JP2018189622A - Interference microscope - Google Patents

Interference microscope Download PDF

Info

Publication number
JP2018189622A
JP2018189622A JP2017103108A JP2017103108A JP2018189622A JP 2018189622 A JP2018189622 A JP 2018189622A JP 2017103108 A JP2017103108 A JP 2017103108A JP 2017103108 A JP2017103108 A JP 2017103108A JP 2018189622 A JP2018189622 A JP 2018189622A
Authority
JP
Japan
Prior art keywords
optical path
interference
sample
lens
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017103108A
Other languages
Japanese (ja)
Other versions
JP6497632B2 (en
Inventor
孝雄 真木
Takao Maki
孝雄 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017103108A priority Critical patent/JP6497632B2/en
Publication of JP2018189622A publication Critical patent/JP2018189622A/en
Application granted granted Critical
Publication of JP6497632B2 publication Critical patent/JP6497632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that it is difficult to observe fine structure of a crystal surface using an interference image obtained by a conventional interferometer, consequently, an individual differential interference microscope is used for the observation, and therefore the conventional interferometer is not adequate to observation of phenomenon during a crystal growth process having less reproducibility or high-speed phenomenon, and further, replacement of a magnification requires cumbersome works.SOLUTION: An interference microscope is provided in which a differential interference prism is arranged in an interferometer optical system and which therefore simultaneously allows for a differential interference observation of a fine crystal surface and measurement from an interference image. Further, an equivalent lens has been essential for objective lenses of a sample optical path and reference optical path even for varying a magnification, however quick varying of the magnification is achieved by matching an optical path difference being an optical error, a luminous flux and an aperture of the reference optical path with those of the sample optical path.SELECTED DRAWING: Figure 4

Description

本発明は反射型干渉顕微鏡に関して、結晶表面などにおける計測、結晶成長過程の観察と計測、半導体産業分野における、ウェハー等の各処理工程の計測及び検査、さらには、高精度計測と観察を行うことを容易に可能とした干渉顕微鏡。  The present invention relates to a reflection type interference microscope, such as measurement on a crystal surface, observation and measurement of a crystal growth process, measurement and inspection of each processing step such as a wafer in the semiconductor industry field, and further high-precision measurement and observation. An interference microscope that makes this easy.

従来、反射型試料の計測に用いられる干渉光学系としては、試料光路と参照光路を完全に分けて構成した、分離型光路干渉光学系のマイケルソン型干渉光学系がある。さらに、そのマイケルソン型干渉光学系の変形版で、高解像度化を目的とした干渉光学系のリニック型干渉光学系があり、反射型試料の測定にこの両分離型干渉光学系が多く使用されている。Conventionally, as an interference optical system used for measurement of a reflection type sample, there is a Michelson type interference optical system of a separation type optical path interference optical system in which a sample optical path and a reference optical path are completely separated. Furthermore, a modified version of the Michelson-type interference optical system, there is a linic-type interference optical system for the purpose of achieving high resolution, and this both-separation type interference optical system is often used for the measurement of reflective samples. ing.

また、微分干渉顕微鏡は反射型試料の微細状態を高精度に視認的に観察できる。図1は上記マイケルソン型干渉光学系を示す図で、光源101より発した光束はレンズ102により平行光となり、ビームスブリッター103により試料光路104への試料光と参照光路105への参照光とに分割される。そして試料光は試料面106で反射され、参照光は参照面107で反射されて、それぞれビームスブリッター103で再び合致して、対物レンズ108、結像レンズ109によって干渉画像を生成し観測位置110で観測される。The differential interference microscope can visually observe the fine state of the reflective sample with high accuracy. FIG. 1 is a diagram showing the Michelson interference optical system. A light beam emitted from a light source 101 is converted into parallel light by a lens 102, and sample light to a sample optical path 104 and reference light to a reference optical path 105 by a beam splitter 103. It is divided into. Then, the sample light is reflected by the sample surface 106, the reference light is reflected by the reference surface 107, and is again matched by the beam splitter 103, and an interference image is generated by the objective lens 108 and the imaging lens 109, and an observation position 110 is obtained. Observed at

つぎに、上記リニック型干渉光学系を図2に示す。光源201より発した光速はレンズ202により、ビームスブリッター203で各々分割され、試料光路204と参照光路205の光路上に配置された各々レンズ208の後側焦点位置である瞳に収束されるようになっている。その光束は各々レンズ208によって平行光となり、試料面206、参照面207に照射され反射し、再びビームスブリッター203で合致する。それから、レンズ209により観測点210で干渉画像を生成し観測される。Next, FIG. 2 shows the linic type interference optical system. The speed of light emitted from the light source 201 is divided by the lens 202 by the beam splitter 203 and converged on the pupil, which is the rear focal position of each lens 208 arranged on the optical path of the sample optical path 204 and the reference optical path 205. It has become. Each of the light beams is converted into parallel light by the lens 208, irradiated and reflected on the sample surface 206 and the reference surface 207, and again matched by the beam splitter 203. Then, an interference image is generated and observed at the observation point 210 by the lens 209.

さらに、図3は上記の微分干渉顕微鏡の光学系を示す図で、光源301から発した光は、レンズ302より、偏光板303で45度の偏光方向となり、ハーフミラー304によって試料方向に導かれ、対物レンズ306の後側焦点位置にある瞳に収束する。その位置には微分干渉プリズム305が配置され、縦方向と横方向の振動方向の波の持った光に分割され対物レンズ306を通り試料面307の微細な構造を視認する光となる。その反射光は元の光路を戻り、微分干渉プリズム305で再び、縦方向と横方向の振動方向の波をもった光は合致されハーフミラー304を通過し、偏光板308によって両光の偏光方向をあわせる。そして、結像レンズ309で焦点位置310に観察される。Further, FIG. 3 is a diagram showing the optical system of the differential interference microscope described above. Light emitted from the light source 301 has a polarization direction of 45 degrees by the polarizing plate 303 from the lens 302 and is guided toward the sample by the half mirror 304. , It converges on the pupil at the rear focal position of the objective lens 306. At that position, a differential interference prism 305 is disposed, which is divided into light having waves in the vertical and horizontal vibration directions and passes through the objective lens 306 to become light for visually recognizing the fine structure of the sample surface 307. The reflected light returns to the original optical path, and the differential interference prism 305 again matches the light having waves in the vertical and horizontal vibration directions, passes through the half mirror 304, and is polarized by the polarizing plate 308. Combine. Then, it is observed at the focal position 310 by the imaging lens 309.

マイケルソン型干渉光学系とリニック型干渉光学系とも、試料を平行な光で照射するように構成されている。そのことは干渉顕微鏡としての必須機能であるため、微細構造の観察はそのまま行うことができない。よって、干渉光学系の計測作業と微分干渉顕微鏡における微細部の観察作業は、それぞれ別個に行っていた。ゆえに、時間的な変化が速く,再現性の困難な結晶成長過程の観察などには適用できないという問題があった。Both the Michelson type interference optical system and the linic type interference optical system are configured to irradiate the sample with parallel light. Since this is an essential function as an interference microscope, the fine structure cannot be observed as it is. Therefore, the measurement operation of the interference optical system and the observation operation of the fine part in the differential interference microscope are performed separately. Therefore, there is a problem that it cannot be applied to the observation of a crystal growth process which is fast in time and difficult to reproduce.

本発明は従来の干渉光学系における上記の問題点を解消するためになされてもので、高精度の干渉画像における計測と微細部の観察が切換え、もしくは、同時に行えるようにした干渉顕微鏡の提供を目的としたものである。Since the present invention has been made to solve the above-mentioned problems in the conventional interference optical system, it is possible to provide an interference microscope that can switch between measurement of a high-precision interference image and observation of a fine portion, or can perform simultaneous observation. It is intended.

上記問題点を解決するために本発明は試料光路と参照光路とを分離した分離光路干渉光学系を備えた反射試料の観測に用いる干渉顕微鏡において、前記分離光路干渉光学系は、試料光路の対物レンズと結像レンズの間に微分干渉プリズムを配置するものである。このように構成することにより、定量的な観測が可能な干渉縞の干渉画像と微細な観察画像の微分干渉像の合成画像を得ることができる。また、微分干渉プリズムを着脱することにより各々の観測画像の取得も可能である。In order to solve the above problems, the present invention provides an interference microscope for observing a reflection sample having a separation optical path interference optical system in which a sample optical path and a reference optical path are separated, wherein the separation optical path interference optical system is an objective of the sample optical path. A differential interference prism is disposed between the lens and the imaging lens. With this configuration, it is possible to obtain a composite image of an interference fringe interference image capable of quantitative observation and a differential interference image of a fine observation image. Also, each observation image can be acquired by attaching / detaching the differential interference prism.

本発明によれば、定量的な干渉縞の干渉画像と同時に試料の微細構造の鮮明な観察像を得ることができる。よってリアルタイムの計測及び観察を可能とした。According to the present invention, a clear observation image of a fine structure of a sample can be obtained simultaneously with a quantitative interference fringe interference image. Therefore, real-time measurement and observation were possible.

従来の干渉計(マイケルソン型)Conventional interferometer (Michelson type) 従来の干渉計(リニック型)Conventional interferometer (linic type) 従来の微分干渉顕微鏡Conventional differential interference microscope 本発明による干渉計顕微鏡(マイケルソン型)Interferometer microscope according to the present invention (Michelson type) 本発明による干渉計顕微鏡(リニック型)Interferometer microscope according to the invention (linic type) 干渉ループ部のレンズ構成Interference loop lens configuration

以下、本発明の形態を図4〜図6に基づいて説明する。Hereinafter, embodiments of the present invention will be described with reference to FIGS.

次に実施例1について説明する。図4は、本発明に係る干渉顕微鏡の基本的な構成を示す概念図である。この概念図は、分離型干渉計のマイケルソン型である。
光源401より発した光束はレンズ402により対物レンズ404の後側焦点位置に対物レンズ404の明るさに必要な十分な瞳のおおきさで集光する光束となる。その光束はハーフミラー403によって折返し、対物レンズ404に入射さ、平行光とし出射される。さらに、ビームスブリッター405により試料光路406への試料光と参照光路407への参照光とに分割される。そして試料光は試料面408で反射され、参照光は参照面409で反射されて、それぞれビームスブリッター405で再び合致して、元の光路の対物レンズ404、を通り、ハーフミラー403を透過し、結像レンズ410によって観測位置411に投影され、その投影された干渉画像から観察、計測ができる。
Next, Example 1 will be described. FIG. 4 is a conceptual diagram showing a basic configuration of an interference microscope according to the present invention. This conceptual diagram is a Michelson type interferometer.
The light beam emitted from the light source 401 is condensed by the lens 402 at the rear focal position of the objective lens 404 with a sufficient pupil size necessary for the brightness of the objective lens 404. The luminous flux is folded by the half mirror 403, enters the objective lens 404, and is emitted as parallel light. Further, the beam splitter 405 divides the sample light into the sample optical path 406 and the reference light into the reference optical path 407. Then, the sample light is reflected by the sample surface 408, the reference light is reflected by the reference surface 409, and is again matched by the beam splitter 405, passes through the objective lens 404 in the original optical path, and passes through the half mirror 403. The image is projected onto the observation position 411 by the imaging lens 410, and observation and measurement can be performed from the projected interference image.

さらに対物レンズ404の後ろ側焦点位置に微分干渉プリズム423を配置する。それに伴う、偏光板421、422も同時に配置する。そうすることにより、結晶表面の微細な構造を視認する微分干渉像も得られる。また、微分干渉像を観察するときは、ビームスブリッター404は配置されていても、されていなくても、どちらでも可である。さらに、干渉画像を観測するときも、微分干渉プリズム423の配置はどちらでもよい。Further, a differential interference prism 423 is disposed at the focal position on the rear side of the objective lens 404. Accordingly, polarizing plates 421 and 422 are also disposed at the same time. By doing so, a differential interference image for visually recognizing the fine structure of the crystal surface is also obtained. Further, when observing the differential interference image, it is possible to use either the beam slitter 404 or not. Further, when the interference image is observed, the arrangement of the differential interference prism 423 may be either.

干渉図形を観測するとき、微分干渉プリズム423を配置し、光軸方向にたいして横にスライドさせると干渉縞のコントラスト等の変化を容易に可能でき、より一層の干渉画像を得ることができる。同時に、微分観察像の色合いも変化させられる。When observing the interference pattern, if the differential interference prism 423 is disposed and slid horizontally with respect to the optical axis direction, the contrast of the interference fringes can be easily changed, and a further interference image can be obtained. At the same time, the hue of the differential observation image can be changed.

次に実施例2ついて説明する。図5は、上記マイケルソン干渉計型の変形型であるリニック型干渉計の場合の概念図である。光源501より発した光束はレンズ502により対物レンズ504の後側焦点位置で、対物レンズ504の必要な明るさに十分な瞳のおおきさをもった光束で集光する。その光束はハーフミラー503によって折返し、さらに、ビームスブリッター505により、試料光路506への試料光と参照光路507への参照光に分割される。両光路に配置されている同じ対物レンズ504に各々入射され、平行光とし出射される。そして試料光は試料面508で反射され、参照光は参照面509で反射されて、それぞれ、各々の対物レンズ504に戻り、ビームスブリッター505で再び合致して、ハーフミラー503を透過し、結像レンズ510によって観測位置511に投影され、その投影された干渉画像から観察、計測ができる。Next, a second embodiment will be described. FIG. 5 is a conceptual diagram of a linic interferometer, which is a modified version of the Michelson interferometer. The light beam emitted from the light source 501 is condensed by the lens 502 at a rear focal position of the objective lens 504 with a light beam having a sufficient pupil size for the required brightness of the objective lens 504. The light beam is folded by a half mirror 503 and further split by a beam splitter 505 into sample light to the sample optical path 506 and reference light to the reference optical path 507. The light is incident on the same objective lens 504 disposed in both optical paths, and is emitted as parallel light. Then, the sample light is reflected by the sample surface 508, and the reference light is reflected by the reference surface 509, returns to the respective objective lenses 504, and is again matched by the beam splitter 505, passes through the half mirror 503, and is connected. The image is projected onto the observation position 511 by the image lens 510, and observation and measurement can be performed from the projected interference image.

さらに、対物レンズ504の後ろ側焦点位置に微分干渉プリズム523を配置する。それに伴う、偏光板521、522も同時に配置する。そうすることにより、結晶表面の微細な構造を視認する微分干渉像も得られる。また、微分干渉像を観察するときは、ビームスブリッター505は配置されていても、されていなくても、どちらでも可能である。さらに、干渉画像を観測するときも、微分干渉プリズム523の配置はどちらでもよい。また、微分干渉プリズム523とビームスブリッター505の交換方式にすれば、各々の画像を純粋に観測することができる。Further, a differential interference prism 523 is arranged at the back focal position of the objective lens 504. Accordingly, polarizing plates 521 and 522 are also disposed at the same time. By doing so, a differential interference image for visually recognizing the fine structure of the crystal surface is also obtained. Further, when observing a differential interference image, it is possible to use either the beam splitter 505 or not. Further, when the interference image is observed, the arrangement of the differential interference prism 523 may be either. If the differential interference prism 523 and the beam splitter 505 are exchanged, each image can be observed purely.

微分干渉像と干渉画像を同時に観察する場合、さらに効果として、干渉画像を観測するとき、微分干渉プリズム523を配置し、スライドさせると干渉縞のコントラスト等の変化を容易に可能でき、より一層の干渉図形を得ることができる。同時に、微分観察像の色合いも変化させられる。
本発明による、実施例2のリニック干渉計型の干渉顕微鏡は、対物レンズ504と試料面508との間にビームスブリッター505がないため、対物レンズ504の本来の作動距離が確保されるとともに、収差などのフレアーがなく微分干渉像の本来の画像を得ることができる。さらに、干渉画像の収差も排除でき、より一層の高精度観測を可能とした。
When observing the differential interference image and the interference image simultaneously, as an effect, when observing the interference image, if the differential interference prism 523 is arranged and slid, it is possible to easily change the contrast of the interference fringes. Interferograms can be obtained. At the same time, the hue of the differential observation image can be changed.
In the linic interferometer type interference microscope according to the second embodiment of the present invention, since the beam splitter 505 is not provided between the objective lens 504 and the sample surface 508, an original working distance of the objective lens 504 is ensured. An original image of the differential interference image can be obtained without any flare such as aberration. In addition, aberrations in the interference image can be eliminated, enabling even higher precision observation.

さらに、参照光路に配置されている対物レンズは、試料光路の対物レンズ504の倍率を変更するとき、その対物レンズ504と同様な性質をもったレンズまたは、同じ対物レンズ504を用いることが必須であった。しかし、本実施例では、その参照光路の対物レンズ部を図6のように構成している。試料光路の対物レンズ交換があっても容易に、性質を合わせることを可能としている。Furthermore, as the objective lens arranged in the reference optical path, when changing the magnification of the objective lens 504 in the sample optical path, it is essential to use a lens having the same properties as the objective lens 504 or the same objective lens 504. there were. However, in this embodiment, the objective lens portion of the reference optical path is configured as shown in FIG. Even if the objective lens in the sample optical path is exchanged, the properties can be easily matched.

その図6について説明する。図6には分離型干渉計のリニック型干渉計に必要なビームスブリッター604から試料光路605の試料面607と参照光路606の参照面608までの、いわゆる干渉ループ部を記載した。それ以外の光学系構成は同じである。レンズ601は上記光学系の試料光路605にある対物レンズ603の後側焦点位置と同等の位置の参照光路位置に配置されている。さらに、各々の対物レンズの光路差分のコンペンセータ602を配置する。このコンペンセータ602は、倍率ごとに用意されている。The FIG. 6 will be described. FIG. 6 shows a so-called interference loop portion from the beam slitter 604 necessary for the linic interferometer of the separation type interferometer to the sample surface 607 of the sample optical path 605 and the reference surface 608 of the reference optical path 606. The other optical system configuration is the same. The lens 601 is disposed at a reference optical path position at a position equivalent to the rear focal position of the objective lens 603 in the sample optical path 605 of the optical system. Further, a compensator 602 for the optical path difference of each objective lens is arranged. The compensator 602 is prepared for each magnification.

また、高倍率の時、コンペンセータ602よる収差等の問題になるときは、レンズ601の入射側位置に配置する。さらに、レンズ601とコンペンセータ602を光軸に平行に移動できる。ゆえに、試料光路の対物レンズと整合できるように構成することにより、容易な倍率の交換が可能となった。In addition, when there is a problem such as aberration due to the compensator 602 at a high magnification, the lens 601 is disposed at the incident side position. Furthermore, the lens 601 and the compensator 602 can be moved parallel to the optical axis. Therefore, it is possible to easily change the magnification by configuring the sample optical path so that it can be aligned with the objective lens.

結晶表面などにおける計測、結晶成長過程の観察と計測、半導体産業分野における、ウェハー等の各処理工程の計測及び検査、さらには、高精度計測と観察を行うこと分野への提供。Measurements on crystal surfaces, observation and measurement of crystal growth processes, measurement and inspection of each processing step such as wafers in the semiconductor industry, and provision to the field of high-precision measurement and observation.

図1
101光源
102レンズ
103ビームスブリッター
104試料光路
105参照光路
106試料面
107参照面
108対物レンズ
109結像レンズ
110観測位置
FIG.
101 Light source 102 Lens 103 Beam slitter 104 Sample light path 105 Reference light path 106 Sample surface 107 Reference surface 108 Objective lens 109 Imaging lens 110 Observation position

図2
201光源
202レンズ
203ビームスブリッター
204試料光路
205参照光路
206試料面
207参照面
208対物レンズ
209結像レンズ
210観測位置
FIG.
201 light source 202 lens 203 beam slitter 204 sample light path 205 reference light path 206 sample surface 207 reference surface 208 objective lens 209 imaging lens 210 observation position

図3
301光源
302レンズ
303偏光板
304ハーフミラー
305微分干渉プリズム
306対物レンズ
307試料面
308偏光板
309結像レンズ
310観測位置
FIG.
301 Light source 302 Lens 303 Polarizing plate 304 Half mirror 305 Differential interference prism 306 Objective lens 307 Sample surface 308 Polarizing plate 309 Imaging lens 310 Observation position

図4
401光源
402レンズ
403ハーフミラー
404対物レンズ
405ビームスブリッター
406試料光路
407参照光路
408試料面
409参照面
410結像レンズ
411観測位置
421偏光板
422偏光板
423微分干渉プリズム
FIG.
401 Light source 402 Lens 403 Half mirror 404 Objective lens 405 Beam slitter 406 Sample light path 407 Reference light path 408 Sample surface 409 Reference surface 410 Imaging lens 411 Observation position 421 Polarizer 422 Polarizer 423 Differential interference prism

図5
501光源
502レンズ
503ハーフミラー
504対物レンズ
505ビームスブリッター
506試料光路
507参照光路
508試料面
509参照面
510結像レンズ
511観測位置
521偏光板
522偏光板
523微分干渉プリズム
FIG.
501 light source 502 lens 503 half mirror 504 objective lens 505 beam slitter 506 sample light path 507 reference light path 508 sample surface 509 reference surface 510 imaging lens 511 observation position 521 polarizing plate 522 polarizing plate 523 differential interference prism

図6
601レンズ
602コンペンセータ
603対物レンズ
604ビームスブリッター
605試料光路
606参照光路
607試料面
608参照面
FIG.
601 lens 602 compensator 603 objective lens 604 beam slitter 605 sample optical path 606 reference optical path 607 sample surface 608 reference plane

Claims (3)

試料光路と参照光路とを分離した、分離光路干渉光学系を備えた反射試料の観測に用いる干渉顕微鏡において、試料光路の試料を観察するための対物レンズと結像レンズの間に微分干渉プリズムを配置したことを特徴とする干渉顕微鏡。  In an interference microscope used for observation of a reflection sample having a separation optical path interference optical system in which the sample optical path and the reference optical path are separated, a differential interference prism is provided between the objective lens and the imaging lens for observing the sample in the sample optical path. An interference microscope characterized by being arranged. 前記、分離光路干渉光学系の分離されている試料光路と参照光路の、参照光路側に試料光路に使用する対物レンズと同じレンズを備えていることを特徴とする干渉顕微鏡。請求項1記載の干渉顕微鏡An interference microscope comprising the same lens as the objective lens used for the sample optical path on the reference optical path side of the separated sample optical path and the reference optical path of the separation optical path interference optical system. The interference microscope according to claim 1. 前記参照光路に配置されているレンズは、試料光路に使用している各倍率における対物レンズの光路長および光束、開口などが同様になるように構成したレンズを配置したことを特徴とする請求項2記載の干渉顕微鏡The lens arranged in the reference optical path includes a lens configured so that the optical path length, the light flux, the aperture, and the like of the objective lens at each magnification used in the sample optical path are the same. 2 interference microscope
JP2017103108A 2017-05-09 2017-05-09 Interference microscope Expired - Fee Related JP6497632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017103108A JP6497632B2 (en) 2017-05-09 2017-05-09 Interference microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017103108A JP6497632B2 (en) 2017-05-09 2017-05-09 Interference microscope

Publications (2)

Publication Number Publication Date
JP2018189622A true JP2018189622A (en) 2018-11-29
JP6497632B2 JP6497632B2 (en) 2019-04-10

Family

ID=64478501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103108A Expired - Fee Related JP6497632B2 (en) 2017-05-09 2017-05-09 Interference microscope

Country Status (1)

Country Link
JP (1) JP6497632B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460403A (en) * 1990-06-28 1992-02-26 Olympus Optical Co Ltd Aimed two-flux interferometer
JPH0829115A (en) * 1994-07-18 1996-02-02 Olympus Optical Co Ltd Interference microscope
JP2000138164A (en) * 1998-10-30 2000-05-16 Canon Inc Position detector and aligner using it
JP2000267012A (en) * 1999-03-19 2000-09-29 Olympus Optical Co Ltd Projection optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460403A (en) * 1990-06-28 1992-02-26 Olympus Optical Co Ltd Aimed two-flux interferometer
JPH0829115A (en) * 1994-07-18 1996-02-02 Olympus Optical Co Ltd Interference microscope
JP2000138164A (en) * 1998-10-30 2000-05-16 Canon Inc Position detector and aligner using it
JP2000267012A (en) * 1999-03-19 2000-09-29 Olympus Optical Co Ltd Projection optical system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"光学素子", シグマ光機株式会社のウェブサイト, JPN6018040827, 10 October 2018 (2018-10-10) *
"製品情報 ビームスプリッタ", 東海光学株式会社のウェブサイト, JPN6018040829, 10 October 2018 (2018-10-10) *
ユニット製品総合カタログ38号, JPN6018040828, 10 October 2018 (2018-10-10), pages p946 *
物理学辞典−縮刷版−, vol. 改訂版, JPN6018040826, 30 October 1992 (1992-10-30), JP, pages 742 - 1743 *

Also Published As

Publication number Publication date
JP6497632B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US6229644B1 (en) Differential interference contrast microscope and microscopic image processing system using the same
JP5882674B2 (en) Multi-wavelength interferometer, measuring apparatus and measuring method
CN108981606B (en) Snapshot type full-field white light interference microscopic measurement method and device thereof
JP5965167B2 (en) White light interference measurement device
KR20050098952A (en) Longitudinal differential interferometric confocal microscopy
JP2008292939A (en) Quantitative phase microscope
JP2017020962A (en) Instantaneous phase-shift interferometer
WO2022241875A1 (en) Transmissive and reflective digital holographic microscopy system
US8547557B2 (en) Apparatus for determining a height map of a surface through both interferometric and non-interferometric measurements
US11525988B2 (en) Assembly for increasing the resolution of a laser scanning microscope
JP7280941B2 (en) microscope equipment
JPH01284704A (en) Method and device for measuring microstructure of surface
JP6042586B2 (en) High numerical aperture phase-shifting dual pinhole diffraction interferometer and its test method
JP2016148569A (en) Image measuring method and image measuring device
US3620593A (en) Method of surface interference microscopy
JP6497632B2 (en) Interference microscope
CN107923735B (en) Method and device for deducing the topography of an object surface
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
US20230168075A1 (en) Compact snapshot dual-mode interferometric system
CN211086081U (en) Testing arrangement of biax crystal main axis direction optical homogeneity
JP5904896B2 (en) Lens inspection apparatus and lens inspection method
US3007371A (en) Microscopes
CN110596042A (en) Device and method for testing optical uniformity of biaxial crystal in main axis direction
KR102527425B1 (en) Optical inspection system comprising interferometer
JPH0829115A (en) Interference microscope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190301

R150 Certificate of patent or registration of utility model

Ref document number: 6497632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees