JP2018193473A - Soft vinyl chloride resin composition and water-resistant cable using the same - Google Patents

Soft vinyl chloride resin composition and water-resistant cable using the same Download PDF

Info

Publication number
JP2018193473A
JP2018193473A JP2017098190A JP2017098190A JP2018193473A JP 2018193473 A JP2018193473 A JP 2018193473A JP 2017098190 A JP2017098190 A JP 2017098190A JP 2017098190 A JP2017098190 A JP 2017098190A JP 2018193473 A JP2018193473 A JP 2018193473A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
resin composition
mass
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098190A
Other languages
Japanese (ja)
Other versions
JP6890037B2 (en
Inventor
山内 光典
Mitsunori Yamauchi
光典 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2017098190A priority Critical patent/JP6890037B2/en
Publication of JP2018193473A publication Critical patent/JP2018193473A/en
Application granted granted Critical
Publication of JP6890037B2 publication Critical patent/JP6890037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)

Abstract

To provide a soft vinyl chloride resin composition capable of improving flexibility of a cable in addition to water resistance thereof, and a water-resistant cable.SOLUTION: A soft vinyl chloride resin composition contains a vinyl chloride resin, a methyl methacrylate-butadiene-styrene-copolymer (MBS), a methyl methacrylate-based polymer (MMA-based polymer) and silica particles. Based on 100 pts.mass of the vinyl chloride resin, a content of the MBS is 30-100 pts.mass, a content of the MMA-based polymer is 1-10 pts.mass, and a content of the silica particles is 0.5-6 pts.mass. A content of a plasticizer that is liquid at a normal temperature is 9 pts.mass or less based on 100 pts.mass of the vinyl chloride resin. Water-resistant cables 1 and 1A cover an insulated wire 10 and sheaths 20 and 20A which cover the insulated wire and contain the soft vinyl chloride resin composition.SELECTED DRAWING: Figure 1

Description

本発明は、軟質塩化ビニル樹脂組成物及びそれを用いた耐水性ケーブルに関する。詳細には本発明は、耐水性及び可撓性に優れた軟質塩化ビニル樹脂組成物、及び当該軟質塩化ビニル樹脂組成物を用いた耐水性ケーブルに関する。   The present invention relates to a soft vinyl chloride resin composition and a water-resistant cable using the same. Specifically, the present invention relates to a soft vinyl chloride resin composition excellent in water resistance and flexibility, and a water resistant cable using the soft vinyl chloride resin composition.

従来より、ケーブルの耐水性を向上させるために、ケーブルの被覆材(シース)と当該被覆材で覆われた電線の絶縁体との間に遮水層を設け、遮水性を確保している。このような遮水層は、金属製シートを積層してなるものが多い。そして、遮水層を設けることで、外部からシースに浸透した水分が、ケーブルの内部へ浸入することを防止している。   Conventionally, in order to improve the water resistance of a cable, a water shielding layer is provided between a cable covering material (sheath) and an electric wire insulator covered with the covering material to ensure water shielding. Such a water shielding layer is often formed by laminating metal sheets. By providing the water shielding layer, moisture that has penetrated into the sheath from the outside is prevented from entering the inside of the cable.

例えば、特許文献1では、導体及び絶縁体層を含むケーブルコアの外層にスペーサ層を形成し、スペーサ層上に遮水テープ層を設け、さらに遮水テープ層を樹脂からなるシース層で被覆した遮水ケーブルを開示している。また、遮水テープ層を形成する遮水テープは、金属層と接着層、又は金属層と補強層と接着層とから成ることを開示している。   For example, in Patent Document 1, a spacer layer is formed on an outer layer of a cable core including a conductor and an insulator layer, a water shielding tape layer is provided on the spacer layer, and the water shielding tape layer is further covered with a sheath layer made of resin. A water shielding cable is disclosed. Moreover, it discloses that the water shielding tape which forms a water shielding tape layer consists of a metal layer, an adhesive layer, or a metal layer, a reinforcement layer, and an adhesive layer.

特開2014−75247号公報JP 2014-75247 A

しかしながら、金属製シートからなる遮水層は遮水性に優れているものの可撓性が悪いため、得られるケーブルの柔軟性が不十分になるという問題がある。また、金属製シートからなる遮水層は切断し難いため、ケーブルの加工性が悪化するという問題がある。   However, although the water shielding layer made of a metal sheet is excellent in water shielding properties, it has a problem that the flexibility of the obtained cable becomes insufficient because of poor flexibility. Moreover, since the water shielding layer which consists of metal sheets is hard to cut | disconnect, there exists a problem that the workability of a cable deteriorates.

本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして本発明の目的は、ケーブルの耐水性に加えて可撓性も向上させることが可能な軟質塩化ビニル樹脂組成物、及び当該軟質塩化ビニル樹脂組成物を用いた耐水性ケーブルを提供することにある。   The present invention has been made in view of such problems of the prior art. An object of the present invention is to provide a soft vinyl chloride resin composition capable of improving flexibility in addition to the water resistance of the cable, and a water resistant cable using the soft vinyl chloride resin composition. is there.

本発明の第1の態様に係る軟質塩化ビニル樹脂組成物は、塩化ビニル樹脂と、メタクリル酸メチル−ブタジエン−スチレン共重合体と、メタクリル酸メチル系高分子と、シリカ粒子とを含有する。塩化ビニル樹脂100質量部に対して、メタクリル酸メチル−ブタジエン−スチレン共重合体の含有量が30〜100質量部であり、メタクリル酸メチル系高分子の含有量が1〜10質量部であり、シリカ粒子の含有量が0.5〜6質量部である。そして、軟質塩化ビニル樹脂組成物は、常温で液状である可塑剤の含有量が、塩化ビニル樹脂100質量部に対して9質量部以下である。   The soft vinyl chloride resin composition according to the first aspect of the present invention contains a vinyl chloride resin, a methyl methacrylate-butadiene-styrene copolymer, a methyl methacrylate polymer, and silica particles. The content of methyl methacrylate-butadiene-styrene copolymer is 30 to 100 parts by mass and the content of methyl methacrylate polymer is 1 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. The content of silica particles is 0.5 to 6 parts by mass. In the soft vinyl chloride resin composition, the content of the plasticizer that is liquid at normal temperature is 9 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin.

本発明の第2の態様に係る軟質塩化ビニル樹脂組成物は、第1の態様に係る軟質塩化ビニル樹脂組成物において、JIS K6723に規定の引張強さが10MPa以上であり、JIS K6723に規定の伸びが120%以上である。さらに、JIS K7215に規定のデュロメータ硬さが82〜96である。   The soft vinyl chloride resin composition according to the second aspect of the present invention is the soft vinyl chloride resin composition according to the first aspect, wherein the tensile strength specified in JIS K6723 is 10 MPa or more, and the soft vinyl chloride resin composition specified in JIS K6723. Elongation is 120% or more. Furthermore, the durometer hardness defined in JIS K7215 is 82-96.

本発明の第3の態様に係る耐水性ケーブルは、導体と当該導体を被覆する絶縁体とを備える、一又は複数の絶縁電線と、絶縁電線を被覆し、第1又は第2の態様に係る軟質塩化ビニル樹脂組成物を含むシースと、を備える。   The waterproof cable according to the third aspect of the present invention includes one or a plurality of insulated wires including a conductor and an insulator covering the conductor, covers the insulated wires, and relates to the first or second aspect. And a sheath containing a soft vinyl chloride resin composition.

本発明の第4の態様に係る耐水性ケーブルは、第3の態様に係る耐水性ケーブルにおいて、シースは、絶縁電線を被覆する内層と、当該内層を被覆し、かつ、軟質塩化ビニル樹脂組成物を含むスキン層とを有する。   The water-resistant cable according to the fourth aspect of the present invention is the water-resistant cable according to the third aspect, wherein the sheath covers the inner layer covering the insulated wire, the inner layer, and the soft vinyl chloride resin composition. And a skin layer.

本発明の第5の態様に係る耐水性ケーブルは、第4の態様に係る耐水性ケーブルにおいて、絶縁電線の長手方向に垂直な断面において、シース全体の厚みに対するスキン層の厚みが10%以上である。   The water-resistant cable according to the fifth aspect of the present invention is the water-resistant cable according to the fourth aspect, wherein the thickness of the skin layer with respect to the thickness of the entire sheath is 10% or more in the cross section perpendicular to the longitudinal direction of the insulated wire. is there.

本発明の軟質塩化ビニル樹脂組成物は、吸水性が低く柔軟性が良好である。そのため、軟質塩化ビニル樹脂組成物を耐水性ケーブルのシースに用いた場合、金属製の遮水層を用いなくても耐水性を確保でき、さらに可撓性も高めることが可能となる。また、金属製の遮水層を用いていないため、シースを容易に切断でき、耐水性ケーブルの加工性を高めることが可能となる。   The soft vinyl chloride resin composition of the present invention has low water absorption and good flexibility. Therefore, when a soft vinyl chloride resin composition is used for the sheath of a water-resistant cable, it is possible to ensure water resistance without using a metal water-impervious layer and to further increase flexibility. Moreover, since the metal water-impervious layer is not used, the sheath can be easily cut and the workability of the water-resistant cable can be improved.

本発明の実施形態に係る耐水性ケーブルの一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of the water-resistant cable which concerns on embodiment of this invention. 本発明の実施形態に係る耐水性ケーブルの他の例を概略的に示す断面図である。It is sectional drawing which shows schematically the other example of the water-resistant cable which concerns on embodiment of this invention.

以下、図面を用いて本発明の実施形態に係る軟質塩化ビニル樹脂組成物、及び当該軟質塩化ビニル樹脂組成物を用いた耐水性ケーブルについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, a soft vinyl chloride resin composition according to an embodiment of the present invention and a water-resistant cable using the soft vinyl chloride resin composition will be described in detail with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.

[軟質塩化ビニル樹脂組成物]
本実施形態に係る軟質塩化ビニル樹脂組成物は、塩化ビニル樹脂を主成分としている。塩化ビニル樹脂は、架橋処理を施さなくても高い耐熱性を有し、さらに電気絶縁性にも優れ、安価で加工も容易な材料である。
[Soft vinyl chloride resin composition]
The soft vinyl chloride resin composition according to this embodiment is mainly composed of a vinyl chloride resin. Vinyl chloride resin is a material that has high heat resistance without being subjected to crosslinking treatment, is excellent in electrical insulation, is inexpensive, and can be easily processed.

本実施形態の軟質塩化ビニル樹脂組成物に使用される塩化ビニル樹脂は、例えば、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−エチレン共重合体、塩化ビニル−プロピレン共重合体、塩化ビニル−スチレン共重合体、塩化ビニル−イソブチレン共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−スチレン−無水マレイン酸共重合体、塩化ビニル−スチレン−アクリロニトリル共重合体、塩化ビニル−ブタジエン共重合体、塩化ビニル−イソプレン共重合体、塩化ビニル−塩素化プロピレン共重合体、塩化ビニル−塩化ビニリデン−酢酸ビニル共重合体、塩化ビニル−マレイン酸エステル共重合体、塩化ビニル−メタクリル酸エステル共重合体、塩化ビニル−アクリロニトリル共重合体、塩化ビニル−各種ビニルエーテル共重合体などを挙げることができる。これらの塩化ビニル樹脂は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。なお、塩化ビニル樹脂の重合方法は、塊状重合、溶液重合、懸濁重合及び乳化重合など特に限定されない。   Examples of the vinyl chloride resin used in the soft vinyl chloride resin composition of the present embodiment include polyvinyl chloride, chlorinated polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, vinyl chloride-vinyl acetate copolymer, vinyl chloride. -Ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride copolymer , Vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate copolymer, chloride Vinyl-maleic acid ester copolymer, vinyl chloride-methacrylic acid ester copolymer Body, vinyl chloride - acrylonitrile copolymer, vinyl chloride - may be mentioned various vinyl ether copolymers. These vinyl chloride resins may be used individually by 1 type, and may be used in combination of 2 or more type. The polymerization method of the vinyl chloride resin is not particularly limited, such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.

塩化ビニル樹脂の平均重合度(重量平均重合度)は特に限定されないが、500〜5000であることが好ましく、1000〜3000であることがより好ましい。平均重合度が500以上であることにより、軟質塩化ビニル樹脂組成物の耐摩耗性の低下を抑制することができる。また、平均重合度が5000以下であることにより、軟質塩化ビニル樹脂組成物を押出成形する場合、押出成形時の溶融粘度の上昇を抑制し、さらに混練及び成形加工性の悪化を防止することができる。なお、本実施形態の軟質塩化ビニル樹脂組成物では、上記重合度の範囲にある塩化ビニル樹脂を一種又は二種以上を組み合わせて使用してもよい。   The average degree of polymerization (weight average degree of polymerization) of the vinyl chloride resin is not particularly limited, but is preferably 500 to 5000, more preferably 1000 to 3000. When the average degree of polymerization is 500 or more, a decrease in wear resistance of the soft vinyl chloride resin composition can be suppressed. Further, when the average polymerization degree is 5000 or less, when extruding a soft vinyl chloride resin composition, it is possible to suppress an increase in melt viscosity during extrusion molding and to further prevent deterioration of kneading and molding processability. it can. In addition, in the soft vinyl chloride resin composition of this embodiment, you may use the vinyl chloride resin in the range of the said polymerization degree 1 type or in combination of 2 or more types.

通常、塩化ビニル樹脂は硬度が高いため、柔軟性を付与するために可塑剤を添加している。塩化ビニル樹脂に用いる可塑剤としては、一般的に常温(5〜35℃)で液状の可塑剤が用いられる。このような、常温で液状の可塑剤としては、例えばトリメリット酸系可塑剤、ピロメリット酸系可塑剤、フタル酸系可塑剤、脂肪族二塩基酸系可塑剤、エポキシ系可塑剤、リン酸エステル系可塑剤、ポリエステル系可塑剤、エーテルエステル系可塑剤を挙げることができる。ただ、塩化ビニル樹脂に対して常温で液状の可塑剤を使用した場合、得られる樹脂組成物の内部に水が浸入しやすくなり、樹脂組成物の耐水性が低下する。そのため、樹脂組成物を電線やケーブルのシースに用いた場合、長期間に亘る耐水性及び耐久性を確保することができない可能性がある。   Usually, since a vinyl chloride resin has high hardness, in order to provide a softness | flexibility, the plasticizer is added. As a plasticizer used for the vinyl chloride resin, a plasticizer that is liquid at room temperature (5-35 ° C.) is generally used. Examples of such plasticizers that are liquid at room temperature include trimellitic acid plasticizers, pyromellitic acid plasticizers, phthalic acid plasticizers, aliphatic dibasic acid plasticizers, epoxy plasticizers, and phosphoric acid. Examples include ester plasticizers, polyester plasticizers, and ether ester plasticizers. However, when a plasticizer that is liquid at room temperature is used with respect to the vinyl chloride resin, water easily enters the resulting resin composition, and the water resistance of the resin composition is reduced. Therefore, when a resin composition is used for the sheath of an electric wire or a cable, water resistance and durability over a long period of time may not be ensured.

また、塩化ビニル樹脂に柔軟性を付与するために、エチレン−酢酸ビニル共重合体(EVA)を用いることがある。エチレン−酢酸ビニル共重合体は、分子内に酢酸ビニルユニットを有している。そして、エチレン−酢酸ビニル共重合体中の酢酸ビニルユニットが増加することにより、樹脂組成物の柔軟性が高まる。ただ、液状の可塑剤と比べて、エチレン−酢酸ビニル共重合体を塩化ビニル樹脂に均一に混合することは困難である。また、エチレン−酢酸ビニル共重合体を添加したとしても、得られる塩化ビニル樹脂組成物の硬度が低下し難いという問題がある。   In order to impart flexibility to the vinyl chloride resin, an ethylene-vinyl acetate copolymer (EVA) may be used. The ethylene-vinyl acetate copolymer has vinyl acetate units in the molecule. And the softness | flexibility of a resin composition improves because the vinyl acetate unit in an ethylene-vinyl acetate copolymer increases. However, it is difficult to uniformly mix the ethylene-vinyl acetate copolymer with the vinyl chloride resin as compared with the liquid plasticizer. Moreover, even if an ethylene-vinyl acetate copolymer is added, there is a problem that the hardness of the resulting vinyl chloride resin composition is hardly lowered.

そのため、軟質塩化ビニル樹脂組成物は、塩化ビニル樹脂に、メタクリル酸メチル−ブタジエン−スチレン共重合体(MBS)と、メタクリル酸メチル系高分子(MMA系高分子)と、シリカ粒子とを添加している。メタクリル酸メチル−ブタジエン−スチレン共重合体は、常温時及び低温時のゴム弾性が高い。そのため、塩化ビニル樹脂とMBSとを混合することにより、樹脂組成物に柔軟性と弾性を付与することが可能となる。メタクリル酸メチル系高分子は、当該メタクリル酸メチル系高分子の長鎖が塩化ビニル樹脂の分子と絡まることにより、擬似架橋状態を作ることができる。そのため、塩化ビニル樹脂のゲル化を促進し、加工性を高めることができる。さらに、メタクリル酸メチル系高分子は、得られる樹脂組成物に溶融弾性を付与し、溶融張力を高めることができる。そのため、メタクリル酸メチル系高分子とMBSとの併用により、MBSを高分散させることが可能となる。また、シリカ粒子を添加することにより、軟質塩化ビニル樹脂組成物の剛性及び耐熱性を高め、後述するケーブルのシースとして好適に用いることができる。   Therefore, the soft vinyl chloride resin composition is obtained by adding methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate polymer (MMA polymer), and silica particles to vinyl chloride resin. ing. The methyl methacrylate-butadiene-styrene copolymer has high rubber elasticity at normal temperature and low temperature. Therefore, by mixing the vinyl chloride resin and MBS, it becomes possible to impart flexibility and elasticity to the resin composition. The methyl methacrylate polymer can create a pseudo-crosslinked state by the long chain of the methyl methacrylate polymer entangled with the vinyl chloride resin molecule. Therefore, the gelatinization of the vinyl chloride resin can be promoted and workability can be improved. Furthermore, the methyl methacrylate polymer can impart melt elasticity to the resulting resin composition and increase the melt tension. Therefore, MBS can be highly dispersed by the combined use of methyl methacrylate polymer and MBS. Further, by adding silica particles, the rigidity and heat resistance of the soft vinyl chloride resin composition can be increased, and it can be suitably used as a sheath of a cable described later.

メタクリル酸メチル系高分子は、メタクリル酸メチルと、当該メタクリル酸メチルと共重合可能なモノマーとの共重合体を用いることができる。メタクリル酸メチルと共重合可能なモノマーとしては、例えばアルキル基の炭素数1〜10である(メタ)アクリル酸アルキルエステルが好ましい。具体的には、メタクリル酸メチルと共重合可能なモノマーとしては、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、メタクリル酸エポキシシクロヘキシルメチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸グリシジル、アクリル酸エポキシシクロヘキシルメチル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル等のアクリル酸エステル類;メタクリル酸、アクリル酸などのカルボン酸類およびそのエステル類;アクリロニトリル、メタクリロニトリルなどのビニルシアン類;スチレン、α−メチルスチレン、モノクロロスチレン、ジクロロスチレン等のビニルアレーン類;マレイン酸、フマル酸およびそれらのエステル等;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレンなどのアルケン類;ハロゲン化アルケン類;アリルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、モノエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ジビニルベンゼンなどの多官能性モノマーが挙げられる。これらのビニル単量体は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。   As the methyl methacrylate polymer, a copolymer of methyl methacrylate and a monomer copolymerizable with the methyl methacrylate can be used. As a monomer copolymerizable with methyl methacrylate, for example, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 10 carbon atoms is preferred. Specifically, monomers copolymerizable with methyl methacrylate include ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, glycidyl methacrylate, epoxycyclohexylmethyl methacrylate, 2-hydroxyethyl methacrylate, Methacrylic acid esters such as 2-hydroxypropyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, epoxycyclohexylmethyl acrylate, 2-hydroxyethyl acrylate, acrylic acid Acrylic esters such as 2-hydroxypropyl; carboxylic acids such as methacrylic acid and acrylic acid and esters thereof; vinyl shear such as acrylonitrile and methacrylonitrile Vinylenes such as styrene, α-methylstyrene, monochlorostyrene, dichlorostyrene; maleic acid, fumaric acid and esters thereof; vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; vinyl acetate; ethylene Alkenes such as propylene, butylene, butadiene, isobutylene; halogenated alkenes; allyl methacrylate, diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, divinylbenzene, etc. These multifunctional monomers are mentioned. These vinyl monomers may be used individually by 1 type, and may be used in combination of 2 or more type.

シリカ粒子は、軟質塩化ビニル樹脂組成物の剛性及び耐熱性を高めることが可能な粒子であれば特に限定されない。シリカ粒子としては、例えば微粒子状シリカ及びフュームドシリカの少なくとも一方を用いることができる。また、シリカ粒子は、二酸化珪素(SiO)及びケイ酸塩の少なくとも一方を含むことが好ましい。ケイ酸塩としては、タルク、クレー、マイカ、アスベスト、ベントナイト、セピオライト、ケイ酸カルシウム、ケイ酸アルミニウム、モンモリロナイトからなる群より選ばれる少なくとも一つを用いることができる。また、シランカップリング剤を用いて、シリカ粒子の表面を親水性又は疎水性に修飾してもよい。 The silica particles are not particularly limited as long as they can increase the rigidity and heat resistance of the soft vinyl chloride resin composition. As the silica particles, for example, at least one of fine particle silica and fumed silica can be used. Further, the silica particles preferably comprise at least one of silicon dioxide (SiO 2) and silicates. As the silicate, at least one selected from the group consisting of talc, clay, mica, asbestos, bentonite, sepiolite, calcium silicate, aluminum silicate, and montmorillonite can be used. Moreover, you may modify the surface of a silica particle to hydrophilicity or hydrophobicity using a silane coupling agent.

シリカ粒子の粒子径も特に限定されないが、分散性を高める観点から、シリカ粒子の平均粒子径(メジアン径(D50))は10nm〜1μmとすることが好ましい。なお、シリカ粒子の平均粒子径は、レーザー回折式粒度分布測定装置により求めることができる。   The particle diameter of the silica particles is not particularly limited, but from the viewpoint of enhancing dispersibility, the average particle diameter (median diameter (D50)) of the silica particles is preferably 10 nm to 1 μm. In addition, the average particle diameter of a silica particle can be calculated | required with the laser diffraction type particle size distribution measuring apparatus.

本実施形態の軟質塩化ビニル樹脂組成物において、塩化ビニル樹脂100質量部に対し、メタクリル酸メチル−ブタジエン−スチレン共重合体(MBS)の含有量が30〜100質量部であることが好ましい。MBSの含有量が30質量部未満の場合には、軟質塩化ビニル樹脂組成物の柔軟性が不十分となり、シースの可撓性が低下する恐れがある。また、MBSの含有量が100質量部を超える場合には、軟質塩化ビニル樹脂組成物の吸水性が高まるため、シースの耐水性が低下する恐れがある。   In the soft vinyl chloride resin composition of the present embodiment, the content of methyl methacrylate-butadiene-styrene copolymer (MBS) is preferably 30 to 100 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. When the content of MBS is less than 30 parts by mass, the flexibility of the soft vinyl chloride resin composition becomes insufficient, and the flexibility of the sheath may be reduced. On the other hand, if the MBS content exceeds 100 parts by mass, the water absorption of the soft vinyl chloride resin composition is increased, which may reduce the water resistance of the sheath.

軟質塩化ビニル樹脂組成物において、塩化ビニル樹脂100質量部に対し、メタクリル酸メチル系高分子(MMA系高分子)の含有量が1〜10質量部であり、シリカ粒子の含有量が0.5〜6質量部であることが好ましい。MMA系高分子及びシリカ粒子の含有量がこの範囲内であることにより、樹脂組成物の吸水性を低下させつつも、引張強さ及び硬度を高め、耐久性を向上させることが可能となる。   In the soft vinyl chloride resin composition, the content of methyl methacrylate polymer (MMA polymer) is 1 to 10 parts by mass with respect to 100 parts by mass of vinyl chloride resin, and the content of silica particles is 0.5. It is preferably ˜6 parts by mass. When the content of the MMA-based polymer and silica particles is within this range, it is possible to increase the tensile strength and hardness and improve the durability while reducing the water absorption of the resin composition.

ここで、上述のように、常温で液状の可塑剤を用いた場合、塩化ビニル樹脂組成物の柔軟性に加えて吸水性も高まるため、樹脂組成物の耐水性が低下する。そのため、本実施形態の軟質塩化ビニル樹脂組成物は、液状の可塑剤を可能な限り含有しないことが好ましい。軟質塩化ビニル樹脂組成物において、塩化ビニル樹脂100質量部に対し、常温で液状の可塑剤の含有量は9質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。なお、軟質塩化ビニル樹脂組成物において、液状の可塑剤を含まないことが特に好ましい。ただ、軟質塩化ビニル樹脂組成物の耐水性に影響を与えないならば、少量の液状可塑剤を含有してもよい。   Here, as described above, when a plasticizer that is liquid at room temperature is used, the water absorption is increased in addition to the flexibility of the vinyl chloride resin composition, so that the water resistance of the resin composition is lowered. Therefore, it is preferable that the soft vinyl chloride resin composition of this embodiment does not contain a liquid plasticizer as much as possible. In the soft vinyl chloride resin composition, the content of the plasticizer that is liquid at room temperature is preferably 9 parts by mass or less, more preferably 5 parts by mass or less, with respect to 100 parts by mass of the vinyl chloride resin. More preferably, it is at most parts. In addition, it is especially preferable that a soft vinyl chloride resin composition does not contain a liquid plasticizer. However, a small amount of a liquid plasticizer may be contained as long as it does not affect the water resistance of the soft vinyl chloride resin composition.

同様に、エチレン−酢酸ビニル共重合体(EVA)を用いた場合、塩化ビニル樹脂組成物の柔軟性は高まるが加工性が低下する。そのため、本実施形態の軟質塩化ビニル樹脂組成物は、EVAを可能な限り含有しないことが好ましい。軟質塩化ビニル樹脂組成物において、塩化ビニル樹脂100質量部に対し、EVAの含有量は9質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。なお、軟質塩化ビニル樹脂組成物において、EVAを含まないことが特に好ましい。ただ、軟質塩化ビニル樹脂組成物の耐水性に影響を与えないならば、少量のEVAを含有してもよい。   Similarly, when an ethylene-vinyl acetate copolymer (EVA) is used, the flexibility of the vinyl chloride resin composition increases, but the processability decreases. Therefore, it is preferable that the soft vinyl chloride resin composition of this embodiment does not contain EVA as much as possible. In the soft vinyl chloride resin composition, the EVA content is preferably 9 parts by mass or less, more preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin. Is more preferable. In addition, it is especially preferable that a soft vinyl chloride resin composition does not contain EVA. However, a small amount of EVA may be contained as long as it does not affect the water resistance of the soft vinyl chloride resin composition.

本実施形態の軟質塩化ビニル樹脂組成物は、上記材料に加えて種々の添加剤を配合することが可能である。添加剤としては、安定剤、滑剤、充填材、難燃剤、顔料、酸化防止剤、増量剤、金属不活性剤、老化防止剤、補強剤、紫外線吸収剤、染料、着色剤、帯電防止剤、発泡剤等が挙げられる。   The soft vinyl chloride resin composition of the present embodiment can contain various additives in addition to the above materials. Additives include stabilizers, lubricants, fillers, flame retardants, pigments, antioxidants, extenders, metal deactivators, anti-aging agents, reinforcing agents, UV absorbers, dyes, colorants, antistatic agents, A foaming agent etc. are mentioned.

本実施形態の軟質塩化ビニル樹脂組成物は、日本工業規格JIS K6723に規定の引張強さが10MPa以上であり、JIS K6723に規定の伸びが120%以上であり、JIS K7215に規定のデュロメータ硬さが82〜96であることが好ましい。引張強さ、伸び及びデュロメータ硬さがこの範囲内であることにより、ケーブルのシースとして用いた場合、可撓性に加え、シースに必要な強度も確保することが可能となる。   The soft vinyl chloride resin composition of the present embodiment has a tensile strength defined in Japanese Industrial Standard JIS K6723 of 10 MPa or more, an elongation defined in JIS K6723 of 120% or more, and a durometer hardness defined in JIS K7215. Is preferably 82-96. When the tensile strength, elongation, and durometer hardness are within these ranges, when used as a cable sheath, in addition to flexibility, the strength required for the sheath can be secured.

次に、本実施形態の軟質塩化ビニル樹脂組成物の製造方法について説明する。軟質塩化ビニル樹脂組成物は、上述の材料を加熱して混練することにより調製されるが、その方法は公知の手段を用いることができる。例えば、上述の材料をバンバリーミキサー、加圧ニーダー、混練押出機、二軸押出機、ロールミル等の公知の混練機を用いて混練することにより、軟質塩化ビニル樹脂組成物を得ることができる。また、上述の材料を予めタンブラー等を用いてドライブレンドした後、上述の混練機を用いて混練してもよい。このように加熱混練することで、本実施形態の軟質塩化ビニル樹脂組成物を得ることができる。   Next, the manufacturing method of the soft vinyl chloride resin composition of this embodiment is demonstrated. The soft vinyl chloride resin composition is prepared by heating and kneading the above materials, and known methods can be used for the method. For example, a soft vinyl chloride resin composition can be obtained by kneading the above materials using a known kneader such as a Banbury mixer, a pressure kneader, a kneading extruder, a twin screw extruder, or a roll mill. Alternatively, the above materials may be dry blended in advance using a tumbler or the like and then kneaded using the above kneader. Thus, the soft vinyl chloride resin composition of this embodiment can be obtained by heat-kneading.

本実施形態の軟質塩化ビニル樹脂組成物は、電子線照射や放射線照射などの架橋工程を施して、塩化ビニル樹脂やMBS、MMA系高分子を架橋する必要がない。つまり、当該軟質塩化ビニル樹脂組成物は、塩化ビニル樹脂と、MBSと、MMA系高分子と、シリカ粒子と、必要に応じて添加する添加剤とを混練することにより調製することができる。そのため、簡易な工程により、軟質塩化ビニル樹脂組成物を容易に得ることが可能となる。   The soft vinyl chloride resin composition of the present embodiment does not need to be subjected to a crosslinking step such as electron beam irradiation or radiation irradiation to crosslink the vinyl chloride resin, MBS, or MMA polymer. That is, the soft vinyl chloride resin composition can be prepared by kneading a vinyl chloride resin, MBS, an MMA polymer, silica particles, and an additive to be added as necessary. Therefore, it becomes possible to easily obtain a soft vinyl chloride resin composition by a simple process.

このように、本実施形態に係る軟質塩化ビニル樹脂組成物は、塩化ビニル樹脂と、メタクリル酸メチル−ブタジエン−スチレン共重合体と、メタクリル酸メチル系高分子と、シリカ粒子とを含有する。塩化ビニル樹脂100質量部に対して、メタクリル酸メチル−ブタジエン−スチレン共重合体の含有量が30〜100質量部であり、メタクリル酸メチル系高分子の含有量が1〜10質量部であり、シリカ粒子の含有量が0.5〜6質量部である。そして、常温で液状である可塑剤の含有量が、塩化ビニル樹脂100質量部に対して9質量部以下である。本実施形態の軟質塩化ビニル樹脂組成物はMBSを含むことから、柔軟性を高めることが可能となる。さらにMMA系高分子及びシリカ粒子を含むことにより、軟質塩化ビニル樹脂組成物の強度を高め、ケーブルのシースとして好適に用いることができる。また、軟質塩化ビニル樹脂組成物は、常温で液状の可塑剤の添加量を極力低減しているため、吸水性を抑制して耐水性を高めることが可能となる。   Thus, the soft vinyl chloride resin composition according to the present embodiment contains a vinyl chloride resin, a methyl methacrylate-butadiene-styrene copolymer, a methyl methacrylate polymer, and silica particles. The content of methyl methacrylate-butadiene-styrene copolymer is 30 to 100 parts by mass and the content of methyl methacrylate polymer is 1 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. The content of silica particles is 0.5 to 6 parts by mass. And content of the plasticizer which is liquid at normal temperature is 9 mass parts or less with respect to 100 mass parts of vinyl chloride resins. Since the soft vinyl chloride resin composition of this embodiment contains MBS, it becomes possible to increase flexibility. Further, by containing MMA polymer and silica particles, the strength of the soft vinyl chloride resin composition can be increased, and it can be suitably used as a sheath of a cable. In addition, since the soft vinyl chloride resin composition reduces the addition amount of the plasticizer that is liquid at room temperature as much as possible, it is possible to suppress water absorption and increase water resistance.

[耐水性ケーブル]
次に、本実施形態に係る耐水性ケーブルについて説明する。図1に示すように、耐水性ケーブル1は、束ねられた複数の絶縁電線10と、束ねられた複数の絶縁電線10の周縁を覆う、被覆材としてのシース20とを備える。なお、耐水性ケーブル1は、必ずしも複数の絶縁電線10を束ねている必要はなく、1本の絶縁電線10の周りをシース20で覆ったものとしてもよい。
[Waterproof cable]
Next, the water resistant cable according to the present embodiment will be described. As shown in FIG. 1, the water-resistant cable 1 includes a plurality of bundled insulated wires 10 and a sheath 20 as a covering material that covers the peripheral edges of the bundled insulated wires 10. In addition, the water-resistant cable 1 does not necessarily have to bundle a plurality of insulated wires 10 and may be one in which a single insulated wire 10 is covered with a sheath 20.

絶縁電線10は、導体11と、導体11を被覆する絶縁体12とを備えている。導体11としては、1本の素線で構成された単線を用いてもよく、また複数の素線を撚り合わせて構成された撚り線導体を用いてもよい。撚り線導体も、1本又は数本の素線を中心とし、その周囲に素線を同心状に撚り合わせた同心撚り線;複数の素線を一括して同方向に撚り合わせた集合撚り線;複数の集合撚り線を同心状に撚り合わせた複合撚り線のいずれも使用することができる。導体11の直径及び撚り線導体を構成する各素線の直径も特に限定されない。さらに、導体11及び撚り線導体の材料も特に限定されず、例えば銅、銅合金及びアルミニウム、アルミニウム合金等の公知の導電性金属材料を用いることができる。また、導体11及び撚り線導体の表面にはめっきを施してもよく、例えば錫めっき、銀めっき、ニッケルめっきを施してもよい。   The insulated wire 10 includes a conductor 11 and an insulator 12 that covers the conductor 11. As the conductor 11, a single wire constituted by one strand may be used, or a stranded wire conductor constituted by twisting a plurality of strands may be used. A stranded conductor is also a concentric stranded wire in which one or several strands are centered and the strands are concentrically twisted around it; a collective stranded wire in which a plurality of strands are twisted together in the same direction Any of the composite strands in which a plurality of aggregate strands are twisted concentrically can be used. The diameter of the conductor 11 and the diameter of each strand constituting the stranded conductor are not particularly limited. Furthermore, the materials of the conductor 11 and the stranded wire conductor are not particularly limited, and for example, known conductive metal materials such as copper, copper alloy, aluminum, and aluminum alloy can be used. Moreover, the surface of the conductor 11 and the strand wire conductor may be plated, for example, tin plating, silver plating, or nickel plating may be applied.

絶縁電線10の外周を被覆する絶縁体12は、導体11に対する電気絶縁性を確保することができるならば、材料及び厚さは特に限定されない。絶縁体12は、架橋ポリエチレンやポリプロピレン等のオレフィン樹脂、塩化ビニルなどの電気絶縁性樹脂を任意に使用できる。具体的には、絶縁体12を構成する樹脂材料としては、例えば、塩化ビニル、耐熱塩化ビニル、架橋塩化ビニル、ポリエチレン、架橋ポリエチレン、発泡ポリエチレン、架橋発泡ポリエチレン、塩素化ポリエチレン、ポリプロピレン、ポリアミド(ナイロン)、ポリフッ化ビニリデン、エチレン−四フッ化エチレン共重合体、四フッ化エチレン−六フッ化プロピレン共重合体、四フッ化エチレン、パーフルオロアルコキシアルカン、天然ゴム、クロロプレンゴム、ブチルゴム、エチレンプロピレンゴム、クロロスルホン化ポリエチレンゴム、シリコーンゴムを用いることができる。これらの材料は一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。   The insulator 12 that covers the outer periphery of the insulated wire 10 is not particularly limited in material and thickness as long as electrical insulation with respect to the conductor 11 can be secured. As the insulator 12, an olefin resin such as cross-linked polyethylene or polypropylene, or an electrically insulating resin such as vinyl chloride can be arbitrarily used. Specifically, as the resin material constituting the insulator 12, for example, vinyl chloride, heat-resistant vinyl chloride, crosslinked vinyl chloride, polyethylene, crosslinked polyethylene, expanded polyethylene, crosslinked expanded polyethylene, chlorinated polyethylene, polypropylene, polyamide (nylon) ), Polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, ethylene tetrafluoride-hexafluoropropylene copolymer, tetrafluoroethylene, perfluoroalkoxyalkane, natural rubber, chloroprene rubber, butyl rubber, ethylene propylene rubber Chlorosulfonated polyethylene rubber and silicone rubber can be used. These materials may be used individually by 1 type, and may be used in combination of 2 or more types.

本実施形態の耐水性ケーブル1において、絶縁電線10の周縁を覆うシース20は上述の軟質塩化ビニル樹脂組成物を含有することが好ましく、またシース20は軟質塩化ビニル樹脂組成物からなることがより好ましい。上述のように、本実施形態の軟質塩化ビニル樹脂組成物は、柔軟性を有しつつも高い耐水性及び強度を有しているため、シース20として好適に用いることができる。   In the water resistant cable 1 of the present embodiment, the sheath 20 covering the periphery of the insulated wire 10 preferably contains the above-mentioned soft vinyl chloride resin composition, and the sheath 20 is more preferably made of the soft vinyl chloride resin composition. preferable. As described above, the soft vinyl chloride resin composition of the present embodiment can be suitably used as the sheath 20 because it has flexibility and high water resistance and strength.

ここで、耐水性ケーブル1は、特許文献1の遮水ケーブルで用いている、金属製の遮水層を使用する必要がない。つまり、図1に示すように、絶縁電線10とシース20との間には、金属製の遮水層を設けておらず、絶縁電線10の表面とシース20の内面は直接接触した状態となっている。上述のように、本実施形態の軟質塩化ビニル樹脂組成物は遮水性が高いため、金属製の遮水層を用いなくても耐水性ケーブル1の耐水性を高めることが可能となる。また、耐水性ケーブル1は金属製の遮水層を用いないため、可撓性も高めることが可能となる。さらに、金属製の遮水層を用いていないため、シース20を容易に切断でき、耐水性ケーブル1の加工性を高めることが可能となる。   Here, the water-resistant cable 1 does not need to use a metal water-proof layer used in the water-proof cable of Patent Document 1. That is, as shown in FIG. 1, a metal water shielding layer is not provided between the insulated wire 10 and the sheath 20, and the surface of the insulated wire 10 and the inner surface of the sheath 20 are in direct contact with each other. ing. As described above, since the soft vinyl chloride resin composition of the present embodiment has high water barrier properties, the water resistance of the water resistant cable 1 can be increased without using a metal water barrier layer. Moreover, since the water-resistant cable 1 does not use a metal water-impervious layer, the flexibility can be enhanced. Furthermore, since the metal water-impervious layer is not used, the sheath 20 can be easily cut and the workability of the water-resistant cable 1 can be improved.

耐水性ケーブル1におけるシース20は、公知の方法により作製することができ、例えば一般的な押出成形法により作製することができる。具体的には、絶縁電線10を1本又は複数本束ねた後、それらの外部に軟質塩化ビニル樹脂組成物を押し出して被覆することにより、シース20を形成することができる。   The sheath 20 in the water-resistant cable 1 can be produced by a known method, for example, can be produced by a general extrusion molding method. Specifically, the sheath 20 can be formed by bundling one or a plurality of insulated wires 10 and then extruding and covering the outside with a soft vinyl chloride resin composition.

本実施形態の耐水性ケーブル1は、図1に示すように、シース20が単層であってもよい。つまり、シース20は、軟質塩化ビニル樹脂組成物からなる単層の被覆材であってもよい。しかしながら、シース20はこのような単層構造に限定されず、例えば構成材料が異なる複数の樹脂層を積層してなる複層構造であってもよい。   In the water resistant cable 1 of the present embodiment, the sheath 20 may be a single layer, as shown in FIG. That is, the sheath 20 may be a single-layer coating material made of a soft vinyl chloride resin composition. However, the sheath 20 is not limited to such a single layer structure, and may be a multilayer structure formed by laminating a plurality of resin layers having different constituent materials, for example.

具体的には、図2に示すように、シース20Aは、絶縁電線10を被覆する内層21と、内層21を被覆するスキン層22とを備える複層構造であってもよい。そして、スキン層22は、上述の軟質塩化ビニル樹脂組成物を含有することが好ましく、軟質塩化ビニル樹脂組成物からなることがより好ましい。上述のように、本実施形態の軟質塩化ビニル樹脂組成物は、柔軟性を有しつつも高い耐水性及び強度を有しているため、最外層のスキン層22として好適に用いることができる。なお、内層21の構成材料は特に限定されないが、例えば、上述の絶縁体12の材料を用いることができる。   Specifically, as shown in FIG. 2, the sheath 20 </ b> A may have a multilayer structure including an inner layer 21 that covers the insulated wire 10 and a skin layer 22 that covers the inner layer 21. And it is preferable that the skin layer 22 contains the above-mentioned soft vinyl chloride resin composition, and it is more preferable to consist of a soft vinyl chloride resin composition. As described above, since the soft vinyl chloride resin composition of the present embodiment has flexibility and high water resistance and strength, it can be suitably used as the outermost skin layer 22. In addition, although the constituent material of the inner layer 21 is not specifically limited, For example, the material of the above-mentioned insulator 12 can be used.

なお、図2に示すように、絶縁電線10の長手方向に垂直な断面において、シース20A全体の厚みt1に対するスキン層22の厚みt2が10%以上であることが好ましい。スキン層22の厚みt2がシース20A全体の厚みt1の10%以上であることにより、スキン層22に必要な耐水性及び強度を確保することが可能となる。   2, in the cross section perpendicular to the longitudinal direction of the insulated wire 10, the thickness t2 of the skin layer 22 with respect to the thickness t1 of the entire sheath 20A is preferably 10% or more. When the thickness t2 of the skin layer 22 is 10% or more of the thickness t1 of the entire sheath 20A, it is possible to ensure the water resistance and strength necessary for the skin layer 22.

このように、本実施形態の耐水性ケーブル1,1Aは、導体11と導体11を被覆する絶縁体12とを備える、一又は複数の絶縁電線10と、絶縁電線10を被覆し、軟質塩化ビニル樹脂組成物を含むシース20,20Aとを備える。また、シース20Aは、絶縁電線10を被覆する内層21と、内層21を被覆し、かつ、軟質塩化ビニル樹脂組成物を含むスキン層22とを有していてもよい。本実施形態の軟質塩化ビニル樹脂組成物は、柔軟性を有しつつも高い耐水性及び強度を有しているため、シース20,20Aとして用いた場合、耐水性と可撓性を兼ね備えた耐水性ケーブル1,1Aを得ることが可能となる。   As described above, the water-resistant cable 1, 1A of the present embodiment includes one or a plurality of insulated wires 10 including the conductor 11 and the insulator 12 that covers the conductor 11, and the insulated wire 10, and is made of soft vinyl chloride. And sheaths 20 and 20A containing a resin composition. The sheath 20A may have an inner layer 21 that covers the insulated wire 10 and a skin layer 22 that covers the inner layer 21 and contains a soft vinyl chloride resin composition. Since the soft vinyl chloride resin composition of the present embodiment has high water resistance and strength while having flexibility, when it is used as the sheath 20 or 20A, it is water resistant that has both water resistance and flexibility. Cable 1 and 1A can be obtained.

なお、図1及び図2では、シース20,20Aに軟質塩化ビニル樹脂組成物を使用した例を説明したが、本実施形態はこのような態様に限定されない。本実施形態の軟質塩化ビニル樹脂組成物は電気絶縁性も有するため、絶縁電線10における絶縁体12として用いてもよい。   In addition, although the example which used the soft vinyl chloride resin composition for sheath 20 and 20A was demonstrated in FIG.1 and FIG.2, this embodiment is not limited to such an aspect. Since the soft vinyl chloride resin composition of this embodiment also has electrical insulation, it may be used as the insulator 12 in the insulated wire 10.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

まず、混練機を用い、以下に示す塩化ビニル樹脂、メタクリル酸メチル−ブタジエン−スチレン共重合体(MBS)、メタクリル酸メチル系高分子(MMA系高分子)、シリカ粒子、安定剤、可塑剤を表1及び表2に示す配合量で溶融混練した。これにより、各実施例及び比較例の樹脂組成物を調製した。   First, using a kneader, the following vinyl chloride resin, methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate polymer (MMA polymer), silica particles, stabilizer, and plasticizer were added. Melt kneading was carried out at the blending amounts shown in Tables 1 and 2. Thereby, the resin composition of each Example and the comparative example was prepared.

・塩化ビニル樹脂:大洋塩ビ株式会社製、TH塩ビホモポリマーTH−1300
・メタクリル酸メチル−ブタジエン−スチレン共重合体(MBS):三菱ケミカル株式会社製、樹脂改質剤メタブレン(登録商標)C−223A
・MMA系高分子:三菱ケミカル株式会社製、樹脂改質剤メタブレン(登録商標)P−530A(アクリル酸ブチル−メタクリル酸メチル共重合体)
・シリカ粒子:日本アエロジル株式会社、AEROSIL(登録商標)R972(疎水性フュームドシリカ)
・安定剤:カルシウム−亜鉛系安定剤
・液状可塑剤:株式会社ジェイ・プラス社製、DINP(フタル酸ジイソノニル)
Vinyl chloride resin: manufactured by Taiyo PVC Co., Ltd., TH PVC homopolymer TH-1300
-Methyl methacrylate-butadiene-styrene copolymer (MBS): manufactured by Mitsubishi Chemical Corporation, resin modifier Metabrene (registered trademark) C-223A
MMA polymer: Mitsubishi Chemical Corporation, resin modifier Methbrene (registered trademark) P-530A (butyl acrylate-methyl methacrylate copolymer)
Silica particles: Nippon Aerosil Co., Ltd., AEROSIL (registered trademark) R972 (hydrophobic fumed silica)
・ Stabilizer: Calcium-zinc stabilizer ・ Liquid plasticizer: DINP (Diisononyl phthalate), manufactured by J. Plus

Figure 2018193473
Figure 2018193473

Figure 2018193473
Figure 2018193473

[評価]
実施例1〜8及び比較例1〜3の樹脂組成物について、引張強さ、伸び及びデュロメータ硬さを測定した。具体的には、引張強さ及び伸びは、日本工業規格JIS K6723(軟質ポリ塩化ビニルコンパウンド)の6.3引張試験に準じて行った。また、デュロメータ硬さは、JIS K7215(プラスチックのデュロメータ硬さ試験方法)に準じて行った。なお、デュロメータ硬さ試験において、デュロメータとしてはJIS A硬度計を用い、試験温度は23±2℃とし、荷重保持時間は10秒とした。各例の樹脂組成物における引張強さ、伸び及びデュロメータ硬さの測定結果を表1及び表2に合わせて示す。
[Evaluation]
About the resin composition of Examples 1-8 and Comparative Examples 1-3, tensile strength, elongation, and durometer hardness were measured. Specifically, the tensile strength and elongation were performed in accordance with the 6.3 tensile test of Japanese Industrial Standard JIS K6723 (soft polyvinyl chloride compound). The durometer hardness was measured according to JIS K7215 (plastic durometer hardness test method). In the durometer hardness test, a JIS A hardness meter was used as the durometer, the test temperature was 23 ± 2 ° C., and the load holding time was 10 seconds. Tables 1 and 2 show the measurement results of tensile strength, elongation and durometer hardness in the resin compositions of the respective examples.

さらに、実施例1〜8及び比較例1〜3の樹脂組成物について、吸水性を評価した。具体的には、実施例1〜8及び比較例1〜3の樹脂組成物を成形し、縦20mm、横20mm、厚さ1mmの板状の試験片を作製した。そして、各例の樹脂組成物からなる試験片に関し、純水への浸漬前の質量を測定した。次に、当該試験片を70℃の純水に浸漬し、360時間保持した。そして、純水へ浸漬した後の試験片の質量を測定し、次の式から吸水率を求めた。
[数1]
吸水率(%)=[(浸漬後の試験片の質量)−(浸漬前の試験片の質量)]/[浸漬前の試験片の質量]×100
Furthermore, water absorption was evaluated about the resin composition of Examples 1-8 and Comparative Examples 1-3. Specifically, the resin compositions of Examples 1 to 8 and Comparative Examples 1 to 3 were molded to produce plate-shaped test pieces having a length of 20 mm, a width of 20 mm, and a thickness of 1 mm. And the mass before the immersion to a pure water was measured regarding the test piece which consists of a resin composition of each case. Next, the test piece was immersed in pure water at 70 ° C. and held for 360 hours. And the mass of the test piece after being immersed in a pure water was measured, and the water absorption was calculated | required from the following formula.
[Equation 1]
Water absorption (%) = [(mass of test piece after immersion) − (mass of test piece before immersion)] / [mass of test piece before immersion] × 100

試験片の吸水率が0.5%以下の場合を「○」と評価し、吸水率が0.5%を超える場合を「×」と評価した。各樹脂組成物における吸水性の評価結果を表1及び表2に合わせて示す。   The case where the water absorption rate of the test piece was 0.5% or less was evaluated as “◯”, and the case where the water absorption rate exceeded 0.5% was evaluated as “x”. The evaluation results of water absorption in each resin composition are shown together in Tables 1 and 2.

表1に示すように、実施例1〜8の樹脂組成物では、引張強さが10MPa以上となり、伸びが120%以上となり、デュロメータ硬さが82〜96となり、さらに吸水率も0.5%以下となることが分かる。つまり、塩化ビニル樹脂100質量部に対して、MBSが30〜100質量部であり、MMA系高分子が1〜10質量部であり、シリカ粒子が0.5〜6質量部であり、液状可塑剤を含まない場合には、強度、可撓性及び耐水性に優れることが分かる。   As shown in Table 1, in the resin compositions of Examples 1 to 8, the tensile strength was 10 MPa or more, the elongation was 120% or more, the durometer hardness was 82 to 96, and the water absorption was 0.5%. It turns out that it becomes the following. That is, with respect to 100 parts by mass of vinyl chloride resin, MBS is 30 to 100 parts by mass, MMA polymer is 1 to 10 parts by mass, silica particles are 0.5 to 6 parts by mass, When the agent is not included, it is understood that the strength, flexibility and water resistance are excellent.

これに対し、比較例1に示すように、塩化ビニル樹脂100質量部に対してMBSが30質量部未満の場合には、デュロメータ硬さが高まり、可撓性が悪化することが分かる。さらに、比較例2に示すように、塩化ビニル樹脂100質量部に対してMBSが100質量部を超える場合には、吸水率が高まり、耐水性が悪化することが分かる。また、比較例3に示すように、MBSが30〜100質量部であり、MMA系高分子が1〜10質量部であり、シリカ粒子が0.5〜6質量部の範囲内であっても、液状可塑剤を含む場合には吸水率が高まり、耐水性が悪化することが分かる。   In contrast, as shown in Comparative Example 1, when MBS is less than 30 parts by mass with respect to 100 parts by mass of the vinyl chloride resin, it can be seen that the durometer hardness is increased and the flexibility is deteriorated. Furthermore, as shown in Comparative Example 2, it is understood that when MBS exceeds 100 parts by mass with respect to 100 parts by mass of the vinyl chloride resin, the water absorption rate is increased and the water resistance is deteriorated. Moreover, as shown in Comparative Example 3, MBS is 30 to 100 parts by mass, MMA polymer is 1 to 10 parts by mass, and silica particles are in the range of 0.5 to 6 parts by mass. When the liquid plasticizer is included, the water absorption rate is increased and the water resistance is deteriorated.

以上、本発明を実施例及び比較例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。   Although the present invention has been described with reference to the examples and comparative examples, the present invention is not limited to these, and various modifications can be made within the scope of the gist of the present invention.

1,1A 耐水性ケーブル
10 絶縁電線
11 導体
12 絶縁体
20,20A シース
21 内層
22 スキン層
DESCRIPTION OF SYMBOLS 1,1A Water resistant cable 10 Insulated electric wire 11 Conductor 12 Insulator 20, 20A Sheath 21 Inner layer 22 Skin layer

Claims (5)

塩化ビニル樹脂と、メタクリル酸メチル−ブタジエン−スチレン共重合体と、メタクリル酸メチル系高分子と、シリカ粒子とを含有し、
前記塩化ビニル樹脂100質量部に対して、メタクリル酸メチル−ブタジエン−スチレン共重合体の含有量が30〜100質量部であり、メタクリル酸メチル系高分子の含有量が1〜10質量部であり、シリカ粒子の含有量が0.5〜6質量部であり、
常温で液状である可塑剤の含有量が、前記塩化ビニル樹脂100質量部に対して9質量部以下である、軟質塩化ビニル樹脂組成物。
Containing a vinyl chloride resin, a methyl methacrylate-butadiene-styrene copolymer, a methyl methacrylate polymer, and silica particles;
The content of methyl methacrylate-butadiene-styrene copolymer is 30 to 100 parts by mass and the content of methyl methacrylate polymer is 1 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. The content of silica particles is 0.5 to 6 parts by mass,
The soft vinyl chloride resin composition whose content of the plasticizer which is liquid at normal temperature is 9 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin.
JIS K6723に規定の引張強さが10MPa以上であり、JIS K6723に規定の伸びが120%以上であり、JIS K7215に規定のデュロメータ硬さが82〜96である、請求項1に記載の軟質塩化ビニル樹脂組成物。   The soft chloride according to claim 1, wherein the tensile strength specified in JIS K6723 is 10 MPa or more, the elongation specified in JIS K6723 is 120% or more, and the durometer hardness specified in JIS K7215 is 82-96. Vinyl resin composition. 導体と前記導体を被覆する絶縁体とを備える、一又は複数の絶縁電線と、
前記絶縁電線を被覆し、請求項1又は2に記載の軟質塩化ビニル樹脂組成物を含むシースと、
を備える、耐水性ケーブル。
One or more insulated wires comprising a conductor and an insulator covering the conductor; and
A sheath that covers the insulated wire and includes the soft vinyl chloride resin composition according to claim 1 or 2,
A water-resistant cable.
前記シースは、前記絶縁電線を被覆する内層と、前記内層を被覆し、かつ、前記軟質塩化ビニル樹脂組成物を含むスキン層とを有する、請求項3に記載の耐水性ケーブル。   The water-resistant cable according to claim 3, wherein the sheath has an inner layer that covers the insulated wire, and a skin layer that covers the inner layer and includes the soft vinyl chloride resin composition. 前記絶縁電線の長手方向に垂直な断面において、前記シース全体の厚みに対する前記スキン層の厚みが10%以上である、請求項4に記載の耐水性ケーブル。   The waterproof cable according to claim 4, wherein the thickness of the skin layer is 10% or more with respect to the thickness of the entire sheath in a cross section perpendicular to the longitudinal direction of the insulated wire.
JP2017098190A 2017-05-17 2017-05-17 Soft vinyl chloride resin composition and water resistant cable using it Active JP6890037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017098190A JP6890037B2 (en) 2017-05-17 2017-05-17 Soft vinyl chloride resin composition and water resistant cable using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098190A JP6890037B2 (en) 2017-05-17 2017-05-17 Soft vinyl chloride resin composition and water resistant cable using it

Publications (2)

Publication Number Publication Date
JP2018193473A true JP2018193473A (en) 2018-12-06
JP6890037B2 JP6890037B2 (en) 2021-06-18

Family

ID=64571113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098190A Active JP6890037B2 (en) 2017-05-17 2017-05-17 Soft vinyl chloride resin composition and water resistant cable using it

Country Status (1)

Country Link
JP (1) JP6890037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068087A (en) * 2021-11-18 2022-02-18 苏州毕毕西通讯系统有限公司 Water-locking non-leakage coaxial cable
CN116041872A (en) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 Migration-precipitation-resistant and aging-resistant PVC cable material composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041872A (en) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 Migration-precipitation-resistant and aging-resistant PVC cable material composition
CN116041872B (en) * 2021-10-28 2024-02-13 中国石油化工股份有限公司 Migration-precipitation-resistant and aging-resistant PVC cable material composition
CN114068087A (en) * 2021-11-18 2022-02-18 苏州毕毕西通讯系统有限公司 Water-locking non-leakage coaxial cable
CN114068087B (en) * 2021-11-18 2024-03-08 苏州毕毕西通讯系统有限公司 Coaxial cable capable of locking water and preventing leakage

Also Published As

Publication number Publication date
JP6890037B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6379776B2 (en) Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, electric wire and cable
JP7032038B2 (en) cable
JP6942484B2 (en) Sheath material and cable
JP2012246341A (en) Cable-coating vinyl chloride resin composition and cable using the same
JP2015074709A (en) Vinyl chloride resin composition, electric wire, and cable
JP5056601B2 (en) Non-halogen flame retardant thermoplastic elastomer resin composition, method for producing the same, and electric wire / cable using the same
JP6890037B2 (en) Soft vinyl chloride resin composition and water resistant cable using it
JP2016001560A (en) Insulated wire
JP5163597B2 (en) Non-halogen flame retardant resin composition, method for producing the same, and electric wire / cable using the same
JP5276891B2 (en) Heat and oil resistant insulated wire and method for manufacturing the same
JP2018014247A (en) Insulated wire and vinyl chloride resin composition
WO2016076085A1 (en) Composition for wire covering materials and insulated wire
JP6311502B2 (en) Fluorine-containing elastomer composition, and insulated wire and cable using the same
JP2015225837A (en) Insulated wire
WO2021039576A1 (en) Electrically insulated cable and sensor-integrated harness
JP2000030535A (en) Wire and cable covered with fluorine containing elastomer and manufacture thereof
JP7086477B2 (en) Wire or wire cable
WO2018101056A1 (en) Wire coating material composition and insulated wire
CA2911589A1 (en) Flame retardant pvc material
JP2012038648A (en) Vinyl insulating vinyl sheath cable
KR20200083275A (en) Resin composition for cable sheath and cable including the same
JP5213509B2 (en) Heat and oil resistant insulation composition, insulated wire and tube using the same
JP6564258B2 (en) Semiconductive resin composition and power cable using the same
KR20170008176A (en) Pvc composition, as well as electric wire and cable using the same
JP2016143506A (en) Insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6890037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250