JP2018194032A - Flow passage selector valve - Google Patents

Flow passage selector valve Download PDF

Info

Publication number
JP2018194032A
JP2018194032A JP2017095602A JP2017095602A JP2018194032A JP 2018194032 A JP2018194032 A JP 2018194032A JP 2017095602 A JP2017095602 A JP 2017095602A JP 2017095602 A JP2017095602 A JP 2017095602A JP 2018194032 A JP2018194032 A JP 2018194032A
Authority
JP
Japan
Prior art keywords
valve
pressure
valve body
turn communication
seat surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017095602A
Other languages
Japanese (ja)
Other versions
JP6625584B2 (en
Inventor
木船 仁志
Hitoshi Kibune
仁志 木船
紀幸 森田
Noriyuki Morita
紀幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2017095602A priority Critical patent/JP6625584B2/en
Priority to CN201810444206.1A priority patent/CN108869795B/en
Publication of JP2018194032A publication Critical patent/JP2018194032A/en
Application granted granted Critical
Publication of JP6625584B2 publication Critical patent/JP6625584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/044Construction of housing; Use of materials therefor of sliding valves slide valves with flat obturating members
    • F16K27/045Construction of housing; Use of materials therefor of sliding valves slide valves with flat obturating members with pivotal obturating members

Abstract

To provide a flow passage selector valve which can reduce a pressure loss of a U-turn communication passage and improve sealability of the U-turn communication passage to make it difficult to cause valve leakage.SOLUTION: A flow passage selector valve has a main valve housing, a valve seat surface, three or more ports, and a rotary valve element 20 disposed movably on the valve seat surface. In the rotary valve element, a low-pressure side U-turn communication passage is formed, which almost assumes an inverted U-shape or a circular arc shape in a side view. The rotary valve element is dividedly formed of: a low-pressure passage defining member 47 having a seal surface 17 which is oppositely brought into contact with the valve seat surface with the valve seat surface located at a lower side; and a base part 21 combined and joined to the low-pressure passage defining member to cover an upper side thereof. The low-pressure passage defining member defines a lower side or an inner peripheral side portion of a low-pressure side U-turn communication passage, and the base part defines an upper side or an outer peripheral side portion of the low-pressure side U-turn communication passage. The low-pressure side U-turn communication passage has a cross sectional shape formed in a circle or an oval similar thereto and has a cross sectional area which is unchanged over the entire length from one end to the other end.SELECTED DRAWING: Figure 8

Description

本発明は、弁体を回転あるいはスライドさせることにより流路の切り換えを行う流路切換弁に係り、特に、ヒートポンプ式冷暖房システム等において流路切換を行うのに好適な流路切換弁に関する。   The present invention relates to a flow path switching valve that switches a flow path by rotating or sliding a valve body, and more particularly to a flow path switching valve that is suitable for switching a flow path in a heat pump air conditioning system or the like.

一般に、ルームエアコン、カーエアコン等のヒートポンプ式冷暖房システムは、圧縮機、室外熱交換器、室内熱交換器、及び膨張弁等に加えて、流路(流れ方向)切換手段としての四方切換弁等の流路切換弁を備えている。   In general, heat pump type air conditioning systems such as room air conditioners and car air conditioners have compressors, outdoor heat exchangers, indoor heat exchangers, expansion valves, etc., as well as four-way switching valves as flow path (flow direction) switching means, etc. The flow path switching valve is provided.

この種の流路切換弁(四方切換弁)としては、スライド式のものとロータリー式のものがあるが、スライド式の四方切換弁は、例えば、次のような構成のものがよく知られている(特許文献1等も参照)。すなわち、シリンダ型の主弁ハウジング、該主弁ハウジング内に設けられた弁シート面、該弁シート面に開口する3個以上のポート、及び前記弁シート面上を摺動可能に配在されたスライド弁体を有し、該スライド弁体内に、前記ポート間を選択的に連通すべく、側面視概略逆U字状、円弧状、ないしかまぼこ状を呈するUターン連通路が形成されている。   As this type of flow path switching valve (four-way switching valve), there are a sliding type and a rotary type, but the sliding type four-way switching valve is well known, for example, having the following configuration. (See also Patent Document 1). That is, a cylinder-type main valve housing, a valve seat surface provided in the main valve housing, three or more ports opened in the valve seat surface, and a slidable arrangement on the valve seat surface The slide valve body has a U-turn communication passage that has a generally inverted U shape, an arc shape, or an irregular shape in side view so as to selectively communicate between the ports.

主弁ハウジングにおけるスライド弁体の左右には、パイロット弁を介して圧縮機吐出側の高圧冷媒及び圧縮機吸入側の低圧冷媒が選択的に導入される、それぞれスライド弁体に結合された左右一対のパッキン付きピストンにより画成される二つの作動室が設けられ、この二つの作動室の圧力差を利用して前記スライド弁体を左右方向に摺動させることで流路切換を行うようにされている。   On the left and right sides of the slide valve body in the main valve housing, a high pressure refrigerant on the compressor discharge side and a low pressure refrigerant on the compressor suction side are selectively introduced via a pilot valve, respectively. Two working chambers defined by a piston with packing are provided, and the flow path is switched by sliding the slide valve body in the left-right direction using the pressure difference between the two working chambers. ing.

一方、ロータリー式の四方切換弁は、例えば、次のような構成のものがよく知られている(特許文献2等も参照)。すなわち、筒状の主弁ハウジング、該主弁ハウジングの下面側に設けられた弁シート面、該弁シート面に開口する4個のポート(第1、第2、第3及び第4のポート)、及び前記主弁ハウジング内に回動可能に配在されてその下面が前記弁シート面に対面せしめられる回転弁体を有し、該回転弁体内に、前記ポート間を選択的に連通すべく、2本のUターン連通路が設けられ、前記回転弁体が第1の回転位置をとるとき、一方のUターン連通路により第1ポートと第2ポートとが連通するとともに、他方のUターン連通路により第3ポートと第4ポートとが連通し、前記回転弁体が第2の回転位置をとるとき、一方のUターン連通路により第1ポートと第3ポートとが連通するとともに、他方のUターン連通路により第2ポートと第4ポートとが連通するようにされている。   On the other hand, for example, a rotary type four-way switching valve having the following configuration is well known (see also Patent Document 2 and the like). That is, a cylindrical main valve housing, a valve seat surface provided on the lower surface side of the main valve housing, and four ports (first, second, third and fourth ports) opened to the valve seat surface And a rotary valve body rotatably disposed in the main valve housing and having a lower surface thereof facing the valve seat surface, and the ports are selectively communicated with each other in the rotary valve body. When two U-turn communication paths are provided and the rotary valve body assumes the first rotational position, the first port and the second port communicate with each other through one U-turn communication path and the other U-turn When the third port and the fourth port communicate with each other through the communication passage, and the rotary valve body takes the second rotational position, the first port and the third port communicate with each other through one U-turn communication passage, and the other 2nd and 4th ports by U-turn communication path There has been so communicated.

上記のようなUターン連通路が形成された弁体(回転弁体、スライド弁体)は、その外側を流通する高圧流体とその内側を流通する低圧流体との圧力差により弁体(のシール面)が弁シート面に強く押し付けられ、これによって、Uターン連通路のシールがなされ、弁室内の高圧流体が低圧側に抜けること(弁洩れ)を防ぐようになっている。   The valve body (rotary valve body, slide valve body) in which the U-turn communication path as described above is formed has a valve body (seal of the valve body) due to a pressure difference between the high-pressure fluid flowing outside and the low-pressure fluid flowing inside. Surface) is strongly pressed against the valve seat surface, whereby the U-turn communication path is sealed, and the high pressure fluid in the valve chamber is prevented from leaking to the low pressure side (valve leakage).

特開2013−227994号公報JP 2013-227994 A 特開平8−285113号公報JP-A-8-285113

前記した如くの従来の流路切換弁においては、次のような解決すべき課題がある。   The conventional flow path switching valve as described above has the following problems to be solved.

一般に、Uターン連通路を流通する流体の圧力損失を小さくするには、連通路の側面視を逆U字状ないし円弧状にするとともに、断面形状を円形となし、かつ、連通路の一端から他端まで全長にわたって通路断面積が変わらないようにすればよいとされ、これが理想の通路形状とされている。より具体的には、理想の通路形状は、断面円形のチューブを断面形状(円形)を変えずにU字状ないし円弧状に湾曲させた形状とされる。   In general, in order to reduce the pressure loss of the fluid flowing through the U-turn communication path, the side view of the communication path is formed in an inverted U shape or an arc shape, the cross-sectional shape is circular, and from one end of the communication path The passage cross-sectional area should not be changed over the entire length up to the other end, and this is an ideal passage shape. More specifically, the ideal passage shape is a shape in which a tube having a circular cross section is curved in a U shape or an arc shape without changing the cross sectional shape (circular shape).

しかしながら、弁体(回転弁体、スライド弁体)に上記のような理想の通路形状のUターン連通路を形成することは、従来より難題とされていた。   However, it has been a difficult problem to form a U-turn communication passage having an ideal passage shape as described above in a valve body (rotating valve body, slide valve body).

また、Uターン連通路のような大きな空洞が存在する弁体は、内外の高低圧力差が大きいと、変形しやすく、弁体が変形すると、弁シート面とUターン連通路のシール面との間に隙間が生じて弁洩れに至ることがある。この弁体の変形を防ぐ方策としては、弁体の肉厚を大きくすることや、補強材を付加すること等が考えられるが、いずれもコストアップ、大型化等を招くとともに、却って、Uターン連通路のシール性が損なわれて弁洩れしやすくなることがある等の問題がある。   In addition, a valve body having a large cavity such as a U-turn communication path is easily deformed when the pressure difference between the inside and outside is large. When the valve body is deformed, the valve seat surface and the seal surface of the U-turn communication path There may be gaps between them, leading to valve leakage. As measures for preventing the deformation of the valve body, it is conceivable to increase the thickness of the valve body or to add a reinforcing material. There is a problem that the sealing performance of the communication path is impaired and valve leakage is likely to occur.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、Uターン連通路を理想の通路形状として圧力損失の低減を図ることができるとともに、Uターン連通路のシール性を向上し得て弁洩れし難くできる流路切換弁を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to reduce the pressure loss by making the U-turn communication path into an ideal path shape and to improve the sealing performance of the U-turn communication path. An object of the present invention is to provide a flow path switching valve that can be improved and hardly leaked.

前記の目的を達成すべく、本発明に係る流路切換弁は、基本的には、主弁ハウジング、該主弁ハウジング内に設けられた弁シート面、該弁シート面に開口する3個以上のポート、及び前記弁シート面上を移動可能に配在された移動弁体を有し、該移動弁体内に、前記ポート間を選択的に連通すべく、側面視概略逆U字状ないし円弧状を呈するUターン連通路が形成され、前記移動弁体は、前記弁シート面を下側として、該弁シート面に対接するシール面を有する下側部材と、該下側部材の上側に被さるように合体接合される上側部材とで分割構成され、前記下側部材で前記Uターン連通路の下側ないし内周側部分が画成され、前記上側部材で前記Uターン連通路の上側ないし外周側部分が画成され、前記Uターン連通路は、その断面形状が円形ないしそれに近い楕円形とされるとともに、一端から他端まで全長にわたって等しい断面積とされていることを特徴としている。   In order to achieve the above object, the flow path switching valve according to the present invention basically includes a main valve housing, a valve seat surface provided in the main valve housing, and three or more opened to the valve seat surface. And a movable valve body arranged so as to be movable on the valve seat surface, and in order to selectively communicate between the ports in the movable valve body, a substantially inverted U-shape or circle in side view An arcuate U-turn communication path is formed, and the moving valve body covers a lower member having a seal surface in contact with the valve seat surface with the valve seat surface as a lower side, and an upper side of the lower member. The lower member defines the lower or inner peripheral portion of the U-turn communication path, and the upper member defines the upper or outer periphery of the U-turn communication path. A side portion is defined, and the U-turn communication path has a circular cross-sectional shape. Or together are close elliptical thereto, it is characterized in that it is equal to the cross-sectional area over the entire length from one end to the other.

好ましい態様では、前記下側部材には、前記Uターン連通路の一端及び他端を構成する開口が設けられるとともに、その中央部から両端の開口にかけて山状突部が設けられる。   In a preferred embodiment, the lower member is provided with an opening that constitutes one end and the other end of the U-turn communication path, and is provided with a mountain-shaped protrusion from the center to the openings at both ends.

更に好ましい態様では、前記山状突部は、断面形状が半円状ないしそれに近い半楕円状の表面を有する。   In a further preferred aspect, the mountain-like protrusion has a semicircular surface or a semi-elliptical surface close to it.

別の好ましい態様では、前記Uターン連通路の通路径と前記弁シート面に開口するポートの口径とが同径とされる。   In another preferred embodiment, the diameter of the U-turn communication path and the diameter of the port opened on the valve seat surface are the same.

他の好ましい態様では、前記上側部材と前記下側部材とで、前記Uターン連通路の上下半分ずつを画成する。   In another preferred embodiment, the upper member and the lower member define upper and lower halves of the U-turn communication path.

好ましい態様では、前記移動弁体としての回転弁体を備える。   In a preferred embodiment, a rotary valve body is provided as the moving valve body.

他の好ましい態様では、前記移動弁体としてのスライド弁体を備える。   In another preferred embodiment, a slide valve body is provided as the moving valve body.

本発明に係る流路切換弁では、Uターン連通路は、断面円形のチューブを断面形状をほとんど変えずにU字状ないし円弧状に湾曲させた理想の通路形状とされ、角部、段差、引っ掛かり等が全くないものとされるので、圧力損失を増大させる原因となる渦流を発生し難くできる。   In the flow path switching valve according to the present invention, the U-turn communication passage has an ideal passage shape in which a tube having a circular cross section is curved in a U shape or an arc shape with almost no change in cross sectional shape. Since there is no catch or the like, it is difficult to generate a vortex that causes an increase in pressure loss.

また、移動弁体を下側部材と上側部材の2部材で分割構成とすることにより、単一部材では困難であった理想の通路形状を比較的低コストで実現でき、しかも、その断面形状が円形ないしそれに近い楕円形とされるとともに、一端から他端まで全長にわたって等しい断面積とされていることにより、耐圧強度が増大するので、断面形状がかまぼこ形状、角丸矩形、あるいは比較的扁平な楕円状で断面積が一様ではない従来の弁体に比して、内外の高低圧力差が大きくなっても、変形し難くなり、そのため、コストアップ、大型化等を招くことなく、Uターン連通路のシール性を向上し得て弁洩れを生じ難くできる。   In addition, by dividing the moving valve body into two members, a lower member and an upper member, an ideal passage shape that was difficult with a single member can be realized at a relatively low cost, and its cross-sectional shape is Since the cross-sectional area is circular or close to an ellipse, and the cross-sectional area is the same across the entire length from one end to the other, the pressure resistance increases, so the cross-sectional shape is a kamaboko shape, a rounded rectangular shape, or a relatively flat shape. Compared to an elliptical valve body with a non-uniform cross-sectional area, it becomes difficult to deform even when the internal and external high and low pressure differences become large. It is possible to improve the sealing performance of the communication passage and to prevent valve leakage.

また、Uターン連通路の通路径と弁シート面に開口するポートの口径とが同径とされるので、Uターン連通路内での流体の膨張や収縮が発生せず、それによっても、圧力損失を効果的に低減できる。   Further, since the diameter of the U-turn communication path is the same as the diameter of the port opened to the valve seat surface, the fluid does not expand or contract in the U-turn communication path, and the pressure Loss can be effectively reduced.

上記した以外の、課題、構成、及び作用効果は、以下の実施形態により明らかにされる。   Problems, configurations, and operational effects other than those described above will be clarified by the following embodiments.

本発明に係る流路切換弁の第1実施形態の第1の連通状態を示す縦断面図であり、図3(A)のV−V矢視線に従う断面図。It is a longitudinal cross-sectional view which shows the 1st communication state of 1st Embodiment of the flow-path switching valve concerning this invention, and is sectional drawing which follows the VV arrow line of FIG. 3 (A). 本発明に係る流路切換弁の第1実施形態の第2の連通状態を示す縦断面図であり、図3(B)のW−W矢視線に従う断面図。It is a longitudinal cross-sectional view which shows the 2nd communication state of 1st Embodiment of the flow-path switching valve concerning this invention, and is sectional drawing which follows the WW arrow line of FIG. 3 (B). 第1実施形態の流路切換弁における流路切換動作の説明に供される図であり、(A)は回転弁体が第1の回転位置にある状態、(B)は回転弁体が第2の回転位置にある状態をそれぞれ示す下面配置図。It is a figure with which it uses for description of the flow-path switching operation | movement in the flow-path switching valve of 1st Embodiment, (A) is a state in which a rotary valve body exists in a 1st rotation position, (B) is a rotary valve body being 1st. The lower surface arrangement | positioning figure which shows the state in the rotation position of 2, respectively. 第1実施形態の流路切換弁における、主として回転弁体を回動させるためのアクチュエータ部分を示す分解斜視図。The disassembled perspective view which shows the actuator part for mainly rotating the rotary valve body in the flow-path switching valve of 1st Embodiment. 第1実施形態の流路切換弁における、主として主弁ハウジング及び回転軸部材部分を示す分解斜視図。The disassembled perspective view which mainly shows the main valve housing and the rotating shaft member part in the flow-path switching valve of 1st Embodiment. 第1実施形態の流路切換弁における、主として回転弁体及び弁シート部材部分を示す分解斜視図。The disassembled perspective view which mainly shows a rotary valve body and a valve seat member part in the flow-path switching valve of 1st Embodiment. 第1実施形態の流路切換弁における回転弁体と高圧通路形成部材の詳細説明に供される分解斜視図。The disassembled perspective view with which the rotary valve body and high-pressure channel | path formation member in the flow-path switching valve of 1st Embodiment are provided for detailed description. (A)は、第1実施形態の流路切換弁における回転弁体と低圧通路画成部材の詳細説明に供される分解斜視図、(B)は、回転弁体の下面配置図。(A) is a disassembled perspective view used for detailed explanation of the rotary valve body and the low-pressure passage defining member in the flow path switching valve of the first embodiment, and (B) is a bottom surface arrangement view of the rotary valve body. 第1実施形態の流路切換弁の組み立て状態において概ね図6のU−U矢視線に従って切断した断面図。Sectional drawing cut | disconnected in accordance with the UU arrow line of FIG. 6 in the assembly state of the flow-path switching valve of 1st Embodiment. 本発明に係る流路切換弁の第2実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 2nd Embodiment of the flow-path switching valve concerning this invention. 第2実施形態の流路切換弁におけるスライド弁体の4面図。The 4th page figure of the slide valve body in the flow-path switching valve of 2nd Embodiment. 第2実施形態の流路切換弁におけるスライド弁体を構成する上側部材(A)と下側部材(B)の4面図。The 4th page figure of the upper side member (A) and lower side member (B) which comprise the slide valve body in the flow-path switching valve of 2nd Embodiment. 第2実施形態の流路切換弁におけるスライド弁体の他例の4面図。The 4th page figure of the other example of the slide valve body in the flow-path switching valve of 2nd Embodiment. 第2実施形態の流路切換弁におけるスライド弁体の他例を構成する上側部材(A)と下側部材(B)の4面図。The 4th page figure of the upper side member (A) and lower side member (B) which comprise the other example of the slide valve body in the flow-path switching valve of 2nd Embodiment.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第1実施形態]
まず、本発明の第1実施形態の流路切換弁(四方切換弁)1を図1〜図9を参照しながら説明する。
[First Embodiment]
First, a flow path switching valve (four-way switching valve) 1 according to a first embodiment of the present invention will be described with reference to FIGS.

図1、図2は、それぞれ本発明に係る流路切換弁の第1実施形態の第1の連通状態、第2の連通状態を示す縦断面図である。   FIG. 1 and FIG. 2 are longitudinal sectional views showing a first communication state and a second communication state, respectively, of the first embodiment of the flow path switching valve according to the present invention.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際にヒートポンプ式冷暖房システム等に組み込まれた状態での位置、方向を指すとは限らない。   In the present specification, descriptions indicating positions, directions such as up and down, left and right, and front and rear are provided for the sake of convenience in accordance with the drawings in order to avoid complicated explanation, and are actually incorporated in a heat pump type air conditioning system or the like. It does not necessarily indicate the position and direction in the state of being pressed.

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。   In each drawing, the gap formed between the members, the separation distance between the members, etc. are larger than the dimensions of each constituent member for easy understanding of the invention and for convenience of drawing. Or it may be drawn small.

図示実施形態の流路切換弁は、四方切換弁1であり、ヒートポンプ式冷暖房システムにおいて流路切換用として使用されるもので、ロータリー式の主弁5と、流体圧式のアクチュエータ7と、四方パイロット弁8を備える。   The flow path switching valve of the illustrated embodiment is a four-way switching valve 1, which is used for switching a flow path in a heat pump air conditioning system, and includes a rotary main valve 5, a fluid pressure actuator 7, and a four-way pilot. A valve 8 is provided.

以下においては、まず、主として主弁5について説明し、その後にアクチュエータ7、四方パイロット弁8について説明する。   In the following, first, the main valve 5 will be mainly described, and then the actuator 7 and the four-way pilot valve 8 will be described.

<主弁5の構成及び動作>
主弁5は、図1、図2に加えて、図6、図7を参照すればよくわかるように、主弁ハウジング10と、この主弁ハウジング10内に回動可能かつ上下動可能に配在された回転弁体(移動弁体)20と、回転弁体20を回動させるための回転軸部材30を備える。
<Configuration and operation of main valve 5>
As shown in FIGS. 6 and 7 in addition to FIGS. 1 and 2, the main valve 5 is arranged in the main valve housing 10 so as to be rotatable and vertically movable in the main valve housing 10. A rotary valve body (moving valve body) 20 and a rotary shaft member 30 for rotating the rotary valve body 20 are provided.

主弁ハウジング10は、アルミあるいはステンレス等の金属製とされ、円筒状の胴部10Cと、この胴部10Cの上面開口を気密的に封止するように圧入、ろう付け、溶接等により固定された厚肉円板状の蓋板部材10Aと、胴部10Cの下面開口を気密的に封止するように前記蓋部材10Aと同様に前記胴部10Cに固定された厚肉円板状の底板部材10Bとを有する。底板部材10Bは、弁シート部材を兼ねており、その上面(内面)は平坦で滑らかな弁シート面12となっている。底板部材10Bには、図3に示される如くに、回転弁体20の回転軸線Oを中心とした同一円周上に90°間隔で、円形開口と管継手からなる第1ポートpD、第2ポートpC、第3ポートpE、及び第4ポートpSが垂設されている。   The main valve housing 10 is made of metal such as aluminum or stainless steel, and is fixed by press fitting, brazing, welding or the like so as to hermetically seal the cylindrical body 10C and the upper surface opening of the body 10C. The thick disc-shaped lid plate member 10A and the thick disc-shaped bottom plate fixed to the barrel portion 10C in the same manner as the lid member 10A so as to hermetically seal the lower surface opening of the barrel portion 10C. Member 10B. The bottom plate member 10B also serves as a valve seat member, and its upper surface (inner surface) is a flat and smooth valve seat surface 12. As shown in FIG. 3, the bottom plate member 10B has a first port pD, a second port formed of a circular opening and a pipe joint at 90 ° intervals on the same circumference around the rotation axis O of the rotary valve body 20. A port pC, a third port pE, and a fourth port pS are provided vertically.

本実施形態の四方切換弁1では、ヒートポンプ式冷暖房システムに組み込まれた場合において、例えば、第1ポートpDは圧縮機吐出側に接続され、第2ポートpCは室外熱交換器に接続され、第3ポートpEは室内熱交換器に接続され、第4ポートpSは圧縮機吸入側に接続される。   In the four-way switching valve 1 of the present embodiment, when incorporated in a heat pump air conditioning system, for example, the first port pD is connected to the compressor discharge side, the second port pC is connected to the outdoor heat exchanger, The 3 port pE is connected to the indoor heat exchanger, and the fourth port pS is connected to the compressor suction side.

前記回転軸部材30は、図5、6を参照すればよくわかるように、上から順に、小径凸部31、上部大径部32、中間軸部33、角形係合部34、下端小径部36を有する。前記主弁ハウジング10における蓋板部材10Aの中央には、前記回転軸部材30が挿通せしめられる嵌挿穴13が形成され、底板部材10Bの上面側中央には、回転軸部材30の下端小径部36を回転自在に支持する凹部14が設けられている。   5 and 6, the rotary shaft member 30 has a small-diameter convex portion 31, an upper large-diameter portion 32, an intermediate shaft portion 33, a square engaging portion 34, and a lower-end small-diameter portion 36 in order from the top. Have A fitting insertion hole 13 through which the rotary shaft member 30 is inserted is formed in the center of the cover plate member 10A in the main valve housing 10, and a lower end small diameter portion of the rotary shaft member 30 is formed in the upper surface side center of the bottom plate member 10B. A recess 14 for rotatably supporting 36 is provided.

回転軸部材30において、その小径凸部31を含む上端部には、後述するアクチュエータ7の回転駆動体65の下端部が溶接等により一体に結合されている。中間軸部33の上部には、ばね受けを兼ねるC字状の止め具38が嵌着される環状溝33a(図5)が形成されるとともに、この止め具38により樹脂製のスラスト軸受37が回転軸部材30に対して回動自在に外嵌保持されている。   In the rotary shaft member 30, a lower end portion of a rotary drive body 65 of an actuator 7 described later is integrally coupled to an upper end portion including the small-diameter convex portion 31 by welding or the like. An annular groove 33a (FIG. 5) in which a C-shaped stopper 38 also serving as a spring receiver is fitted is formed on the upper portion of the intermediate shaft portion 33, and a thrust bearing 37 made of resin is formed by the stopper 38. The rotary shaft member 30 is externally fitted and held rotatably.

回転軸部材30の角形係合部34には、回転弁体20の下部中央に設けられた角形溝29に嵌め込まれた角形棒35が外挿されて嵌合せしめられており、これにより、回転弁体20は回転軸部材30と一体に回動せしめられる。なお、角形溝29に予めインサート成形された金属製の角形棒35に回転軸部材30の角形係合部34を嵌入してもよい。   A square bar 35 fitted in a square groove 29 provided at the center of the lower portion of the rotary valve body 20 is fitted to the square engagement portion 34 of the rotary shaft member 30 so as to be rotated. The valve body 20 is rotated integrally with the rotary shaft member 30. In addition, you may insert the square engaging part 34 of the rotating shaft member 30 in the metal square bar 35 insert-molded in the square groove | channel 29 previously.

回転軸部材30の上部大径部32と蓋板部材10Aの嵌挿穴13との間にはシール部材としてのOリング49が介装されている。   An O-ring 49 as a seal member is interposed between the upper large-diameter portion 32 of the rotary shaft member 30 and the fitting insertion hole 13 of the lid plate member 10A.

回転弁体20は、主弁ハウジング10内(弁室11)に回動可能に配在されてその下面が前記弁シート面12に対面せしめられる短円柱状の基体部21を有し、該基体部21には、図1、図2に加えて図6〜図9を参照すればよくわかるように、中央部に回転軸部材30を通す段付き貫通穴22が設けられ、この段付き貫通穴22の上部段差部と前記回転軸部材30に嵌着された止め具38との間に、回転弁体20(基体部21)を弁シート面12に押し付ける方向に付勢する圧縮コイルばね(第1付勢部材)39が縮装されている。   The rotary valve body 20 has a short columnar base portion 21 that is rotatably disposed in the main valve housing 10 (valve chamber 11) and whose lower surface faces the valve seat surface 12. As shown in FIGS. 6 to 9 in addition to FIGS. 1 and 2, the portion 21 is provided with a stepped through hole 22 through which the rotary shaft member 30 is passed. A compression coil spring (first coil) that urges the rotary valve body 20 (base portion 21) against the valve seat surface 12 between the upper stepped portion 22 and the stopper 38 fitted to the rotary shaft member 30. 1 biasing member) 39 is retracted.

また、回転弁体20の(回転軸線Oに対して)一端側には、その下部に高圧冷媒が流通する高圧側Uターン連通路41が設けられた飯ごう形状の高圧通路形成部材40が上下方向に摺動自在に嵌挿保持される収容部23が設けられ、他端側には、低圧冷媒が流通する低圧側Uターン連通路42が設けられている。   In addition, a rice bowl-shaped high-pressure passage forming member 40 having a high-pressure side U-turn communication passage 41 through which a high-pressure refrigerant flows is provided at one end side (with respect to the rotation axis O) of the rotary valve body 20 in the vertical direction. A housing portion 23 is provided that is slidably inserted and held at the other end, and a low-pressure side U-turn communication passage 42 through which the low-pressure refrigerant flows is provided at the other end side.

より詳細には、高圧通路形成部材40は、収容部23の下端の平面視飯ごう状外形を有する環状の内方突出端縁部23a上に配在されている。また、高圧通路形成部材40に形成された高圧側Uターン連通路41は、下面側が開口した側面視概略円弧(弓形)状ないしかまぼこ状とされており、内方突出端縁部23aの下面が高圧側Uターン連通路41の(弁シート面12に対する)当接面16(図8(B)、図9参照)となっている。高圧側Uターン連通路41の下面(開口)及び内方突出端縁部23aの下面は、前記第1ポートpDを含む隣り合うポート間(pD−pC、pD−pE)を選択的に連通させ得る大きさとされている。なお、高圧側Uターン連通路41に導入された高圧冷媒の一部は、高圧通路形成部材40と収容部23との隙間を介して弁室11内に導入されるため、前記当接面16はシール性を備える必要はない。   More specifically, the high-pressure passage forming member 40 is disposed on an annular inwardly projecting end edge portion 23 a having a rice bowl-like outer shape in plan view at the lower end of the housing portion 23. Further, the high-pressure side U-turn communication passage 41 formed in the high-pressure passage forming member 40 has a generally arcuate or arcuate shape in a side view opened on the lower surface side, and the lower surface of the inwardly projecting edge portion 23a is The contact surface 16 (refer to FIG. 8B and FIG. 9) of the high-pressure side U-turn communication passage 41 (to the valve seat surface 12). The lower surface (opening) of the high-pressure side U-turn communication path 41 and the lower surface of the inwardly projecting end edge 23a selectively communicate between adjacent ports (pD-pC, pD-pE) including the first port pD. It is the size to get. Note that a part of the high-pressure refrigerant introduced into the high-pressure side U-turn communication passage 41 is introduced into the valve chamber 11 through the gap between the high-pressure passage forming member 40 and the accommodating portion 23, and thus the contact surface 16. Need not have a sealing property.

また、高圧通路形成部材40における上面側の(周方向で)両端近くには、舌状把手部43が横方向に突設されている。一方、基体部21の上面側の対応する部位には収容部23に連なって舌状把手部43、43が上下動自在に嵌挿される凹部26、26が設けられ、さらにこの凹部26の下側に、高圧通路形成部材40を弁シート面12とは反対側(蓋板部材10A側)に付勢するための圧縮コイルばね(第2付勢部材)25が装填される収納穴27が形成されている。   Further, near the both ends on the upper surface side (in the circumferential direction) of the high-pressure passage forming member 40, a tongue-like handle portion 43 is provided so as to protrude in the lateral direction. On the other hand, the corresponding part on the upper surface side of the base part 21 is provided with recesses 26, 26 into which the tongue-like handle parts 43, 43 are inserted so as to be movable up and down. In addition, a storage hole 27 is formed in which a compression coil spring (second urging member) 25 for urging the high-pressure passage forming member 40 to the side opposite to the valve seat surface 12 (the cover plate member 10A side) is loaded. ing.

また、高圧通路形成部材40の上面には、該高圧通路形成部材40と蓋板部材10Aの下面との接触面積を減らして回転時の摩擦抵抗を小さくすべく、上に凸の球冠状の突部44が複数(図示例では、中央付近と両端付近の3箇所)設けられている。   Further, on the upper surface of the high-pressure passage forming member 40, an upward convex spherical crown-like protrusion is formed so as to reduce the frictional resistance during rotation by reducing the contact area between the high-pressure passage forming member 40 and the lower surface of the lid plate member 10A. A plurality of portions 44 are provided (in the illustrated example, three locations near the center and near both ends).

一方、回転弁体20に設けられた低圧側Uターン連通路42は、基体部21内に形成された弁体内通路部46と、該弁体内通路部46における下面側に設けられた低圧通路画成部材47とで構成される。   On the other hand, the low pressure side U-turn communication passage 42 provided in the rotary valve body 20 includes a valve body passage portion 46 formed in the base portion 21 and a low pressure passage image provided on the lower surface side of the valve body passage portion 46. It is comprised with the component member 47. FIG.

弁体内通路部46は、下面側(弁シート面12側)が開口した側面視概略円弧(弓形)状ないしかまぼこ形状を呈し、かつ、上部(外周側)が概ね半円形状ないしそれに近い半楕円形状を持つものとなっている。   The valve body passage portion 46 has a substantially arcuate shape with a substantially arcuate shape (bow shape) opened on the lower surface side (valve seat surface 12 side), and the upper portion (outer peripheral side) has a substantially semicircular shape or a semi-elliptical shape close thereto. It has a shape.

それに対し、低圧通路画成部材47は、両端に円形開口49を有する円環状部45を持つ平面視メガネ状とされ、該低圧通路画成部材(下側部材)47の上側に基体部(上側部材)21が被さるようにして、そのメガネ状の外枠部分の上面が基体部21の弁体内通路部46の下端周縁部に超音波溶着あるいはレーザ溶着等により合体接合されている。   On the other hand, the low-pressure passage defining member 47 is in the shape of glasses in plan view having an annular portion 45 having circular openings 49 at both ends, and a base portion (upper side) is located above the low-pressure passage defining member (lower member) 47. The upper surface of the glasses-like outer frame portion is united and joined to the lower peripheral edge of the valve body passage portion 46 of the base portion 21 by ultrasonic welding or laser welding.

低圧通路画成部材47は、図8を参照すればよくわかるように、下面両端(円形開口49の下面外周)に弁シート面12に対接する円環状シール面17、17を有する。また、前記低圧側Uターン連通路42の断面形状を、弁体内通路部46と協同(合体)して、円形ないしそれに近い楕円形とするとともに、一端から他端まで全長にわたって略等しい断面積とすべく、その中央部から両端の円形開口49にかけて山状突部48が設けられている。山状突部48は、図9に示される如くに、断面形状が半円状ないしそれに近い半楕円状の表面(すなわち、円弧の部分)を有している。   The low-pressure passage defining member 47 has annular seal surfaces 17 and 17 that are in contact with the valve seat surface 12 at both ends of the lower surface (the outer periphery of the lower surface of the circular opening 49), as can be understood with reference to FIG. Further, the cross-sectional shape of the low-pressure side U-turn communication passage 42 is made into a circular shape or an oval shape close to it in cooperation with the valve body passage portion 46, and has substantially the same cross-sectional area over the entire length from one end to the other end. Therefore, a mountain-shaped protrusion 48 is provided from the central portion to the circular openings 49 at both ends. As shown in FIG. 9, the mountain-shaped protrusion 48 has a semicircular or nearly semi-elliptical surface (that is, a circular arc portion) in cross section.

つまり、前記低圧側Uターン連通路42は、その下側ないし内周側部分が低圧通路画成部材47で画成され、その上側ないし外周側部分が基体部21(の弁体内通路部46)で画成された、断面形状が円形ないしそれに近い楕円形かつ側面視概略逆U字状ないし円弧状を呈している。   That is, the low-pressure side U-turn communication passage 42 has a lower side or inner peripheral portion defined by the low-pressure passage defining member 47, and an upper side or outer peripheral side portion of the base portion 21 (the valve body passage portion 46). The cross-sectional shape defined in (1) is a circular shape or an elliptical shape close to the circular shape, and a substantially inverted U shape or an arc shape in side view.

本例では、低圧側Uターン連通路42の通路径と第2〜第4ポートpC、pE、pSの口径とは略同径とされており、低圧側Uターン連通路42の一端及び他端(低圧通路画成部材47の両端の円形開口49、49)が第2〜第4ポートpC、pE、pSの3つのポートの真上に選択的に位置せしめられ(つまり、低圧通路画成部材47の両端の円形開口49、49は、回転弁体20の回転軸線Oを中心とした同一円周上に90°離れて形成されている)、これにより、前記第4ポートpSを含む隣り合うポート間(pS−pE、pS−pC)を選択的に連通するようになっている。   In this example, the passage diameter of the low pressure side U-turn communication passage 42 and the diameter of the second to fourth ports pC, pE, and pS are substantially the same diameter. (The circular openings 49, 49 at both ends of the low-pressure passage defining member 47) are selectively positioned directly above the three ports of the second to fourth ports pC, pE, pS (that is, the low-pressure passage defining member 47). The circular openings 49 and 49 at both ends of 47 are formed 90 degrees apart on the same circumference centering on the rotation axis O of the rotary valve body 20), thereby adjacent to each other including the fourth port pS. Ports (pS-pE, pS-pC) are selectively communicated.

上記に加え、本実施形態では、回転弁体20の回転時において、回転弁体20側の当接面16及びシール面17を底板部材10Bの弁シート面12から離れさせるボール式シール面離隔機構が設けられている。   In addition to the above, in this embodiment, when the rotary valve body 20 rotates, the ball-type seal surface separation mechanism that separates the contact surface 16 and the seal surface 17 on the rotary valve body 20 side from the valve seat surface 12 of the bottom plate member 10B. Is provided.

ボール式シール面離隔機構は、図6、図9に示される如くに、ボール56、ケース57、及び蓋部材58で構成されるボール保持体55を複数(図示例では3個)備える。ボール保持体55は、ボール56を、その一部を下方に突出させた状態で、回転自在にかつ移動は実質的に阻止した状態で保持するもので、このボール保持体55は、回転弁体20の下部外周に3箇所、120°間隔で設けられた装着穴59に、前記ボール56の一部を下方に突出させた状態で装着されている。また、底板部材10Bには、回転弁体20の回転開始前及び回転終了時において、回転弁体20側の当接面16及びシール面17が底板部材10Bの弁シート面12から離れないように、前記ボール56の一部が嵌め込まれ、回転弁体20の回転時(流路切換中)においては、ボール56が回転弁体20を押し上げながら転がり出るような寸法形状とされた略円錐状の凹穴18が120°間隔で3個ずつ2組設けられている。本実施形態では、流路切換のための回転角度は90°とされているので、凹穴18の組同士の角度間隔は30°となっている。   As shown in FIGS. 6 and 9, the ball-type sealing surface separation mechanism includes a plurality (three in the illustrated example) of ball holders 55 including a ball 56, a case 57, and a lid member 58. The ball holding body 55 holds the ball 56 in a state in which a part of the ball 56 protrudes downward, in a state where the ball 56 is rotatable and substantially prevented from moving. The ball holding body 55 is a rotary valve body. The ball 56 is mounted in a mounting hole 59 provided at three positions on the outer periphery of the lower portion 20 at intervals of 120 ° with a part of the ball 56 protruding downward. In addition, the bottom plate member 10B is configured such that the contact surface 16 and the seal surface 17 on the rotary valve body 20 side are not separated from the valve seat surface 12 of the bottom plate member 10B before and after the rotation of the rotary valve body 20 is started. A part of the ball 56 is fitted, and when the rotary valve body 20 is rotated (while the flow path is switched), the ball 56 is formed in a substantially conical shape so that the ball 56 rolls while pushing up the rotary valve body 20. Two sets of three concave holes 18 are provided at intervals of 120 °. In the present embodiment, since the rotation angle for switching the flow path is 90 °, the angular interval between the sets of the recessed holes 18 is 30 °.

かかるシール面離隔機構では、回転弁体20の回転開始前及び回転終了時においては、図9に示される如くに、底板部材10Bの凹穴18内にボール56の一部が嵌り込んでいる。この状態から回転弁体20を90°回転させ始めると、ボール保持体55が周方向に移動(回転)し、これに伴ってボール56は、回転弁体20を、圧縮コイルばね39の付勢力に抗して押し上げながら凹穴18から転がり出る。これによって、回転弁体20の当接面16及びシール面17が底板部材10Bの弁シート面12から離れる。なお、回転弁体20が90°回転すると、ボール56が次の凹穴18に嵌り込むので、回転弁体20は圧縮コイルばね39の付勢力によって押し下げられ、回転弁体20の当接面16及びシール面17が弁シート面12に押し付けられる。   In such a seal surface separation mechanism, before the rotation of the rotary valve body 20 and at the end of the rotation, as shown in FIG. 9, a part of the ball 56 is fitted in the recessed hole 18 of the bottom plate member 10B. When the rotary valve body 20 starts to rotate 90 ° from this state, the ball holding body 55 moves (rotates) in the circumferential direction, and accordingly, the ball 56 causes the rotary valve body 20 to urge the compression coil spring 39. Rolls out of the recessed hole 18 while pushing up against the above. Thereby, the contact surface 16 and the seal surface 17 of the rotary valve body 20 are separated from the valve seat surface 12 of the bottom plate member 10B. When the rotary valve body 20 rotates 90 °, the ball 56 is fitted into the next concave hole 18, so that the rotary valve body 20 is pushed down by the urging force of the compression coil spring 39, and the contact surface 16 of the rotary valve body 20. And the sealing surface 17 is pressed against the valve seat surface 12.

<アクチュエータ7の構成及び動作>
次に、回転弁体20を回動させるための流体圧式のアクチュエータ7について説明する。
<Configuration and operation of actuator 7>
Next, the fluid pressure type actuator 7 for rotating the rotary valve body 20 will be described.

本実施形態のアクチュエータ7は、前記主弁5内を流通する高圧冷媒と低圧冷媒との差圧を利用した流体圧式のもので、図1、図2に加えて、図4を参照すればよくわかるように、前記主弁ハウジング10における蓋板部材10A上にその下端が溶接等により固定された上蓋62付き円筒部61と、該円筒部61内に摺動自在に嵌挿された天井部付き厚肉円筒状の受圧移動体60と、この受圧移動体60内に内挿された円柱状の回転駆動体65と、を備える。   The actuator 7 of the present embodiment is a fluid pressure type that utilizes the differential pressure between the high-pressure refrigerant and the low-pressure refrigerant that circulates in the main valve 5, and FIG. 4 may be referred to in addition to FIGS. As can be seen, a cylindrical portion 61 with an upper lid 62 whose lower end is fixed on the lid plate member 10A of the main valve housing 10 by welding or the like, and a ceiling portion that is slidably fitted in the cylindrical portion 61. A thick cylindrical pressure receiving moving body 60 and a columnar rotational driving body 65 inserted in the pressure receiving moving body 60 are provided.

受圧移動体60は、蓋板部材10Aの上面に嵌合固定されて受圧移動体60と円筒部61との間に嵌め込まれた弓形状断面の左右一対の回動阻止兼上下動案内部材63、63により、直線的に上下動するがその回転は阻止されるようになっている。   The pressure-receiving moving body 60 is fitted and fixed to the upper surface of the lid plate member 10A and is fitted between the pressure-receiving moving body 60 and the cylindrical portion 61. By 63, it moves up and down linearly, but its rotation is prevented.

受圧移動体60と回転駆動体65には、受圧移動体60の上下動を回転駆動体65の回転運動に変換するための運動変換機構として、送り用雌ねじ66と送り用雄ねじ67がそれぞれ設けられている(図4では図示省略)。回転駆動体65は、受圧移動体60に螺合しているので、受圧移動体60の上下方向の移動に伴って相対的に該受圧移動体60内で回動するようになっており、回転駆動体65が回転すると、該回転駆動体65に連結された回転軸部材30及び回転弁体20も一体に回転する。ここでは、受圧移動体60が上動すると、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)反時計回りに回転し、受圧移動体60が下動すると、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)時計回りに回転する。   The pressure receiving moving body 60 and the rotation driving body 65 are respectively provided with a feeding female screw 66 and a feeding male screw 67 as motion conversion mechanisms for converting the vertical movement of the pressure receiving moving body 60 into the rotation movement of the rotation driving body 65. (Not shown in FIG. 4). Since the rotation driving body 65 is screwed to the pressure receiving moving body 60, the rotation driving body 65 is relatively rotated in the pressure receiving moving body 60 as the pressure receiving moving body 60 moves in the vertical direction. When the drive body 65 rotates, the rotary shaft member 30 and the rotary valve body 20 connected to the rotary drive body 65 also rotate together. Here, when the pressure receiving moving body 60 moves upward, the rotation driving body 65, the rotary shaft member 30, and the rotary valve body 20 rotate counterclockwise (viewed from below), and when the pressure receiving moving body 60 moves downward, The rotary drive body 65, the rotary shaft member 30, and the rotary valve body 20 rotate clockwise (viewed from below).

前記受圧移動体60の外周上部には、円筒部61の内周面との間を気密的に封止して円筒部61内を容積可変の上室51と下室52とに仕切るシール部材(ここでは、Oリング71、例えばテフロン(登録商標)製の滑りリング72からなるシール部材)及び該シール部材を係止する例えば金属製のリング部材73がかしめ等により装着されている。   On the upper outer periphery of the pressure-receiving moving body 60, a sealing member (air-tightly sealing between the inner peripheral surface of the cylindrical portion 61 and partitioning the cylindrical portion 61 into an upper chamber 51 and a lower chamber 52 with variable volume) Here, an O-ring 71, for example, a seal member made of a sliding ring 72 made of Teflon (registered trademark), and a ring member 73 made of metal, for example, for locking the seal member are mounted by caulking or the like.

図1には、受圧移動体60が最下降位置にあり、回転弁体20が第1の回転位置をとっている状態が示され、図2には、受圧移動体60が最上昇位置にあり、回転弁体20が第2の回転位置をとっている状態が示されている。本例では、第1の回転位置と第2の回転位置との角度差、つまり、流路切換に要する回転角度は90°となっている。   FIG. 1 shows a state where the pressure receiving moving body 60 is in the lowest lowered position and the rotary valve body 20 is in the first rotating position, and FIG. 2 shows that the pressure receiving moving body 60 is in the highest raised position. The state which the rotary valve body 20 has taken the 2nd rotation position is shown. In this example, the angle difference between the first rotation position and the second rotation position, that is, the rotation angle required for the flow path switching is 90 °.

また、円筒部61の下部には、下室52に高圧流体を導入・排出するための下部ポート54が設けられるとともに、その上蓋62には、上室51に高圧流体を導入・排出するための上部ポート53が設けられている。   In addition, a lower port 54 for introducing and discharging a high pressure fluid to the lower chamber 52 is provided at the lower portion of the cylindrical portion 61, and an upper lid 62 for introducing and discharging the high pressure fluid to the upper chamber 51. An upper port 53 is provided.

なお、受圧移動体60の上下動を回転駆動体65の回転運動に変換するための運動変換機構としては、上記のような送りねじを用いたものに限定されず、例えば、特開2016−89901号公報に開示されているような、ボール、このボールの収容部、及び螺旋溝で構成されているもの等を採用することができる。   Note that the motion conversion mechanism for converting the vertical movement of the pressure-receiving moving body 60 into the rotational motion of the rotary drive body 65 is not limited to the one using the feed screw as described above. It is possible to employ a ball, a housing portion for the ball, and a spiral groove as disclosed in Japanese Patent Publication.

<四方パイロット弁8の構成及び動作>
次に、四方パイロット弁8について説明する。
<Configuration and operation of the four-way pilot valve 8>
Next, the four-way pilot valve 8 will be described.

本実施形態では、流路切換を、高圧部分である第1ポートpD、上部ポート53、下部ポート54、及び、低圧部分である第4ポートpSに細管#1〜#4で接続された電磁式の四方パイロット弁8により行うようにされている。   In the present embodiment, the flow path switching is performed by an electromagnetic type connected to the first port pD, which is the high pressure portion, the upper port 53, the lower port 54, and the fourth port pS, which is the low pressure portion, by the thin tubes # 1 to # 4. The four-way pilot valve 8 is used.

四方パイロット弁8は、その構造自体はよく知られているものであるので、その構造説明は省略する。必要なら、例えば特開2016−114133号公報等を参照されたい。   Since the structure of the four-way pilot valve 8 is well known, the description of the structure is omitted. If necessary, refer to, for example, JP-A-2006-114133.

この四方パイロット弁8においては、上部ポート53に細管#2を介して接続されるポートa、第4ポートpSに細管#4を介して接続される低圧ポートb、下部ポート54に細管#3を介して接続されるポートc、第1ポートpDに細管#1を介して接続される低圧ポートdが設けられている。   In this four-way pilot valve 8, the port a connected to the upper port 53 via the thin tube # 2, the low pressure port b connected to the fourth port pS via the thin tube # 4, and the thin tube # 3 to the lower port 54. And a low-pressure port d connected to the first port pD via the narrow tube # 1.

本例では、通電ON時には、高圧ポートdとポートcが連通するとともに、ポートaと低圧ポートbが連通するので、ポートpD(吐出側高圧ポート)に流入する高圧流体が下部ポート54を介して下室52に導入されるとともに、上室51の高圧流体が上部ポート53から第4ポートpS(吸入側低圧ポート)へ排出される。   In this example, when energization is ON, the high pressure port d and the port c communicate with each other, and the port a and the low pressure port b communicate with each other, so that the high pressure fluid flowing into the port pD (discharge side high pressure port) passes through the lower port 54. While being introduced into the lower chamber 52, the high pressure fluid in the upper chamber 51 is discharged from the upper port 53 to the fourth port pS (suction side low pressure port).

それに対し、通電をOFFにすると、高圧ポートdとポートaが連通するとともに、ポートcと低圧ポートbが連通するので、ポートpD(吐出側高圧ポート)に流入する高圧流体が上部ポート53を介して上室51に導入されるとともに、下室52の高圧流体が下部ポート54から第4ポートpS(吸入側低圧ポート)へ排出される。   On the other hand, when the energization is turned off, the high pressure port d and the port a communicate with each other, and the port c and the low pressure port b communicate with each other, so that the high pressure fluid flowing into the port pD (discharge side high pressure port) passes through the upper port 53 The high pressure fluid in the lower chamber 52 is discharged from the lower port 54 to the fourth port pS (suction side low pressure port).

したがって、四方パイロット弁8への通電をONにすると、受圧移動体60が上動し、これによって、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)反時計回りに90°(第1の回転位置から第2の回転位置へと)回転し、図2、図3(B)に示される如くに、高圧側Uターン連通路41により第1ポートpDと第3ポートpEとが連通するとともに、低圧側Uターン連通路42により第2ポートpCと第4ポートpSとが連通する(回転弁体20が第2の回転位置にある第2の連通状態)。   Therefore, when energization to the four-way pilot valve 8 is turned ON, the pressure receiving moving body 60 moves up, and thereby the rotation driving body 65, the rotation shaft member 30, and the rotation valve body 20 are counterclockwise (as viewed from below). 90 ° (from the first rotation position to the second rotation position), and as shown in FIG. 2 and FIG. 3 (B), the first port pD and the first port are connected by the high-pressure side U-turn communication path 41. The third port pE communicates with the second port pC and the fourth port pS through the low pressure side U-turn communication passage 42 (second communication state in which the rotary valve body 20 is in the second rotational position).

一方、四方パイロット弁8への通電をOFFにすると、受圧移動体60が下動し、回転駆動体65、回転軸部材30、及び回転弁体20が(下から視て)時計回りに90°(第2の回転位置から第1の回転位置へと)回転し、図1、図3(A)に示される如くに、高圧側Uターン連通路41により第1ポートpDと第2ポートpCとが連通するとともに、低圧側Uターン連通路42により第3ポートpEと第4ポートpSとが連通する(回転弁体20が第1の回転位置にある第1の連通状態)。   On the other hand, when the energization to the four-way pilot valve 8 is turned off, the pressure receiving moving body 60 moves downward, and the rotation driving body 65, the rotation shaft member 30, and the rotation valve body 20 are rotated 90 ° clockwise (viewed from below). As shown in FIGS. 1 and 3A, the first port pD and the second port pC are rotated by the high-pressure side U-turn communication passage 41 as shown in FIGS. Are communicated with each other, and the third port pE and the fourth port pS are communicated with each other by the low pressure side U-turn communication passage 42 (first communication state in which the rotary valve body 20 is in the first rotation position).

<四方切換弁(流路切換弁)1の作用効果>
上記のような構成とされた本実施形態の四方切換弁1では、回転弁体20の一端側に収容部23が設けられ、この収容部23に、高圧冷媒が流通する高圧側Uターン連通路41が設けられた高圧通路形成部材40が上下方向に摺動自在に嵌挿保持され、かつ、高圧通路形成部材40は圧縮コイルばね25により蓋板部材10Aに押し付ける方向(反弁シート面12側)に付勢されているので、当該高圧側Uターン連通路41を流れる高圧冷媒に伴われる脈動は、低圧側Uターン連通路42が設けられた回転弁体20の基体部21に対して高圧通路形成部材40が主弁ハウジング10の蓋板部材10Aに抑え込まれて吸収減衰される。
<Effects of the four-way switching valve (channel switching valve) 1>
In the four-way switching valve 1 of the present embodiment configured as described above, a housing portion 23 is provided on one end side of the rotary valve body 20, and a high-pressure side U-turn communication path through which high-pressure refrigerant flows in the housing portion 23. The high pressure passage forming member 40 provided with 41 is slidably inserted and held in the up and down direction, and the high pressure passage forming member 40 is pressed against the cover plate member 10A by the compression coil spring 25 (on the counter valve seat surface 12 side). ), The pulsation caused by the high-pressure refrigerant flowing through the high-pressure side U-turn communication path 41 is higher than the base portion 21 of the rotary valve body 20 provided with the low-pressure side U-turn communication path 42. The passage forming member 40 is held by the cover plate member 10A of the main valve housing 10 and absorbed and attenuated.

そのため、高圧冷媒に伴われる脈動に起因する回転弁体20の振動を効果的に抑えることができ、そのため、高圧冷媒が脈動を伴っていても、低圧側Uターン連通路42のシール面17と弁シート面12との間に隙間が形成され難くなり、その結果、主弁ハウジング10内(弁室11)の高圧冷媒が圧縮機吸入側に抜ける弁洩れの発生を効果的に抑えることができる。   Therefore, the vibration of the rotary valve body 20 due to the pulsation accompanying the high-pressure refrigerant can be effectively suppressed. Therefore, even if the high-pressure refrigerant is accompanied by the pulsation, the seal surface 17 of the low-pressure side U-turn communication path 42 It is difficult to form a gap between the valve seat surface 12 and, as a result, it is possible to effectively suppress the occurrence of valve leakage in which high-pressure refrigerant in the main valve housing 10 (valve chamber 11) escapes to the compressor suction side. .

また、高圧通路形成部材40に設けられた高圧側Uターン連通路41は、下面側が開口した側面視概略円弧(弓形)状ないしかまぼこ状とされ、かつ、その断面は、図9を参照すればよくわかるように、上部(外周側)が半円形状とされているので、前述した特許文献2に見られるような飯ごう形状(断面形状が矩形)のものに比して、圧力損失を低減できる。   Further, the high-pressure side U-turn communication passage 41 provided in the high-pressure passage forming member 40 has a generally arcuate or arcuate shape in a side view when the lower surface side is opened, and a cross section thereof is shown in FIG. As can be clearly understood, since the upper part (outer peripheral side) has a semicircular shape, pressure loss can be reduced as compared with the rice bowl shape (cross-sectional shape is rectangular) as described in Patent Document 2 described above. .

したがって、本実施形態の四方切換弁1では、圧力損失の低減等を図りながら、低圧側Uターン連通路42のシール性を向上し得て弁洩れを生じ難くできる。   Therefore, in the four-way switching valve 1 of the present embodiment, it is possible to improve the sealing performance of the low pressure side U-turn communication path 42 and reduce valve leakage while reducing pressure loss and the like.

上記に加え、本実施形態の四方切換弁1では、回転弁体20に設けられた低圧側Uターン連通路42は、基体部(上側部材)21内に形成された弁体内通路部46と、該弁体内通路部46における下面側に溶着固定された低圧通路画成部材(下側部材)47とで分割構成され、低圧側Uターン連通路42は、側面視が円弧(弓形)状ないしかまぼこ状とされるとともに、断面形状が円形ないしそれに近い楕円形状とされ、かつ、一端から他端まで全長にわたって通路断面積が変わらないようされる。   In addition to the above, in the four-way switching valve 1 of the present embodiment, the low-pressure side U-turn communication passage 42 provided in the rotary valve body 20 includes a valve body passage portion 46 formed in the base portion (upper member) 21, The valve body passage portion 46 is divided into a low pressure passage defining member (lower member) 47 which is welded and fixed to the lower surface side, and the low pressure side U-turn communication passage 42 has an arcuate shape when viewed from the side. In addition, the cross-sectional shape is circular or an elliptical shape close to the circular shape, and the cross-sectional area of the passage is not changed over the entire length from one end to the other end.

つまり、低圧側Uターン連通路42は、断面円形のチューブを断面形状(円形)を変えずに円弧状ないしかまぼこ状に湾曲させた理想の通路形状とされ、角部、段差、引っ掛かり等が全くないものとされるので、圧力損失を増大させる原因となる渦流を発生し難くできる。   In other words, the low-pressure side U-turn communication passage 42 has an ideal passage shape in which a tube having a circular cross section is curved in an arc shape without changing its cross sectional shape (circular shape), and has no corners, steps, catches, or the like. Therefore, it is difficult to generate a vortex that causes an increase in pressure loss.

また、耐圧強度が増大するので、断面形状がかまぼこ形状、角丸矩形、あるいは比較的扁平な楕円状で断面積が一様ではない従来の弁体に比して、内外の高低圧力差が大きくなっても、変形し難くなり、そのため、コストアップ、大型化等を招くことなく、低圧側Uターン連通路42のシール性を向上し得て弁洩れを生じ難くできる。   In addition, since the pressure resistance increases, the difference in pressure between the inside and outside is large compared to conventional valve bodies with a cross-sectional shape of a semi-cylindrical shape, a rounded rectangular shape, or a relatively flat elliptical shape and a non-uniform cross-sectional area. Even if it becomes, it becomes difficult to deform | transform. Therefore, the sealing property of the low voltage | pressure side U-turn communication path 42 can be improved, and it is hard to produce a valve leak, without causing a cost increase, an enlargement, etc.

さらに、低圧通路画成部材47は、回転弁体20の補強部材の役割も果たすので、高低圧力差が大きい場合でも、回転弁体20を変形し難くできる。   Furthermore, since the low pressure passage defining member 47 also serves as a reinforcing member for the rotary valve body 20, the rotary valve body 20 can be hardly deformed even when the high and low pressure difference is large.

また、低圧側Uターン連通路42の通路径と第2〜第4ポートpC、pE、pSの口径とが略同径とされるので、低圧側Uターン連通路42内での流体の膨張や収縮が発生せず、それによっても、圧力損失を効果的に低減できる。   Further, since the passage diameter of the low pressure side U-turn communication passage 42 and the diameters of the second to fourth ports pC, pE, and pS are substantially the same diameter, Shrinkage does not occur, which can effectively reduce pressure loss.

[第2実施形態]
次に、本発明に係る流路切換弁の第2実施形態を図10〜図12を参照しながら説明する。
[Second Embodiment]
Next, a second embodiment of the flow path switching valve according to the present invention will be described with reference to FIGS.

図10は、本発明に係る流路切換弁の第2実施形態を示す断面図である。   FIG. 10 is a cross-sectional view showing a second embodiment of the flow path switching valve according to the present invention.

図示実施形態の流路切換弁は、スライド式の四方切換弁2であり、ヒートポンプ式冷暖房システムにおいて流路切換用として使用されるもので、スライド弁体(移動弁体)90を内蔵する主弁6と、第1実施形態で用いられているものと同じ構成の四方パイロット弁8を備える。   The flow path switching valve of the illustrated embodiment is a slide-type four-way switching valve 2 that is used for flow path switching in a heat pump air-conditioning system and has a built-in slide valve body (moving valve body) 90. 6 and a four-way pilot valve 8 having the same configuration as that used in the first embodiment.

主弁6は、シリンダ型の主弁ハウジング80、該主弁ハウジング80内に設けられた弁座ブロック81、該弁座ブロック81の上面に形成された平坦で滑らかな弁シート面82、該弁シート面82に開口する、左右方向に横並びに設けられた第2ポートpC、第4ポートpS(低圧ポート)、及び第3ポートpE、並びに、弁シート面82上を左右方向に摺動可能に配在された断面逆立椀形状のスライド弁体90を有する。   The main valve 6 includes a cylinder-type main valve housing 80, a valve seat block 81 provided in the main valve housing 80, a flat and smooth valve seat surface 82 formed on the upper surface of the valve seat block 81, the valve The second port pC, the fourth port pS (low pressure port), the third port pE, and the valve seat surface 82, which are provided side by side in the left-right direction and open on the seat surface 82, are slidable in the left-right direction. It has a slide valve body 90 having an inverted vertical cross-sectional shape.

スライド弁体90内には、前記3つのポートpC、pS、pEを選択的に連通させるべく、言い換えれば、隣り合うポートpSとポートpEとを連通させる第1の連通状態と、隣り合うポートpSとポートpCとを連通させる第2の連通状態とを作り出すべく、Uターン連通路95が設けられている。   In the slide valve body 90, in order to selectively communicate the three ports pC, pS, and pE, in other words, a first communication state in which the adjacent port pS and the port pE are communicated, and the adjacent port pS. A U-turn communication path 95 is provided in order to create a second communication state that allows communication between the port pC and the port pC.

主弁ハウジング80内は、左右2つのパッキン付きピストン84A、84Bにより、弁室83と、左右2つの作動室86A、86Bとが画成されている。弁室83には、圧縮機の吐出側に接続される第1ポートpD(高圧ポート)が開口せしめられている。   In the main valve housing 80, a valve chamber 83 and two left and right working chambers 86A and 86B are defined by two pistons 84A and 84B with packing on the left and right. A first port pD (high pressure port) connected to the discharge side of the compressor is opened in the valve chamber 83.

ピストン84Aとピストン84Bとは、連結体87により一体移動可能に連結されている。連結体87には、スライド弁体90が下側から摺動自在に嵌合せしめられる開口87aが形成されており、スライド弁体90は、左右一対のピストン84A、84Bの往復移動に伴って連結体87の開口87a部分に押動されて、その内部に形成されたUターン連通路95を介して第3ポートpEと第4ポートpS(低圧ポート)とを連通させるとともに、弁室83(つまり、スライド弁体90の外側)を介して第1ポートpD(高圧ポート)と第2ポートpCとを連通させる右端位置(図10に示される第1の連通状態)と、第2ポートpCと第4ポートpS(低圧ポート)とを連通させるとともに、弁室83(つまり、スライド弁体90の外側)を介して第1ポートpD(高圧ポート)と第3ポートpEとを連通させる左端位置(不図示の第2の連通状態)との間を摺動するようにされている。   The piston 84A and the piston 84B are connected by a connecting body 87 so as to be movable together. The connecting body 87 is formed with an opening 87a into which the slide valve body 90 is slidably fitted from below, and the slide valve body 90 is connected with the reciprocating movement of the pair of left and right pistons 84A and 84B. The third port pE and the fourth port pS (low pressure port) communicate with each other through the U-turn communication passage 95 formed inside the body 87 by being pushed by the opening 87a portion of the body 87, and the valve chamber 83 (that is, , The right end position (first communication state shown in FIG. 10) for communicating the first port pD (high pressure port) and the second port pC via the slide valve body 90), the second port pC and the second port pC 4 port pS (low pressure port) is communicated with, and the left end position (not suitable) where the first port pD (high pressure port) and the third port pE are communicated with each other via the valve chamber 83 (that is, outside the slide valve body 90). Illustrated Is adapted to slide between the second communication state).

前記2つの作動室86A、86Bは、四方パイロット弁8及び細管#1〜#4を介して選択的に圧縮機吐出側と圧縮機吸入側とに接続され、2つの作動室86A、86Bの圧力差を利用してピストン84A、84Bを移動させ、それに伴ってスライド弁体90を弁シート面82上で摺動させて流路の切り換えを行うようにされている。   The two working chambers 86A and 86B are selectively connected to the compressor discharge side and the compressor suction side via the four-way pilot valve 8 and the thin tubes # 1 to # 4, and the pressures of the two working chambers 86A and 86B. The pistons 84A and 84B are moved using the difference, and the slide valve body 90 is slid on the valve seat surface 82 along with the movement, thereby switching the flow path.

より詳しくは、本実施形態のスライド弁体90は、図11、図12に4面図が示されているように、弁シート面82を下側として、該弁シート面82に対接するシール面97を有する下側部材91(図12(B))と、該下側部材91の上側に被さるように、例えば超音波溶着あるいはレーザ溶着により合体接合された上側部材92(図12(A))とで分割構成されている。   More specifically, as shown in FIGS. 11 and 12, the slide valve body 90 of the present embodiment has a seal surface that faces the valve seat surface 82 with the valve seat surface 82 on the lower side. The lower member 91 having 97 (FIG. 12B) and the upper member 92 joined together by, for example, ultrasonic welding or laser welding so as to cover the upper side of the lower member 91 (FIG. 12A) It is divided into and.

上側部材92は、下面側(弁シート面82側)が開口し、かつ、内周上部(Uターン連通路95の外周側)が概ね半円形状ないしそれに近い半楕円形状を持つものとなっている。   The upper member 92 has an opening on the lower surface side (the valve seat surface 82 side), and an inner peripheral upper portion (the outer peripheral side of the U-turn communication path 95) has a substantially semicircular shape or a semi-elliptical shape close thereto. Yes.

それに対し、下側部材91は、左右両端に円形開口99を有する平面視レーストラック状とされ、該下側部材91の上側に上側部材92が被さるようにして、そのレーストラック状の外周部分の上面が上側部材92の下端周縁部に接合固定されている。   On the other hand, the lower member 91 is formed in a racetrack shape in plan view having circular openings 99 at both left and right ends, and an upper member 92 is covered on the upper side of the lower member 91 so that the outer peripheral portion of the racetrack shape is formed. The upper surface is bonded and fixed to the peripheral edge of the lower end of the upper member 92.

下側部材91(の下面)のシール面97は、ここでは、メガネのフレーム状とされている。また、前記Uターン連通路95の断面形状を、上側部材92と協同(合体)して、円形ないしそれに近い楕円形(図示例では、楕円形)とするとともに、一端から他端まで全長にわたって略等しい断面積とすべく、その中央部から左右両端の円形開口99にかけて、上記第1実施形態と略同じ構成の山状突部98が設けられている。   Here, the sealing surface 97 of the lower member 91 (the lower surface thereof) has a frame shape of glasses. The cross-sectional shape of the U-turn communication path 95 is made into a circular shape or an elliptical shape (in the illustrated example, an elliptical shape) by cooperating with (merging with) the upper member 92, and substantially the entire length from one end to the other end. In order to obtain an equal cross-sectional area, a mountain-shaped protrusion 98 having substantially the same configuration as that of the first embodiment is provided from the central portion to the circular openings 99 at both left and right ends.

つまり、本実施形態では、前記Uターン連通路95は、その下側ないし内周側部分が下側部材91で画成され、その上側ないし外周側部分が上側部材92で画成された、断面形状が円形ないしそれに近い楕円形かつ側面視概略逆U字状ないし円弧状を呈している。   That is, in this embodiment, the U-turn communication path 95 has a lower or inner peripheral portion defined by the lower member 91 and an upper or outer peripheral portion defined by the upper member 92. The shape is a circle or an ellipse close to it, and a substantially inverted U-shape or arc shape in side view.

本例では、Uターン連通路95の通路径と第2〜第4ポートpC、pE、pSの口径とは略同径とされており、Uターン連通路95の一端及び他端(下側部材91の左右両端の円形開口99、99)が第2〜第4ポートpC、pE、pSの3つのポートの真上に選択的に位置せしめられ、これにより、前述のように前記第4ポートpSを含む隣り合うポート間(pS−pE、pS−pC)を選択的に連通して流路の切り換えを行うようになっている。   In this example, the diameter of the U-turn communication path 95 and the diameters of the second to fourth ports pC, pE, and pS are substantially the same, and one end and the other end of the U-turn communication path 95 (lower member) The circular openings 99 and 99) on both the left and right ends of 91 are selectively positioned directly above the three ports of the second to fourth ports pC, pE, and pS, so that the fourth port pS as described above. (PS-pE, pS-pC) is selectively communicated between adjacent ports including the channel to switch the flow path.

このような構成とされた本実施形態の四方切換弁2では、上記第1実施形態のロータリー式のものと同様に、スライド弁体90に設けられたUターン連通路95は、断面円形のチューブを断面形状をほとんど変えずにU字状ないし円弧状に湾曲させた理想の通路形状とされ、角部、段差、引っ掛かり等が全くないものとされるので、圧力損失を増大させる原因となる渦流を発生し難くできる。   In the four-way switching valve 2 of the present embodiment configured as described above, the U-turn communication passage 95 provided in the slide valve body 90 is a tube having a circular cross section, as in the rotary type of the first embodiment. Is an ideal passage shape that is curved in a U-shape or arc shape with almost no change in cross-sectional shape, and has no corners, steps, catches, etc., so eddy currents that cause increased pressure loss Can be made difficult to occur.

また、上記のように、スライド弁体90を下側部材91と上側部材92の2部材で分割構成とすることにより、単一部材では困難であった理想の通路形状を比較的低コストで実現でき、しかも、その断面形状が円形ないしそれに近い楕円形とされるとともに、一端から他端まで全長にわたって略等しい断面積とされていることにより、耐圧強度が増大するので、断面形状がかまぼこ形状、角丸矩形、あるいは比較的扁平な楕円状で断面積が一様ではない従来のスライド弁体に比して、内外の高低圧力差が大きくなっても、変形し難くなり、そのため、コストアップ、大型化等を招くことなく、Uターン連通路のシール性を向上し得て弁洩れを生じ難くできる。   In addition, as described above, the slide valve body 90 is divided into the two members of the lower member 91 and the upper member 92, thereby realizing an ideal passage shape that was difficult with a single member at a relatively low cost. In addition, the cross-sectional shape is circular or an ellipse close to it, and the cross-sectional area is substantially equal across the entire length from one end to the other, thereby increasing the pressure resistance, so that the cross-sectional shape is a kamaboko shape, Compared to a conventional rounded rectangular valve or a relatively flat elliptical slide valve body with a non-uniform cross-sectional area, it becomes difficult to deform even if the high and low pressure difference inside and outside becomes large, thus increasing the cost, Without incurring an increase in size, the sealing performance of the U-turn communication path can be improved, and valve leakage can hardly occur.

また、Uターン連通路95の通路径と第2〜第4ポートpC、pE、pSの口径とが略同径とされるので、Uターン連通路95内での流体の膨張や収縮が発生せず、それによっても、圧力損失を効果的に低減できる。   Further, since the passage diameter of the U-turn communication passage 95 and the diameters of the second to fourth ports pC, pE, and pS are substantially the same diameter, fluid expansion and contraction in the U-turn communication passage 95 may occur. In this way, the pressure loss can be effectively reduced.

[第2実施形態の変形形態]
図13、図14は、上記第2実施形態のスライド弁体90の他例のスライド弁体90’の4面図を示している。
[Modification of Second Embodiment]
FIGS. 13 and 14 show four-side views of a slide valve body 90 ′ as another example of the slide valve body 90 of the second embodiment.

本例のスライド弁体90'では、その内部に形成されたUターン連通路95'の寸法形状は上記したスライド弁体90のUターン連通路95の寸法形状とほぼ同じであるが、上側部材92'及び下側部材91'の形状やそれらの接合部位が異なっている。   In the slide valve body 90 ′ of this example, the U-turn communication path 95 ′ formed inside is substantially the same as the U-turn communication path 95 of the slide valve body 90 described above. The shapes of the 92 ′ and the lower member 91 ′ and their joint portions are different.

本例では、下側部材91'が、比較的大きな平面視レーストラック状とされ、そのレーストラック状の外周より若干内側の上面から突設された環状壁の96'の上下部分が上側部材92'の周縁部に接合固定されている。また、下側部材91’(の下面)のシール面97’は、ここでは、左右2個の円形開口99'付きの角丸長方形状とされている。   In this example, the lower member 91 ′ has a relatively large plan view race track shape, and the upper and lower portions of the annular wall 96 ′ projecting from the upper surface slightly inside the outer periphery of the race track shape are the upper member 92. It is fixed to the periphery of '. In addition, the seal surface 97 ′ of the lower member 91 ′ (the lower surface thereof) is here a rounded rectangular shape with two left and right circular openings 99 ′.

かかる例においても、上記第2実施形態のものと同様な作用効果が得られることは詳述するまでも無い。   In such an example, it is needless to mention that the same effects as those of the second embodiment can be obtained.

なお、上述した本発明に係る流路切換弁は、ヒートポンプ式冷暖房システムのみならず、他のシステム、装置、機器類にも組み込めることは勿論である。   Of course, the above-described flow path switching valve according to the present invention can be incorporated not only in the heat pump air conditioning system but also in other systems, devices, and devices.

1 四方切換弁(流路切換弁の第1実施形態)
2 四方切換弁(流路切換弁の第2実施形態)
5 主弁(第1実施形態)
6 主弁(第2実施形態)
7 アクチュエータ
8 四方パイロット弁
10 主弁ハウジング(第1実施形態)
10A 蓋板部材
10B 底板部材
10C 胴部
11 弁室
12 弁シート面
16 当接面(高圧側Uターン連通路)
17 シール面(低圧側Uターン連通路)
20 回転弁体(移動弁体)
21 基体部(上側部材)
23 収容部
25 圧縮コイルばね(第2付勢部材)
30 回転軸部材
39 圧縮コイルばね(第1付勢部材)
40 高圧通路形成部材
41 高圧側Uターン連通路
42 低圧側Uターン連通路
43 舌状把手部
45 円環状部
46 弁体内通路部
47 低圧通路画成部材(下側部材)
48 山状突部
49 円形開口
51 上室
52 下室
53 上部ポート
54 下部ポート
55 ボール保持体
60 受圧移動体
65 回転駆動体
80 主弁ハウジング(第2実施形態)
81 弁座ブロック
82 弁シート面
83 弁室
84A、84B ピストン
86A、86B 作動室
87 連結体
90 スライド弁体(移動弁体)
91 下側部材
92 上側部材
95 Uターン連通路
97 シール面
98 山状突部
99 円形開口
pD 第1ポート(吐出側高圧ポート)
pC 第2ポート(室外側入出ポート)
pE 第3ポート(室内側入出ポート)
pS 第4ポート(吸入側低圧ポート)
1 Four-way switching valve (first embodiment of flow path switching valve)
2 Four-way switching valve (second embodiment of flow path switching valve)
5 Main valve (first embodiment)
6 Main valve (second embodiment)
7 Actuator 8 Four-way pilot valve 10 Main valve housing (first embodiment)
10A Lid plate member 10B Bottom plate member 10C Body 11 Valve chamber 12 Valve seat surface 16 Contact surface (high pressure side U-turn communication path)
17 Seal surface (low pressure side U-turn communication path)
20 Rotating valve body (moving valve body)
21 Base part (upper member)
23 accommodating portion 25 compression coil spring (second biasing member)
30 Rotating shaft member 39 Compression coil spring (first biasing member)
40 High-pressure passage forming member 41 High-pressure side U-turn communication passage 42 Low-pressure side U-turn communication passage 43 Tongue grip portion 45 Annular portion 46 Valve body passage portion 47 Low-pressure passage defining member (lower member)
48 mountain-like protrusion 49 circular opening 51 upper chamber 52 lower chamber 53 upper port 54 lower port 55 ball holding body 60 pressure receiving moving body 65 rotation drive body 80 main valve housing (second embodiment)
81 Valve seat block 82 Valve seat surface 83 Valve chambers 84A and 84B Pistons 86A and 86B Actuating chamber 87 Connecting body 90 Slide valve body (moving valve body)
91 Lower member 92 Upper member 95 U-turn communication path 97 Seal surface 98 Mountain-shaped protrusion 99 Circular opening pD First port (discharge-side high-pressure port)
pC 2nd port (outdoor entrance / exit port)
pE 3rd port (inside / outside port)
pS 4th port (suction side low pressure port)

Claims (7)

主弁ハウジング、該主弁ハウジング内に設けられた弁シート面、該弁シート面に開口する3個以上のポート、及び前記弁シート面上を移動可能に配在された移動弁体を有し、該移動弁体内に、前記ポート間を選択的に連通すべく、側面視概略逆U字状ないし円弧状を呈するUターン連通路が形成されている流路切換弁であって、
前記移動弁体は、前記弁シート面を下側として、該弁シート面に対接するシール面を有する下側部材と、該下側部材の上側に被さるように合体接合される上側部材とで分割構成され、前記下側部材で前記Uターン連通路の下側ないし内周側部分が画成され、前記上側部材で前記Uターン連通路の上側ないし外周側部分が画成され、前記Uターン連通路は、その断面形状が円形ないしそれに近い楕円形とされるとともに、一端から他端まで全長にわたって等しい断面積とされていることを特徴とする流路切換弁。
A main valve housing, a valve seat surface provided in the main valve housing, three or more ports opened in the valve seat surface, and a movable valve body arranged to be movable on the valve seat surface A flow path switching valve in which a U-turn communication path having a substantially inverted U shape or arc shape in side view is formed in the movable valve body so as to selectively communicate between the ports,
The moving valve body is divided into a lower member having a seal surface that contacts the valve seat surface, and an upper member joined and joined so as to cover the upper side of the lower member, with the valve seat surface as a lower side. The lower member defines a lower or inner peripheral portion of the U-turn communication path, and the upper member defines an upper or outer peripheral portion of the U-turn communication path. The flow path switching valve characterized in that the passage has a circular cross section or an elliptical shape close to the cross section, and has an equal cross sectional area over the entire length from one end to the other end.
前記下側部材には、前記Uターン連通路の一端及び他端を構成する開口が設けられるとともに、その中央部から両端の開口にかけて山状突部が設けられていることを特徴とする請求項1に記載の流路切換弁。   The lower member is provided with an opening that constitutes one end and the other end of the U-turn communication path, and a mountain-shaped protrusion is provided from the center to the opening at both ends. 1. The flow path switching valve according to 1. 前記山状突部は、断面形状が半円状ないしそれに近い半楕円状の表面を有していることを特徴とする請求項2に記載の流路切換弁。   The flow path switching valve according to claim 2, wherein the mountain-shaped protrusion has a semicircular surface or a semi-elliptical surface close to the cross-sectional shape. 前記Uターン連通路の通路径と前記弁シート面に開口するポートの口径とが同径とされていることを特徴とする請求項1から3のいずれか一項に記載の流路切換弁。   4. The flow path switching valve according to claim 1, wherein the diameter of the U-turn communication path is the same as the diameter of a port opened in the valve seat surface. 5. 前記上側部材と前記下側部材とで、前記Uターン連通路の上下半分ずつを画成していることを特徴とする請求項1から4のいずれか一項に記載の流路切換弁。   5. The flow path switching valve according to claim 1, wherein the upper member and the lower member define upper and lower halves of the U-turn communication path. 前記移動弁体としての回転弁体を備えていることを特徴とする請求項1から5のいずれか一項に記載の流路切換弁。   The flow path switching valve according to claim 1, further comprising a rotary valve body as the moving valve body. 前記移動弁体としてのスライド弁体を備えていることを特徴とする請求項1から5のいずれか一項に記載の流路切換弁。   The flow path switching valve according to any one of claims 1 to 5, further comprising a slide valve body as the moving valve body.
JP2017095602A 2017-05-12 2017-05-12 Flow switching valve Active JP6625584B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017095602A JP6625584B2 (en) 2017-05-12 2017-05-12 Flow switching valve
CN201810444206.1A CN108869795B (en) 2017-05-12 2018-05-10 Flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017095602A JP6625584B2 (en) 2017-05-12 2017-05-12 Flow switching valve

Publications (2)

Publication Number Publication Date
JP2018194032A true JP2018194032A (en) 2018-12-06
JP6625584B2 JP6625584B2 (en) 2019-12-25

Family

ID=64333364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095602A Active JP6625584B2 (en) 2017-05-12 2017-05-12 Flow switching valve

Country Status (2)

Country Link
JP (1) JP6625584B2 (en)
CN (1) CN108869795B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110840A1 (en) * 2018-11-29 2020-06-04 株式会社不二工機 Flow path switching valve
JP2020180630A (en) * 2019-04-24 2020-11-05 株式会社不二工機 Passage switch valve
JP2020183777A (en) * 2019-05-07 2020-11-12 株式会社不二工機 Flow path switching valve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945859B2 (en) * 2018-06-04 2021-10-06 株式会社不二工機 Flow switching valve
JP6933388B2 (en) * 2019-03-13 2021-09-08 株式会社不二工機 Flow path switching valve
JP7023525B2 (en) * 2019-05-07 2022-02-22 株式会社不二工機 Flow switching valve
JP7317293B2 (en) * 2019-07-25 2023-07-31 Smc株式会社 filter device
JP6999183B2 (en) * 2019-08-23 2022-01-18 株式会社不二工機 Flow switching valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114170U (en) * 1984-12-27 1986-07-18
JPS61180072A (en) * 1984-11-09 1986-08-12 アロイフアブ(プロプライアタリイ)リミテイド Flow reversing device
JPS62162469U (en) * 1986-04-04 1987-10-15
JP2001519513A (en) * 1997-10-06 2001-10-23 マスコ・コーポレーシヨン Multi-directional closing or diverting valve
JP2008512609A (en) * 2004-09-03 2008-04-24 ランコ インコーポレーテッド オブ デラウェア Reversing valve with shunt
JP2009109063A (en) * 2007-10-29 2009-05-21 Hitachi Appliances Inc Four-way selector valve and refrigeration cycle device using this
JP2013139833A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Rotary valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911242A (en) * 1994-09-16 1999-06-15 Ranco Incorporated Of Delaware Reversing valve and method
CN101858447B (en) * 2009-04-13 2012-12-12 浙江三花制冷集团有限公司 Slide block, main valve of four-way reversing valve using same and four-way reversing valve
CN102954243A (en) * 2011-08-29 2013-03-06 浙江三花制冷集团有限公司 Large four-way reversing valve and slide block component thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180072A (en) * 1984-11-09 1986-08-12 アロイフアブ(プロプライアタリイ)リミテイド Flow reversing device
JPS61114170U (en) * 1984-12-27 1986-07-18
JPS62162469U (en) * 1986-04-04 1987-10-15
JP2001519513A (en) * 1997-10-06 2001-10-23 マスコ・コーポレーシヨン Multi-directional closing or diverting valve
JP2008512609A (en) * 2004-09-03 2008-04-24 ランコ インコーポレーテッド オブ デラウェア Reversing valve with shunt
JP2009109063A (en) * 2007-10-29 2009-05-21 Hitachi Appliances Inc Four-way selector valve and refrigeration cycle device using this
JP2013139833A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Rotary valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110840A1 (en) * 2018-11-29 2020-06-04 株式会社不二工機 Flow path switching valve
JP2020180630A (en) * 2019-04-24 2020-11-05 株式会社不二工機 Passage switch valve
JP2020183777A (en) * 2019-05-07 2020-11-12 株式会社不二工機 Flow path switching valve

Also Published As

Publication number Publication date
CN108869795B (en) 2021-12-28
JP6625584B2 (en) 2019-12-25
CN108869795A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
JP2018194032A (en) Flow passage selector valve
JP6475778B2 (en) Flow path switching valve
JP6515163B2 (en) Six-way switching valve
JP2021055848A (en) Hexagonal changeover valve
JP2016089901A (en) Flow channel switch valve
JP6596052B2 (en) Flow path switching valve
JP2020180630A (en) Passage switch valve
WO2020039889A1 (en) Flow passage switching valve
JP6667687B2 (en) Flow path switching valve
JP7095914B2 (en) Flow switching valve
JP6928945B2 (en) Flow path switching valve and its assembly method
CN112585385B (en) Flow path switching valve
JP6378114B2 (en) Slide valve and refrigeration cycle
JP6689418B2 (en) Flow path switching valve
JP2021089023A (en) Slide type selector valve and refrigeration cycle system
JP2020046031A (en) Spool valve
CN113167396B (en) Flow path switching valve
CN111911661B (en) Flow path switching valve
CN111911660B (en) Flow path switching valve
JP6893704B2 (en) Flow switching valve
JP6462336B2 (en) Flow path switching valve
JP6823864B2 (en) Six-way switching valve
JP2020101256A (en) Flow passage switching valve
JP2021032331A (en) Flow passage switching valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191127

R150 Certificate of patent or registration of utility model

Ref document number: 6625584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250