JP7054322B2 - Equipment for measuring the amount of activation and method for measuring the amount of activation - Google Patents

Equipment for measuring the amount of activation and method for measuring the amount of activation Download PDF

Info

Publication number
JP7054322B2
JP7054322B2 JP2017097483A JP2017097483A JP7054322B2 JP 7054322 B2 JP7054322 B2 JP 7054322B2 JP 2017097483 A JP2017097483 A JP 2017097483A JP 2017097483 A JP2017097483 A JP 2017097483A JP 7054322 B2 JP7054322 B2 JP 7054322B2
Authority
JP
Japan
Prior art keywords
activation
measuring
neutron
members
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017097483A
Other languages
Japanese (ja)
Other versions
JP2018194401A (en
Inventor
清崇 赤堀
哲也 武川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2017097483A priority Critical patent/JP7054322B2/en
Publication of JP2018194401A publication Critical patent/JP2018194401A/en
Application granted granted Critical
Publication of JP7054322B2 publication Critical patent/JP7054322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、中性子測定部材及び放射化量測定方法に関する。 The present invention relates to a neutron measuring member and a method for measuring an amount of activation.

中性子線捕捉療法では、被照射体の照射対象位置に照射する中性子線の線量を適切に管理する必要がある。そのため、例えば、特許文献1に記載のように標的部位に中性子測定用の金線を装着し、金線の放射化量から中性子の分布を推定する方法が用いられる。 In neutron capture therapy, it is necessary to appropriately control the dose of neutron rays that irradiate the irradiation target position of the irradiated object. Therefore, for example, as described in Patent Document 1, a method of attaching a gold wire for neutron measurement to a target site and estimating the distribution of neutrons from the amount of activation of the gold wire is used.

特開2004-233168号公報Japanese Unexamined Patent Publication No. 2004-233168

しかしながら、中性子の分布を評価しようとするためには、複数の金線を互いに異なる位置に配置した上で、複数の金線それぞれの放射化量を測定する必要がある。中性子線を照射する環境において、複数の金線それぞれを目的の位置に精度よく配置しようとすると、作業量が増大する。 However, in order to evaluate the distribution of neutrons, it is necessary to arrange a plurality of gold wires at different positions and then measure the amount of activation of each of the plurality of gold wires. In an environment where neutron rays are irradiated, if an attempt is made to accurately arrange each of a plurality of gold wires at a target position, the amount of work increases.

本発明は上記を鑑みてなされたものであり、中性子の分布を精度よく測定することが可能な中性子測定部材及び放射化量測定方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a neutron measuring member capable of accurately measuring a neutron distribution and a method for measuring an amount of activation.

上記目的を達成するため、本発明の一形態に係る中性子測定部材は、中性子線が照射されることで放射化する金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する。 In order to achieve the above object, the neutron measuring member according to one embodiment of the present invention includes a plurality of activating members made of a metal that is activated by irradiation with neutron rays, and the plurality of activating members having a predetermined interval. It has a fixed portion, which is fixed by.

上記の中性子測定部材によれば、固定部材に対して複数の放射化部材が所定の間隔で固定されているので、複数の放射化部材を個別に所望の位置に配置する場合と比較して放射化部材を適切に配置することが可能となり、中性子の分布を精度よく測定することが可能となる。 According to the above-mentioned neutron measuring member, since a plurality of activating members are fixed to the fixing member at predetermined intervals, radiation is emitted as compared with the case where the plurality of activating members are individually arranged at desired positions. The chemical members can be arranged appropriately, and the distribution of neutrons can be measured accurately.

ここで、前記固定部は、可塑性を有するシート状の部材である態様とすることができる。 Here, the fixing portion may be in the form of a sheet-like member having plasticity.

上記のように、固定部が可塑性を有するシート状の部材である場合、中性子の測定対象となる場所の形状等に応じて固定部を変形することが可能となるため、測定対象の場所によらず中性子の分布を精度よく測定する音が可能となる。 As described above, when the fixed portion is a sheet-like member having plasticity, the fixed portion can be deformed according to the shape of the place where the neutron is to be measured, and so on. Sound that accurately measures the distribution of neutrons is possible.

また、本発明の一形態に係る放射化量測定方法は、中性子測定部材の放射化量測定方法であって、中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、前記放射化部材が固定される間隔と同じ間隔で複数のホールが形成されたガンマ線コリメータの前記複数のホールのそれぞれに対して、前記中性子測定部材の前記複数の放射化部材を接触させる工程と、前記複数の放射化部材のそれぞれから放出されて、前記複数のホールのそれぞれを導波した放射線を放射線検出器により個別に検出する工程と、を有する。 Further, the activation amount measuring method according to one embodiment of the present invention is a method for measuring the activation amount of a neutron measuring member, and includes a plurality of activation members made of a metal activated by irradiation with a neutron beam. , A step of preparing a neutron measuring member after neutron irradiation, which has a fixing portion in which the plurality of activating members are fixed at predetermined intervals, and a plurality of at the same intervals as the intervals at which the activating members are fixed. The step of bringing the plurality of activation members of the neutron measuring member into contact with each of the plurality of holes of the gamma ray collimeter in which the holes are formed, and the step of bringing the plurality of activation members into contact with each of the plurality of activation members. It has a step of individually detecting radiation waveguideed in each of a plurality of holes by a radiation detector.

上記の放射化量測定方法によれば、中性子測定部材において複数の放射化部材が固定される間隔と同じ間隔で複数のホールが形成されたガンマ線コリメータを用いて、複数の放射化部材のそれぞれから放出される放射線を個別に検出することが可能となる。したがって、中性子測定部材の複数の放射化部材の放射化量を個別に精度よく測定することができる。 According to the above-mentioned activation amount measuring method, using a gamma-ray collimator in which a plurality of holes are formed at the same interval as the interval in which the plurality of activated members are fixed in the neutron measuring member, from each of the plurality of activated members. It is possible to detect the emitted radiation individually. Therefore, the amount of activation of a plurality of activation members of the neutron measurement member can be individually and accurately measured.

また、本発明の一形態に係る放射化量測定方法は、中性子測定部材の放射化量測定方法であって、中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、前記複数の放射化部材のうちの1つの放射化部材のみに対応するホールが形成された遮蔽部材の前記ホールに対して、前記中性子測定部材の前記複数の放射化部材のうちの一の放射化部材を接触させた状態で、前記一の放射化部材のそれぞれから放出されて、前記遮蔽部材のホールを導波した放射線を放射線検出器により検出する工程と、前記遮蔽部材の前記ホールに接触する放射化部材を前記一の放射化部材とは異なる他の放射化部材に変更して、前記他の放射化部材から放出されて、前記遮蔽部材のホールを導波した放射線を前記放射線検出器により検出する工程と、を有する。 Further, the activation amount measuring method according to one embodiment of the present invention is a method for measuring the activation amount of a neutron measuring member, and includes a plurality of activating members made of a metal activated by irradiation with radiant rays. A step of preparing a radiant measuring member after radiant irradiation, which comprises a fixing portion in which the plurality of activating members are fixed at predetermined intervals, and an activating member of one of the plurality of activating members. The one activation member in a state where one of the plurality of activation members of the neutron measuring member is in contact with the hole of the shielding member in which the hole corresponding only to the hole is formed. The step of detecting the radiation emitted from each of the shielding members and radiating through the holes of the shielding member by the radiation detector, and the activating member in contact with the holes of the shielding member are different from the one activating member. It has a step of detecting the radiation emitted from the other activating member and waveguide through the hole of the shielding member by the radiation detector.

上記の放射化量測定方法によれば、放射化部材のうちの1つの放射化部材のみに対応するホールが形成された遮蔽部材を用いて、複数の放射化部材のうちの一の放射化部材から放出される放射線を検出した後、遮蔽部材のホールに接触する放射化部材を一の部材から他の部材に変更して放射線の検出を行う。このような構成とすることで、複数の放射化部材のそれぞれから放出される放射線を個別に検出することが可能となる。したがって、中性子測定部材の複数の放射化部材の放射化量を個別に精度よく測定することができる。 According to the above-mentioned activation amount measuring method, one of a plurality of activation members is activated by using a shielding member in which a hole corresponding to only one of the activation members is formed. After detecting the radiation emitted from the shielding member, the activating member in contact with the hole of the shielding member is changed from one member to another member to detect the radiation. With such a configuration, it is possible to individually detect the radiation emitted from each of the plurality of activation members. Therefore, the amount of activation of a plurality of activation members of the neutron measurement member can be individually and accurately measured.

本発明によれば、中性子の分布を精度よく測定することが可能な中性子測定部材及び放射化量測定方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a neutron measuring member capable of accurately measuring a neutron distribution and a method for measuring an amount of activation are provided.

中性子測定部材及び放射化量測定装置について説明する図である。It is a figure explaining the neutron measuring member and the activation amount measuring apparatus. 放射化量測定方法を説明する図である。It is a figure explaining the activation amount measuring method. 放射化量の測定方法の一実施例を説明する図である。It is a figure explaining one example of the method of measuring the amount of activation. 放射化量の測定方法の他の実施例を説明する図である。It is a figure explaining another embodiment of the method of measuring the amount of activation.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted.

図1は、本発明の一実施形態に係る中性子測定部材と、この中性子測定部材の放射化量測定に用いられる放射化量測定装置と、を示す図である。図1(a)は、中性子測定部材1の概略構成図であり、図1(b)は放射化量測定装置2の概略構成図である。 FIG. 1 is a diagram showing a neutron measuring member according to an embodiment of the present invention and an activation amount measuring device used for measuring the activation amount of the neutron measuring member. FIG. 1A is a schematic configuration diagram of the neutron measuring member 1, and FIG. 1B is a schematic configuration diagram of the activation amount measuring device 2.

中性子測定部材1は、複数の放射化部材11と、複数の放射化部材11を固定する固定部12と、を有する。中性子測定部材1は、中性子捕捉療法システム等の中性子線が照射される環境において、中性子の強度の分布を測定するために用いられる。中性子測定部材1が、中性子捕捉療法システムにおいて用いられる場合は、例えば、中性子線Nを照射する装置のビーム軸方向に沿った強度分布の測定に用いられる。 The neutron measuring member 1 has a plurality of activation members 11 and a fixing portion 12 for fixing the plurality of activation members 11. The neutron measuring member 1 is used for measuring the distribution of neutron intensity in an environment where a neutron beam is irradiated, such as a neutron capture therapy system. When the neutron measuring member 1 is used in a neutron capture therapy system, it is used, for example, to measure the intensity distribution along the beam axis direction of a device that irradiates a neutron beam N.

中性子測定部材1の放射化部材11は、中性子が照射されると放射化する金属材料により構成される。中性子線が照射されると放射化する金属材料としては、例えば、金、ヨウ素、マンガン等が挙げられる。これらの金属は照射された中性子の強度に応じて放射化量が変化するため、この放射化量を測定することで中性子の強度を推定することができる。 The activation member 11 of the neutron measurement member 1 is made of a metal material that activates when irradiated with neutrons. Examples of the metal material that is activated when irradiated with neutron rays include gold, iodine, and manganese. Since the amount of activation of these metals changes according to the intensity of the irradiated neutrons, the intensity of neutrons can be estimated by measuring this amount of activation.

複数の放射化部材11の形状は、例えば、線状又は箔状とすることができる。ただし、放射化部材11は、それぞれ、中性子場を乱さない程度の大きさ及び厚さとされる。具体的には、放射化部材11の大きさは、例えば、金箔を放射化部材11として用いる場合には、面積を2mm×2mm程度とし、厚さを0.5mm程度とすることができる。なお、放射化部材11が大きすぎると、測定精度が低下する。一方、放射化部材11が小さすぎると、検出効率が低下する。したがって、金属の種類等を考慮して適宜その大きさは選択できる。 The shape of the plurality of activation members 11 can be, for example, linear or foil-like. However, the activation member 11 has a size and a thickness that does not disturb the neutron field, respectively. Specifically, the size of the activating member 11 can be, for example, an area of about 2 mm × 2 mm and a thickness of about 0.5 mm when the gold leaf is used as the activating member 11. If the activation member 11 is too large, the measurement accuracy will decrease. On the other hand, if the activation member 11 is too small, the detection efficiency is lowered. Therefore, the size can be appropriately selected in consideration of the type of metal and the like.

放射化部材11は、固定部12上に所定の間隔で配置される。放射化部材11の間隔は、中性子の強度分布の測定間隔に基づいて決定される。 The activation members 11 are arranged on the fixing portion 12 at predetermined intervals. The spacing of the activating members 11 is determined based on the measurement spacing of the neutron intensity distribution.

複数の放射化部材11が固定される固定部12は、中性子場を乱さない材料から構成されるシート状の部材である。固定部12の材料としては、例えば、アクリル樹脂等を用いることができるが、特に限定されない。ただし、固定部12が可塑性を有していると、取り扱い性が向上する。また、固定部12が可塑性を有していると、例えば、中性子の強度分布を測定する対象位置が曲線状に配置している場合であっても、その形状に合わせて変形が可能となるため、種々の測定条件に対応可能となる。 The fixing portion 12 to which the plurality of activating members 11 are fixed is a sheet-shaped member made of a material that does not disturb the neutron field. As the material of the fixing portion 12, for example, acrylic resin or the like can be used, but the material is not particularly limited. However, if the fixing portion 12 has plasticity, the handleability is improved. Further, if the fixed portion 12 has plasticity, for example, even if the target position for measuring the intensity distribution of neutrons is arranged in a curved shape, it can be deformed according to the shape. , It becomes possible to correspond to various measurement conditions.

固定部12の大きさは、1つの中性子測定部材1に取り付ける放射化部材11の数及び配置(間隔)に応じて設定される。固定部12に対して取り付ける放射化部材11の個数は特に限定されない。また、配置も適宜変更することができる。図1(a)では、固定部12に対して放射化部材11が一列に配置されている例を示しているが、シート状の固定部12に対して複数の放射化部材11が2次元配置されていてもよい。 The size of the fixing portion 12 is set according to the number and arrangement (interval) of the activating members 11 attached to one neutron measuring member 1. The number of radiating members 11 attached to the fixing portion 12 is not particularly limited. In addition, the arrangement can be changed as appropriate. FIG. 1A shows an example in which the activating members 11 are arranged in a row with respect to the fixing portion 12, but a plurality of activating members 11 are two-dimensionally arranged with respect to the sheet-shaped fixing portion 12. It may have been done.

また、固定部12の厚さは特に限定されないが、中性子場を乱さないためには固定部12はより薄くすることが好ましい。 The thickness of the fixed portion 12 is not particularly limited, but it is preferable to make the fixed portion 12 thinner so as not to disturb the neutron field.

放射化部材11は、固定部12の表面に対して固定されていてもよいし、例えば、複数のシート状の部材により放射化部材11を挟み込んで固定化してもよい。固定部12は、複数の放射化部材11が所定の間隔で保持されるように放射化部材11を固定できればよく、その方法は特に限定されない。 The activation member 11 may be fixed to the surface of the fixing portion 12, or may be fixed by sandwiching the activation member 11 with a plurality of sheet-shaped members, for example. The fixing portion 12 is not particularly limited as long as the activation member 11 can be fixed so that the plurality of activation members 11 are held at predetermined intervals.

放射化量を算出した後に、当該算出結果から中性子強度を算出する際には、中性子測定部材1に含まれる放射化部材11の材料の種類(金属の種類)、相対位置(放射化部材11間の距離)、及び、放射化部材11それぞれの質量が必要となる。ただし、中性子測定部材1によって、複数の放射化部材11の相対位置や質量は異なる場合がある。したがって、中性子測定部材1は、使用前に中性子測定部材1毎に上記の情報が予め記録される。そして、放射化量に基づく中性子強度の算出の際には、中性子測定部材1毎に事前に記録された情報を利用して、各放射化部材11において中性子量の算出が行われる。中性子測定部材1毎の上記の情報(放射化部材11の材料の種類、相対位置、及び、質量)は、中性子測定部材1を個別に特定する情報(例えば、シリアル番号等)に対応付けて予めデータベース化して管理する態様とすることができる。 After calculating the amount of activation, when calculating the neutron intensity from the calculation result, the type of material (type of metal) of the activation member 11 included in the neutron measurement member 1 and the relative position (between the activation members 11). Distance) and the mass of each of the activation members 11. However, the relative positions and masses of the plurality of activation members 11 may differ depending on the neutron measurement member 1. Therefore, the neutron measuring member 1 records the above information in advance for each neutron measuring member 1 before use. Then, when calculating the neutron intensity based on the amount of activation, the amount of neutron is calculated in each activation member 11 by using the information recorded in advance for each neutron measuring member 1. The above information (material type, relative position, and mass of the activation member 11) for each neutron measurement member 1 is associated with information that individually identifies the neutron measurement member 1 (for example, a serial number, etc.) in advance. It can be managed as a database.

次に、この中性子測定部材1の放射化部材11に係る放射化量を測定する放射化量測定装置2について説明する。図1(b)に示すように、放射化量測定装置2は、ガンマ線絶対値測定器21と、ガンマ線個別測定器22(放射線検出器)と、測定値校正部23と、を有する。なお、放射化量測定装置に含まれる機能部は、複数台の装置(測定器)を組み合わせて構成される。 Next, the activation amount measuring device 2 for measuring the activation amount related to the activation member 11 of the neutron measurement member 1 will be described. As shown in FIG. 1 (b), the activation amount measuring device 2 includes a gamma ray absolute value measuring device 21, a gamma ray individual measuring device 22 (radiation detector), and a measured value calibration unit 23. The functional unit included in the activation amount measuring device is configured by combining a plurality of devices (measuring instruments).

ガンマ線絶対値測定器21は、中性子測定部材1の複数の放射化部材11の放射化に伴って生成されるガンマ線の絶対量を測定する機能を有する。ガンマ線絶対値測定器21としては、公知のガンマ線検出器を利用することができる。 The gamma ray absolute value measuring device 21 has a function of measuring the absolute amount of gamma rays generated by the activation of the plurality of activating members 11 of the neutron measuring member 1. As the gamma ray absolute value measuring device 21, a known gamma ray detector can be used.

ガンマ線個別測定器22は、中性子測定部材1の複数の放射化部材11の放射化に伴って生成されるガンマ線の線量を、放射化部材11毎に測定する機能を有する。放射化部材11毎に個別に測定する方法について、詳細は後述するが、測定対象の放射化部材11からのガンマ線と隣接する放射化部材11からのガンマ線とを区別しながら測定する。 The individual gamma ray measuring device 22 has a function of measuring the dose of gamma rays generated by the activation of the plurality of activation members 11 of the neutron measuring member 1 for each activation member 11. The method of measuring each activation member 11 individually will be described in detail later, but the gamma ray from the activation member 11 to be measured and the gamma ray from the adjacent activation member 11 are separately measured.

測定値校正部23は、ガンマ線個別測定器22で測定された放射化部材11毎のガンマ線の線量を、ガンマ線絶対値測定器21で測定されたガンマ線の線量で校正し、放射化部材11毎のガンマ線の線量、すなわち、放射化部材11毎の放射化量を算出する機能を有する。ガンマ線個別測定器22による放射化部材11毎のガンマ線の線量は、上述のように隣接する放射化部材11からのガンマ線と区別して計測するために数値が小さくなる場合がある。そこで、測定値校正部23において、ガンマ線絶対値測定器21で測定されたガンマ線の線量を用いて校正することで、放射化部材11毎のガンマ線の線量をより正確に算出することができる。測定値校正部23は、CPU、ROM、RAM等から構成された電子制御ユニットとして構成することができる。 The measured value calibration unit 23 calibrates the gamma ray dose for each activation member 11 measured by the individual gamma ray measuring instrument 22 with the gamma ray dose measured by the gamma ray absolute value measuring instrument 21, and for each activation member 11. It has a function of calculating the dose of gamma rays, that is, the amount of activation for each activation member 11. The dose of gamma rays for each activation member 11 by the individual gamma ray measuring device 22 may have a small numerical value because it is measured separately from the gamma rays from the adjacent activation member 11 as described above. Therefore, the measured value calibration unit 23 can more accurately calculate the gamma ray dose for each activation member 11 by calibrating using the gamma ray dose measured by the gamma ray absolute value measuring device 21. The measured value calibration unit 23 can be configured as an electronic control unit composed of a CPU, ROM, RAM, and the like.

なお、ガンマ線絶対値測定器21による絶対値の測定と、測定値校正部23による校正は、行わなくてもよい。その場合でも、放射化部材11毎にガンマ線の線量を測定して、放射化量を算出することができる。 It is not necessary to measure the absolute value by the gamma ray absolute value measuring device 21 and calibrate by the measured value calibration unit 23. Even in that case, the dose of gamma rays can be measured for each activation member 11 and the amount of activation can be calculated.

次に、図2を参照しながら、放射化量測定方法について説明する。まず、中性子測定部材1を測定対象の領域に配置する(S01)。このとき、中性子測定部材1を所望の場所に適切に配置することで、複数の放射化部材11のそれぞれが所望の位置に配置される。次に、中性子線を照射して、中性子測定部材1の各放射化部材11を放射化させる(S02)。これにより、中性子線照射後の、各放射化部材11が放射化された中性子測定部材1が準備される。 Next, a method for measuring the amount of activation will be described with reference to FIG. First, the neutron measuring member 1 is placed in the area to be measured (S01). At this time, by appropriately arranging the neutron measuring member 1 at a desired position, each of the plurality of activating members 11 is arranged at a desired position. Next, the neutron beam is irradiated to activate each activation member 11 of the neutron measurement member 1 (S02). As a result, the neutron measuring member 1 in which each activating member 11 is activated after the neutron beam irradiation is prepared.

その後、中性子測定部材1について、複数の放射化部材11に伴って生成されるガンマ線の絶対値のガンマ線絶対値測定器21による測定(S03)と、複数の放射化部材11それぞれのガンマ線のガンマ線個別測定器22による測定(S04)と、を行う。これらの測定(S02,S03)は、同時に行ってもよいし、個別に行ってもよい。また、測定順序は特に限定されない。 After that, for the neutron measuring member 1, the gamma ray absolute value measuring device 21 measures the absolute value of the gamma rays generated by the plurality of activating members 11 (S03), and the gamma rays of the gamma rays of each of the plurality of activating members 11 are individually measured. The measurement (S04) by the measuring instrument 22 is performed. These measurements (S02, S03) may be performed simultaneously or individually. Further, the measurement order is not particularly limited.

図3を参照しながら、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定の一実施例について説明する。 An embodiment of the measurement by the gamma ray absolute value measuring device 21 and the measurement by the gamma ray individual measuring device 22 will be described with reference to FIG.

図3に示す実施例では、中性子測定部材1の両面において、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定を同時に行っている。まず、中性子測定部材1の図示下方では、ガンマ線絶対値測定器21としてのガンマ線検出器により、中性子測定部材1の各放射化部材11からのガンマ線を測定している。放射化部材11において生成されるガンマ線は等方的に放射されるので、中性子測定部材1の下方に設けられるガンマ線絶対値測定器21は、中性子測定部材1の複数の放射化部材11から出射されるガンマ線のうちの1/2を検出することができる。したがって、ガンマ線絶対値測定器21で検出されたガンマ線の線量を2倍すると、中性子測定部材1の複数の放射化部材11から出射されるガンマ線の絶対値を算出することができる。 In the embodiment shown in FIG. 3, the measurement by the gamma ray absolute value measuring device 21 and the measurement by the gamma ray individual measuring device 22 are simultaneously performed on both sides of the neutron measuring member 1. First, in the lower part of the drawing of the neutron measuring member 1, the gamma ray from each activation member 11 of the neutron measuring member 1 is measured by the gamma ray detector as the gamma ray absolute value measuring device 21. Since the gamma rays generated in the activation member 11 are emitted isotropically, the gamma ray absolute value measuring device 21 provided below the neutron measuring member 1 is emitted from the plurality of activation members 11 of the neutron measuring member 1. Half of the gamma rays can be detected. Therefore, by doubling the dose of gamma rays detected by the gamma ray absolute value measuring device 21, the absolute value of gamma rays emitted from the plurality of activating members 11 of the neutron measuring member 1 can be calculated.

一方、中性子測定部材1の図示上方には、位置敏感型ガンマ線検出器31(放射線検出器)と、ガンマ線コリメータ32とを組み合わせたガンマ線個別測定器22が設けられている。ガンマ線コリメータ32は、中性子測定部材1の複数の放射化部材11の対応した位置にそれぞれ設けられた複数のホール32a(開口)を有し、各放射化部材11からのガンマ線を位置敏感型ガンマ線検出器31へ導波している。ガンマ線コリメータ32は、ホール32a以外では放射線(ガンマ線)は遮蔽される。また、測定時には、ガンマ線コリメータ32の複数のホール32aのそれぞれに対して、中性子測定部材1の複数の放射化部材11のそれぞれが接触される。そのため、隣接する放射化部材11からのガンマ線が別のホール32aには入射しないようにされる。 On the other hand, above the drawing of the neutron measuring member 1, a gamma ray individual measuring device 22 in which a position sensitive gamma ray detector 31 (radiation detector) and a gamma ray collimeter 32 are combined is provided. The gamma ray collimator 32 has a plurality of holes 32a (openings) provided at corresponding positions of the plurality of activation members 11 of the neutron measurement member 1, and detects gamma rays from each activation member 11 as a position-sensitive gamma ray. It is waveguide to the device 31. The gamma ray collimator 32 shields radiation (gamma ray) except for the hole 32a. Further, at the time of measurement, each of the plurality of activation members 11 of the neutron measurement member 1 is in contact with each of the plurality of holes 32a of the gamma ray collimator 32. Therefore, gamma rays from the adjacent activation member 11 are prevented from entering another hole 32a.

上記のようにガンマ線コリメータ32及び位置敏感型ガンマ線検出器31を配置した状態でガンマ線の測定を行うと、各放射化部材11から出射されるガンマ線が、互いに異なるホール32aを通過して位置敏感型ガンマ線検出器31へ到達することで、位置敏感型ガンマ線検出器31では、互いに異なるホール32aから入射するガンマ線を個別に測定することで、複数の放射化部材11のそれぞれからのガンマ線の線量を測定することができる。 When gamma ray measurement is performed with the gamma ray collimator 32 and the position sensitive gamma ray detector 31 arranged as described above, the gamma ray emitted from each activation member 11 passes through different holes 32a and is position sensitive. By reaching the gamma ray detector 31, the position-sensitive gamma ray detector 31 measures the gamma ray dose from each of the plurality of activation members 11 by individually measuring the gamma rays incident from the different holes 32a. can do.

ただし、ガンマ線コリメータ32を用いて、各放射化部材11から出射されるガンマ線のうち特定方向(位置敏感型ガンマ線検出器31へ向かう方向)へ出射されたガンマ線のみを検出していることになるので、ガンマ線個別測定器22で検出されるガンマ線の総量は、ガンマ線絶対値測定器21で検出されるガンマ線の線量よりも小さくなる。 However, since the gamma ray collimeter 32 is used to detect only the gamma rays emitted in a specific direction (direction toward the position-sensitive gamma ray detector 31) among the gamma rays emitted from each activation member 11. The total amount of gamma rays detected by the individual gamma ray measuring instrument 22 is smaller than the dose of gamma rays detected by the absolute gamma ray measuring instrument 21.

そこで、放射化量測定装置2の測定値校正部23(図2参照)において、ガンマ線絶対値測定器21での検出結果から算出される複数の放射化部材11から出射されるガンマ線の絶対値を利用して校正をする(S05)。これにより、複数の放射化部材11のそれぞれから出射されるガンマ線の線量を算出することができる。 Therefore, in the measured value calibration unit 23 (see FIG. 2) of the activation amount measuring device 2, the absolute value of the gamma ray emitted from the plurality of activation members 11 calculated from the detection result by the gamma ray absolute value measuring device 21 is calculated. Use it to calibrate (S05). This makes it possible to calculate the dose of gamma rays emitted from each of the plurality of activation members 11.

なお、ガンマ線絶対値測定器21で検出されるガンマ線の絶対値を利用した校正を行わない場合には、放射化量を別の方法で校正してもよい。例えば、放射化部材11の配置と、ガンマ線コリメータ32の形状及び配置と、から放射化部材11から放出される放射線のうちガンマ線コリメータ32のホール32aを介して位置敏感型ガンマ線検出器31に到達する放射線の割合を事前にシミュレーション等で求めておき、その結果を利用して、放射化量の校正を行ってもよい。また、線量が既知の線源からのガンマ線を事前に測定することで、その測定結果を利用して放射化量の校正を行ってもよい。 If the calibration using the absolute value of the gamma ray detected by the gamma ray absolute value measuring device 21 is not performed, the amount of activation may be calibrated by another method. For example, the arrangement of the activation member 11, the shape and arrangement of the gamma ray collimator 32, and the radiation emitted from the activation member 11 reach the position-sensitive gamma ray detector 31 through the hole 32a of the gamma ray collimator 32. The ratio of radiation may be obtained in advance by simulation or the like, and the result may be used to calibrate the amount of radiation. Further, by measuring gamma rays from a radiation source having a known dose in advance, the amount of activation may be calibrated using the measurement results.

なお、図3に示すように位置敏感型ガンマ線検出器31を用いる場合、位置分解能は、放射化部材11の大きさよりも少し大きい程度とすることが好ましい。位置分解能を上記のように調整することで、検出精度を高めることができる。 When the position-sensitive gamma-ray detector 31 is used as shown in FIG. 3, it is preferable that the position resolution is slightly larger than the size of the activation member 11. By adjusting the position resolution as described above, the detection accuracy can be improved.

次に、図4は、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定の他の実施例について説明する。 Next, FIG. 4 describes another embodiment of the measurement by the gamma ray absolute value measuring device 21 and the measurement by the gamma ray individual measuring device 22.

図4に示す実施例では、中性子測定部材1の両面において、ガンマ線絶対値測定器21による測定及びガンマ線個別測定器22による測定を同時に行っている。中性子測定部材1の図示下方における、ガンマ線絶対値測定器21としてのガンマ線検出器により、中性子測定部材1の各放射化部材11からのガンマ線の測定は、図3に示す実施例と同じである。 In the embodiment shown in FIG. 4, the measurement by the gamma ray absolute value measuring device 21 and the measurement by the gamma ray individual measuring device 22 are simultaneously performed on both sides of the neutron measuring member 1. The gamma ray measurement from each activation member 11 of the neutron measuring member 1 by the gamma ray detector as the gamma ray absolute value measuring device 21 at the lower part of the drawing of the neutron measuring member 1 is the same as the embodiment shown in FIG.

一方、中性子測定部材1の図示上方には、単チャネル型の単チャネル型ガンマ線検出器33(放射線検出器)と、1つの放射化部材11からのガンマ線のみを単チャネル型ガンマ線検出器33に到達させるホール34aを有し、他の放射化部材11からのガンマ線は遮蔽する遮蔽部材34と、を組み合わせたガンマ線個別測定器22が設けられている。このようなガンマ線個別測定器22では、複数の放射化部材11のうちの1つの放射化部材11のみに対応するホール34aが形成された遮蔽部材34のホール34aに対して、中性子測定部材1の複数の放射化部材11のうちの一の放射化部材を接触させた状態で、一の放射化部材11のそれぞれから放出されて、遮蔽部材34のホール34aを導波した放射線(ガンマ線)を検出する。 On the other hand, in the upper part of the drawing of the neutron measuring member 1, only the single channel type single channel gamma ray detector 33 (radiation detector) and the gamma rays from one activation member 11 reach the single channel type gamma ray detector 33. An individual gamma ray measuring instrument 22 is provided which has a hole 34a to be made to be formed and a shielding member 34 which shields gamma rays from another activating member 11. In such a gamma ray individual measuring instrument 22, the neutron measuring member 1 has a hole 34a of the shielding member 34 in which the hole 34a corresponding to only one of the plurality of activating members 11 is formed. Detects radiation (gamma rays) emitted from each of the activation members 11 and waveguideed through the hole 34a of the shielding member 34 in a state where the activation member of one of the plurality of activation members 11 is in contact with the radiation member 11. do.

その後、ガンマ線個別測定器22と中性子測定部材1との相対位置を変化させることで、他の放射化部材11からのガンマ線を個別に検出することができる。具体的には、中性子測定部材1を固定した状態でガンマ線個別測定器22を移動させる、又は、ガンマ線個別測定器22を固定した状態で中性子測定部材1を移動させる。これにより、他の放射化部材11から放出されて、遮蔽部材34のホール34aを導波した放射線(ガンマ線)を検出することができる。そしてこの工程を繰り返すことで、中性子測定部材1の各放射化部材11からの放射線を個別に検出することができる。 After that, by changing the relative position between the gamma ray individual measuring instrument 22 and the neutron measuring member 1, the gamma rays from the other activating member 11 can be detected individually. Specifically, the gamma-ray individual measuring instrument 22 is moved with the neutron measuring member 1 fixed, or the neutron measuring member 1 is moved with the gamma-ray individual measuring instrument 22 fixed. As a result, it is possible to detect the radiation (gamma ray) emitted from the other activation member 11 and guided through the hole 34a of the shielding member 34. By repeating this step, the radiation from each activation member 11 of the neutron measurement member 1 can be detected individually.

複数の放射化部材11からのガンマ線を個別に検出した後、図3に示す実施例と同様に、放射化量測定装置2の測定値校正部23(図2参照)において、ガンマ線絶対値測定器21での検出結果から算出される複数の放射化部材11から出射されるガンマ線の絶対値を利用して校正をする(S05)。これにより、複数の放射化部材11のそれぞれから出射されるガンマ線の線量を算出することができる。 After detecting gamma rays from a plurality of activation members 11 individually, the gamma ray absolute value measuring device is used in the measured value calibration unit 23 (see FIG. 2) of the activation amount measuring device 2 in the same manner as in the embodiment shown in FIG. Calibration is performed using the absolute value of the gamma ray emitted from the plurality of activation members 11 calculated from the detection result in 21 (S05). This makes it possible to calculate the dose of gamma rays emitted from each of the plurality of activation members 11.

なお、図3及び図4に示す実施例のように、中性子測定部材1の図示下方におけるガンマ線絶対値測定器21による中性子測定部材1の各放射化部材11からのガンマ線の絶対値の測定と、図示上方におけるガンマ線個別測定器22による中性子測定部材1の各放射化部材11からのガンマ線の個別測定と、を同時に行う必要はない。したがって、例えば、各放射化部材11からのガンマ線の絶対値の測定を行った後に、各放射化部材11からのガンマ線の個別測定を行う校正としてもよい。ただし、放射化からの経過時間によってガンマ線の放出量が変化するので、経過時間等を組み合わせて評価することが好ましい。 As in the examples shown in FIGS. 3 and 4, the absolute value of gamma rays from each activation member 11 of the neutron measuring member 1 is measured by the gamma ray absolute value measuring device 21 at the lower part of the drawing of the neutron measuring member 1. It is not necessary to simultaneously measure the gamma rays from each activation member 11 of the neutron measuring member 1 by the gamma ray individual measuring device 22 in the upper part of the drawing. Therefore, for example, the calibration may be performed in which the absolute value of the gamma ray from each activation member 11 is measured and then the gamma ray from each activation member 11 is individually measured. However, since the amount of gamma rays emitted changes depending on the elapsed time from activation, it is preferable to evaluate by combining the elapsed time and the like.

以上のように、本実施形態に係る中性子測定部材1によれば、固定部12に対して複数の放射化部材11が所定の間隔で固定されているので、複数の放射化部材11を個別に所望の位置に配置する場合と比較して放射化部材を適切に配置することが可能となる。したがって、中性子の分布を精度よく測定することが可能となる。 As described above, according to the neutron measuring member 1 according to the present embodiment, since the plurality of activating members 11 are fixed to the fixing portion 12 at predetermined intervals, the plurality of activating members 11 are individually fixed. It becomes possible to appropriately arrange the activation member as compared with the case of arranging it at a desired position. Therefore, it is possible to measure the distribution of neutrons with high accuracy.

また、上記の中性子測定部材1のように、固定部12が可塑性を有するシート状の部材である場合、中性子の測定対象となる場所の形状等に応じて固定部を変形することが可能となる。したがって、測定対象の場所によらず中性子の分布を精度よく測定する音が可能となる。 Further, when the fixed portion 12 is a sheet-shaped member having plasticity as in the above-mentioned neutron measuring member 1, the fixed portion can be deformed according to the shape or the like of the place where the neutron is to be measured. .. Therefore, it is possible to make a sound that accurately measures the distribution of neutrons regardless of the location of the measurement target.

また、図3に示す放射化量測定方法によれば、中性子測定部材1において複数の放射化部材11が固定される間隔と同じ間隔で複数のホール32aが形成されたガンマ線コリメータ32を用いることで、複数の放射化部材11のそれぞれから放出される放射線を位置敏感型ガンマ線検出器31において個別に検出することが可能となる。したがって、中性子測定部材1の複数の放射化部材11の放射化量を個別に精度よく測定することができる。 Further, according to the activation amount measuring method shown in FIG. 3, the gamma ray collimeter 32 in which a plurality of holes 32a are formed at the same interval as the interval in which the plurality of activation members 11 are fixed in the neutron measuring member 1 is used. The radiation emitted from each of the plurality of activation members 11 can be individually detected by the position-sensitive gamma-ray detector 31. Therefore, the amount of activation of the plurality of activation members 11 of the neutron measurement member 1 can be individually and accurately measured.

また、図4に示す放射化量測定方法によれば、中性子測定部材1の複数の放射化部材11のうちの1つの放射化部材11のみに対応するホールが形成された遮蔽部材34を用いることで、複数の放射化部材のうちの一の放射化部材11から放出される放射線を単チャネル型ガンマ線検出器33において検出した後、遮蔽部材34のホール34aに接触する放射化部材を一の部材から他の部材に変更して測定を行う。このような構成とすることで、複数の放射化部材のそれぞれから放出される放射線を個別に検出することが可能となる。したがって、中性子測定部材の複数の放射化部材の放射化量を個別に精度よく測定することができる。 Further, according to the activation amount measuring method shown in FIG. 4, a shielding member 34 having a hole corresponding to only one of the plurality of activation members 11 of the neutron measuring member 1 is used. Then, after the radiation emitted from the activation member 11 of one of the plurality of activation members is detected by the single channel type gamma ray detector 33, the activation member that comes into contact with the hole 34a of the shielding member 34 is one member. Change from to another member and perform measurement. With such a configuration, it is possible to individually detect the radiation emitted from each of the plurality of activation members. Therefore, the amount of activation of a plurality of activation members of the neutron measurement member can be individually and accurately measured.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments.

例えば、上記実施形態では、放射化された放射化部材11から放出される放射線がガンマ線である場合について説明したが、放射化部材11から放出される放射線の種類は特に限定されない。 For example, in the above embodiment, the case where the radiation emitted from the activated activation member 11 is gamma rays has been described, but the type of radiation emitted from the activation member 11 is not particularly limited.

また、放射化された放射化部材11から放出される放射線を個別に検出するためのガンマ線コリメータ32及び遮蔽部材34等の形状は特に限定されない。 Further, the shapes of the gamma ray collimator 32 and the shielding member 34 for individually detecting the radiation emitted from the activated activation member 11 are not particularly limited.

1…中性子測定部材、2…放射化量測定装置、11…放射化部材、12…固定部、21…ガンマ線絶対値測定器、22…ガンマ線個別測定器、23…測定値校正部、31…位置敏感型ガンマ線検出器、32…ガンマ線コリメータ、33…単チャネル型ガンマ線検出器、34…遮蔽部材。 1 ... neutron measuring member, 2 ... activation amount measuring device, 11 ... activating member, 12 ... fixed part, 21 ... gamma ray absolute value measuring device, 22 ... gamma ray individual measuring device, 23 ... measured value calibration unit, 31 ... position Sensitive gamma ray detector, 32 ... gamma ray collimeter, 33 ... single channel gamma ray detector, 34 ... shielding member.

Claims (4)

中性子測定部材と、放射化量測定装置と、を含む、放射化量測定を行う装置であって、
前記中性子測定部材は、
中性子線が照射されることで放射化する金属からなる複数の放射化部材と、
前記複数の放射化部材が所定の間隔で固定される固定部と、
を有し、
前記放射化量測定装置は、
前記放射化部材が固定される間隔と同じ間隔で、複数のホールが形成されたガンマ線コリメータと、
前記複数のホールを導波した放射線を個別に検出する放射線検出器と、
を有し、
前記ガンマ線コリメータの複数のホールは、それぞれ、前記複数の放射化部材のうち互いに異なる1つの放射化部材に個別に対応し、
前記ガンマ線コリメータは、前記複数のホールのそれぞれに対して、前記複数の放射化部材のうち当該ホールに対応する1つの放射化部材を、それぞれ個別に且つ同時に接触させた際に、対応する放射化部材とは異なる放射化部材から放出される放射線が当該ホールへ入射することを防ぐ、放射化量測定を行う装置。
A device for measuring the amount of activation, including a neutron measuring member and a device for measuring the amount of activation.
The neutron measuring member is
Multiple activation members made of metal that are activated by irradiation with neutron rays,
A fixing portion in which the plurality of activating members are fixed at predetermined intervals,
Have,
The activation amount measuring device is
A gamma-ray collimator in which a plurality of holes are formed at the same interval as the interval at which the activation member is fixed,
A radiation detector that individually detects radiation guided through the plurality of holes, and
Have,
Each of the plurality of holes of the gamma ray collimator individually corresponds to one of the plurality of activation members which is different from each other.
The gamma-ray collimator corresponds to each of the plurality of holes when one of the plurality of activation members corresponding to the hole is brought into contact with each other individually and simultaneously. A device that measures the amount of activation that prevents radiation emitted from an activation member different from the member from entering the hole .
中性子測定部材と、放射化量測定装置と、を含む、放射化量測定を行う装置であって、
前記中性子測定部材は、
中性子線が照射されることで放射化する金属からなる複数の放射化部材と、
前記複数の放射化部材が所定の間隔で固定される固定部と、
を有し、
前記放射化量測定装置は、
前記複数の放射化部材のうちの1つの放射化部材のみに対応するホールが形成され、特定の放射化部材を当該ホールに接触させた際に他の放射化部材から放出される放射線を遮蔽する遮蔽部材と、
前記ホールを導波した放射線を検出する放射線検出器と、
を有する、放射化量測定を行う装置。
A device for measuring the amount of activation, including a neutron measuring member and a device for measuring the amount of activation.
The neutron measuring member is
Multiple activation members made of metal that are activated by irradiation with neutron rays,
A fixing portion in which the plurality of activating members are fixed at predetermined intervals,
Have,
The activation amount measuring device is
A hole corresponding to only one of the plurality of activation members is formed, and when a specific activation member is brought into contact with the hole, the radiation emitted from the other activation member is shielded. Shielding member and
A radiation detector that detects the radiation guided through the hole, and
A device for measuring the amount of activation.
中性子測定部材の放射化量測定方法であって、
中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、
前記放射化部材が固定される間隔と同じ間隔で、複数の複数のホールが形成されたガンマ線コリメータの前記複数のホールのそれぞれに対して、前記中性子測定部材の前記複数の放射化部材を個別に接触させる工程と、
前記複数の放射化部材のそれぞれから放出されて、前記複数のホールのそれぞれを導波した放射線を放射線検出器により個別に検出する工程と、
を有し、
前記ガンマ線コリメータの複数のホールは、それぞれ、前記複数の放射化部材のうち互いに異なる1つの放射化部材に個別に対応し、
前記ガンマ線コリメータは、前記複数のホールのそれぞれに対して、前記複数の放射化部材のうち当該ホールに対応する1つの放射化部材を、それぞれ個別に且つ同時に接触させた際に、対応する放射化部材とは異なる放射化部材から放出される放射線が当該ホールへ入射することを防ぐ、放射化量測定方法。
It is a method of measuring the amount of activation of neutron measuring members.
Neutron measurement after neutron irradiation, which has a plurality of activation members made of metal activated by irradiation with neutron rays and a fixed portion in which the plurality of activation members are fixed at predetermined intervals. The process of preparing the parts and
The plurality of activation members of the neutron measuring member are individually provided for each of the plurality of holes of the gamma ray collimator in which the plurality of holes are formed at the same interval as the interval at which the activation member is fixed. The process of contact and
A step of individually detecting radiation emitted from each of the plurality of activation members and guided through each of the plurality of holes by a radiation detector.
Have,
Each of the plurality of holes of the gamma ray collimator individually corresponds to one of the plurality of activation members which is different from each other.
The gamma-ray collimator corresponds to each of the plurality of holes when one of the plurality of activation members corresponding to the hole is brought into contact with each other individually and simultaneously. A method for measuring the amount of activation that prevents radiation emitted from an activation member different from the member from entering the hole .
中性子測定部材の放射化量測定方法であって、
中性子線が照射されることで放射化された金属からなる複数の放射化部材と、前記複数の放射化部材が所定の間隔で固定される固定部と、を有する、中性子線照射後の中性子測定部材を準備する工程と、
前記複数の放射化部材のうちの1つの放射化部材のみに対応するホールが形成され、特定の放射化部材を当該ホールに接触させた際に他の放射化部材から放出される放射線を遮蔽する遮蔽部材の前記ホールに対して、前記中性子測定部材の前記複数の放射化部材のうちの一の放射化部材を接触させた状態で、前記一の放射化部材から放出されて、前記遮蔽部材のホールを導波した放射線を放射線検出器により検出する工程と、
前記遮蔽部材の前記ホールに接触する放射化部材を前記一の放射化部材とは異なる他の放射化部材に変更して、前記他の放射化部材から放出されて、前記遮蔽部材のホールを導波した放射線を前記放射線検出器により検出する工程と、
を有する、放射化量測定方法。
It is a method of measuring the amount of activation of neutron measuring members.
Neutron measurement after neutron irradiation, which has a plurality of activation members made of metal activated by irradiation with neutron rays and a fixed portion in which the plurality of activation members are fixed at predetermined intervals. The process of preparing the parts and
A hole corresponding to only one of the plurality of activation members is formed, and when a specific activation member is brought into contact with the hole, the radiation emitted from the other activation member is shielded. In a state where one of the plurality of activation members of the neutron measuring member is in contact with the hole of the shielding member, the radiation is emitted from the one activation member of the shielding member. The process of detecting the radiation directed through the hole with a radiation detector,
The activation member in contact with the hole of the shielding member is changed to another activation member different from the one activation member, and is discharged from the other activation member to guide the hole of the shielding member. The process of detecting the waved radiation with the radiation detector,
A method for measuring the amount of activation.
JP2017097483A 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation Active JP7054322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017097483A JP7054322B2 (en) 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097483A JP7054322B2 (en) 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation

Publications (2)

Publication Number Publication Date
JP2018194401A JP2018194401A (en) 2018-12-06
JP7054322B2 true JP7054322B2 (en) 2022-04-13

Family

ID=64571287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097483A Active JP7054322B2 (en) 2017-05-16 2017-05-16 Equipment for measuring the amount of activation and method for measuring the amount of activation

Country Status (1)

Country Link
JP (1) JP7054322B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091919B (en) * 2020-02-13 2024-08-30 中国工程物理研究院核物理与化学研究所 Activated foil clamping structure for neutron activation analysis and activated foil taking-out device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128008A (en) 2007-11-19 2009-06-11 Nippon Gennen Kk Critical personal dosimeter
JP2012122962A (en) 2010-12-10 2012-06-28 Denso Corp Radioactive ray measurement system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444159Y2 (en) * 1975-08-25 1979-12-19
US4837442A (en) * 1988-03-10 1989-06-06 The United States Of America As Represented By The United States Department Of Energy Neutron range spectrometer
JPH1123799A (en) * 1997-07-01 1999-01-29 Fuji Photo Film Co Ltd Method for recording and reproducing neutron image
JPH1138147A (en) * 1997-07-17 1999-02-12 Japan Atom Energy Res Inst Device for detecting neutron flux and temperature in reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128008A (en) 2007-11-19 2009-06-11 Nippon Gennen Kk Critical personal dosimeter
JP2012122962A (en) 2010-12-10 2012-06-28 Denso Corp Radioactive ray measurement system

Also Published As

Publication number Publication date
JP2018194401A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US11691031B2 (en) Systems, methods, and devices for radiation beam asymmetry measurements using electronic portal imaging devices
US20210138272A1 (en) Systems, methods, and devices for radiation beam alignment and radiation beam measurements using electronic portal imaging devices
Poppe et al. Two‐dimensional ionization chamber arrays for IMRT plan verification
EP2670485B1 (en) An apparatus for particle therapy verification
JP6133231B2 (en) X-ray energy spectrum measuring method, X-ray energy spectrum measuring apparatus and X-ray CT apparatus
US10661101B2 (en) Dose distribution calculation device, particle beam therapy system, and dose distribution calculation method
JPH02504230A (en) Measuring device for checking the radiated electromagnetic field from treatment machines for radiotherapy
CN101571596A (en) System and method for measuring pulse type ray energy spectrum
JP6073463B2 (en) Apparatus and method for hadron beam verification
JP2013541397A (en) Grids for phase contrast imaging
Patera et al. Recent advances in detector technologies for particle therapy beam monitoring and dosimetry
JP2009139229A (en) Radiation detector calibrating device
JP7054322B2 (en) Equipment for measuring the amount of activation and method for measuring the amount of activation
JP5787698B2 (en) Radiation detector
JP2008194441A (en) Addition filter, half-value layer measuring instrument using it and half-value layer measuring method
JP6645709B2 (en) Dose distribution monitor and radiation irradiation system
JPH01227050A (en) Method and apparatus for measuring density and others of object
KR102395140B1 (en) Radiation measuring apparatus and measuring method thereof
JP7404160B2 (en) Phantom and method for quality assurance of hadron therapy equipment
KR200418412Y1 (en) An apparatus for measuring the distance between bragg's planes of a crystal using X-ray
WO2021038941A1 (en) Particle beam monitoring device, particle beam therapy system and particle beam monitoring method
US10031261B2 (en) Method for measuring X-ray energy of an accelerator in an inspection system
JPH0759762A (en) X-ray ct system
Alexander et al. Operation of the CESR-TA vertical beam size monitor at eb= 4GeV
JP2018511041A (en) Method for quantifying the intrinsic dimensions of a radiation sensor, in particular an ionizing radiation sensor, and an apparatus for implementing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220401

R150 Certificate of patent or registration of utility model

Ref document number: 7054322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150