JPH0460403A - Aimed two-flux interferometer - Google Patents

Aimed two-flux interferometer

Info

Publication number
JPH0460403A
JPH0460403A JP2171184A JP17118490A JPH0460403A JP H0460403 A JPH0460403 A JP H0460403A JP 2171184 A JP2171184 A JP 2171184A JP 17118490 A JP17118490 A JP 17118490A JP H0460403 A JPH0460403 A JP H0460403A
Authority
JP
Japan
Prior art keywords
retardation
specimen
light
epi
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2171184A
Other languages
Japanese (ja)
Inventor
Shinichi Hayashi
真市 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2171184A priority Critical patent/JPH0460403A/en
Publication of JPH0460403A publication Critical patent/JPH0460403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To highly accurately measure unevenness on a wave on a specimen surface and height of a small protrusion by applying arbitrary retardation between two orthogonal vibration components placed on a light path between a polarizer and an analyzer. CONSTITUTION:An illumination flux which is made into linear polarized light by a polarizer 2 is divided into two polarization components whose vibration directions are orthogonal to each other by a light division.combination means 7', wherein one of the polarization components is normally reflected on a specimen 8 and the other polarization component is nornally reflected on a reference 9, and they are again combined into one flux by the means 7'. Retardation occurs on the flux by a difference between a light path length of reciprocation between the means 7' and the specimen 8 and a light path length of reciprocation between the means 7' and the reference 9. In addition, arbitrary retardation can be applied to the flux by a retardation generating means 4. By adjusting the retardation amount to observe unevenness by interference colors, and by further adjusting it on two arbitrary points to calculate a difference between the readings, wave height on a wave-like specimen and height of a small protrusion on a specimen with the small protrusion can be accurately measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、落射型二光束干渉計に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an epi-illuminated two-beam interferometer.

〔従来の技術〕[Conventional technology]

従来の落射型二光束干渉計の光学系の一般的構成は第6
図に示した如く、光源lと、該光源lから発した光束を
標本8に導くための/%−フミラー等の落射照明手段3
と、該光束を前記標本8及びリファレンス9に夫々向か
う二つの光束に分割すると共に前記標本8及び前記リフ
ァレンス9からの二つの光束を合成する光分割合成手段
7から構成されていた。1)は観察者の眼である。
The general configuration of the optical system of a conventional epi-illuminated two-beam interferometer is
As shown in the figure, there is a light source 1 and an epi-illumination means 3 such as a /%-humirror for guiding the light beam emitted from the light source 1 to the specimen 8.
and a light splitting/synthesizing means 7 which splits the light beam into two light beams directed toward the specimen 8 and the reference 9, respectively, and combines the two beams from the specimen 8 and the reference 9. 1) is the observer's eye.

そして、上記構成の落射型二光束干渉計によれば、第7
図(A)に示した如き深さdの直線的な段差部12と平
坦部13及び14から成る段差標本15を観察するに際
し、リファレンス9を光軸に対して適度に傾けることに
より、第7図(B)に示した如く段差標本15の像に段
差部I2の位置で距離Sだけずれた間隔aの平行な干渉
縞が現れる。この時、前記段差部12の段差dは、前記
干渉縞の間隔aとずれの距離Sとにより、d =□λ a (但し、λは照明光の波長) で求められる。
According to the epi-illumination type two-beam interferometer having the above configuration, the seventh
When observing a step sample 15 consisting of a linear step part 12 with a depth d and flat parts 13 and 14 as shown in FIG. As shown in Figure (B), parallel interference fringes with an interval a deviated by a distance S appear in the image of the step sample 15 at the position of the step portion I2. At this time, the step difference d of the step portion 12 is determined by the interval a of the interference fringes and the shift distance S, as follows: d = □λ a (where λ is the wavelength of the illumination light).

C発明が解決しようとする課題〕 しかし、上記従来例では、第8図に示した如き波状標本
16では干渉縞が波状に現れるため、波状標本16の波
17の高さを精度良く測ることができないという欠点が
あった。又、第9図に示した如き小突起標本18に対し
ても、小突起19の上部の面積が小さければ該小突起1
9上の干渉縞が見にくくなり、該小突起19の高さを測
ることが困難となるという欠点もあった。
C Problems to be Solved by the Invention] However, in the above conventional example, since interference fringes appear in a wavy manner in the wavy sample 16 as shown in FIG. 8, it is difficult to accurately measure the height of the waves 17 in the wavy sample 16. The drawback was that it couldn't be done. Also, for the small protrusion specimen 18 as shown in FIG. 9, if the area of the upper part of the small protrusion 19 is small, the small protrusion 1
There was also a drawback that the interference fringes on 9 became difficult to see, making it difficult to measure the height of the small protrusions 19.

本発明は、上記問題点に鑑み、波状標本における波の高
さや小突起標本における小突起の高さも精度良く測れる
落射型二光束干渉計を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide an epi-illuminated two-beam interferometer that can accurately measure the height of waves in a wavy sample and the height of small protrusions in a small protrusion sample.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による落射型二光束干渉計の一つの光学系は、第
1図に示した如(、 光源Iと、該光源Iを発した光束を標本8に導くための
落射照明手段3と、該光束を前記標本8及びリファレン
ス9に夫々向かう二つの光束に分割すると共に前記標本
8及び前記リファレンス9からの二つの光束を合成する
光分割合成手段7′からなる落射型二光束干渉計におい
て、前記光分割合成手段7′は入射光束を互いに直交す
る振動成分に分割し且つ互いに直交する二つの振動成分
を合成する性質を有する偏光分割合成素子であり、前記
光源lと前記光分割合成手段7′の間の光路に配置した
偏光子2と、前記光分割合成手段7′の後方の光路上に
配置した検光子10と、前記偏光子2と前記検光子10
の間の光路上に配置されていて直交する二つの振動成分
の間に任意のリターデーションを与える複屈折板等のリ
ターデーション発生手段4と、該リターデーション発生
手段により発生するリターデーション量を読取るための
リターデーション読取手段5とを備えていることを特徴
としている。
One optical system of the epi-illuminated two-beam interferometer according to the present invention is as shown in FIG. In the epi-illuminated two-beam interferometer, the epi-illuminated two-beam interferometer comprises a light splitting and combining means 7' that splits a light beam into two light beams directed toward the specimen 8 and the reference 9, respectively, and combines the two beams from the specimen 8 and the reference 9. The light splitting/synthesizing means 7' is a polarization splitting/synthesizing element having the property of splitting the incident light beam into mutually orthogonal oscillating components and synthesizing the two mutually orthogonal oscillating components. a polarizer 2 disposed on the optical path between the two, an analyzer 10 disposed on the optical path behind the light splitting and combining means 7', and the polarizer 2 and the analyzer 10.
A retardation generating means 4, such as a birefringent plate, which is placed on the optical path between the two and giving arbitrary retardation between two orthogonal vibration components, and the amount of retardation generated by the retardation generating means are read. It is characterized in that it is equipped with a retardation reading means 5 for.

又、本発明による落射型二光束干渉計の他の一つの光学
系は、上記構成に加えて、 前記光源1が直線偏光を射出するレーザー光源であると
共に、前記偏光子2を備えていないことを特徴としてい
る。
Another optical system of the epi-illuminated two-beam interferometer according to the present invention has, in addition to the above configuration, the light source 1 being a laser light source that emits linearly polarized light and not including the polarizer 2. It is characterized by

〔作 用〕[For production]

即ち、本発明による落射型二光束干渉計によれば、前記
偏光子2で直線偏光にされた照明光束は、偏光分割合成
素子である前記光分割合成手段7′で振動方向の直交す
る二つの偏光成分に分割され、そのうち一方の偏光成分
は前記標本8で正反射し且つ他方の偏光成分は前記リフ
ァレンス9で正反射して前記光分割合成手段7′で再び
一本の光束に合成される。その際前記光分割合成手段7
′前記標本8間の往復の光路長と前記光分割合成手段7
′、前記リフアレ ンス9間の往復の光路長との差の分
のリターデーションが前記合成された光束に生しる。更
に、前記合成された光束には前記リターデーション発生
手段4により任意のリターデーションを付与できる。前
記検光子lOにより前記合成された光束は振動方向を揃
えられ、前記合成された光束の持つ°リターデーション
に応じた干渉色を発生する。それ故、観察者は前記標本
8の像の上に、前記標本8と前記リファレンス9との凹
凸の差に応じた干渉パターンを観察することができる。
That is, according to the epi-illuminated two-beam interferometer according to the present invention, the illumination light beam linearly polarized by the polarizer 2 is divided into two beams whose vibration directions are perpendicular to each other by the light splitting and combining means 7', which is a polarization splitting and combining element. The light beam is divided into polarized light components, one of which is specularly reflected by the specimen 8, and the other polarized component is specularly reflected by the reference 9 and combined into a single beam by the light splitting and combining means 7'. . At that time, the light splitting and combining means 7
'The optical path length of the round trip between the specimens 8 and the light splitting and combining means 7
', a retardation corresponding to the difference between the optical path length of the round trip between the references 9 occurs in the combined light beam. Furthermore, arbitrary retardation can be imparted to the combined light beam by the retardation generating means 4. The vibration directions of the synthesized light beams are aligned by the analyzer IO, and an interference color corresponding to the degree retardation of the synthesized light beams is generated. Therefore, the observer can observe, on the image of the specimen 8, an interference pattern corresponding to the difference in unevenness between the specimen 8 and the reference 9.

更に、前記リターデーション発生手段4により付与する
リターデーション量を調節することにより、前記標本8
上の任意の1点のリターデーションを0にし、該1点を
基準とした前記標本8の凹凸を干渉色により観察できる
。又、前記標本s上の任意の2点において各々リターデ
ーションが0になるように前記リターデーション発生手
段4を調節した時の前記リターデーション読取手段5に
よるリターデーションの読みの差をとることにより、該
2点の標高差が求められる。
Furthermore, by adjusting the amount of retardation provided by the retardation generating means 4, the sample 8 can be
By setting the retardation of any one point above to 0, the unevenness of the specimen 8 can be observed using interference color using the one point as a reference. Further, by calculating the difference between the retardation readings by the retardation reading means 5 when the retardation generating means 4 is adjusted so that the retardation becomes 0 at each arbitrary two points on the sample s, The elevation difference between the two points is determined.

従って、第8図に示した如く波状標本16や第9図に示
した如き小突起標本18でも高さを精度良く測定するこ
とができる。
Therefore, the height of even the wavy specimen 16 shown in FIG. 8 or the small protrusion specimen 18 shown in FIG. 9 can be measured with high accuracy.

〔実施例〕〔Example〕

以下、図示した実施例に基づき上記従来例と同一の部材
には同一符号を付して本発明の詳細な説明する。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment, with the same reference numerals assigned to the same members as in the above-mentioned conventional example.

第2図は本発明の第1実施例としてマイケルソン型の落
射型三光束干渉顕微鏡の光学系を示しており、ここでは
リターデーション発生手段4としてノマルスキープリズ
ム4′を用い、又光源lから発した光が効率良く標本8
を照明するように集光レンズ20.落射照明レンズ21
を具備し、リファレンス9には傾角調整装置22が備わ
っている。尚、前記ノマルスキープリズム4′の配置位
置は、通常の微分干渉顕微鏡の如く対物レンズ6の後側
焦点位置に略一致させである。観察者は接眼レンズ23
を通して標本8の対物レンズ6による像を観察する。
FIG. 2 shows the optical system of a Michelson-type epi-reflection three-beam interference microscope as a first embodiment of the present invention, in which a Nomarski prism 4' is used as the retardation generating means 4, and light is emitted from the light source l. The light efficiently illuminates specimen 8.
A condensing lens 20. Epi-illumination lens 21
The reference 9 is equipped with an inclination adjustment device 22. Incidentally, the Nomarski prism 4' is arranged so as to substantially coincide with the rear focal position of the objective lens 6, as in a normal differential interference microscope. The observer uses the eyepiece 23
The image of the specimen 8 formed by the objective lens 6 is observed through the lens.

本実施例は上述の如く構成されているから、光源lを発
した光線は偏光子2を通過し検光子10を通過するまで
にノマルスキープリズム4′を往復二回通過して通常の
落射型微分干渉顕微鏡と同様に視野全体に亘り均一なリ
ターデーションを発生する。該リターデーションはノマ
ルスキープリズム4′を光軸に垂直な面内で移動させる
ことにより連続的に増減させることが可能であり、°該
すターデーションの変化量は該移動量に比例する為、リ
ターデーション読取装置5は該移動量を成る一定の比率
でリターデーション変化量に変換するようになっている
。勿論、標本8で反射した光とリファレンス9で反射し
た光との合成において、両者が経てきた光路長の差の分
のリターデーションも発生する。
Since the present embodiment is configured as described above, the light beam emitted from the light source 1 passes through the polarizer 2 and the analyzer 10, passing through the Nomarski prism 4' twice in a round trip and performing normal epi-illumination type differentiation. Similar to interference microscopes, it generates uniform retardation over the entire field of view. The retardation can be continuously increased or decreased by moving the Nomarski prism 4' in a plane perpendicular to the optical axis, and since the amount of change in the retardation is proportional to the amount of movement, the retardation can be increased or decreased. The retardation reading device 5 converts the movement amount into a retardation change amount at a constant ratio. Of course, when the light reflected by the specimen 8 and the light reflected by the reference 9 are combined, retardation occurs due to the difference in optical path length between the two.

従って、合成された光束の持つリターデーションに応じ
た干渉色を発生するので、観察者は標本8の像の上に、
標本8とリファレンス9との凹凸の差に応じた干渉パタ
ーンを観察することができる。更に、ノマルスキープリ
ズム4′により付与するリターデーション量を調節する
ことにより、標本8上の任意の1点のリターデーション
を0にし、該1点を基準とした標本8の凹凸を干渉色に
より観察できる。又、標本8上の任意の2点において各
々リターデーションが0になるようにノマルスキープリ
ズム4′を調節した時のリターデーション読取手段5に
よるリターデーションの読みの差をとることにより、該
2点の標高差が求められる。その結果、第8図に示した
如き波状標本16や第9図に示した如き小突起標本18
でも高さを精度良く測定することができる。
Therefore, since an interference color is generated according to the retardation of the combined light beam, the observer can see the image of the specimen 8 on the image.
An interference pattern corresponding to the difference in unevenness between the specimen 8 and the reference 9 can be observed. Furthermore, by adjusting the amount of retardation provided by the Nomarski prism 4', the retardation at any one point on the specimen 8 can be set to 0, and the unevenness of the specimen 8 based on this one point can be observed by interference color. . Further, by adjusting the Nomarski prism 4' so that the retardation at any two points on the specimen 8 becomes 0, the difference between the retardation readings by the retardation reading means 5 is taken, and the difference between the two points is calculated. Elevation difference is required. As a result, a wavy specimen 16 as shown in FIG. 8 and a small protrusion specimen 18 as shown in FIG.
However, height can be measured with high precision.

尚、光源lから落射照明手段3までの光路を第2図の紙
面に対し45°の方向にし、偏光子2の振動方向を落射
照明手段3の入射面に垂直或いは平行にすれば、落射照
明手段3での反射及び透過における偏光状態の乱れは最
小限に抑えられる。
Incidentally, if the optical path from the light source 1 to the epi-illumination means 3 is oriented at 45 degrees with respect to the plane of the paper of FIG. Disturbances in the polarization state in reflection and transmission in means 3 are minimized.

第3図は本発明の第2実施例としてリニーク型の落射型
三光束干渉顕微鏡の光学系を示しており、ここではリタ
ーデーション発生手段4としてセナルモンコンペンセー
タ4′を用いている。即ち、174波長板4′をその光
学軸の射影が偏光子2を通過する光の振動面と直交する
ように配置し且つl/4波長板4′の射出側に検光子1
0’を設けている。そして、検光子lO′は光軸のまわ
りに回転可能であり、その回転角を読み取れるようにな
っている。
FIG. 3 shows an optical system of a Rinique-type epi-reflection three-beam interference microscope as a second embodiment of the present invention, in which a Senarmont compensator 4' is used as the retardation generating means 4. That is, the 174-wave plate 4' is arranged so that the projection of its optical axis is perpendicular to the vibration plane of the light passing through the polarizer 2, and the analyzer 1 is placed on the exit side of the 1/4-wave plate 4'.
0' is provided. The analyzer lO' is rotatable around the optical axis, and its rotation angle can be read.

本実施例は上述の如く構成されているから、通常のセナ
ルモンコンペンセータの使用法と同様に、検光子10’
を回転させることにより付加するリターデーションの量
を変化させることができ、その量は検光子10’の回転
角に比例する。
Since this embodiment is constructed as described above, the analyzer 10'
By rotating the analyzer 10', the amount of retardation added can be varied, and the amount is proportional to the rotation angle of the analyzer 10'.

このように、リターデーション発生手段4としてセナル
モンコンペンセータ4′を用いた本実施例は、ノマルス
キープリズム4′を用いた第1実施例に較べて視野のリ
ターデーションの均一性が極めて良好であり、読取り精
度も高い。但し、光源lはセナルモンコンペンセータ4
′の指定波長である単色光源を用いなければならず、使
用波長の半分以下の高さの測定に限られる。
As described above, in this embodiment using the Senarmont compensator 4' as the retardation generating means 4, the uniformity of retardation in the visual field is extremely good compared to the first embodiment using the Nomarski prism 4'. The reading accuracy is also high. However, light source l is Senarmon compensator 4
A monochromatic light source with a specified wavelength of ' must be used, and the measurement is limited to heights that are less than half the wavelength used.

尚、セナルモンコンペンセータ4′の代わりにプレース
ケーラーコンペンセータを用いても良い。
Note that a place scaler compensator may be used instead of the Senarmont compensator 4'.

プレースケーラーコンペンセータとしては1/10λ〜
l/30λ程度の位相差の小さい波長板が用いられる。
1/10λ~ as a place scaler compensator
A wave plate with a small phase difference of about 1/30λ is used.

その場合はプレースケーラーコンペンセータを光軸のま
わりに回転させることにより付加するリターデーション
の量を変化させることができ、その量はプレースケーラ
ーコンペンセータの回転角で定まる。この場合は、セナ
ルモンコンペンセータ4′を使用した場合に較べ、リタ
ーデーションの読取り精度が高くなるが、測定範囲は小
さくなる。更に、上述のようなセナルモンコンペンセー
タ4′やプレースケーラーコンペンセータを用いた場合
は、第7図に示した如き段差標本15の段差も従来より
精度良く測定できる。従来の干渉縞ずれを測定する方法
では、使用波長の20分のl (d線使用時で約30n
m)の段差が測定の限界と言われているが、本方式では
使用波長の100分のl (d線使用時で約6 nm)
以下の段差も十分測定できる。
In that case, the amount of retardation to be added can be changed by rotating the placescaler compensator around the optical axis, and the amount is determined by the rotation angle of the placescaler compensator. In this case, the retardation reading accuracy is higher than when the Senarmont compensator 4' is used, but the measurement range is smaller. Furthermore, when the Senarmont compensator 4' or the place scaler compensator as described above is used, the level difference of the level difference sample 15 as shown in FIG. 7 can be measured more accurately than before. In the conventional method of measuring interference fringe deviation, 1/20 of the wavelength used (approximately 30 nm when using the d-line)
It is said that the step difference in m) is the limit of measurement, but with this method, the difference in wavelength is 1/100th of the wavelength used (approximately 6 nm when using d-line).
The following level differences can also be adequately measured.

又、光分割合成手段7′として高価な偏光ビームスプリ
ッタを使う代わりに、第4図に示した如く、ハーフプリ
ズム24と同厚の2枚の偏光子25を用いても良い。但
し、この場合は偏光ビームスプリッタを用いた時に較べ
光量の損失が太きい。
Furthermore, instead of using an expensive polarizing beam splitter as the light splitting and combining means 7', two polarizers 25 having the same thickness as the half prism 24 may be used as shown in FIG. However, in this case, the loss in the amount of light is greater than when a polarizing beam splitter is used.

第5図は本発明の第3実施例としてレーザ光源使用の落
射型二光束干渉計の光学系を示しており、ここでレーザ
光源1′は直線偏光を射出し、リターデーション発生手
段としてセナルモンコンペンセータ4′を、観察手段と
してテレビカメラ26を夫々用いており、レーザ光源1
′と落射照明手段3を結ぶ光軸27は標本8とテレビカ
メラ26を結ぶ光軸28とリファレンス9と光分割合成
手段7′を結ぶ光軸29を含む第5図の紙面に対し45
°の角度を成していて、レーザ光源ビを射出する直線偏
光の偏光面は落射照明手段3の入射面に平行である。本
実施例は光源自体が直線偏光を射出するため第1図にお
ける偏光子2を省略できるという利点がある。
FIG. 5 shows an optical system of an epi-reflection type two-beam interferometer using a laser light source as a third embodiment of the present invention, in which the laser light source 1' emits linearly polarized light and a Senarmon is used as a retardation generating means. A television camera 26 is used as an observation means for the compensator 4', and the laser light source 1
The optical axis 27 that connects the epi-illumination means 3' and the epi-illumination means 3 is 45 with respect to the paper surface of FIG.
The plane of polarization of the linearly polarized light emitted from the laser light source B is parallel to the plane of incidence of the epi-illumination means 3. This embodiment has the advantage that the light source itself emits linearly polarized light, so that the polarizer 2 in FIG. 1 can be omitted.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による落射型二光束干渉計を用いれ
ば、標本面上の波状の凹凸や小突起の標高を精度良く測
定することができる。
As described above, by using the epi-illuminated two-beam interferometer according to the present invention, it is possible to accurately measure the elevation of wavy irregularities and small protrusions on the specimen surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による落射型二光束干渉計の光学系の基
本構成を示す図、第2図及び第3図は夫々第1及び第2
実施例の構成を示す図、第4図は上記第2実施例の光分
割合成手段の他の例を示す図、第5図は第3実施例の光
学系を示す図、第゛6図は従来例の光学系を示す図、第
7図(A)及び(B)は夫々段差標本の斜視図及び該段
差標本の上記従来例による観察像を示す図、第8図及び
第9図は夫々波状標本及び小突起標本の斜視図である。 ■・・・・光源、l′・・・・レーザー光源、2.25
・・・・偏光子、3・・・・落射照明手段、4・・・・
リターデーション発生手段、4′・・・・ノマルスキー
プリズム、4′・・・・セナルモンコンペンセータ、5
・・・・リターデーション読取手段、6・・・・対物レ
ンズ、7′・・・・光分割合成手段、8・・・・標本、
9・・・・リファレンス、10.10’・・・・検光子
、1)・・・・観察者の眼、12・・・・段差部、13
.14・・・・平坦部、15・・・・段差標本、16・
・・・波状標本、17・・・・波、18・・・・小突起
標本、19・・・・小突起、20・・・・集光レンズ、
21・・・・落射照明レンズ、22・・・・傾角調整装
置、23・・・・接眼レンズ、24・・・・ハーフプリ
ズム、26・・・・テレビカメラ、27.28.29・
・・・光軸。 第1 図 矛2図 図 1)−〕鉦 8〜−二 第5図 1P6図 1)7皐 8−二弘 8−eΣ 矛4図 図 (A) (B) 矛9 図 平成 3年 6月13日 特願平2−171)84号 う、補正の内容 (1)明細書第3頁5行目のrs」をtSlと訂正する
。 (2)同第4頁16行目及び第5頁15行目の[素子」
を「手段1と夫々訂正する。 (3)同第7頁2行目の[・・・・如く」を「如き1と
訂正する。 (4)同第7頁16行目の[る。Jの後にjまた、偏光
分割合成手段として偏光ビームスプリッタを用いている
。1を挿入し、[配置」を「ロー力ライズ1と訂正する
。 (5)同第100頁2行目「直交」の前に「平行或いは
1を挿入する。 (6)同第1)頁2〜3行目の N/loλ〜l/30λJを 「λ/10〜λ/301と訂正する。 (7)  図面中、第2図及び第7図(B)を夫々別紙
添付の通り訂正する。 5、補正の対象 明細書の発明の詳細な説明の欄及び図面。 矛2図 牙7図(B) −二一一
FIG. 1 is a diagram showing the basic configuration of the optical system of the epi-illuminated two-beam interferometer according to the present invention, and FIGS.
4 is a diagram showing another example of the light splitting and combining means of the second embodiment, FIG. 5 is a diagram showing the optical system of the third embodiment, and FIG. 6 is a diagram showing the configuration of the embodiment. 7(A) and 7(B) are respectively a perspective view of a step specimen and an observation image of the step specimen according to the conventional example, and FIGS. 8 and 9 are diagrams showing an optical system of a conventional example, respectively. FIG. 3 is a perspective view of a wavy specimen and a small protrusion specimen. ■...Light source, l'...Laser light source, 2.25
... Polarizer, 3... Epi-illumination means, 4...
Retardation generating means, 4'... Nomarski prism, 4'... Senarmont compensator, 5
...Retardation reading means, 6...Objective lens, 7'...Light splitting and combining means, 8...Specimen,
9...Reference, 10.10'...Analyzer, 1)...Observer's eye, 12...Step, 13
.. 14... Flat part, 15... Step sample, 16...
... Wave-like specimen, 17 ... Wave, 18 ... Small protrusion specimen, 19 ... Small protrusion, 20 ... Condenser lens,
21... Epi-illumination lens, 22... Tilt adjustment device, 23... Eyepiece, 24... Half prism, 26... Television camera, 27.28.29.
···optical axis. 1st figure 2 figure 1) -] gong 8~-2 5th figure 1P6 figure 1) 7 Ko8-2hiro8-eΣ 4th figure figure (A) (B) 9 figure June 1991 13th Japanese Patent Application No. 2-171) No. 84 Contents of Amendment (1) "rs" on page 3, line 5 of the specification is corrected to tSl. (2) [Element] on page 4, line 16 and page 5, line 15
(3) Correct [... like] on page 7, line 2 to "like 1." (4) Correct "[ru. J" on page 7, line 16] to "like 1." After j Also, a polarizing beam splitter is used as a polarization splitting and combining means. Insert 1 and correct [Arrangement] to "Low force rise 1." (5) "Orthogonal" on page 100, line 2. Insert ``parallel or 1'' in front. (6) Correct N/loλ~l/30λJ on the 2nd to 3rd lines of page 1) to ``λ/10~λ/301. (7) In the drawing, Figures 2 and 7 (B) are corrected as attached respectively. 5. Column for detailed explanation of the invention of the specification subject to amendment and drawings. Figure 2 Figure 7 Figure 7 (B) -211

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、該光源を発した光束を標本に導くための
落射照明手段と、該光束を前記標本及びリファレンスに
夫々向かう二つの光束に分割すると共に前記標本及び前
記リファレンスからの二つの光束を合成する光分割合成
手段からなる落射型二光束干渉計において、前記光分割
合成手段は入射光束を互いに直交する振動成分に分割し
且つ互いに直交する二つの振動成分を合成する性質を有
する偏光分割合成手段であり、前記光源と前記光分割合
成手段の間の光路上に配置した偏光子と、前記光分割合
成手段の後方の光路上に配置した検光子と、前記偏光子
と前記検光子の間の光路上に配置されていて直交する二
つの振動成分の間に任意のリターデーションを与えるリ
ターデーション発生手段と、該リターデーション発生手
段により発生するリターデーション量を読取るためのリ
ターデーション読取手段とを備えていることを特徴とす
る落射型二光束干渉計。
(1) A light source, epi-illumination means for guiding the light beam emitted from the light source to the specimen, and dividing the light beam into two light beams directed toward the specimen and the reference, respectively, and two light beams from the specimen and the reference. In the epi-illuminated two-beam interferometer, the beam splitting and combining means is a polarization splitting device that has the property of dividing the incident light beam into mutually orthogonal vibration components and synthesizing the two mutually orthogonal vibration components. a combining means, a polarizer disposed on an optical path between the light source and the light dividing and combining means, an analyzer placed on the optical path behind the light dividing and combining means, and a combination of the polarizer and the analyzer. retardation generating means disposed on an optical path between the two and giving arbitrary retardation between two orthogonal vibration components; and retardation reading means for reading the amount of retardation generated by the retardation generating means. An epi-illuminated two-beam interferometer characterized by comprising:
(2)前記光源が直線偏光を射出するレーザー光源であ
ると共に、前記偏光子を備えていないことを特徴とする
請求項(1)に記載の落射型二光束干渉計。
(2) The epi-illuminated two-beam interferometer according to claim 1, wherein the light source is a laser light source that emits linearly polarized light and does not include the polarizer.
JP2171184A 1990-06-28 1990-06-28 Aimed two-flux interferometer Pending JPH0460403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171184A JPH0460403A (en) 1990-06-28 1990-06-28 Aimed two-flux interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171184A JPH0460403A (en) 1990-06-28 1990-06-28 Aimed two-flux interferometer

Publications (1)

Publication Number Publication Date
JPH0460403A true JPH0460403A (en) 1992-02-26

Family

ID=15918565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171184A Pending JPH0460403A (en) 1990-06-28 1990-06-28 Aimed two-flux interferometer

Country Status (1)

Country Link
JP (1) JPH0460403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148566A (en) * 2014-02-07 2015-08-20 オリンパス株式会社 Retardation measurement method, retardation measurement device and birefringence wavelength feature measurement method
JP2018189622A (en) * 2017-05-09 2018-11-29 孝雄 真木 Interference microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148566A (en) * 2014-02-07 2015-08-20 オリンパス株式会社 Retardation measurement method, retardation measurement device and birefringence wavelength feature measurement method
JP2018189622A (en) * 2017-05-09 2018-11-29 孝雄 真木 Interference microscope

Similar Documents

Publication Publication Date Title
JP3517903B2 (en) Interferometer
US6229644B1 (en) Differential interference contrast microscope and microscopic image processing system using the same
JP5349739B2 (en) Interferometer and interferometer calibration method
EP1717546B1 (en) Interferometer and method of calibrating the interferometer
US7760363B2 (en) Method and apparatus for simultaneously acquiring interferograms and method for solving the phase information
US20060039007A1 (en) Vibration-insensitive interferometer
US20090033916A1 (en) System and Method for Measuring Interferences
CN109470173A (en) A kind of binary channels simultaneous phase shifting interference microscopic system
US6563593B2 (en) Dynamic angle measuring interferometer
US5953137A (en) Linear conoscopic holography
US4221486A (en) Interferometric measurement with λ/4 resolution
US20210239452A1 (en) Method and Apparatus for Detecting Changes in Direction of a Light Beam
Mallick et al. Common-path interferometers
US4105335A (en) Interferometric optical phase discrimination apparatus
JPH0460403A (en) Aimed two-flux interferometer
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JPH11337321A (en) Method and device for simultaneously measuring phase shift interference fringe
US20110135145A1 (en) Aberration measurement method and system including interferometer and signal processing unit
JPS6024401B2 (en) How to measure the physical constants of a measured object
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
JP4799766B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP3000518B2 (en) Polarized wavefront three-segment optical device
CN114459619B (en) Real-time online phase shift measurement device and method
KR20010041205A (en) Linear conoscopic holography
US7212289B1 (en) Interferometric measurement device for determining the birefringence in a transparent object