JP2018189403A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter Download PDF

Info

Publication number
JP2018189403A
JP2018189403A JP2017089705A JP2017089705A JP2018189403A JP 2018189403 A JP2018189403 A JP 2018189403A JP 2017089705 A JP2017089705 A JP 2017089705A JP 2017089705 A JP2017089705 A JP 2017089705A JP 2018189403 A JP2018189403 A JP 2018189403A
Authority
JP
Japan
Prior art keywords
electrode
porous
pair
solid
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089705A
Other languages
Japanese (ja)
Other versions
JP6741622B2 (en
Inventor
公一 木村
Koichi Kimura
公一 木村
久生 伊藤
Hisao Ito
久生 伊藤
鈴木 英之
Hideyuki Suzuki
英之 鈴木
酒井 亮
Akira Sakai
亮 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017089705A priority Critical patent/JP6741622B2/en
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to MX2019005473A priority patent/MX2019005473A/en
Priority to CN201780064214.7A priority patent/CN109863371B/en
Priority to EP17907347.3A priority patent/EP3517899A4/en
Priority to CN201780064251.8A priority patent/CN109891200B/en
Priority to US16/344,377 priority patent/US20190257677A1/en
Priority to MX2019005472A priority patent/MX2019005472A/en
Priority to US16/344,405 priority patent/US20200056914A1/en
Priority to EP17907536.1A priority patent/EP3517900A4/en
Priority to PCT/JP2017/044593 priority patent/WO2018198418A1/en
Priority to PCT/JP2017/044594 priority patent/WO2018198419A1/en
Priority to CN201820366342.9U priority patent/CN208012677U/en
Priority to CN201820369492.5U priority patent/CN208043144U/en
Priority to CN201820367922.XU priority patent/CN208012678U/en
Priority to CN201820369543.4U priority patent/CN208043145U/en
Priority to CN201820366212.5U priority patent/CN208012676U/en
Priority to CN201820373141.1U priority patent/CN208140197U/en
Publication of JP2018189403A publication Critical patent/JP2018189403A/en
Application granted granted Critical
Publication of JP6741622B2 publication Critical patent/JP6741622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic flowmeter having higher measurement accuracy than ever before.SOLUTION: In an electromagnetic flowmeter 10, a detection electrode 50 comprises a porous electrode 51 composed of a porous conductor and a solid electrode 55 conductively connected to the porous electrode 51. Water infiltrates into the porus electrode 51, which is a part of the detection electrode 50, thereby making it possible to secure a large contact area between the detection electrode 50 and water. While the porous electrode 51 is embedded into a flow channel housing 20, the solid electrode 55 is housed in an electrode housing hole 35 formed in the flow channel housing 20. A porous-side coupling part 53 of each porous electrode 51 and a solid-side coupling part 56 of each solid electrode 55 are fitted into each other in the electrode housing hole 35, and conductively connected.SELECTED DRAWING: Figure 5

Description

本発明は、水の流量を測定する電磁流量計に関する。   The present invention relates to an electromagnetic flow meter that measures the flow rate of water.

近年、羽根車式の流量計に代わって電磁流量計の普及が著しい(例えば、特許文献1)。   In recent years, electromagnetic flow meters have been widely used in place of impeller flow meters (for example, Patent Document 1).

特開平5−99715号公報(図1)Japanese Patent Laid-Open No. 5-99715 (FIG. 1)

しかしながら、さらなる電磁流量計の普及のために、測定精度の向上が求められている。   However, in order to further spread the electromagnetic flow meter, improvement in measurement accuracy is required.

本発明は、上記事情に鑑みてなされたものであり、従来より測定精度の高い電磁流量計の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an electromagnetic flowmeter with higher measurement accuracy than before.

上記目的を達成するためになされた請求項1の発明は、磁界を受けた状態で水が流れる計測流路を有する樹脂製の流路ハウジングと、多孔質の導電体で構成され、 前記流路ハウジングに埋設されて前記磁界と交差する方向で対向する1対の多孔質電極と、前記1対の多孔質電極に設けられ、前記計測流路内に露出して互いに対向する1対の電極対向面と、前記流路ハウジングの外面から前記1対の多孔質電極まで連通する1対の電極収容孔と、前記1対の電極収容孔に収容される1対の中実電極と、各前記中実電極と各前記多孔質電極とに形成されて互いに嵌合し、導通接続される多孔質側連結部及び中実側連結部と、前記1対の中実電極と前記1対の多孔質電極とによって構成され、前記計測流路内の2点間の電位差を検出する1対の検知電極と、各前記中実電極と各前記電極収容孔の隙間をシールするシール部材と、を備える電磁流量計である。   The invention of claim 1 made to achieve the above object comprises a resin flow channel housing having a measurement flow channel through which water flows in a state of receiving a magnetic field, and a porous conductor. A pair of porous electrodes embedded in a housing and facing each other in a direction crossing the magnetic field; and a pair of electrodes facing each other that are provided in the pair of porous electrodes and are exposed in the measurement channel and face each other A pair of electrode receiving holes communicating from the outer surface of the flow path housing to the pair of porous electrodes, a pair of solid electrodes received in the pair of electrode receiving holes, A porous-side connecting portion and a solid-side connecting portion which are formed on a real electrode and each of the porous electrodes and are connected to each other and are electrically connected; and the pair of solid electrodes and the pair of porous electrodes A pair of detections for detecting a potential difference between two points in the measurement channel It is an electromagnetic flowmeter provided with an electrode and the sealing member which seals the clearance gap between each said solid electrode and each said electrode accommodation hole.

請求項2の発明は、前記中実電極の外側面と前記電極収容孔の内側面との間に挟まれる前記シール部材としてのOリングを備える請求項1に記載の電磁流量計である。   The invention according to claim 2 is the electromagnetic flow meter according to claim 1, further comprising an O-ring as the seal member sandwiched between an outer surface of the solid electrode and an inner surface of the electrode housing hole.

請求項3の発明は、各前記多孔質電極は、一側面の一部又は全体が前記電極対向面をなし、前記電極対向面以外の他の側面のうち一部以外が前記流路ハウジングを構成する樹脂で覆われたヘッド部と、前記ヘッド部の前記他の側面の前記一部から突出する筒状又は棒状の前記多孔質側連結部とからなる請求項1に記載の電磁流量計である。   According to a third aspect of the present invention, in each of the porous electrodes, a part or the whole of one side surface forms the electrode facing surface, and a part other than the other side surface other than the electrode facing surface constitutes the flow path housing. The electromagnetic flowmeter according to claim 1, comprising: a head portion covered with a resin to be covered; and a cylindrical or rod-like porous side connecting portion protruding from the part of the other side surface of the head portion. .

請求項4の発明は、前記多孔質側連結部は、円筒状をなして、前記ヘッド部側の端部を前記流路ハウジングを構成する樹脂で覆われ、前記中実電極は、断面円形の棒状をなすと共に、先端部が前記多孔質側連結部に嵌合される前記中実側連結部をなしている請求項3に記載の電磁流量計である。   According to a fourth aspect of the present invention, the porous side connecting portion has a cylindrical shape, and an end portion on the head portion side is covered with a resin constituting the flow path housing, and the solid electrode has a circular cross section. The electromagnetic flowmeter according to claim 3, wherein the electromagnetic flowmeter is formed in a rod shape and a tip end portion of the solid side connection portion is fitted into the porous side connection portion.

請求項5の発明は、前記中実電極の軸方向の中間部分の外側面と前記電極収容孔の内側面との間に挟まれる前記シール部材としてのOリングと、前記Oリングを、前記中実電極の軸方向で前記多孔質側連結部との間で挟んで位置決めするOリング位置決部とを備える請求項4に記載の電磁流量計である。   The invention according to claim 5 is characterized in that the O-ring as the sealing member sandwiched between the outer surface of the intermediate portion in the axial direction of the solid electrode and the inner surface of the electrode receiving hole, and the O-ring It is an electromagnetic flowmeter of Claim 4 provided with the O-ring positioning part pinched and positioned between the said porous side connection parts in the axial direction of a real electrode.

請求項6の発明は、前記1対の電極対向面が前記計測流路の内面と面一になっている請求項1乃至5の何れか1の請求項に記載の電磁流量計である。   The invention according to claim 6 is the electromagnetic flowmeter according to any one of claims 1 to 5, wherein the pair of electrode facing surfaces are flush with an inner surface of the measurement flow path.

請求項7の発明は、前記多孔質電極は、前記電極対向面に向かって窄んだ形状をなし、前記電極対向面のみが前記計測流路に露出している請求項6に記載の電磁流量計である。   The invention according to claim 7 is the electromagnetic flow rate according to claim 6, wherein the porous electrode has a shape constricted toward the electrode facing surface, and only the electrode facing surface is exposed to the measurement flow path. It is a total.

請求項8の発明は、前記計測流路のうち前記1対の多孔質電極が位置する部分の断面形状は、四角形をなし、前記1対の電極対向面は、四角形をなしている請求項1乃至7の何れか1の請求項に記載の電磁流量計である。   According to an eighth aspect of the present invention, the cross-sectional shape of the portion where the pair of porous electrodes is located in the measurement channel is a quadrangle, and the pair of electrode facing surfaces are a quadrangle. The electromagnetic flow meter according to any one of claims 1 to 7.

請求項9の発明は、前記多孔質電極は、グラファイトで構成されている請求項1乃至8の何れか1の請求項に記載の電磁流量計である。   The invention according to claim 9 is the electromagnetic flowmeter according to any one of claims 1 to 8, wherein the porous electrode is made of graphite.

請求項10の発明は、前記グラファイトは、親水化処理されている請求項9に記載の電磁流量計である。   A tenth aspect of the invention is the electromagnetic flowmeter according to the ninth aspect, wherein the graphite is hydrophilized.

電磁流量計の測定精度に影響を与える要素の1つとして、検知電極と水との間のキャパシタンスである電気化学二重層容量が挙げられる。検知電極と水との接触面積が小さいと電気化学二重層容量が小さくなり、1対の検知電極間のインピーダンスが大きくなるため、1対の検知電極間に電磁誘導による電流が流れ難くなり、ノイズの影響を受け易くなる。これに対し、本発明の電磁流量計では、1対の検知電極が、多孔質の導電体で構成された1対の多孔質電極と、それら多孔質電極に導通接続される1対の中実電極とで構成されている。そして、検知電極の一部である多孔質電極に水が浸透して、検知電極と水との接触面積を大きく確保することができる。これにより、電気化学二重層容量が大きくなってノイズの影響が抑えられ、流量の測定精度が向上する。また、1対の多孔質電極は、流路ハウジングに埋設される一方、1対の中実電極は、流路ハウジングに形成された1対の電極収容孔に収容されている。そして、各多孔質電極の多孔質側連結部と、各中実電極の中実側連結部とが電極収容孔内で互いに嵌合して導通接続されている。このような構成とすることで、流路ハウジングのインサート成形により1対の多孔質電極を流路ハウジングに容易に固定することができると共に、1対の電極収容孔への1対の中実電極の組み付けと、多孔質電極と中実電極との組み付けとを容易に行うことができる。また、中実電極と各電極収容孔の隙間をシール部材でシールしているので、多孔質電極を水が浸透して通過する場合も、流路ハウジング外に水が漏れることを容易に防ぐことができる。   One of the factors affecting the measurement accuracy of the electromagnetic flow meter is an electrochemical double layer capacity that is a capacitance between the sensing electrode and water. If the contact area between the sensing electrode and water is small, the electrochemical double layer capacity is small and the impedance between the pair of sensing electrodes is large. Therefore, it is difficult for current due to electromagnetic induction to flow between the pair of sensing electrodes, and noise. It becomes easy to be affected. On the other hand, in the electromagnetic flowmeter of the present invention, a pair of detection electrodes is composed of a pair of porous electrodes made of a porous conductor, and a pair of solid electrodes that are conductively connected to the porous electrodes. It consists of electrodes. Then, water penetrates into the porous electrode which is a part of the detection electrode, and a large contact area between the detection electrode and water can be secured. Thereby, the electrochemical double layer capacity is increased, the influence of noise is suppressed, and the measurement accuracy of the flow rate is improved. The pair of porous electrodes are embedded in the flow path housing, while the pair of solid electrodes are accommodated in a pair of electrode accommodation holes formed in the flow path housing. And the porous side connection part of each porous electrode and the solid side connection part of each solid electrode are mutually connected in the electrode accommodation hole, and are conductively connected. With such a configuration, a pair of porous electrodes can be easily fixed to the channel housing by insert molding of the channel housing, and a pair of solid electrodes to the pair of electrode housing holes And the assembly of the porous electrode and the solid electrode can be easily performed. In addition, since the gap between the solid electrode and each electrode housing hole is sealed with a sealing member, even when water penetrates through the porous electrode, it is easy to prevent water from leaking out of the flow path housing. Can do.

シール部材は、充填式のシール剤が固化して構成されたものでもよいし、パッキンでもよいし、Oリングでもよい。また、パッキン及びOリングは、中実電極の電極収容孔に対する嵌合方向で挟む構成としてもよい。さらには、請求項2の構成のように、中実電極の外側面と電極収容孔の内側面との間にOリングが挟まれる構成とすれば、電極収容孔への中実電極の嵌合操作によってシール処理を行うことができる。   The seal member may be configured by solidifying a filling-type sealant, may be a packing, or may be an O-ring. The packing and the O-ring may be sandwiched in the fitting direction of the solid electrode with respect to the electrode housing hole. Further, when the O-ring is sandwiched between the outer surface of the solid electrode and the inner surface of the electrode housing hole as in the configuration of claim 2, the solid electrode is fitted into the electrode housing hole. Sealing can be performed by operation.

請求項3の構成のように、多孔質電極がヘッド部の側面の一部から筒状又は棒状の多孔質側連結部が突出した構造とし、ヘッド部の電極対向面と多孔質側連結部が突出している部分以外を流路ハウジングを構成する樹脂で覆うことで、多孔質電極のうち電極収容孔側に露出する部分を小さくすることができ、シール部材によるシール処理を容易に行うことができる。   As in the configuration of claim 3, the porous electrode has a structure in which a cylindrical or rod-like porous side connecting portion protrudes from a part of the side surface of the head portion, and the electrode facing surface of the head portion and the porous side connecting portion are By covering the portion other than the protruding portion with the resin constituting the flow path housing, the portion of the porous electrode exposed to the electrode housing hole side can be reduced, and the sealing process by the sealing member can be easily performed. .

請求項4の構成のように、多孔質側連結部を円筒状とし、そのヘッド部側の端部が流路ハウジングを構成する樹脂で覆われた構造とすれば、インサート成形金型に多孔質側連結部の先端部を保持させて容易に流路ハウジングを成形することができる。   If the porous side connecting portion is formed in a cylindrical shape and the end portion on the head portion side is covered with the resin constituting the flow path housing as in the configuration of claim 4, the insert molding die is porous. The flow path housing can be easily formed by holding the tip of the side connecting portion.

請求項5の構成によれば、多孔質側連結部によってOリングが位置決めされ、シールが安定する。   According to the structure of Claim 5, an O-ring is positioned by the porous side connection part, and a seal | sticker is stabilized.

請求項6の構成によれば、1対の電極対向面が計測流路の内面と面一になっているので、計測流路内の乱流が抑えられて計測精度が向上する。   According to the configuration of the sixth aspect, since the pair of electrode facing surfaces are flush with the inner surface of the measurement channel, the turbulent flow in the measurement channel is suppressed and the measurement accuracy is improved.

請求項7の構成によれば、多孔質電極は、電極対向面に向かって窄んだ形状をなしているので、計測流路に対する電極対向面の大きさのバランスを保ちながら、多孔質電極と水との接触面積を大きくすることができる。   According to the configuration of the seventh aspect, since the porous electrode has a shape constricted toward the electrode facing surface, while maintaining the balance of the size of the electrode facing surface with respect to the measurement channel, The contact area with water can be increased.

請求項8の構成によれば、断面形状が四角形の計測流路に対し、多孔質電極の電極対向面を四角形にしたので、電極対向面を広くすることでき、計測精度を上げることができる。   According to the configuration of the eighth aspect, since the electrode facing surface of the porous electrode is made square with respect to the measuring channel having a quadrangular cross-sectional shape, the electrode facing surface can be widened and the measurement accuracy can be increased.

多孔質電極は、金属に複数の孔を穿孔したものであってもよいし、焼結金属やグラファイト(請求項9の発明)であってもよい。なお、多孔質電極をグラファイトで構成した場合には親水化処理を施すことが好ましい(請求項10の発明)。   The porous electrode may be one obtained by drilling a plurality of holes in a metal, or may be sintered metal or graphite (the invention of claim 9). In addition, when a porous electrode is comprised with a graphite, it is preferable to perform a hydrophilization process (invention of Claim 10).

本発明の第1実施形態に係る電磁流量計の斜視図The perspective view of the electromagnetic flowmeter which concerns on 1st Embodiment of this invention. メータ本体の背断面図Back cross section of meter body 流路ハウジングの斜視図Perspective view of flow path housing 流路ハウジングの計測部周辺の正断面図Front sectional view around the measurement part of the flow path housing 検知電極及びその周辺部品の平断面図Plan sectional view of the sensing electrode and its peripheral parts 第2実施形態に係る検知電極及びその周辺部品の平断面図Plan sectional view of the sensing electrode and its peripheral parts according to the second embodiment

[第1実施形態]
以下、本発明に係る第1実施形態を図1〜図5に基づいて説明する。図1に示した本実施形態の電磁流量計10は、例えば水道メータとして使用されるものであって、水平方向に延びる樹脂製の流路ハウジング20の中間部に複数の部品を組み付けてなるメータ本体10Hを有し、そのメータ本体10Hが、直方体状のケース13に収容された構造をなしている。そして、流路ハウジング20が水道管の途中に接続され、その流路ハウジング20を長手方向に貫通する計測流路20R内を一端から他端へと水道水が流れる。なお、図1、図3及び図4には、水道水が流れる方向が矢印Aで示されている。
[First Embodiment]
Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. The electromagnetic flow meter 10 of the present embodiment shown in FIG. 1 is used as, for example, a water meter, and is a meter in which a plurality of parts are assembled in an intermediate portion of a resin flow channel housing 20 extending in the horizontal direction. It has a main body 10 </ b> H, and the meter main body 10 </ b> H is housed in a rectangular parallelepiped case 13. And the flow path housing 20 is connected to the middle of a water pipe, and tap water flows in the measurement flow path 20R which penetrates the flow path housing 20 in a longitudinal direction from one end to the other end. In addition, the direction through which tap water flows is shown by the arrow A in FIG.1, FIG3 and FIG.4.

図4に示すように、計測流路20Rは、両端部から中央部に向かって徐々に絞られ、中央より僅かに下流側にずれた位置に、最も絞られた計測部20Kを有する。計測部20Kは、図2に示すように四隅をR面取りされた横長の長方形の断面形状をなして、図4に示すように所定長に亘って延びている。また、計測流路20Rの両端部は断面円形をなし、両端部から計測部20Kに向かって断面形状が円形から長方形に徐々に変化している。   As shown in FIG. 4, the measurement flow path 20 </ b> R has the measurement unit 20 </ b> K most narrowed at a position that is gradually narrowed from both ends toward the center and slightly shifted to the downstream side from the center. As shown in FIG. 2, the measuring unit 20K has a horizontally-long rectangular cross-section with four corners, and extends over a predetermined length as shown in FIG. Further, both end portions of the measurement flow path 20R have a circular cross section, and the cross-sectional shape gradually changes from a circular shape to a rectangular shape from both end portions toward the measurement portion 20K.

図3に示すように、流路ハウジング20の長手方向の中央部には、その流路ハウジング20の軸方向と直交する直交スリーブ25が備えられている。また、図4に示すように、前述した計測部20Kは直交スリーブ25内に位置し、計測部20Kの両側には、流路ハウジング20の両側面から側方に突出する1対の電極支持突部31,31及び1対の固定突部32,32が備えられている。それら電極支持突部31及び固定突部32は、図3に示すように隣り合って一体になっている。   As shown in FIG. 3, an orthogonal sleeve 25 that is orthogonal to the axial direction of the flow path housing 20 is provided at the center of the flow path housing 20 in the longitudinal direction. As shown in FIG. 4, the measurement unit 20K described above is located in the orthogonal sleeve 25, and a pair of electrode support projections projecting laterally from both side surfaces of the flow path housing 20 on both sides of the measurement unit 20K. Portions 31, 31 and a pair of fixed protrusions 32, 32 are provided. The electrode support protrusion 31 and the fixed protrusion 32 are adjacent to each other and integrated as shown in FIG.

また、図2に示すように、流路ハウジング20には、計測部20Kの上下に部品収容空間30,30が形成されている。さらには、図4に示すように、一方の電極支持突部31の固定突部32とは反対側の隣には、コイル26が、その巻回軸を上下方向に向けた状態に収容されている。そして、そのコイル26の図示しない鉄心の両端部に接合された1対のヨーク27(図4には、一方のヨーク27のみが示されている)が部品収容空間30,30まで延び、それらヨーク27,27の平板状端部27A,27Aが図2に示すように計測流路20Rの計測部20Kを挟んだ状態に対向配置されている。   Further, as shown in FIG. 2, component housing spaces 30 and 30 are formed in the flow path housing 20 above and below the measurement unit 20K. Further, as shown in FIG. 4, the coil 26 is accommodated in a state where the winding axis thereof is directed in the vertical direction on the side opposite to the fixed protrusion 32 of the one electrode support protrusion 31. Yes. Then, a pair of yokes 27 (only one yoke 27 is shown in FIG. 4) joined to both ends of an iron core (not shown) of the coil 26 extend to the component housing spaces 30, 30. The flat end portions 27A and 27A of the 27 and 27 are disposed so as to face each other with the measurement portion 20K of the measurement flow path 20R interposed therebetween as shown in FIG.

さて、図4に示すように、流路ハウジング20のうち計測部20Kの両側には、前述した電極支持突部31,31の延長線上に1対の多孔質電極51,51が埋設されると共に、各電極支持突部31の先端面から多孔質電極51まで延びる1対の電極収容孔35,35が形成されている。   Now, as shown in FIG. 4, a pair of porous electrodes 51 and 51 are embedded on both sides of the measurement unit 20K in the flow path housing 20 on the extension lines of the electrode support protrusions 31 and 31 described above. A pair of electrode receiving holes 35, 35 extending from the front end surface of each electrode support protrusion 31 to the porous electrode 51 are formed.

多孔質電極51は、親水化処理された多孔質の導電体(例えば、グラファイト)で構成され、図5に示すように、ヘッド部52と多孔質側連結部53とからなる。ヘッド部52は、直方体状をなし、その一側面が計測流路20Rの内面と面一に配置された電極対向面51Aになっている。また、図示しないが多孔質電極51,51同士の対向方向から電極対向面51Aを見ると計測流路20Rの軸方向に長い長方形をなし、計測部20Kの上下方向の中央に位置している。   The porous electrode 51 is made of a hydrophilic conductor (for example, graphite) that has been subjected to a hydrophilic treatment, and includes a head portion 52 and a porous-side connecting portion 53 as shown in FIG. The head portion 52 has a rectangular parallelepiped shape, and one side surface thereof is an electrode facing surface 51A arranged flush with the inner surface of the measurement channel 20R. Although not illustrated, when the electrode facing surface 51A is viewed from the facing direction of the porous electrodes 51, 51, a rectangular shape that is long in the axial direction of the measurement flow path 20R is formed, and is positioned at the center in the vertical direction of the measurement unit 20K.

多孔質側連結部53は、例えば円筒状をなしてヘッド部52における電極対向面51Aの反対側面の中央から突出している。また、多孔質側連結部53の外面基端部には、R面取りされた曲面53Rが備えられている。   The porous side connecting portion 53 has a cylindrical shape, for example, and protrudes from the center of the side surface of the head portion 52 opposite to the electrode facing surface 51A. In addition, an outer surface proximal end portion of the porous side connecting portion 53 is provided with a curved surface 53R having an R chamfer.

電極収容孔35は、多孔質側連結部53の外径より大きな同心円状の断面を有している。そして、多孔質側連結部53の軸方向における中間位置より先端側が、電極収容孔35の奥面中央から突出している。この構造は、流路ハウジング20をインサート成形する図示しない成形金型に多孔質側連結部53の先端部を保持させて容易に成形することができる。   The electrode housing hole 35 has a concentric cross section larger than the outer diameter of the porous side connecting portion 53. The distal end side of the porous side connecting portion 53 from the middle position in the axial direction protrudes from the center of the back surface of the electrode housing hole 35. This structure can be easily formed by holding the tip end portion of the porous side connecting portion 53 in a molding die (not shown) for insert-molding the flow path housing 20.

各電極収容孔35には、中実電極55がそれぞれ収容されている。中実電極55は、例えばステンレスで構成され、全体が棒状をなしている。また、中実電極55には、中間部分を段付き状に拡径して中間大径部57が形成され、その中間大径部57より先端側が中実側連結部56をなす一方、その反対側が電線接続部58になっている。また、中実側連結部56の先端部はテーパー形状をなしている。そして、中実側連結部56が、前述の多孔質側連結部53内の嵌合孔53Aに嵌合されて中実電極55と多孔質電極51とが導通接続されている。また、導通接続された多孔質電極51と中実電極55とから検知電極50が構成されて、図4に示すように、1対の検知電極50,50が計測流路20Rの両側に配置されている。   A solid electrode 55 is accommodated in each electrode accommodation hole 35. The solid electrode 55 is made of, for example, stainless steel, and has a rod shape as a whole. Further, the solid electrode 55 is formed with an intermediate large-diameter portion 57 by expanding the intermediate portion in a stepped shape, and the tip side of the intermediate large-diameter portion 57 forms a solid-side connecting portion 56, but the opposite. The side is a wire connection part 58. Moreover, the front-end | tip part of the solid side connection part 56 has comprised the taper shape. And the solid side connection part 56 is fitted by the fitting hole 53A in the above-mentioned porous side connection part 53, and the solid electrode 55 and the porous electrode 51 are conductively connected. Further, the detection electrode 50 is constituted by the conductively connected porous electrode 51 and the solid electrode 55, and as shown in FIG. 4, a pair of detection electrodes 50, 50 are arranged on both sides of the measurement flow path 20R. ing.

図5に示された中実側連結部56は、多孔質側連結部53より僅かに短くなっていて、中間大径部57の先端面が多孔質側連結部53の先端面53Tに当接している。また、中間大径部57と電極収容孔35の内面との間にシール部材としてのOリング36が挟まれている。   The solid side connecting portion 56 shown in FIG. 5 is slightly shorter than the porous side connecting portion 53, and the front end surface of the intermediate large diameter portion 57 abuts on the front end surface 53 T of the porous side connecting portion 53. ing. An O-ring 36 as a seal member is sandwiched between the intermediate large diameter portion 57 and the inner surface of the electrode housing hole 35.

そのOリング36と中実電極55は、電極固定部材40によって抜け止めされている。電極固定部材40は、電極支持突部31及び固定突部32の先端面に重ねられ、電極収容孔35に嵌合される嵌合突部41と、固定突部32に形成された取付孔32Aに重なる螺子挿通孔42とを有する。そして、螺子挿通孔42に通した図示しない螺子が取付孔32Aにねじ込まれて電極固定部材40が流路ハウジング20に固定されている。また、嵌合突部41の中心部分を電極挿通孔43が貫通していて、その電極挿通孔43は、途中部分から嵌合突部41の先端側が段付き状に拡径されている。そして、中実電極55が電極挿通孔43内に挿通され、中間大径部57の基端面が電極挿通孔43の段差面43Dに当接し、これにより中実電極55が電極収容孔35内に抜け止めされている。また、Oリング36は、嵌合突部41の先端面41Tに当接して電極収容孔35内に抜け止めされると共に、多孔質側連結部53の先端面53Tによって電極収容孔35の奥側への移動を規制されている。嵌合突部41の先端面41TがOリング位置決部に相当する。   The O-ring 36 and the solid electrode 55 are prevented from coming off by the electrode fixing member 40. The electrode fixing member 40 is superimposed on the tip surfaces of the electrode support protrusion 31 and the fixed protrusion 32, and is fitted with the fitting protrusion 41 fitted into the electrode housing hole 35, and the mounting hole 32 </ b> A formed in the fixed protrusion 32. And a screw insertion hole 42 that overlaps with the screw insertion hole 42. Then, a screw (not shown) passed through the screw insertion hole 42 is screwed into the mounting hole 32 </ b> A, and the electrode fixing member 40 is fixed to the flow path housing 20. Moreover, the electrode insertion hole 43 penetrates the center part of the fitting protrusion 41, and the tip side of the fitting protrusion 41 is expanded in a stepped shape from the middle part of the electrode insertion hole 43. Then, the solid electrode 55 is inserted into the electrode insertion hole 43, and the base end surface of the intermediate large diameter portion 57 abuts on the step surface 43 </ b> D of the electrode insertion hole 43, thereby causing the solid electrode 55 to enter the electrode accommodation hole 35. It has been retained. Further, the O-ring 36 abuts against the tip end surface 41T of the fitting protrusion 41 and is prevented from coming off into the electrode receiving hole 35, and at the back of the electrode receiving hole 35 by the tip end surface 53T of the porous side connecting portion 53. The movement to is regulated. The front end surface 41T of the fitting protrusion 41 corresponds to an O-ring positioning portion.

また、中実電極55の電線接続部58は、電極固定部材40を貫通して電極収容孔35の外側まで延びている。そして、図2に示すように、電線接続部58の先端部に電線90が接続されて流路ハウジング20の上方に延び、制御ユニット10U内の制御基板60に接続されている。また、コイル26の図示しない電線も同様に制御基板60に接続されている。   Further, the wire connecting portion 58 of the solid electrode 55 extends through the electrode fixing member 40 to the outside of the electrode housing hole 35. As shown in FIG. 2, an electric wire 90 is connected to the distal end portion of the electric wire connecting portion 58, extends above the flow path housing 20, and is connected to the control board 60 in the control unit 10U. Further, an electric wire (not shown) of the coil 26 is connected to the control board 60 in the same manner.

本実施形態の電磁流量計10の構成に関する説明は、以上である。次に、この電磁流量計10の作用効果について説明する。電磁流量計10は、水道管の途中に接続されて作動し、水道管を流れる水の流量を測定する。そのために、制御基板60がコイル26に交流電流を通電して、交番する磁界を計測流路20Rの計測部20Kに側方から付与する。この状態で計測部20Kを水が流れると、電磁誘導により1対の検知電極50,50の電極対向面51A,51Aの間に水の流速に応じた電位差が生じる。制御基板60は、その電位差と計測部20Kの断面積等に基づいて単位時間当たりの水の流量を演算する共に、その流量を積算して積算流量を演算する。そして、それら演算結果が制御基板60の上方のモニタ61に表示される。   This completes the description of the configuration of the electromagnetic flow meter 10 of the present embodiment. Next, the effect of the electromagnetic flow meter 10 will be described. The electromagnetic flow meter 10 is connected to the middle of the water pipe and operates to measure the flow rate of water flowing through the water pipe. For this purpose, the control board 60 applies an alternating current to the coil 26 and applies an alternating magnetic field to the measurement unit 20K of the measurement flow path 20R from the side. When water flows through the measurement unit 20K in this state, a potential difference corresponding to the flow rate of water is generated between the electrode facing surfaces 51A and 51A of the pair of detection electrodes 50 and 50 by electromagnetic induction. The control board 60 calculates the flow rate of water per unit time based on the potential difference and the cross-sectional area of the measuring unit 20K, and calculates the integrated flow rate by integrating the flow rate. The calculation results are displayed on the monitor 61 above the control board 60.

ところで、電磁流量計10の測定精度に影響を与える要素の1つとして、検知電極50と水との間のキャパシタンスである電気化学二重層容量が挙げられる。具体的には、検知電極50と水との接触面積が小さいと電気化学二重層容量が小さくなり、1対の検知電極50,50間のインピーダンスが大きくなるため、1対の検知電極50,50間に、電磁誘導による電流が流れ難くなり、ノイズの影響を受け易くなる。これに対し、本実施形態の電磁流量計10では、上述の通り、1対の検知電極50,50が、多孔質の導電体で構成された1対の多孔質電極51,51と、それら多孔質電極51,51に導通接続される1対の中実電極55,55とで構成されている。そして、検知電極50の一部である多孔質電極51に水が浸透して、検知電極50と水との接触面積を大きく確保することができる。これにより、電気化学二重層容量が大きくなってノイズの影響が抑えられ、流量の測定精度が向上する。   By the way, as one of the elements that affect the measurement accuracy of the electromagnetic flow meter 10, there is an electrochemical double layer capacity that is a capacitance between the detection electrode 50 and water. Specifically, when the contact area between the detection electrode 50 and water is small, the electrochemical double layer capacity is reduced and the impedance between the pair of detection electrodes 50, 50 is increased, and thus the pair of detection electrodes 50, 50. In the meantime, the current due to electromagnetic induction becomes difficult to flow, and is easily affected by noise. On the other hand, in the electromagnetic flow meter 10 of the present embodiment, as described above, the pair of detection electrodes 50 and 50 are a pair of porous electrodes 51 and 51 formed of a porous conductor, and these porous electrodes are porous. It consists of a pair of solid electrodes 55, 55 that are conductively connected to the quality electrodes 51, 51. Then, water penetrates into the porous electrode 51 which is a part of the detection electrode 50, and a large contact area between the detection electrode 50 and water can be secured. Thereby, the electrochemical double layer capacity is increased, the influence of noise is suppressed, and the measurement accuracy of the flow rate is improved.

また、1対の多孔質電極51,51は、流路ハウジング20に埋設される一方、1対の中実電極55,55は、流路ハウジング20に形成された1対の電極収容孔35,35に収容されている。そして、各多孔質電極51の多孔質側連結部53と、各中実電極55の中実側連結部56とが電極収容孔35内で互いに嵌合して導通接続されている。   The pair of porous electrodes 51, 51 are embedded in the flow path housing 20, while the pair of solid electrodes 55, 55 are paired with a pair of electrode receiving holes 35, formed in the flow path housing 20. 35. In addition, the porous-side connecting portion 53 of each porous electrode 51 and the solid-side connecting portion 56 of each solid electrode 55 are fitted and connected to each other in the electrode housing hole 35.

このような構成とすることで、流路ハウジング20のインサート成形により1対の多孔質電極51,51を流路ハウジング20に容易に固定することができると共に、1対の電極収容孔35,35への1対の中実電極55,55の組み付けと、多孔質電極51,51と中実電極55,55との組み付けとを容易に行うことができる。   With such a configuration, the pair of porous electrodes 51, 51 can be easily fixed to the flow path housing 20 by insert molding of the flow path housing 20, and the pair of electrode housing holes 35, 35 The pair of solid electrodes 55 and 55 can be easily assembled to each other, and the porous electrodes 51 and 51 and the solid electrodes 55 and 55 can be easily assembled.

また、多孔質電極51がヘッド部52から筒状の多孔質側連結部53が突出した構造をなし、ヘッド部52のうち電極対向面51Aと多孔質側連結部53が突出している部分以外が流路ハウジング20を構成する樹脂で覆われているので、多孔質電極51のうち電極収容孔35側に露出する部分を小さくすることができ、多孔質電極51を浸透する水を、中実電極55と各電極収容孔35の間のOリング36で容易に堰き止めることができる。   Further, the porous electrode 51 has a structure in which the cylindrical porous side connecting portion 53 protrudes from the head portion 52, and the head portion 52 other than the portion where the electrode facing surface 51A and the porous side connecting portion 53 protrude is provided. Since it is covered with the resin constituting the flow path housing 20, the portion of the porous electrode 51 exposed to the electrode housing hole 35 side can be reduced, and the water that permeates the porous electrode 51 can be removed from the solid electrode. It can be easily dammed by the O-ring 36 between the electrode 55 and each electrode receiving hole 35.

また、多孔質電極51の電極対向面51Aは、計測流路20Rの内面と面一になっているので、計測流路20R内の乱流が抑えられ、この点においても計測精度が向上する。さらには、断面形状が四角形の計測流路20Rに対し、多孔質電極51の電極対向面51Aが四角形になっているので、電極対向面51Aを広くすることでき、この点においても計測精度が向上する。   In addition, since the electrode facing surface 51A of the porous electrode 51 is flush with the inner surface of the measurement flow path 20R, turbulent flow in the measurement flow path 20R can be suppressed, and the measurement accuracy is improved in this respect as well. Furthermore, since the electrode facing surface 51A of the porous electrode 51 is rectangular with respect to the measurement channel 20R having a square cross-sectional shape, the electrode facing surface 51A can be widened, and also in this respect, the measurement accuracy is improved. To do.

[第2実施形態]
本実施形態は、図6に示されており、検知電極50Vの構造が第1実施形態と異なる。本実施形態の検知電極50Vの一部を構成する多孔質電極51Vは、例えば、直方体状の本体部81の一側面から円錐台形突部82が突出した構造をなしている。そして、円錐台形突部82の先端面が電極対向面51Aになって計測流路20Rの内側面と面一に配置されている。また、本体部81のうち円錐台形突部82との反対面の中央には、円形凹部84が陥没形成され、その円形凹部84の底面中央に円形孔である多孔質側連結部83が形成されている。また、電極収容孔35Vは、一端側が円形凹部84に連続する小径部35Aをなし、他端側が段付き状に拡径されて大径部35Bになっている。この構造は、流路ハウジング20Vをインサート成形する図示しない成形金型の支持突部の先端を、多孔質電極51Vの円形凹部84に嵌合して容易に成形することができる。
[Second Embodiment]
This embodiment is shown in FIG. 6, and the structure of the detection electrode 50V is different from that of the first embodiment. The porous electrode 51V constituting a part of the detection electrode 50V of the present embodiment has, for example, a structure in which a frustoconical protrusion 82 protrudes from one side surface of a rectangular parallelepiped body 81. The tip surface of the frustoconical protrusion 82 is the electrode facing surface 51A and is arranged flush with the inner surface of the measurement channel 20R. A circular recess 84 is formed in the center of the main body 81 on the opposite side of the truncated cone-shaped protrusion 82, and a porous side connecting portion 83 that is a circular hole is formed in the center of the bottom of the circular recess 84. ing. Further, the electrode housing hole 35V has a small diameter portion 35A having one end side continuous to the circular recess 84, and the other end side is enlarged in a stepped shape to form a large diameter portion 35B. This structure can be easily formed by fitting the tip of the support protrusion of a molding die (not shown) for insert-molding the flow path housing 20V into the circular recess 84 of the porous electrode 51V.

また、中実電極55Vは、断面円形をなして、先端側から順番に中実側連結部70、中間小径部71、中間大径部72、フランジ部73及び接続突部74を備える。そして、中実側連結部70の基端部にOリング36が嵌合された状態で、その中実側連結部70側から電極収容孔35Vに挿入されている。そして、中実側連結部70の先端側が多孔質電極51Vの多孔質側連結部83に嵌合されかつ、中実電極55Vの中間小径部71が電極収容孔35Vの小径部35Aに嵌合されかつ、中実電極55Vの中間大径部72が電極収容孔35Vの大径部35Bに嵌合されている。また、フランジ部73の図示しない貫通孔に通した螺子が流路ハウジング20Vの図示しない取付孔に締め込まれて、中実電極55Vが流路ハウジング20Vに固定されている。さらに、接続突部74に図示しない電線が半田付け又は蝋付けされる。   Further, the solid electrode 55V has a circular cross section, and includes a solid side connecting portion 70, an intermediate small diameter portion 71, an intermediate large diameter portion 72, a flange portion 73, and a connection protrusion 74 in order from the distal end side. Then, in a state where the O-ring 36 is fitted to the base end portion of the solid side connecting portion 70, the solid side connecting portion 70 is inserted into the electrode housing hole 35 </ b> V from the solid side connecting portion 70 side. And the front end side of the solid side connection part 70 is fitted to the porous side connection part 83 of the porous electrode 51V, and the intermediate small diameter part 71 of the solid electrode 55V is fitted to the small diameter part 35A of the electrode housing hole 35V. And the intermediate | middle large diameter part 72 of the solid electrode 55V is fitted by the large diameter part 35B of the electrode accommodation hole 35V. Further, a screw passed through a through hole (not shown) of the flange portion 73 is tightened into a mounting hole (not shown) of the flow path housing 20V, and the solid electrode 55V is fixed to the flow path housing 20V. Furthermore, an electric wire (not shown) is soldered or brazed to the connection protrusion 74.

本実施形態の電磁流量計10Vによれば、前記第1実施形態の電磁流量計10の作用効果に加え、多孔質電極51Vが、電極対向面51Aに向かって窄んだ形状をなしているので、計測流路20Rに対する電極対向面51Aの大きさのバランスを保ちながら、流路ハウジング20Vに埋設される多孔質電極51V全体の体積を大きくして、多孔質電極51Vと水との接触面積を大きくすることができる。   According to the electromagnetic flow meter 10V of this embodiment, in addition to the effects of the electromagnetic flow meter 10 of the first embodiment, the porous electrode 51V has a shape constricted toward the electrode facing surface 51A. While maintaining the balance of the size of the electrode facing surface 51A with respect to the measurement flow path 20R, the volume of the entire porous electrode 51V embedded in the flow path housing 20V is increased to increase the contact area between the porous electrode 51V and water. Can be bigger.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記第1実施形態の多孔質電極51は、グラファイトであったが、金属に複数の孔を穿孔したものや、焼結金属であってもよい。   (1) The porous electrode 51 of the first embodiment is graphite, but it may be a metal having a plurality of holes drilled or a sintered metal.

(2)前記第1実施形態の電磁流量計10は、シール部材としてはOリング36を備えていたが、充填式のシール剤によってシール部材が構成されていてもよいし、シール部材としてパッキンを使用してもよい。   (2) Although the electromagnetic flow meter 10 of the first embodiment includes the O-ring 36 as a seal member, the seal member may be constituted by a filling-type sealant, and packing is used as the seal member. May be used.

(3)前記第1実施形態において、多孔質電極50は円柱状でもよいし、多角柱状でもよい。また、多孔質電極50の先端部が計測流路20の内側に突出していてもよい。   (3) In the first embodiment, the porous electrode 50 may be cylindrical or polygonal. Further, the tip of the porous electrode 50 may protrude inside the measurement channel 20.

10,10V 電磁流量計
20,20V 流路ハウジング
35,35V 電極収容孔
36 0リング(シール部材)
50,50V 検知電極
51 多孔質電極
51A 電極対向面
52 ヘッド部
53,83 多孔質側連結部
55,55V 中実電極
55V 中実電極
56,70 中実側連結部
10,10V Electromagnetic flow meter 20,20V Channel housing 35,35V Electrode receiving hole 36 0 ring (seal member)
50, 50V detection electrode 51 porous electrode 51A electrode facing surface 52 head portion 53, 83 porous side connection portion 55, 55V solid electrode 55V solid electrode 56, 70 solid side connection portion

Claims (10)

磁界を受けた状態で水が流れる計測流路を有する樹脂製の流路ハウジングと、
多孔質の導電体で構成され、 前記流路ハウジングに埋設されて前記磁界と交差する方向で対向する1対の多孔質電極と、
前記1対の多孔質電極に設けられ、前記計測流路内に露出して互いに対向する1対の電極対向面と、
前記流路ハウジングの外面から前記1対の多孔質電極まで連通する1対の電極収容孔と、
前記1対の電極収容孔に収容される1対の中実電極と、
各前記中実電極と各前記多孔質電極とに形成されて互いに嵌合し、導通接続される多孔質側連結部及び中実側連結部と、
前記1対の中実電極と前記1対の多孔質電極とによって構成され、前記計測流路内の2点間の電位差を検出する1対の検知電極と、
各前記中実電極と各前記電極収容孔の隙間をシールするシール部材と、を備える電磁流量計。
A resin-made channel housing having a measurement channel through which water flows under a magnetic field;
A pair of porous electrodes that are made of a porous conductor and are embedded in the flow path housing and face each other in a direction crossing the magnetic field;
A pair of electrode facing surfaces that are provided on the pair of porous electrodes and are exposed in the measurement channel and face each other;
A pair of electrode receiving holes communicating from the outer surface of the flow path housing to the pair of porous electrodes;
A pair of solid electrodes housed in the pair of electrode housing holes;
A porous-side coupling portion and a solid-side coupling portion that are formed on each solid electrode and each of the porous electrodes, are fitted to each other, and are conductively connected;
A pair of detection electrodes configured by the pair of solid electrodes and the pair of porous electrodes to detect a potential difference between two points in the measurement channel;
An electromagnetic flowmeter comprising: each solid electrode and a seal member that seals a gap between each electrode accommodation hole.
前記中実電極の外側面と前記電極収容孔の内側面との間に挟まれる前記シール部材としてのOリングを備える請求項1に記載の電磁流量計。   The electromagnetic flow meter according to claim 1, further comprising an O-ring as the seal member sandwiched between an outer surface of the solid electrode and an inner surface of the electrode housing hole. 各前記多孔質電極は、一側面の一部又は全体が前記電極対向面をなし、前記電極対向面以外の他の側面のうち一部以外が前記流路ハウジングを構成する樹脂で覆われたヘッド部と、前記ヘッド部の前記他の側面の前記一部から突出する筒状又は棒状の前記多孔質側連結部とからなる請求項1に記載の電磁流量計。   Each of the porous electrodes is a head in which a part or the whole of one side surface forms the electrode facing surface, and a part other than the other side surface other than the electrode facing surface is covered with a resin constituting the flow path housing. The electromagnetic flow meter according to claim 1, comprising: a portion and a cylindrical or rod-shaped porous side connecting portion protruding from the part of the other side surface of the head portion. 前記多孔質側連結部は、円筒状をなして、前記ヘッド部側の端部を前記流路ハウジングを構成する樹脂で覆われ、
前記中実電極は、断面円形の棒状をなすと共に、先端部が前記多孔質側連結部に嵌合される前記中実側連結部をなしている請求項3に記載の電磁流量計。
The porous side connecting portion has a cylindrical shape, and an end portion on the head portion side is covered with a resin constituting the flow path housing,
The electromagnetic flowmeter according to claim 3, wherein the solid electrode has a bar shape with a circular cross section, and a front end portion of the solid electrode forms the solid side connection portion fitted into the porous side connection portion.
前記中実電極の軸方向の中間部分の外側面と前記電極収容孔の内側面との間に挟まれる前記シール部材としてのOリングと、
前記Oリングを、前記中実電極の軸方向で前記多孔質側連結部との間で挟んで位置決めするOリング位置決部を備える請求項4に記載の電磁流量計。
An O-ring as the seal member sandwiched between the outer side surface of the intermediate portion in the axial direction of the solid electrode and the inner side surface of the electrode housing hole;
The electromagnetic flowmeter according to claim 4, further comprising an O-ring positioning unit that positions the O-ring between the porous-side connecting portion in the axial direction of the solid electrode.
前記1対の電極対向面が前記計測流路の内面と面一になっている請求項1乃至5の何れか1の請求項に記載の電磁流量計。   The electromagnetic flow meter according to any one of claims 1 to 5, wherein the pair of electrode facing surfaces are flush with an inner surface of the measurement channel. 前記多孔質電極は、前記電極対向面に向かって窄んだ形状をなし、前記電極対向面のみが前記計測流路に露出している請求項6に記載の電磁流量計。   The electromagnetic flowmeter according to claim 6, wherein the porous electrode has a shape constricted toward the electrode facing surface, and only the electrode facing surface is exposed to the measurement channel. 前記計測流路のうち前記1対の多孔質電極が位置する部分の断面形状は、四角形をなし、前記1対の電極対向面は、四角形をなしている請求項1乃至7の何れか1の請求項に記載の電磁流量計。   8. The cross-sectional shape of a portion where the pair of porous electrodes is located in the measurement channel is a quadrangle, and the pair of electrode facing surfaces is a quadrangle. The electromagnetic flowmeter according to claim. 前記多孔質電極は、グラファイトで構成されている請求項1乃至8の何れか1の請求項に記載の電磁流量計。   The electromagnetic flow meter according to claim 1, wherein the porous electrode is made of graphite. 前記グラファイトは、親水化処理されている請求項9に記載の電磁流量計。   The electromagnetic flowmeter according to claim 9, wherein the graphite is subjected to a hydrophilic treatment.
JP2017089705A 2017-04-28 2017-04-28 Electromagnetic flow meter Active JP6741622B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2017089705A JP6741622B2 (en) 2017-04-28 2017-04-28 Electromagnetic flow meter
PCT/JP2017/044593 WO2018198418A1 (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
EP17907347.3A EP3517899A4 (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
CN201780064251.8A CN109891200B (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
US16/344,377 US20190257677A1 (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
MX2019005472A MX2019005472A (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter.
US16/344,405 US20200056914A1 (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
EP17907536.1A EP3517900A4 (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
MX2019005473A MX2019005473A (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter.
PCT/JP2017/044594 WO2018198419A1 (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
CN201780064214.7A CN109863371B (en) 2017-04-28 2017-12-12 Electromagnetic flowmeter
CN201820366342.9U CN208012677U (en) 2017-04-28 2018-03-16 Electromagnetic flowmeter
CN201820369492.5U CN208043144U (en) 2017-04-28 2018-03-16 Electromagnetic flowmeter
CN201820367922.XU CN208012678U (en) 2017-04-28 2018-03-16 Electromagnetic flowmeter
CN201820369543.4U CN208043145U (en) 2017-04-28 2018-03-16 Electromagnetic flowmeter
CN201820366212.5U CN208012676U (en) 2017-04-28 2018-03-16 Electromagnetic flowmeter
CN201820373141.1U CN208140197U (en) 2017-04-28 2018-03-19 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089705A JP6741622B2 (en) 2017-04-28 2017-04-28 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JP2018189403A true JP2018189403A (en) 2018-11-29
JP6741622B2 JP6741622B2 (en) 2020-08-19

Family

ID=64478472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089705A Active JP6741622B2 (en) 2017-04-28 2017-04-28 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP6741622B2 (en)

Also Published As

Publication number Publication date
JP6741622B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
WO2018198419A1 (en) Electromagnetic flowmeter
US20180216978A1 (en) Electromagnetic flow sensor
US9228868B2 (en) Magnetically inductive flowmeter for determining the flow rate of a fluid flowing through a measuring tube
JP2012008108A (en) Electromagnetic flow meter
US7908932B2 (en) Magneto-inductive measuring transducer
EP3899440B1 (en) Magnetic inductive flow sensor and measurement point
JP2017026359A (en) Water quality sensor
US7878072B2 (en) Measurement device including an electrode head with an anchor formed on an outer peripheral portion
JP4868444B2 (en) Electromagnetic flow meter
JP6741622B2 (en) Electromagnetic flow meter
US20160202096A1 (en) Magnetic-inductive flowmeter
KR20190072451A (en) Electrode for potential detection of electromagnetic flowmeter
CN112867909B (en) Magnetic inductive flowmeter
JP4919328B2 (en) Electromagnetic flow meter
RU2398190C2 (en) Flow sensor and connection element
JP4739045B2 (en) Conductivity detector
JPH09126844A (en) Galvanic electrode of electromagnetic flowmeter
JP6037112B2 (en) Differential pressure / pressure transmitter
JP2003194842A (en) Combined measuring apparatus
JP2018189406A (en) Electromagnetic flowmeter
JP2018189407A (en) Electromagnetic flowmeter
JP2007114028A (en) Method for manufacturing electromagnetic flowmeter
JP2018189405A (en) Electromagnetic flowmeter
JP6895456B2 (en) Comparison electrode unit
JP2000055708A (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250