dB)、表面波の弾性波速度1.7km/s(音圧85dB)共に測定できていることが分かる。   FIG. 9 shows the results of measurement at a distance between sensors of 0.70 m and an oscillation frequency of 39 kHz with the contact surface wet with respect to the concrete floor slab. It can be seen that both the elastic wave velocity of P wave 2.7 km / s (sound pressure 57 dB) and the elastic wave velocity of surface wave 1.7 km / s (sound pressure 85 dB) can be measured.

又、図10に、コンクリート舗装で接触面をウェットとして、センサ間距離0.50m、発振周波数52kHzで測定した結果を示す。P波の弾性波速度3.5km/s(音圧59dB)が測定できている。表面波の弾性波速度はスケールオーバーしてしまっているが、測定できている。   FIG. 10 shows the results of measurement with a distance between sensors of 0.50 m and an oscillation frequency of 52 kHz, with the contact surface wet in concrete pavement. The elastic wave velocity of the P wave is 3.5 km / s (sound pressure 59 dB). The surface acoustic wave velocity has been scaled over, but it can be measured.

図11に、アスファルト舗装に対して接触面をウェットとして、センサ間距離0.30m、発振周波数52kHzで測定した結果を示す。P波の弾性波速度1.8km/s(音圧49dB)、表面波の弾性波速度1.1km/s(音圧59dB)共に測定できている。   FIG. 11 shows the results of measurement at a distance between sensors of 0.30 m and an oscillation frequency of 52 kHz, with the contact surface wet asphalt pavement. Both the P wave elastic wave velocity of 1.8 km / s (sound pressure 49 dB) and the surface wave elastic wave velocity of 1.1 km / s (sound pressure 59 dB) can be measured.

次に、2孔を用いた本発明の第2実施形態を図12に示す。   Next, a second embodiment of the present invention using two holes is shown in FIG.

本実施形態においては、1つの孔(図では下方の孔)12Aの所定位置に棒42Sで送信プローブ20Sを挿入し、他方の孔(図では上方の孔)12Bに棒42Rで多数(図では8個)の受信プローブ20R1〜20R8を挿入して、ボーリング孔12Aと12Bの間で2次元的な計測を行うようにしたものである。   In the present embodiment, the transmitting probe 20S is inserted with a rod 42S into a predetermined position of one hole (lower hole in the figure) 12A, and many (in the figure with rods 42R) in the other hole (upper hole in the figure) 12B. Eight) receiving probes 20R1 to 20R8 are inserted to perform two-dimensional measurement between the bore holes 12A and 12B.

なお、前記実施形態においては、いずれも、本発明がトンネル前方探査に用いられていたが、本発明の適用対象はこれに限定されず、垂直方向の孔を用いて地盤の簡易調査も可能である。   In any of the above embodiments, the present invention is used for tunnel forward exploration, but the scope of application of the present invention is not limited to this, and a simple investigation of the ground using a vertical hole is also possible. is there.

10…岩盤
10A…緩み領域
10B…健全領域
12、12A、12B…ボーリング孔
20…孔内プローブ
20S…送信プローブ
20R1〜20R8…受信プローブ
22…筒状容器
24…ゴムチューブ
26…センサ
26S…送信センサ
26R1、26R2…受信センサ
28…液体
30…注排出管
32…信号線
34…ポンプ
36…コンピュータ
40A、40B…伸縮(連結)棒
42、42R、42S…棒
44…人
DESCRIPTION OF SYMBOLS 10 ... Bedrock 10A ... Loose area | region 10B ... Healthy area | region 12, 12A, 12B ... Boring hole 20 ... In-hole probe 20S ... Transmission probe 20R1-20R8 ... Reception probe 22 ... Cylindrical container 24 ... Rubber tube 26 ... Sensor 26S ... Transmission sensor 26R1, 26R2 ... Reception sensor 28 ... Liquid 30 ... Pumping discharge pipe 32 ... Signal line 34 ... Pump 36 ... Computer 40A, 40B ... Extension (connection) rod 42, 42R, 42S ... Bar 44 ... Human

Claims (12)

孔内に挿入可能な、側面に開口が設けられた筒状容器と、
該筒状容器に設置される膨張可能なチューブと、
該チューブ内に挿入されるセンサと、
前記チューブ内に液体を注入し排出するための注排出管と、
前記センサを外部と接続する信号線と、
を備えたことを特徴とする孔内プローブ。
A cylindrical container having an opening on a side surface, which can be inserted into the hole;
An inflatable tube installed in the cylindrical container;
A sensor inserted into the tube;
An injection / discharge tube for injecting and discharging liquid into the tube;
A signal line for connecting the sensor to the outside;
An in-hole probe comprising:
孔内に挿入可能な、側面に開口が設けられた筒状容器、該筒状容器に設置される膨張可能なチューブ、該チューブ内に挿入される送信センサ、前記チューブ内に液体を注入し排出するための注排出管、前記送信センサを外部と接続する信号線を有する送信プローブと、
孔内に挿入可能な、側面に開口が設けられた筒状容器、該筒状容器に設置される膨張可能なチューブ、該チューブ内に挿入される受信センサ、前記チューブ内に液体を注入し排出するための注排出管、前記受信センサを外部と接続する信号線を有する受信プローブと、
前記送信プローブ及び受信プローブ内の液体を加圧し、前記送信プローブと受信プローブのチューブを膨張させて孔壁に当接させる加圧手段と、
前記送信センサに高周波数の連続波を発生させる手段と、
前記受信センサで受信される信号を検出する手段と、
該受信された信号から孔壁を伝播する弾性波の速度と減衰率を検出する手段と、
を備えたことを特徴とする地盤の孔内検層装置。
A cylindrical container that can be inserted into the hole and has an opening on the side surface, an inflatable tube installed in the cylindrical container, a transmission sensor that is inserted into the tube, and injecting and discharging liquid into the tube An injection / discharge pipe for transmitting, a transmission probe having a signal line for connecting the transmission sensor to the outside, and
A cylindrical container that can be inserted into the hole and has an opening on the side surface, an inflatable tube installed in the cylindrical container, a receiving sensor that is inserted into the tube, and injecting and discharging liquid into the tube An injection / discharge pipe for receiving, a reception probe having a signal line for connecting the reception sensor to the outside, and
Pressurizing means for pressurizing the liquid in the transmission probe and the reception probe, and inflating the tubes of the transmission probe and the reception probe to contact the hole wall;
Means for generating a high frequency continuous wave in the transmission sensor;
Means for detecting a signal received by the receiving sensor;
Means for detecting the velocity and damping rate of the elastic wave propagating through the hole wall from the received signal;
A ground borehole logging apparatus characterized by comprising:
前記送信プローブと受信プローブの間隔を所定間隔とする連結棒を更に備えたことを特徴とする請求項2に記載の地盤の孔内検層装置。   The ground borehole logging apparatus according to claim 2, further comprising a connecting rod having a predetermined interval between the transmission probe and the reception probe. 前記連結棒の長さが可変とされていることを特徴とする請求項3に記載の地盤の孔内検層装置。   The ground borehole logging apparatus according to claim 3, wherein the length of the connecting rod is variable. 前記連続波が疑似ランダム波とされていることを特徴とする請求項2乃至4のいずれかに記載の地盤の孔内検層装置。   The ground borehole logging apparatus according to any one of claims 2 to 4, wherein the continuous wave is a pseudo-random wave. 前記連続波の周波数が可変とされていることを特徴とする請求項2乃至5のいずれかに記載の地盤の孔内検層装置。   The ground borehole logging apparatus according to any one of claims 2 to 5, wherein the frequency of the continuous wave is variable. 請求項2乃至6のいずれかに記載の地盤の孔内検層装置を、地盤の孔に挿入し、
送信プローブと受信プローブの液体を加圧してチューブを孔壁に当接させ、
送信センサに高周波の連続波を発生させた時に受信センサで受信される信号を検出して、孔壁を伝播する弾性波の速度と減衰率を検出することを特徴とする地盤の孔内検層方法。
The ground borehole logging device according to any one of claims 2 to 6 is inserted into a hole in the ground,
Pressurize the liquid of the transmitting probe and the receiving probe to bring the tube into contact with the hole wall,
A borehole logging in the ground characterized by detecting the signal received by the receiving sensor when the transmitting sensor generates a high-frequency continuous wave and detecting the velocity and attenuation rate of the elastic wave propagating through the hole wall Method.
前記連結棒で連結した前記送信プローブと受信プローブを同じ孔に挿入することを特徴とする請求項7に記載の地盤の孔内検層方法。   8. The ground borehole logging method according to claim 7, wherein the transmitting probe and the receiving probe connected by the connecting rod are inserted into the same hole. 前記連結棒の長さを変えて測定することを特徴とする請求項8に記載の地盤の孔内検層方法。   The ground borehole logging method according to claim 8, wherein measurement is performed by changing the length of the connecting rod. 前記送信プローブと受信プローブを別の孔に挿入することを特徴とする請求項7に記載の地盤の孔内検層方法。   8. The ground borehole logging method according to claim 7, wherein the transmitting probe and the receiving probe are inserted into different holes. 前記連続波を疑似ランダム波とすることを特徴とする請求項7乃至10のいずれかに記載の地盤の孔内検層方法。   The ground borehole logging method according to any one of claims 7 to 10, wherein the continuous wave is a pseudo-random wave. 前記連続波の周波数を変えて測定することを特徴とする請求項7乃至11のいずれかに記載の地盤の孔内検層方法。   The ground borehole logging method according to any one of claims 7 to 11, wherein the measurement is performed by changing the frequency of the continuous wave.
JP2017099283A 2017-05-18 2017-05-18 In-hole probe, and in-hole ground layer detection device and method using the same Pending JP2018194472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099283A JP2018194472A (en) 2017-05-18 2017-05-18 In-hole probe, and in-hole ground layer detection device and method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099283A JP2018194472A (en) 2017-05-18 2017-05-18 In-hole probe, and in-hole ground layer detection device and method using the same

Publications (1)

Publication Number Publication Date
JP2018194472A true JP2018194472A (en) 2018-12-06

Family

ID=64570731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099283A Pending JP2018194472A (en) 2017-05-18 2017-05-18 In-hole probe, and in-hole ground layer detection device and method using the same

Country Status (1)

Country Link
JP (1) JP2018194472A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115001A (en) * 1973-03-07 1974-11-02
US4283953A (en) * 1978-10-30 1981-08-18 Schlumberger Technology Corporation Method and apparatus for determining a granularity property of a subsurface formation around a borehole
US4372161A (en) * 1981-02-25 1983-02-08 Buda Eric G De Pneumatically operated pipe crawler
JPS62240853A (en) * 1986-04-14 1987-10-21 Toshiba Corp Apparatus and method for ultrasonic flaw detection
JP2000035483A (en) * 1998-06-30 2000-02-02 Yamamoto Eng Corp Imaging method of water permeability in deposit and ground structure containing underground fluid, and measuring method of physical characteristic of medium
JP2000178955A (en) * 1998-12-15 2000-06-27 Shimizu Corp Method and device for investigating underground structure
JP2000214268A (en) * 1999-01-26 2000-08-04 Taisei Corp Elastic wave measuring device
JP2002129873A (en) * 2000-10-25 2002-05-09 Nishimatsu Constr Co Ltd Elastic wave speed measuring apparatus and method of installing and removing it
WO2011058911A1 (en) * 2009-11-12 2011-05-19 Jfeシビル株式会社 Ground survey method
US20140332323A1 (en) * 2010-08-27 2014-11-13 Inventio Ag Self-centering elevator cage door suspension
CN105275451A (en) * 2015-09-25 2016-01-27 武汉力博物探有限公司 Drill hole radial three-dimensional imaging system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115001A (en) * 1973-03-07 1974-11-02
US4283953A (en) * 1978-10-30 1981-08-18 Schlumberger Technology Corporation Method and apparatus for determining a granularity property of a subsurface formation around a borehole
US4372161A (en) * 1981-02-25 1983-02-08 Buda Eric G De Pneumatically operated pipe crawler
JPS62240853A (en) * 1986-04-14 1987-10-21 Toshiba Corp Apparatus and method for ultrasonic flaw detection
JP2000035483A (en) * 1998-06-30 2000-02-02 Yamamoto Eng Corp Imaging method of water permeability in deposit and ground structure containing underground fluid, and measuring method of physical characteristic of medium
JP2000178955A (en) * 1998-12-15 2000-06-27 Shimizu Corp Method and device for investigating underground structure
JP2000214268A (en) * 1999-01-26 2000-08-04 Taisei Corp Elastic wave measuring device
JP2002129873A (en) * 2000-10-25 2002-05-09 Nishimatsu Constr Co Ltd Elastic wave speed measuring apparatus and method of installing and removing it
WO2011058911A1 (en) * 2009-11-12 2011-05-19 Jfeシビル株式会社 Ground survey method
US20140332323A1 (en) * 2010-08-27 2014-11-13 Inventio Ag Self-centering elevator cage door suspension
CN105275451A (en) * 2015-09-25 2016-01-27 武汉力博物探有限公司 Drill hole radial three-dimensional imaging system

Similar Documents

Publication Publication Date Title
JP4667228B2 (en) Pile inspection method and sensor crimping device
JP5096571B2 (en) Measurement of sound velocity of downhole fluid using tube wave
JP5009873B2 (en) Support layer arrival detection device and detection method at tip of cast-in-place pile
US11619018B2 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
CN103255785A (en) Technology for performing foundation pile quality detection and geology survey by adopting single tube longitudinal wave method
CN104532886B (en) A kind of bored concrete pile pile bottom sediment and pile end groundwork checkout gear and method
CN103217131A (en) Method and device for testing loose circle of surrounding rock
CN108802193A (en) A kind of detecting devices and detection method of Exploring Loose Rock Country in Tunnels
JP2007231729A (en) Method and device for prior survey in tunnel construction
CN106149770B (en) The large-section in-situ concrete pile hole wall rock mass integrality detection method that bored concrete pile pile foundation construction period synchronously carries out
JP2011106843A (en) Ground strength estimation method in ground improved by drug injection
AU2015101608A4 (en) Rock acoustic wave detection transducer
CN104818735A (en) Exploring drill bit and method for detecting pile foundation by using exploring drill bit
JP6319895B2 (en) Quality control method and quality control device for improved ground
JP6646983B2 (en) Method for exploring the front of the face
CN115390129A (en) In-situ acoustic penetration device with built-in longitudinal and transverse wave transmitting and receiving transducers
CN103837604B (en) A kind of modification method of rock blasting damnification acoustic wave measurement over holes central span
US9523273B2 (en) Acoustic monitoring of well structures
US10352908B2 (en) Method and apparatus for the downhole in-situ determination of the speed of sound in a formation fluid
JP2018194472A (en) In-hole probe, and in-hole ground layer detection device and method using the same
CN105569627A (en) Experimental method for monitoring hydraulic fracture expansion process through electromagnetic signals
CN111781277B (en) Method for testing accumulated damage of broken rock on surrounding rock by hard rock high-pressure gas expansion method
JP2011102706A (en) Method and system for performing survey ahead of working face
JP2004060282A (en) Structure or ground investigating method and investigating device
JP6841704B2 (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301