JP2018194401A - Neutron measurement member and radioactivation amount measurement method - Google Patents

Neutron measurement member and radioactivation amount measurement method Download PDF

Info

Publication number
JP2018194401A
JP2018194401A JP2017097483A JP2017097483A JP2018194401A JP 2018194401 A JP2018194401 A JP 2018194401A JP 2017097483 A JP2017097483 A JP 2017097483A JP 2017097483 A JP2017097483 A JP 2017097483A JP 2018194401 A JP2018194401 A JP 2018194401A
Authority
JP
Japan
Prior art keywords
activation
neutron
measurement
members
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017097483A
Other languages
Japanese (ja)
Other versions
JP7054322B2 (en
Inventor
清崇 赤堀
Kiyotaka Akahori
清崇 赤堀
哲也 武川
Tetsuya Takegawa
哲也 武川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2017097483A priority Critical patent/JP7054322B2/en
Publication of JP2018194401A publication Critical patent/JP2018194401A/en
Application granted granted Critical
Publication of JP7054322B2 publication Critical patent/JP7054322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a neutron measurement member and a radioactivation amount measurement method which can accurately measure the distribution of neutrons.SOLUTION: A neutron measurement member 1 includes: a plurality of radioactivation members 11 made of a metal to be radioactivated by applying a neutron beam; and a fixing part 12 on which the plurality of radioactivation members 11 are fixed at a predetermined interval.SELECTED DRAWING: Figure 1

Description

本発明は、中性子測定部材及び放射化量測定方法に関する。   The present invention relates to a neutron measuring member and an activation amount measuring method.

中性子線捕捉療法では、被照射体の照射対象位置に照射する中性子線の線量を適切に管理する必要がある。そのため、例えば、特許文献1に記載のように標的部位に中性子測定用の金線を装着し、金線の放射化量から中性子の分布を推定する方法が用いられる。   In neutron beam capture therapy, it is necessary to appropriately manage the dose of neutron beam irradiated to the irradiation target position of the irradiated object. Therefore, for example, as described in Patent Document 1, a method of attaching a gold wire for neutron measurement to a target site and estimating the neutron distribution from the activation amount of the gold wire is used.

特開2004−233168号公報JP 2004-233168 A

しかしながら、中性子の分布を評価しようとするためには、複数の金線を互いに異なる位置に配置した上で、複数の金線それぞれの放射化量を測定する必要がある。中性子線を照射する環境において、複数の金線それぞれを目的の位置に精度よく配置しようとすると、作業量が増大する。   However, in order to evaluate the neutron distribution, it is necessary to measure the activation amount of each of the plurality of gold wires after arranging the plurality of gold wires at different positions. In an environment where a neutron beam is irradiated, if an attempt is made to accurately place each of the plurality of gold wires at a target position, the amount of work increases.

本発明は上記を鑑みてなされたものであり、中性子の分布を精度よく測定することが可能な中性子測定部材及び放射化量測定方法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a neutron measuring member and an activation amount measuring method capable of accurately measuring the neutron distribution.

上記目的を達成するため、本発明の一形態に係る中性子測定部材は、中性子線が照射されることで放射化する金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する。   In order to achieve the above object, a neutron measurement member according to an aspect of the present invention includes a plurality of activation members made of metal that is activated by irradiation with neutron beams, and the plurality of activation members at a predetermined interval. And a fixing part fixed at

上記の中性子測定部材によれば、固定部材に対して複数の放射化部材が所定の間隔で固定されているので、複数の放射化部材を個別に所望の位置に配置する場合と比較して放射化部材を適切に配置することが可能となり、中性子の分布を精度よく測定することが可能となる。   According to the above neutron measurement member, since the plurality of activation members are fixed to the fixed member at a predetermined interval, the radiation is emitted as compared with the case where the plurality of activation members are individually arranged at desired positions. It becomes possible to arrange | position a chemical-ized member appropriately, and it becomes possible to measure the distribution of neutrons accurately.

ここで、前記固定部は、可塑性を有するシート状の部材である態様とすることができる。   Here, the said fixing | fixed part can be made into the aspect which is a sheet-like member which has plasticity.

上記のように、固定部が可塑性を有するシート状の部材である場合、中性子の測定対象となる場所の形状等に応じて固定部を変形することが可能となるため、測定対象の場所によらず中性子の分布を精度よく測定する音が可能となる。   As described above, when the fixing part is a sheet-like member having plasticity, the fixing part can be deformed according to the shape of the place to be measured for neutrons, etc. Sound that accurately measures the distribution of neutrons becomes possible.

また、本発明の一形態に係る放射化量測定方法は、中性子測定部材の放射化量測定方法であって、中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、前記放射化部材が固定される間隔と同じ間隔で複数のホールが形成されたガンマ線コリメータの前記複数のホールのそれぞれに対して、前記中性子測定部材の前記複数の放射化部材を接触させる工程と、前記複数の放射化部材のそれぞれから放出されて、前記複数のホールのそれぞれを導波した放射線を放射線検出器により個別に検出する工程と、を有する。   Moreover, the activation amount measurement method according to an aspect of the present invention is a method for measuring the activation amount of a neutron measurement member, and includes a plurality of activation members made of metal activated by irradiation with a neutron beam. A step of preparing a neutron measurement member after neutron irradiation, the plurality of activation members being fixed at a predetermined interval, and a plurality of the activation members being fixed at the same interval as the interval at which the activation member is fixed A step of bringing the plurality of activation members of the neutron measurement member into contact with each of the plurality of holes of the gamma ray collimator in which the holes are formed, and being emitted from each of the plurality of activation members, And individually detecting radiation guided through each of the plurality of holes by a radiation detector.

上記の放射化量測定方法によれば、中性子測定部材において複数の放射化部材が固定される間隔と同じ間隔で複数のホールが形成されたガンマ線コリメータを用いて、複数の放射化部材のそれぞれから放出される放射線を個別に検出することが可能となる。したがって、中性子測定部材の複数の放射化部材の放射化量を個別に精度よく測定することができる。   According to the above-described activation amount measuring method, using a gamma ray collimator in which a plurality of holes are formed at the same interval as the interval at which the plurality of activation members are fixed in the neutron measurement member, The emitted radiation can be detected individually. Therefore, the activation amounts of the plurality of activation members of the neutron measurement member can be individually and accurately measured.

また、本発明の一形態に係る放射化量測定方法は、中性子測定部材の放射化量測定方法であって、中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、前記複数の放射化部材のうちの1つの放射化部材のみに対応するホールが形成された遮蔽部材の前記ホールに対して、前記中性子測定部材の前記複数の放射化部材のうちの一の放射化部材を接触させた状態で、前記一の放射化部材のそれぞれから放出されて、前記遮蔽部材のホールを導波した放射線を放射線検出器により検出する工程と、前記遮蔽部材の前記ホールに接触する放射化部材を前記一の放射化部材とは異なる他の放射化部材に変更して、前記他の放射化部材から放出されて、前記遮蔽部材のホールを導波した放射線を前記放射線検出器により検出する工程と、を有する。   Moreover, the activation amount measurement method according to an aspect of the present invention is a method for measuring the activation amount of a neutron measurement member, and includes a plurality of activation members made of metal activated by irradiation with a neutron beam. A step of preparing a neutron measuring member after irradiation with neutron radiation, the activating member having one of the plurality of activating members; The one activation member in a state where one activation member of the plurality of activation members of the neutron measurement member is brought into contact with the hole of the shielding member in which a hole corresponding to only the hole is formed. A radiation detector that detects the radiation emitted from each of the light beams and guided through the holes of the shielding member, and the activation member that contacts the holes of the shielding member is different from the one activation member. Change to the activation member To, be released from the other activation member, and a step of detecting by radiation the radiation detector holes and guided in the shielding member.

上記の放射化量測定方法によれば、放射化部材のうちの1つの放射化部材のみに対応するホールが形成された遮蔽部材を用いて、複数の放射化部材のうちの一の放射化部材から放出される放射線を検出した後、遮蔽部材のホールに接触する放射化部材を一の部材から他の部材に変更して放射線の検出を行う。このような構成とすることで、複数の放射化部材のそれぞれから放出される放射線を個別に検出することが可能となる。したがって、中性子測定部材の複数の放射化部材の放射化量を個別に精度よく測定することができる。   According to the above-described activation amount measurement method, one activation member among the plurality of activation members is formed using the shielding member in which the hole corresponding to only one activation member among the activation members is formed. After detecting the radiation emitted from the radiation member, the radiation member that contacts the hole of the shielding member is changed from one member to another member to detect the radiation. By setting it as such a structure, it becomes possible to detect separately the radiation discharge | released from each of several activation member. Therefore, the activation amounts of the plurality of activation members of the neutron measurement member can be individually and accurately measured.

本発明によれば、中性子の分布を精度よく測定することが可能な中性子測定部材及び放射化量測定方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the neutron measurement member and activation amount measurement method which can measure the distribution of neutrons accurately are provided.

中性子測定部材及び放射化量測定装置について説明する図である。It is a figure explaining a neutron measuring member and an activation amount measuring apparatus. 放射化量測定方法を説明する図である。It is a figure explaining the activation amount measuring method. 放射化量の測定方法の一実施例を説明する図である。It is a figure explaining one Example of the measuring method of activation amount. 放射化量の測定方法の他の実施例を説明する図である。It is a figure explaining the other Example of the measuring method of activation amount.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の一実施形態に係る中性子測定部材と、この中性子測定部材の放射化量測定に用いられる放射化量測定装置と、を示す図である。図1(a)は、中性子測定部材1の概略構成図であり、図1(b)は放射化量測定装置2の概略構成図である。   FIG. 1 is a diagram showing a neutron measurement member according to an embodiment of the present invention and an activation amount measurement device used for measuring the activation amount of the neutron measurement member. FIG. 1A is a schematic configuration diagram of the neutron measuring member 1, and FIG. 1B is a schematic configuration diagram of the activation amount measuring device 2.

中性子測定部材1は、複数の放射化部材11と、複数の放射化部材11を固定する固定部12と、を有する。中性子測定部材1は、中性子捕捉療法システム等の中性子線が照射される環境において、中性子の強度の分布を測定するために用いられる。中性子測定部材1が、中性子捕捉療法システムにおいて用いられる場合は、例えば、中性子線Nを照射する装置のビーム軸方向に沿った強度分布の測定に用いられる。   The neutron measurement member 1 includes a plurality of activation members 11 and a fixing portion 12 that fixes the plurality of activation members 11. The neutron measuring member 1 is used for measuring the distribution of neutron intensity in an environment irradiated with neutrons such as a neutron capture therapy system. When the neutron measurement member 1 is used in a neutron capture therapy system, for example, it is used for measurement of intensity distribution along the beam axis direction of a device that irradiates a neutron beam N.

中性子測定部材1の放射化部材11は、中性子が照射されると放射化する金属材料により構成される。中性子線が照射されると放射化する金属材料としては、例えば、金、ヨウ素、マンガン等が挙げられる。これらの金属は照射された中性子の強度に応じて放射化量が変化するため、この放射化量を測定することで中性子の強度を推定することができる。   The activation member 11 of the neutron measurement member 1 is made of a metal material that is activated when irradiated with neutrons. Examples of the metal material that is activated when irradiated with neutron beams include gold, iodine, and manganese. Since the activation amount of these metals changes according to the intensity of the irradiated neutron, the intensity of the neutron can be estimated by measuring the activation amount.

複数の放射化部材11の形状は、例えば、線状又は箔状とすることができる。ただし、放射化部材11は、それぞれ、中性子場を乱さない程度の大きさ及び厚さとされる。具体的には、放射化部材11の大きさは、例えば、金箔を放射化部材11として用いる場合には、面積を2mm×2mm程度とし、厚さを0.5mm程度とすることができる。なお、放射化部材11が大きすぎると、測定精度が低下する。一方、放射化部材11が小さすぎると、検出効率が低下する。したがって、金属の種類等を考慮して適宜その大きさは選択できる。   The shape of the some activation member 11 can be made into linear or foil shape, for example. However, each of the activation members 11 has a size and a thickness that do not disturb the neutron field. Specifically, for example, when a gold foil is used as the activation member 11, the activation member 11 can have an area of about 2 mm × 2 mm and a thickness of about 0.5 mm. In addition, when the activation member 11 is too large, measurement accuracy will fall. On the other hand, if the activation member 11 is too small, the detection efficiency decreases. Therefore, the size can be appropriately selected in consideration of the type of metal.

放射化部材11は、固定部12上に所定の間隔で配置される。放射化部材11の間隔は、中性子の強度分布の測定間隔に基づいて決定される。   The activation member 11 is disposed on the fixed portion 12 at a predetermined interval. The interval between the activation members 11 is determined based on the measurement interval of the neutron intensity distribution.

複数の放射化部材11が固定される固定部12は、中性子場を乱さない材料から構成されるシート状の部材である。固定部12の材料としては、例えば、アクリル樹脂等を用いることができるが、特に限定されない。ただし、固定部12が可塑性を有していると、取り扱い性が向上する。また、固定部12が可塑性を有していると、例えば、中性子の強度分布を測定する対象位置が曲線状に配置している場合であっても、その形状に合わせて変形が可能となるため、種々の測定条件に対応可能となる。   The fixing portion 12 to which the plurality of activation members 11 are fixed is a sheet-like member made of a material that does not disturb the neutron field. As a material of the fixing portion 12, for example, an acrylic resin or the like can be used, but is not particularly limited. However, if the fixing portion 12 has plasticity, the handleability is improved. In addition, if the fixing portion 12 has plasticity, for example, even if the target position for measuring the intensity distribution of the neutron is arranged in a curved shape, it can be deformed according to the shape. It becomes possible to cope with various measurement conditions.

固定部12の大きさは、1つの中性子測定部材1に取り付ける放射化部材11の数及び配置(間隔)に応じて設定される。固定部12に対して取り付ける放射化部材11の個数は特に限定されない。また、配置も適宜変更することができる。図1(a)では、固定部12に対して放射化部材11が一列に配置されている例を示しているが、シート状の固定部12に対して複数の放射化部材11が2次元配置されていてもよい。   The size of the fixed portion 12 is set according to the number and arrangement (interval) of the activation members 11 attached to one neutron measurement member 1. The number of activation members 11 attached to the fixing portion 12 is not particularly limited. Moreover, arrangement | positioning can also be changed suitably. FIG. 1A shows an example in which the activation members 11 are arranged in a row with respect to the fixing portion 12, but a plurality of activation members 11 are two-dimensionally arranged with respect to the sheet-like fixing portion 12. May be.

また、固定部12の厚さは特に限定されないが、中性子場を乱さないためには固定部12はより薄くすることが好ましい。   Further, the thickness of the fixing portion 12 is not particularly limited, but it is preferable to make the fixing portion 12 thinner in order not to disturb the neutron field.

放射化部材11は、固定部12の表面に対して固定されていてもよいし、例えば、複数のシート状の部材により放射化部材11を挟み込んで固定化してもよい。固定部12は、複数の放射化部材11が所定の間隔で保持されるように放射化部材11を固定できればよく、その方法は特に限定されない。   The activation member 11 may be fixed to the surface of the fixing portion 12, or may be fixed by sandwiching the activation member 11 with a plurality of sheet-like members, for example. The fixing part 12 only needs to be able to fix the activation member 11 so that the plurality of activation members 11 are held at a predetermined interval, and the method is not particularly limited.

放射化量を算出した後に、当該算出結果から中性子強度を算出する際には、中性子測定部材1に含まれる放射化部材11の材料の種類(金属の種類)、相対位置(放射化部材11間の距離)、及び、放射化部材11それぞれの質量が必要となる。ただし、中性子測定部材1によって、複数の放射化部材11の相対位置や質量は異なる場合がある。したがって、中性子測定部材1は、使用前に中性子測定部材1毎に上記の情報が予め記録される。そして、放射化量に基づく中性子強度の算出の際には、中性子測定部材1毎に事前に記録された情報を利用して、各放射化部材11において中性子量の算出が行われる。中性子測定部材1毎の上記の情報(放射化部材11の材料の種類、相対位置、及び、質量)は、中性子測定部材1を個別に特定する情報(例えば、シリアル番号等)に対応付けて予めデータベース化して管理する態様とすることができる。   After calculating the activation amount, when calculating the neutron intensity from the calculation result, the material type (metal type) of the activation member 11 included in the neutron measurement member 1 and the relative position (between the activation members 11). ) And the mass of each of the activation members 11 is required. However, the relative positions and masses of the plurality of activation members 11 may differ depending on the neutron measurement member 1. Therefore, the neutron measuring member 1 has the above information recorded in advance for each neutron measuring member 1 before use. When calculating the neutron intensity based on the activation amount, the neutron amount is calculated in each activation member 11 using information recorded in advance for each neutron measurement member 1. The above-mentioned information (material type, relative position, and mass) of the neutron measuring member 1 for each neutron measuring member 1 is previously associated with information (for example, a serial number) that individually specifies the neutron measuring member 1. It can be set as a database and managed.

次に、この中性子測定部材1の放射化部材11に係る放射化量を測定する放射化量測定装置2について説明する。図1(b)に示すように、放射化量測定装置2は、ガンマ線絶対値測定器21と、ガンマ線個別測定器22(放射線検出器)と、測定値校正部23と、を有する。なお、放射化量測定装置に含まれる機能部は、複数台の装置(測定器)を組み合わせて構成される。   Next, the activation amount measuring apparatus 2 that measures the activation amount related to the activation member 11 of the neutron measurement member 1 will be described. As shown in FIG. 1B, the activation amount measuring apparatus 2 includes a gamma ray absolute value measuring device 21, a gamma ray individual measuring device 22 (radiation detector), and a measured value calibration unit 23. The functional unit included in the activation amount measuring device is configured by combining a plurality of devices (measuring instruments).

ガンマ線絶対値測定器21は、中性子測定部材1の複数の放射化部材11の放射化に伴って生成されるガンマ線の絶対量を測定する機能を有する。ガンマ線絶対値測定器21としては、公知のガンマ線検出器を利用することができる。   The gamma ray absolute value measuring device 21 has a function of measuring the absolute amount of gamma rays generated with the activation of the plurality of activation members 11 of the neutron measurement member 1. A known gamma ray detector can be used as the gamma ray absolute value measuring device 21.

ガンマ線個別測定器22は、中性子測定部材1の複数の放射化部材11の放射化に伴って生成されるガンマ線の線量を、放射化部材11毎に測定する機能を有する。放射化部材11毎に個別に測定する方法について、詳細は後述するが、測定対象の放射化部材11からのガンマ線と隣接する放射化部材11からのガンマ線とを区別しながら測定する。   The gamma ray individual measuring device 22 has a function of measuring the dose of gamma rays generated along with the activation of the plurality of activation members 11 of the neutron measurement member 1 for each activation member 11. Although the details of the method of individually measuring each activation member 11 will be described later, the measurement is performed while distinguishing the gamma rays from the activation member 11 to be measured and the gamma rays from the adjacent activation member 11.

測定値校正部23は、ガンマ線個別測定器22で測定された放射化部材11毎のガンマ線の線量を、ガンマ線絶対値測定器21で測定されたガンマ線の線量で校正し、放射化部材11毎のガンマ線の線量、すなわち、放射化部材11毎の放射化量を算出する機能を有する。ガンマ線個別測定器22による放射化部材11毎のガンマ線の線量は、上述のように隣接する放射化部材11からのガンマ線と区別して計測するために数値が小さくなる場合がある。そこで、測定値校正部23において、ガンマ線絶対値測定器21で測定されたガンマ線の線量を用いて校正することで、放射化部材11毎のガンマ線の線量をより正確に算出することができる。測定値校正部23は、CPU、ROM、RAM等から構成された電子制御ユニットとして構成することができる。   The measurement value calibration unit 23 calibrates the gamma ray dose for each activation member 11 measured by the gamma ray individual measuring device 22 with the gamma ray dose measured by the gamma ray absolute value measurement device 21, and for each activation member 11. It has a function of calculating the dose of gamma rays, that is, the activation amount for each activation member 11. Since the gamma ray dose for each activation member 11 by the individual gamma ray measuring device 22 is measured separately from the gamma rays from the adjacent activation member 11 as described above, the numerical value may be small. Therefore, the measurement value calibration unit 23 calibrates using the gamma ray dose measured by the gamma ray absolute value measuring device 21, thereby calculating the gamma ray dose for each activation member 11 more accurately. The measurement value calibration unit 23 can be configured as an electronic control unit including a CPU, a ROM, a RAM, and the like.

なお、ガンマ線絶対値測定器21による絶対値の測定と、測定値校正部23による校正は、行わなくてもよい。その場合でも、放射化部材11毎にガンマ線の線量を測定して、放射化量を算出することができる。   The absolute value measurement by the gamma ray absolute value measuring device 21 and the calibration by the measurement value calibration unit 23 may not be performed. Even in such a case, the activation amount can be calculated by measuring the dose of gamma rays for each activation member 11.

次に、図2を参照しながら、放射化量測定方法について説明する。まず、中性子測定部材1を測定対象の領域に配置する(S01)。このとき、中性子測定部材1を所望の場所に適切に配置することで、複数の放射化部材11のそれぞれが所望の位置に配置される。次に、中性子線を照射して、中性子測定部材1の各放射化部材11を放射化させる(S02)。これにより、中性子線照射後の、各放射化部材11が放射化された中性子測定部材1が準備される。   Next, the activation amount measuring method will be described with reference to FIG. First, the neutron measuring member 1 is placed in the region to be measured (S01). At this time, each of the plurality of activation members 11 is arranged at a desired position by appropriately arranging the neutron measurement member 1 at a desired location. Next, the neutron beam is irradiated to activate each activation member 11 of the neutron measurement member 1 (S02). Thereby, the neutron measurement member 1 in which each activation member 11 after the neutron irradiation is activated is prepared.

その後、中性子測定部材1について、複数の放射化部材11に伴って生成されるガンマ線の絶対値のガンマ線絶対値測定器21による測定(S03)と、複数の放射化部材11それぞれのガンマ線のガンマ線個別測定器22による測定(S04)と、を行う。これらの測定(S02,S03)は、同時に行ってもよいし、個別に行ってもよい。また、測定順序は特に限定されない。   Thereafter, with respect to the neutron measuring member 1, the absolute value of gamma rays generated along with the plurality of activation members 11 is measured by the gamma ray absolute value measuring device 21 (S 03), and the gamma rays of each of the plurality of activation members 11 are individually detected. Measurement by the measuring instrument 22 (S04) is performed. These measurements (S02, S03) may be performed simultaneously or individually. Further, the measurement order is not particularly limited.

図3を参照しながら、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定の一実施例について説明する。   With reference to FIG. 3, an example of measurement by the gamma ray absolute value measuring device 21 and measurement by the gamma ray individual measuring device 22 will be described.

図3に示す実施例では、中性子測定部材1の両面において、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定を同時に行っている。まず、中性子測定部材1の図示下方では、ガンマ線絶対値測定器21としてのガンマ線検出器により、中性子測定部材1の各放射化部材11からのガンマ線を測定している。放射化部材11において生成されるガンマ線は等方的に放射されるので、中性子測定部材1の下方に設けられるガンマ線絶対値測定器21は、中性子測定部材1の複数の放射化部材11から出射されるガンマ線のうちの1/2を検出することができる。したがって、ガンマ線絶対値測定器21で検出されたガンマ線の線量を2倍すると、中性子測定部材1の複数の放射化部材11から出射されるガンマ線の絶対値を算出することができる。   In the embodiment shown in FIG. 3, the measurement by the gamma ray absolute value measurement device 21 and the measurement by the gamma ray individual measurement device 22 are simultaneously performed on both surfaces of the neutron measurement member 1. First, below the figure of the neutron measuring member 1, gamma rays from the respective activation members 11 of the neutron measuring member 1 are measured by a gamma ray detector as the gamma ray absolute value measuring device 21. Since the gamma rays generated in the activation member 11 are isotropically emitted, the gamma ray absolute value measuring device 21 provided below the neutron measurement member 1 is emitted from the plurality of activation members 11 of the neutron measurement member 1. ½ of the gamma rays that can be detected. Therefore, when the dose of gamma rays detected by the gamma ray absolute value measuring device 21 is doubled, the absolute values of gamma rays emitted from the plurality of activation members 11 of the neutron measurement member 1 can be calculated.

一方、中性子測定部材1の図示上方には、位置敏感型ガンマ線検出器31(放射線検出器)と、ガンマ線コリメータ32とを組み合わせたガンマ線個別測定器22が設けられている。ガンマ線コリメータ32は、中性子測定部材1の複数の放射化部材11の対応した位置にそれぞれ設けられた複数のホール32a(開口)を有し、各放射化部材11からのガンマ線を位置敏感型ガンマ線検出器31へ導波している。ガンマ線コリメータ32は、ホール32a以外では放射線(ガンマ線)は遮蔽される。また、測定時には、ガンマ線コリメータ32の複数のホール32aのそれぞれに対して、中性子測定部材1の複数の放射化部材11のそれぞれが接触される。そのため、隣接する放射化部材11からのガンマ線が別のホール32aには入射しないようにされる。   On the other hand, a gamma ray individual measuring device 22 combining a position sensitive gamma ray detector 31 (radiation detector) and a gamma ray collimator 32 is provided above the neutron measuring member 1 in the figure. The gamma ray collimator 32 has a plurality of holes 32a (openings) respectively provided at positions corresponding to the plurality of activation members 11 of the neutron measurement member 1, and detects gamma rays from the respective activation members 11 by position sensitive gamma ray detection. Waveguided to the vessel 31. The gamma ray collimator 32 shields radiation (gamma rays) except for the holes 32a. Further, at the time of measurement, each of the plurality of activation members 11 of the neutron measurement member 1 is brought into contact with each of the plurality of holes 32 a of the gamma ray collimator 32. Therefore, gamma rays from the adjacent activation member 11 are prevented from entering the other hole 32a.

上記のようにガンマ線コリメータ32及び位置敏感型ガンマ線検出器31を配置した状態でガンマ線の測定を行うと、各放射化部材11から出射されるガンマ線が、互いに異なるホール32aを通過して位置敏感型ガンマ線検出器31へ到達することで、位置敏感型ガンマ線検出器31では、互いに異なるホール32aから入射するガンマ線を個別に測定することで、複数の放射化部材11のそれぞれからのガンマ線の線量を測定することができる。   When gamma rays are measured with the gamma ray collimator 32 and the position sensitive gamma ray detector 31 arranged as described above, the gamma rays emitted from the respective activation members 11 pass through different holes 32a and are position sensitive. By arriving at the gamma ray detector 31, the position sensitive gamma ray detector 31 measures the dose of gamma rays from each of the plurality of activation members 11 by individually measuring gamma rays incident from different holes 32a. can do.

ただし、ガンマ線コリメータ32を用いて、各放射化部材11から出射されるガンマ線のうち特定方向(位置敏感型ガンマ線検出器31へ向かう方向)へ出射されたガンマ線のみを検出していることになるので、ガンマ線個別測定器22で検出されるガンマ線の総量は、ガンマ線絶対値測定器21で検出されるガンマ線の線量よりも小さくなる。   However, since the gamma ray collimator 32 is used to detect only the gamma rays emitted from each activation member 11 in a specific direction (direction toward the position sensitive gamma ray detector 31). The total amount of gamma rays detected by the gamma ray individual measuring device 22 is smaller than the dose of gamma rays detected by the gamma ray absolute value measuring device 21.

そこで、放射化量測定装置2の測定値校正部23(図2参照)において、ガンマ線絶対値測定器21での検出結果から算出される複数の放射化部材11から出射されるガンマ線の絶対値を利用して校正をする(S05)。これにより、複数の放射化部材11のそれぞれから出射されるガンマ線の線量を算出することができる。   Therefore, in the measurement value calibration unit 23 (see FIG. 2) of the activation amount measuring device 2, the absolute values of the gamma rays emitted from the plurality of activation members 11 calculated from the detection results of the gamma ray absolute value measuring device 21 are obtained. Calibration is performed using the data (S05). Thereby, the dose of gamma rays emitted from each of the plurality of activation members 11 can be calculated.

なお、ガンマ線絶対値測定器21で検出されるガンマ線の絶対値を利用した校正を行わない場合には、放射化量を別の方法で校正してもよい。例えば、放射化部材11の配置と、ガンマ線コリメータ32の形状及び配置と、から放射化部材11から放出される放射線のうちガンマ線コリメータ32のホール32aを介して位置敏感型ガンマ線検出器31に到達する放射線の割合を事前にシミュレーション等で求めておき、その結果を利用して、放射化量の校正を行ってもよい。また、線量が既知の線源からのガンマ線を事前に測定することで、その測定結果を利用して放射化量の校正を行ってもよい。   In addition, when the calibration using the absolute value of the gamma ray detected by the gamma ray absolute value measuring device 21 is not performed, the activation amount may be calibrated by another method. For example, of the radiation emitted from the activation member 11 from the arrangement of the activation member 11 and the shape and arrangement of the gamma ray collimator 32, the position sensitive gamma ray detector 31 is reached through the hole 32 a of the gamma ray collimator 32. The ratio of radiation may be obtained in advance by simulation or the like, and the activation amount may be calibrated using the result. Further, by measuring gamma rays from a radiation source with a known dose in advance, the activation amount may be calibrated using the measurement result.

なお、図3に示すように位置敏感型ガンマ線検出器31を用いる場合、位置分解能は、放射化部材11の大きさよりも少し大きい程度とすることが好ましい。位置分解能を上記のように調整することで、検出精度を高めることができる。   As shown in FIG. 3, when the position sensitive gamma ray detector 31 is used, it is preferable that the position resolution is a little larger than the size of the activation member 11. By adjusting the position resolution as described above, the detection accuracy can be increased.

次に、図4は、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定の他の実施例について説明する。   Next, FIG. 4 explains another embodiment of the measurement by the gamma ray absolute value measuring device 21 and the measurement by the gamma ray individual measuring device 22.

図4に示す実施例では、中性子測定部材1の両面において、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定を同時に行っている。中性子測定部材1の図示下方における、ガンマ線絶対値測定器21としてのガンマ線検出器により、中性子測定部材1の各放射化部材11からのガンマ線の測定は、図3に示す実施例と同じである。   In the embodiment shown in FIG. 4, the measurement by the gamma ray absolute value measurement device 21 and the measurement by the gamma ray individual measurement device 22 are simultaneously performed on both surfaces of the neutron measurement member 1. The measurement of the gamma rays from each activation member 11 of the neutron measuring member 1 by the gamma ray detector as the gamma ray absolute value measuring device 21 below the neutron measuring member 1 is the same as the embodiment shown in FIG.

一方、中性子測定部材1の図示上方には、単チャネル型の単チャネル型ガンマ線検出器33(放射線検出器)と、1つの放射化部材11からのガンマ線のみを単チャネル型ガンマ線検出器33に到達させるホール34aを有し、他の放射化部材11からのガンマ線は遮蔽する遮蔽部材34と、を組み合わせたガンマ線個別測定器22が設けられている。このようなガンマ線個別測定器22では、複数の放射化部材11のうちの1つの放射化部材11のみに対応するホール34aが形成された遮蔽部材34のホール34aに対して、中性子測定部材1の複数の放射化部材11のうちの一の放射化部材を接触させた状態で、一の放射化部材11のそれぞれから放出されて、遮蔽部材34のホール34aを導波した放射線(ガンマ線)を検出する。   On the other hand, on the upper side of the neutron measuring member 1, only the single channel type single channel type gamma ray detector 33 (radiation detector) and the gamma rays from one activation member 11 reach the single channel type gamma ray detector 33. There is provided a gamma ray individual measuring device 22 having a hole 34a to be combined and a shielding member 34 for shielding gamma rays from other activation members 11. In such a gamma ray individual measuring device 22, the neutron measuring member 1 is in contrast to the hole 34 a of the shielding member 34 in which the hole 34 a corresponding to only one of the plurality of activating members 11 is formed. Radiation (gamma rays) emitted from each of the activation members 11 and guided through the holes 34a of the shielding member 34 in a state where one of the activation members 11 is in contact with the activation member 11 is detected. To do.

その後、ガンマ線個別測定器22と中性子測定部材1との相対位置を変化させることで、他の放射化部材11からのガンマ線を個別に検出することができる。具体的には、中性子測定部材1を固定した状態でガンマ線個別測定器22を移動させる、又は、ガンマ線個別測定器22を固定した状態で中性子測定部材1を移動させる。これにより、他の放射化部材11から放出されて、遮蔽部材34のホール34aを導波した放射線(ガンマ線)を検出することができる。そしてこの工程を繰り返すことで、中性子測定部材1の各放射化部材11からの放射線を個別に検出することができる。   Thereafter, by changing the relative position between the gamma ray individual measuring device 22 and the neutron measuring member 1, gamma rays from other activation members 11 can be individually detected. Specifically, the gamma ray individual measuring device 22 is moved with the neutron measuring member 1 fixed, or the neutron measuring member 1 is moved with the gamma ray individual measuring device 22 fixed. Thereby, the radiation (gamma rays) emitted from the other activation member 11 and guided through the hole 34a of the shielding member 34 can be detected. And by repeating this process, the radiation from each activation member 11 of the neutron measurement member 1 can be detected individually.

複数の放射化部材11からのガンマ線を個別に検出した後、図3に示す実施例と同様に、放射化量測定装置2の測定値校正部23(図2参照)において、ガンマ線絶対値測定器21での検出結果から算出される複数の放射化部材11から出射されるガンマ線の絶対値を利用して校正をする(S05)。これにより、複数の放射化部材11のそれぞれから出射されるガンマ線の線量を算出することができる。   After the gamma rays from the plurality of activation members 11 are individually detected, the gamma ray absolute value measuring device is used in the measurement value calibration unit 23 (see FIG. 2) of the activation amount measuring apparatus 2 as in the embodiment shown in FIG. Calibration is performed using the absolute values of gamma rays emitted from the plurality of activation members 11 calculated from the detection results at 21 (S05). Thereby, the dose of gamma rays emitted from each of the plurality of activation members 11 can be calculated.

なお、図3及び図4に示す実施例のように、中性子測定部材1の図示下方におけるガンマ線絶対値測定器21による中性子測定部材1の各放射化部材11からのガンマ線の絶対値の測定と、図示上方におけるガンマ線個別測定器22による中性子測定部材1の各放射化部材11からのガンマ線の個別測定と、を同時に行う必要はない。したがって、例えば、各放射化部材11からのガンマ線の絶対値の測定を行った後に、各放射化部材11からのガンマ線の個別測定を行う校正としてもよい。ただし、放射化からの経過時間によってガンマ線の放出量が変化するので、経過時間等を組み合わせて評価することが好ましい。   In addition, like the Example shown in FIG.3 and FIG.4, the measurement of the absolute value of the gamma ray from each activation member 11 of the neutron measurement member 1 by the gamma ray absolute value measuring device 21 in the lower part of the neutron measurement member 1 in the figure, It is not necessary to simultaneously perform the individual measurement of gamma rays from the respective activation members 11 of the neutron measurement member 1 by the gamma ray individual measuring device 22 in the upper part of the figure. Therefore, for example, after measuring the absolute value of the gamma ray from each activation member 11, the calibration may be performed to individually measure the gamma ray from each activation member 11. However, since the amount of gamma rays emitted changes depending on the elapsed time from activation, it is preferable to evaluate by combining the elapsed time and the like.

以上のように、本実施形態に係る中性子測定部材1によれば、固定部12に対して複数の放射化部材11が所定の間隔で固定されているので、複数の放射化部材11を個別に所望の位置に配置する場合と比較して放射化部材を適切に配置することが可能となる。したがって、中性子の分布を精度よく測定することが可能となる。   As described above, according to the neutron measurement member 1 according to the present embodiment, since the plurality of activation members 11 are fixed to the fixed portion 12 at a predetermined interval, the plurality of activation members 11 are individually set. The activation member can be appropriately arranged as compared with the case where the activation member is arranged at a desired position. Therefore, the neutron distribution can be accurately measured.

また、上記の中性子測定部材1のように、固定部12が可塑性を有するシート状の部材である場合、中性子の測定対象となる場所の形状等に応じて固定部を変形することが可能となる。したがって、測定対象の場所によらず中性子の分布を精度よく測定する音が可能となる。   Moreover, when the fixing | fixed part 12 is a sheet-like member which has plasticity like said neutron measuring member 1, it becomes possible to deform | transform a fixing | fixed part according to the shape etc. of the place used as the measurement object of a neutron. . Therefore, a sound for accurately measuring the distribution of neutrons is possible regardless of the location of the measurement object.

また、図3に示す放射化量測定方法によれば、中性子測定部材1において複数の放射化部材11が固定される間隔と同じ間隔で複数のホール32aが形成されたガンマ線コリメータ32を用いることで、複数の放射化部材11のそれぞれから放出される放射線を位置敏感型ガンマ線検出器31において個別に検出することが可能となる。したがって、中性子測定部材1の複数の放射化部材11の放射化量を個別に精度よく測定することができる。   Further, according to the activation amount measuring method shown in FIG. 3, by using the gamma ray collimator 32 in which the plurality of holes 32a are formed at the same interval as the interval at which the plurality of activation members 11 are fixed in the neutron measurement member 1. The position-sensitive gamma ray detector 31 can individually detect the radiation emitted from each of the plurality of activation members 11. Therefore, the activation amounts of the plurality of activation members 11 of the neutron measurement member 1 can be measured individually and accurately.

また、図4に示す放射化量測定方法によれば、中性子測定部材1の複数の放射化部材11のうちの1つの放射化部材11のみに対応するホールが形成された遮蔽部材34を用いることで、複数の放射化部材のうちの一の放射化部材11から放出される放射線を単チャネル型ガンマ線検出器33において検出した後、遮蔽部材34のホール34aに接触する放射化部材を一の部材から他の部材に変更して測定を行う。このような構成とすることで、複数の放射化部材のそれぞれから放出される放射線を個別に検出することが可能となる。したがって、中性子測定部材の複数の放射化部材の放射化量を個別に精度よく測定することができる。   Further, according to the activation amount measuring method shown in FIG. 4, the shielding member 34 in which a hole corresponding to only one activation member 11 among the plurality of activation members 11 of the neutron measurement member 1 is used. Then, after the radiation emitted from one of the plurality of activation members 11 is detected by the single channel type gamma ray detector 33, the activation member that comes into contact with the hole 34a of the shielding member 34 is used as one member. Change to other member and measure. By setting it as such a structure, it becomes possible to detect separately the radiation discharge | released from each of several activation member. Therefore, the activation amounts of the plurality of activation members of the neutron measurement member can be individually and accurately measured.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment.

例えば、上記実施形態では、放射化された放射化部材11から放出される放射線がガンマ線である場合について説明したが、放射化部材11から放出される放射線の種類は特に限定されない。   For example, in the above-described embodiment, the case where the radiation emitted from the activated activation member 11 is gamma rays has been described, but the type of radiation emitted from the activation member 11 is not particularly limited.

また、放射化された放射化部材11から放出される放射線を個別に検出するためのガンマ線コリメータ32及び遮蔽部材34等の形状は特に限定されない。   The shapes of the gamma ray collimator 32 and the shielding member 34 for individually detecting radiation emitted from the activated activation member 11 are not particularly limited.

1…中性子測定部材、2…放射化量測定装置、11…放射化部材、12…固定部、21…ガンマ線絶対値測定器、22…ガンマ線個別測定器、23…測定値校正部、31…位置敏感型ガンマ線検出器、32…ガンマ線コリメータ、33…単チャネル型ガンマ線検出器、34…遮蔽部材。   DESCRIPTION OF SYMBOLS 1 ... Neutron measuring member, 2 ... Activation amount measuring apparatus, 11 ... Activation member, 12 ... Fixed part, 21 ... Gamma ray absolute value measuring device, 22 ... Gamma ray individual measuring device, 23 ... Measurement value calibration part, 31 ... Position Sensitive gamma ray detector, 32... Gamma ray collimator, 33... Single channel gamma ray detector, 34.

Claims (4)

中性子線が照射されることで放射化する金属からなる複数の放射化部材と、
前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子測定部材。
A plurality of activation members made of metal that is activated by irradiation with neutrons;
A neutron measurement member, comprising: a fixing portion to which the plurality of activation members are fixed at a predetermined interval.
前記固定部は、可塑性を有するシート状の部材である、請求項1に記載の中性子測定部材。   The neutron measurement member according to claim 1, wherein the fixing part is a sheet-like member having plasticity. 中性子測定部材の放射化量測定方法であって、
中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、
前記放射化部材が固定される間隔と同じ間隔で複数のホールが形成されたガンマ線コリメータの前記複数のホールのそれぞれに対して、前記中性子測定部材の前記複数の放射化部材を接触させる工程と、
前記複数の放射化部材のそれぞれから放出されて、前記複数のホールのそれぞれを導波した放射線を放射線検出器により個別に検出する工程と、
を有する、放射化量測定方法。
A method for measuring the amount of activation of a neutron measuring member,
Neutron measurement after neutron beam irradiation, comprising: a plurality of activation members made of metal activated by neutron beam irradiation; and a fixed portion to which the plurality of activation members are fixed at predetermined intervals. Preparing a member;
Contacting the plurality of activation members of the neutron measurement member with each of the plurality of holes of the gamma ray collimator in which a plurality of holes are formed at the same interval as the interval at which the activation member is fixed;
Individually detecting radiation emitted from each of the plurality of activation members and guided through each of the plurality of holes by a radiation detector;
A method for measuring the amount of activation.
中性子測定部材の放射化量測定方法であって、
中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、
前記複数の放射化部材のうちの1つの放射化部材のみに対応するホールが形成された遮蔽部材の前記ホールに対して、前記中性子測定部材の前記複数の放射化部材のうちの一の放射化部材を接触させた状態で、前記一の放射化部材のそれぞれから放出されて、前記遮蔽部材のホールを導波した放射線を放射線検出器により検出する工程と、
前記遮蔽部材の前記ホールに接触する放射化部材を前記一の放射化部材とは異なる他の放射化部材に変更して、前記他の放射化部材から放出されて、前記遮蔽部材のホールを導波した放射線を前記放射線検出器により検出する工程と、
を有する、放射化量測定方法。
A method for measuring the amount of activation of a neutron measuring member,
Neutron measurement after neutron beam irradiation, comprising: a plurality of activation members made of metal activated by neutron beam irradiation; and a fixed portion to which the plurality of activation members are fixed at predetermined intervals. Preparing a member;
Activation of one of the plurality of activation members of the neutron measurement member with respect to the hole of the shielding member in which a hole corresponding to only one activation member of the plurality of activation members is formed. Detecting radiation emitted from each of the one activation members and guided through the holes of the shielding member by a radiation detector in a state where the members are in contact with each other;
The activation member that contacts the hole of the shielding member is changed to another activation member different from the one activation member, and is emitted from the other activation member to guide the hole of the shielding member. Detecting the waved radiation by the radiation detector;
A method for measuring the amount of activation.
JP2017097483A 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation Active JP7054322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017097483A JP7054322B2 (en) 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097483A JP7054322B2 (en) 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation

Publications (2)

Publication Number Publication Date
JP2018194401A true JP2018194401A (en) 2018-12-06
JP7054322B2 JP7054322B2 (en) 2022-04-13

Family

ID=64571287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097483A Active JP7054322B2 (en) 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation

Country Status (1)

Country Link
JP (1) JP7054322B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230598U (en) * 1975-08-25 1977-03-03
US4837442A (en) * 1988-03-10 1989-06-06 The United States Of America As Represented By The United States Department Of Energy Neutron range spectrometer
JPH1123799A (en) * 1997-07-01 1999-01-29 Fuji Photo Film Co Ltd Method for recording and reproducing neutron image
JPH1138147A (en) * 1997-07-17 1999-02-12 Japan Atom Energy Res Inst Device for detecting neutron flux and temperature in reactor
JP2009128008A (en) * 2007-11-19 2009-06-11 Nippon Gennen Kk Critical personal dosimeter
JP2012122962A (en) * 2010-12-10 2012-06-28 Denso Corp Radioactive ray measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230598U (en) * 1975-08-25 1977-03-03
US4837442A (en) * 1988-03-10 1989-06-06 The United States Of America As Represented By The United States Department Of Energy Neutron range spectrometer
JPH1123799A (en) * 1997-07-01 1999-01-29 Fuji Photo Film Co Ltd Method for recording and reproducing neutron image
JPH1138147A (en) * 1997-07-17 1999-02-12 Japan Atom Energy Res Inst Device for detecting neutron flux and temperature in reactor
JP2009128008A (en) * 2007-11-19 2009-06-11 Nippon Gennen Kk Critical personal dosimeter
JP2012122962A (en) * 2010-12-10 2012-06-28 Denso Corp Radioactive ray measurement system

Also Published As

Publication number Publication date
JP7054322B2 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
US11691031B2 (en) Systems, methods, and devices for radiation beam asymmetry measurements using electronic portal imaging devices
KR102307923B1 (en) Fluorescent x-ray analyzer
EP2557437B1 (en) Beam Sensing
Poppe et al. Two‐dimensional ionization chamber arrays for IMRT plan verification
JP2006517031A (en) Radiolucent real-time dosimeter for interventional radiology
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
US20130223595A1 (en) Grating for phase contrast imaging
JP2009139229A (en) Radiation detector calibrating device
CN106376165A (en) Portable X-ray irradiation device for field calibration
JP4554512B2 (en) Tomographic energy dispersive X-ray diffractometer with detector and associated collimator array
JP6073463B2 (en) Apparatus and method for hadron beam verification
JP2018194401A (en) Neutron measurement member and radioactivation amount measurement method
JP5787698B2 (en) Radiation detector
JP6645709B2 (en) Dose distribution monitor and radiation irradiation system
JPH01227050A (en) Method and apparatus for measuring density and others of object
CN112269205B (en) Method for determining parameters of a radiation detector
KR102264842B1 (en) Method for the measurement of a measurement object by means of X-ray fluorescence
KR200418412Y1 (en) An apparatus for measuring the distance between bragg's planes of a crystal using X-ray
WO2021107045A1 (en) Scintillating fiber detector, and calibration device and calibration method therefor
WO2021038941A1 (en) Particle beam monitoring device, particle beam therapy system and particle beam monitoring method
Liu et al. The linear accelerator mechanical and radiation isocentre assessment with an electronic portal imaging device (EPID)
US10031261B2 (en) Method for measuring X-ray energy of an accelerator in an inspection system
CN102109605A (en) Method for measuring energy of accelerator
CN105043210A (en) Object surface coating thickness detection device and process management and control method
JPH0759762A (en) X-ray ct system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220401

R150 Certificate of patent or registration of utility model

Ref document number: 7054322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150