JP2017026359A - Water quality sensor - Google Patents

Water quality sensor Download PDF

Info

Publication number
JP2017026359A
JP2017026359A JP2015142511A JP2015142511A JP2017026359A JP 2017026359 A JP2017026359 A JP 2017026359A JP 2015142511 A JP2015142511 A JP 2015142511A JP 2015142511 A JP2015142511 A JP 2015142511A JP 2017026359 A JP2017026359 A JP 2017026359A
Authority
JP
Japan
Prior art keywords
electrode
water quality
quality sensor
fluid
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015142511A
Other languages
Japanese (ja)
Inventor
雄一 森岡
Yuichi Morioka
雄一 森岡
学 磯部
Manabu Isobe
学 磯部
裕樹 岡田
Hiroki Okada
裕樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Morioka Co Ltd
Original Assignee
Techno Morioka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Morioka Co Ltd filed Critical Techno Morioka Co Ltd
Priority to JP2015142511A priority Critical patent/JP2017026359A/en
Publication of JP2017026359A publication Critical patent/JP2017026359A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water quality sensor capable of measuring conductivity of a fluid correctly.SOLUTION: A water quality sensor 10 has a constitution in which an electrode part 20 and a signal processing part 52 are integrated. The electrode part 20 is constituted by first and second electrodes arranged concentrically. The first electrode is arranged in the center position of a circle, and the second electrode has a cylindrical shape arranged on the circumference of the circle, and the electrodes are insulted by a spacer. In the vicinity of the first electrode and the second electrode, a circuit board 51 is arranged, and a measuring circuit is formed. The circuit board 51 applies a voltage between the first electrode and the second electrode, and measures an electrical characteristic of a measuring object fluid.SELECTED DRAWING: Figure 2

Description

本発明は、水質センサに関する。   The present invention relates to a water quality sensor.

水質の検査を行う機器として導電率センサが用いられている。水質検査用の導電率センサとして、2本又は4本の棒状電極を備え、電極間の流体の導電率を測定するものがある。さらに、細い配管などでも利用できるように、電極の長さを短くした水質センサも提供されている(特許文献1参照)。   A conductivity sensor is used as a device for inspecting water quality. As a conductivity sensor for water quality inspection, there is one that includes two or four rod-shaped electrodes and measures the conductivity of a fluid between the electrodes. Furthermore, a water quality sensor having a short electrode length is also provided so that it can be used even in a thin pipe (see Patent Document 1).

特開2009−85851号公報JP 2009-85851 A

複数の電極を直線上に配置した上記構成の水質センサは、金属配管などに装着したときに、ポンプやインバータ装置等の機械類から発生するノイズ(水中伝搬ノイズ)の影響を受け易い。従って、正確な導電率の測定が困難である。   The water quality sensor having the above-described configuration in which a plurality of electrodes are arranged on a straight line is easily affected by noise (underwater propagation noise) generated from machinery such as a pump and an inverter device when mounted on a metal pipe or the like. Therefore, it is difficult to accurately measure conductivity.

このため、配管の継手を樹脂製に変更したり、配管に交換アダプタを介して水質センサを取り付ける等、配管に水質センサを取り付けるために手間を要し、煩雑であった。さらに、配管経路が制限を受け、配管の強度への配慮が必要であった。   For this reason, it took time and effort to attach the water quality sensor to the pipe, such as changing the joint of the pipe to resin, or attaching the water quality sensor to the pipe via an exchange adapter. Furthermore, the piping route was restricted, and it was necessary to consider the strength of the piping.

また、従来の水質センサにおいて、電極とその導電率を測定する処理回路とを結ぶ信号線が長いと、信号線の寄生抵抗、寄生容量のために、測定誤差が大きくなる。また、信号線は一種のアンテナとして機能し、ノイズの影響をうけえしまう。このため、正確な測定がより困難となる。   Further, in the conventional water quality sensor, if the signal line connecting the electrode and the processing circuit for measuring the conductivity is long, the measurement error becomes large due to the parasitic resistance and parasitic capacitance of the signal line. Also, the signal line functions as a kind of antenna and is affected by noise. For this reason, accurate measurement becomes more difficult.

本発明は、上記実情に鑑みてなされたものであり、流体の導電率を簡単に且つ正確に測定することができる水質センサを提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the water quality sensor which can measure the electrical conductivity of a fluid simply and correctly.

上記目的を達成するため、本発明の水質センサは、
電極部と測定対象流体の電気的特性を測定する測定部とが一体化された構成を有する水質センサであって、
前記電極部は、同心円状に配置された第1の電極と第2の電極とを備え、
前記測定部は、前記電極部と一体化して構成され、前記第1の電極と前記第2の電極とに接続され、前記第1の電極と前記第2の電極との間の電気的特性を測定する。
In order to achieve the above object, the water quality sensor of the present invention comprises:
A water quality sensor having a configuration in which an electrode part and a measurement part for measuring electrical characteristics of a fluid to be measured are integrated,
The electrode part includes a first electrode and a second electrode arranged concentrically,
The measurement unit is configured integrally with the electrode unit, is connected to the first electrode and the second electrode, and has electrical characteristics between the first electrode and the second electrode. taking measurement.

前記測定部は、例えば、前記第1の電極と前記第2の電極との間の導電率を測定する。   For example, the measurement unit measures the electrical conductivity between the first electrode and the second electrode.

例えば、前記第1の電極は、円の中心位置に配置され、前記第2の電極は前記円の円周上に配置された円筒形状を有する。   For example, the first electrode has a cylindrical shape arranged at the center position of the circle, and the second electrode has a cylindrical shape arranged on the circumference of the circle.

例えば、前記第2の電極は、前記第1の電極よりも突出して形成され、前記第1の電極は前記第2の電極が形成する円筒状の空間内に配置されている。   For example, the second electrode is formed to protrude from the first electrode, and the first electrode is disposed in a cylindrical space formed by the second electrode.

例えば、前記第2の電極には、流体の流通を可能にする開口が形成されている。   For example, the second electrode has an opening that allows fluid to flow.

前記測定部は、例えば、前記第1と第2の電極間に電圧を印加し、流れる電流を測定する回路を備える。   The measurement unit includes, for example, a circuit that applies a voltage between the first and second electrodes and measures a flowing current.

本発明によれば、第1の電極と第2の電極が同軸に形成され、また、電極と測定部が一体に形成されているので、外部ノイズの影響が小さく、正確に流体の電気的特性を測定することができる。   According to the present invention, since the first electrode and the second electrode are formed coaxially, and the electrode and the measurement part are formed integrally, the influence of external noise is small, and the electrical characteristics of the fluid are accurately measured. Can be measured.

実施の形態1に係る水質センサの、(a)正面図、(b)平面図、(c)下面図である。It is (a) front view, (b) top view, (c) bottom view of the water quality sensor concerning Embodiment 1. FIG. 実施の形態1に係る水質センサの一部を切り欠いて示す斜視図である。It is a perspective view which notches and shows a part of water quality sensor which concerns on Embodiment 1. FIG. 実施の形態1に係る水質センサの電極部の構成を示す断面図である。It is sectional drawing which shows the structure of the electrode part of the water quality sensor which concerns on Embodiment 1. FIG. 図3に示す中心電極の、(a)正面図と、(b)I−I線での断面図である。FIG. 4A is a front view of the center electrode shown in FIG. 3 and FIG. 図3に示す円筒外部電極の、(a)正面図と、(b)II−II線での断面図である。FIG. 4 is a (a) front view and (b) a cross-sectional view taken along line II-II of the cylindrical external electrode shown in FIG. 3. 図3に示す絶縁層の、(a)正面図と、(b)III−III線での断面図である。FIG. 4A is a front view and FIG. 3B is a cross-sectional view taken along line III-III of the insulating layer shown in FIG. 3. 実施の形態1に係る水質センサを配管に取り付けた状態を示す図である。It is a figure which shows the state which attached the water quality sensor which concerns on Embodiment 1 to piping. 実施の形態1に係る水質センサの回路図である。1 is a circuit diagram of a water quality sensor according to Embodiment 1. FIG. 中心電極の内部に配置されたサーミスタを示す断面図である。It is sectional drawing which shows the thermistor arrange | positioned inside a center electrode. 電極間の等価回路である。It is an equivalent circuit between electrodes.

以下に、本発明の実施の形態に係る水質センサを図面を参照して説明する。   Hereinafter, a water quality sensor according to an embodiment of the present invention will be described with reference to the drawings.

実施の形態に係る水質センサ10は、図1(a)〜(c)に三面図で、図2に一部切欠斜視図で示すように、電極部20と、電極保持部30と、六角頭部40と、本体部50と、接続部60とを一体として備える。   The water quality sensor 10 according to the embodiment is shown in three views in FIGS. 1A to 1C and in a partially cutaway perspective view in FIG. 2. As shown in FIG. 2, the electrode unit 20, the electrode holding unit 30, The part 40, the main body part 50, and the connection part 60 are integrally provided.

電極部20は、図3に断面で示すように、同心円状に配置された2本の電極21,22と、電極21,22を互いに絶縁するスペーサ23と、を備える。   As shown in a cross section in FIG. 3, the electrode unit 20 includes two electrodes 21 and 22 arranged concentrically and a spacer 23 that insulates the electrodes 21 and 22 from each other.

電極21は、ステンレス綱、銀、銅、黄銅、金、白金、チタンなどの耐腐食性の導電材料から構成され、図4(a)に正面図で、図4(b)に断面図で示すように、有底筒状に形成されている。   The electrode 21 is made of a corrosion-resistant conductive material such as stainless steel, silver, copper, brass, gold, platinum, and titanium, and is shown in a front view in FIG. 4A and in a cross-sectional view in FIG. Thus, it is formed in a bottomed cylindrical shape.

一方、電極22は、図5(a)に正面図で、図5(b)に断面図で示すように、筒状に形成されている。電極22は、中心電極21の中心とした円周上に位置し、ステンレス綱、銀、銅、黄銅、金、白金、チタンなどの耐腐食性の導電材料から構成される。以下、区別のため、電極21を中心電極、電極22を円筒外部電極と呼ぶ。   On the other hand, the electrode 22 is formed in a cylindrical shape as shown in a front view in FIG. 5A and a sectional view in FIG. The electrode 22 is located on the circumference centered on the center electrode 21, and is made of a corrosion-resistant conductive material such as stainless steel, silver, copper, brass, gold, platinum, or titanium. Hereinafter, for distinction, the electrode 21 is referred to as a center electrode, and the electrode 22 is referred to as a cylindrical external electrode.

スペーサ23は、絶縁性樹脂等から形成され、図6(a)に正面図で、図6(b)に断面図で示すように、円筒状に形成されている。   The spacer 23 is formed of an insulating resin or the like, and is formed in a cylindrical shape as shown in a front view in FIG. 6A and a cross-sectional view in FIG.

中心電極21とスペーサ23と円筒外部電極22は、図3に示すように、中心電極21の周囲をスペーサ23が水密に取り囲み、スペーサ23の周囲を円筒外部電極22が水密に取り囲むように、組み合わされている。   As shown in FIG. 3, the center electrode 21, the spacer 23, and the cylindrical external electrode 22 are combined so that the spacer 23 surrounds the center electrode 21 in a watertight manner, and the cylindrical external electrode 22 surrounds the spacer 23 in a watertight manner. Has been.

中心電極21の先端は、円筒外部電極22の先端から突出せずに内部に位置している。また、スペーサ23の先端は、中心電極21よりも内側に位置する。このため、中心電極21と円筒外部電極22との間には、測定対象の流体を介して対向する部分が形成される。
さらに、円筒外部電極22のスペーサ23と重ならない位置には、120°回転対称に、測定対象流体が流通する開口24が形成されている。
The tip of the center electrode 21 is located inside without protruding from the tip of the cylindrical external electrode 22. The tip of the spacer 23 is located inside the center electrode 21. For this reason, between the center electrode 21 and the cylindrical external electrode 22, the part which opposes via the fluid to be measured is formed.
Furthermore, an opening 24 through which the fluid to be measured flows is formed at a position that does not overlap with the spacer 23 of the cylindrical external electrode 22 in a 120 ° rotational symmetry.

図3に示すように、円筒外部電極22はその内面に段差部を有し、スペーサ23はその外周に段差部を有し、段差部同士が当接することにより、その軸方向の位置が規定されている。同様に、スペーサ23はその内面に段差部を有し、中心電極21はその外周に段差部を有し、段差部同士が当接することにより、軸方向の位置が規定されている。   As shown in FIG. 3, the cylindrical external electrode 22 has a stepped portion on its inner surface, and the spacer 23 has a stepped portion on the outer periphery, and the stepped portions are in contact with each other, so that the position in the axial direction is defined. ing. Similarly, the spacer 23 has a stepped portion on the inner surface thereof, the center electrode 21 has a stepped portion on the outer periphery thereof, and the position in the axial direction is defined by contacting the stepped portions.

中心電極21と円筒外部電極22のサイズは任意であるが、中心電極21は例えば、外径4±1mm、内径2mm±1mm、長さ27±5mm、円筒外部電極22は外径11±1mm、内径10±1mm、長さ35±7mm程度に形成される。また、中心電極21の先端から円筒外部電極22の先端までの距離は、3〜8mmに形成される。   The size of the center electrode 21 and the cylindrical external electrode 22 is arbitrary. For example, the center electrode 21 has an outer diameter of 4 ± 1 mm, an inner diameter of 2 mm ± 1 mm, a length of 27 ± 5 mm, and the cylindrical outer electrode 22 has an outer diameter of 11 ± 1 mm. The inner diameter is 10 ± 1 mm and the length is about 35 ± 7 mm. The distance from the tip of the center electrode 21 to the tip of the cylindrical external electrode 22 is 3 to 8 mm.

図1,図2に示すように、電極保持部30は、基端から先端に向かって外径が小さくなる円錐台形の部材である。電極保持部30は、プラスチックなどの絶縁性材料から形成されている。電極保持部30には、電極部20が、その先端が突出するように水密に装着され保持される。これにより、電極保持部30と電極21,22と、スペーサ23の間は密閉され、計測時に、測定対象の流体が水質センサ10の内部に流入することが防止される。   As shown in FIGS. 1 and 2, the electrode holding portion 30 is a truncated cone-shaped member whose outer diameter decreases from the proximal end toward the distal end. The electrode holding part 30 is made of an insulating material such as plastic. The electrode holding unit 30 is mounted and held in a watertight manner so that the tip of the electrode holding unit 30 protrudes. Thereby, the space between the electrode holding part 30, the electrodes 21, 22 and the spacer 23 is sealed, and the fluid to be measured is prevented from flowing into the water quality sensor 10 during measurement.

電極保持部30の周囲には、この水質センサ10を、配管などに形成された開口に固定するための雄ねじ32が形成されている。   A male screw 32 is formed around the electrode holding unit 30 to fix the water quality sensor 10 to an opening formed in a pipe or the like.

六角頭部40は、電極保持部30の基端部に、電極保持部30と一体に形成されている。六角頭部40をレンチなどで回転駆動することにより、電極保持部30に形成された雄ねじ32を、図7に示すように、配管110等に形成された挿入穴111にねじ込むことにより、電極部20を配管110内に水密に挿入することができる。   The hexagonal head 40 is formed integrally with the electrode holding part 30 at the proximal end of the electrode holding part 30. By rotating the hexagonal head 40 with a wrench or the like, the male screw 32 formed on the electrode holding unit 30 is screwed into the insertion hole 111 formed on the pipe 110 or the like as shown in FIG. 20 can be inserted into the pipe 110 in a watertight manner.

本体部50は、六角頭部40と一体に形成され、立方体状の形状を有する。本体部50の内部には、中心電極21と円筒外部電極22との間に電圧を印加して、電極間に流れる電流を測定することにより、測定対象流体の電気的特性を測定する信号処理部52が形成されている。信号処理部52は、電子回路が形成された回路基板51を備える。回路基板51は、プリント配線基板等から構成されている。従って、回路基板51は、中心電極21と円筒外部電極22と非常に近い位置、例えば、数mm〜3cmの位置に配置されている。   The main body 50 is formed integrally with the hexagonal head 40 and has a cubic shape. A signal processing unit that measures the electrical characteristics of the fluid to be measured by applying a voltage between the center electrode 21 and the cylindrical external electrode 22 and measuring a current flowing between the electrodes inside the main body 50. 52 is formed. The signal processing unit 52 includes a circuit board 51 on which an electronic circuit is formed. The circuit board 51 is composed of a printed wiring board or the like. Therefore, the circuit board 51 is disposed at a position very close to the center electrode 21 and the cylindrical external electrode 22, for example, a position of several mm to 3 cm.

回路基板51には、図8に示すように、交流発振器71、抵抗器72と、絶対値増幅器(アンプ)73と、信号処理回路74等を含む測定回路が形成されている。   As shown in FIG. 8, a measurement circuit including an AC oscillator 71, a resistor 72, an absolute value amplifier (amplifier) 73, a signal processing circuit 74, and the like is formed on the circuit board 51.

交流発振器71と抵抗器72とは直列に接続され、一端が図示せぬ導体を介して中心電極21に、他端が短い信号線を介して円筒外部電極22に接続されている。図8では、交流発振器71の一端が中心電極21に接続され、交流発振器71の他端が抵抗器72の一端に接続され、抵抗器72の他端が短い信号線を介して円筒外部電極22に接続されている。   The AC oscillator 71 and the resistor 72 are connected in series, and one end is connected to the center electrode 21 via a conductor (not shown) and the other end is connected to the cylindrical external electrode 22 via a short signal line. In FIG. 8, one end of the AC oscillator 71 is connected to the center electrode 21, the other end of the AC oscillator 71 is connected to one end of the resistor 72, and the other end of the resistor 72 is connected to the cylindrical external electrode 22 via a short signal line. It is connected to the.

抵抗器72の両端の電圧は、絶対値増幅器(アンプ)73の2つの入力端に印加される。絶対値増幅器73は、抵抗器72の両端間電圧を絶対値増幅する。絶対値増幅器73の出力は、信号処理回路74に供給される。   The voltage across the resistor 72 is applied to two input terminals of an absolute value amplifier (amplifier) 73. The absolute value amplifier 73 amplifies the voltage across the resistor 72 by an absolute value. The output of the absolute value amplifier 73 is supplied to the signal processing circuit 74.

信号処理回路74は、絶対値増幅器73の出力信号を平滑化し、これをA/D(アナログデジタル)変換して、デジタル演算処理を施すことにより、中心電極21と円筒外部電極22の間に介在している測定対象流体の導電率等の電気的特性を求めて、求めた値を示すデジタル信号を出力する。
なお、導電率等の電気的特性を求める手法としては、既知の任意の手法を使用することができる。
The signal processing circuit 74 smoothes the output signal of the absolute value amplifier 73, A / D (analog / digital) converts this, and performs digital arithmetic processing, thereby interposing between the center electrode 21 and the cylindrical external electrode 22. The electrical characteristics such as conductivity of the fluid to be measured are obtained, and a digital signal indicating the obtained value is output.
It should be noted that any known method can be used as a method for obtaining electrical characteristics such as conductivity.

信号処理回路74は、温度変化に起因する測定誤差を補償するための温度補償回路を含む。温度補償回路は、サーミスタ等の温度センサ75が検出した測定対象流体の温度に基づいて、測定値(測定対象流体の導電率)を補償する。温度センサ75は、図9に模式的に示すように、有底円筒状の中心電極21の内部且つ先端部に配置され、信号線76で信号処理回路74に接続される。このような配置することにより、測定対象流体の温度を正確に測定することが可能となる。また、信号線76も短くてすむ。   The signal processing circuit 74 includes a temperature compensation circuit for compensating a measurement error due to a temperature change. The temperature compensation circuit compensates the measurement value (conductivity of the measurement target fluid) based on the temperature of the measurement target fluid detected by the temperature sensor 75 such as a thermistor. As schematically shown in FIG. 9, the temperature sensor 75 is disposed inside and at the tip of the bottomed cylindrical center electrode 21, and is connected to the signal processing circuit 74 by a signal line 76. With such an arrangement, it is possible to accurately measure the temperature of the fluid to be measured. Also, the signal line 76 can be short.

接続部60は、外部から供給される電源線、アース線、信号処理回路74の出力線などを含むケーブル61を束ねる。   The connection unit 60 bundles a cable 61 including a power supply line, an earth line, an output line of the signal processing circuit 74 and the like supplied from the outside.

次に、上記構成を有する水質センサ10を使用して、配管内の流体の導電率を求める手順の一例を説明する。   Next, an example of a procedure for obtaining the electrical conductivity of the fluid in the pipe using the water quality sensor 10 having the above configuration will be described.

まず、図7に示すように、配管110に、水質センサ10を取り付けるために、電極保持部30の先端部(小径部)とほぼ同径の挿入穴111を形成する。挿入穴111の内面にタップを切ってもよい。   First, as shown in FIG. 7, in order to attach the water quality sensor 10 to the pipe 110, an insertion hole 111 having substantially the same diameter as the distal end portion (small diameter portion) of the electrode holding portion 30 is formed. A tap may be cut on the inner surface of the insertion hole 111.

続いて、水質センサ10の電極保持部30の先端部を挿入穴111に差し込み、六角頭部40をレンチなどに回転させることにより、電極保持部30の雄ねじ32を挿入穴111内にねじ込む。これにより、電極部20が配管110内に水密に固定される。   Subsequently, the male screw 32 of the electrode holding unit 30 is screwed into the insertion hole 111 by inserting the tip of the electrode holding unit 30 of the water quality sensor 10 into the insertion hole 111 and rotating the hexagonal head 40 with a wrench or the like. Thereby, the electrode part 20 is watertightly fixed in the piping 110.

続いて、配管110内に測定対象流体を流す。これにより、測定対象流体が円筒外部電極22と中心電極21とスペーサ23とで形成される空間にも流入する。ただし、円筒外部電極22が中心電極21を囲む形状となっており、中心電極21と円筒外部電極22との間の領域における流体の流れは比較的穏やかなものとなる。   Subsequently, the fluid to be measured is caused to flow in the pipe 110. As a result, the fluid to be measured also flows into the space formed by the cylindrical external electrode 22, the center electrode 21, and the spacer 23. However, the cylindrical external electrode 22 has a shape surrounding the central electrode 21, and the fluid flow in the region between the central electrode 21 and the cylindrical external electrode 22 is relatively gentle.

続いて、外部から動作電力を供給して、交流発振器71を起動し、抵抗器72を介して中心電極21と円筒外部電極22との間に交流電圧を印加する。   Subsequently, operating power is supplied from the outside, the AC oscillator 71 is activated, and an AC voltage is applied between the center electrode 21 and the cylindrical external electrode 22 via the resistor 72.

続いて、外部から動作電力を供給して、交流発振器71を起動し、抵抗器72を介して中心電極21と円筒外部電極22との間に交流電圧を印加する。   Subsequently, operating power is supplied from the outside, the AC oscillator 71 is activated, and an AC voltage is applied between the center electrode 21 and the cylindrical external electrode 22 via the resistor 72.

中心電極21と円筒外部電極22との間の等価回路は、図10のように表すことができる。ここで、Rは、電極間抵抗、Cpは、電極間容量+ケーブル容量、Csは分極容量である。
信号処理回路74は、この等価回路と得られた測定値から、測定対象流体の導電率を求め、ケーブル61を介して出力する。
An equivalent circuit between the center electrode 21 and the cylindrical external electrode 22 can be expressed as shown in FIG. Here, R is the interelectrode resistance, Cp is the interelectrode capacitance + cable capacitance, and Cs is the polarization capacitance.
The signal processing circuit 74 obtains the conductivity of the fluid to be measured from the equivalent circuit and the obtained measurement value, and outputs it through the cable 61.

上記構成の水質センサ10によれば、中心電極21と閉じている円筒外部電極22との間で電流が流れるため、電流の回り込み等がほとんど発生しない。また、電流の流路は、円筒外部電極22に囲われた領域内にあり、円筒外部電極22によりシールドされ、外部からの電磁ノイズなどの影響が少ない。   According to the water quality sensor 10 having the above configuration, since a current flows between the center electrode 21 and the closed cylindrical external electrode 22, almost no current wraps around. In addition, the current flow path is in a region surrounded by the cylindrical external electrode 22 and is shielded by the cylindrical external electrode 22, and is less affected by electromagnetic noise from the outside.

また、水質センサ10は、電極部20と信号処理部52とを筐体で支持し、信号の検出から信号処理による測定対象流体の電気的特性の測定までを1つの可搬な装置として一体化した構成を有する。従って、測定流体の電気的特性を求めるために検出信号を外部の信号処理装置に送信するする必要がない。このため、中心電極21と円筒外部電極22と回路基板51とを接続する配線は、非常に短くてすむ。このため、配線の寄生容量が小さく、信号処理部52に容量成分をキャンセルするための回路が不要となり、正確な測定が可能となる。また、伝導率測定の場合は、配線が短くなることによって導体抵抗が非常に小さくなるため、その分の測定誤差もなくなる。   In addition, the water quality sensor 10 supports the electrode unit 20 and the signal processing unit 52 with a casing, and integrates from detection of a signal to measurement of electrical characteristics of a fluid to be measured by signal processing as one portable device. The configuration is as follows. Therefore, it is not necessary to transmit the detection signal to an external signal processing device in order to obtain the electrical characteristics of the measurement fluid. For this reason, the wiring which connects the center electrode 21, the cylindrical external electrode 22, and the circuit board 51 can be very short. For this reason, the parasitic capacitance of the wiring is small, and a circuit for canceling the capacitance component is not required in the signal processing unit 52, and accurate measurement is possible. In the case of conductivity measurement, since the conductor resistance becomes very small due to the shortening of the wiring, there is no measurement error.

サーミスタ等の温度センサ75を中心電極21の中空部に位置するため、測定対処流体の温度の即応性に優れる。   Since the temperature sensor 75 such as a thermistor is positioned in the hollow portion of the center electrode 21, the temperature response of the measurement-measuring fluid is excellent.

なお、この発明は上記実施の形態に限定されず、種々の変形及び応用が可能である。例えば、中心電極21と円筒外部電極22の形状は、上記実施の形態に限定されない。例えば、中心電極21は内部に中空部を備えない棒状のものでもよい。また、円筒外部電極22は、中心電極21と同程度の突出量でもよい。また、開口24の形状、数、配置等も任意である。例えば、スリット状等でもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation and application are possible. For example, the shapes of the center electrode 21 and the cylindrical external electrode 22 are not limited to the above embodiment. For example, the center electrode 21 may have a rod shape without a hollow portion therein. Further, the cylindrical external electrode 22 may have a protruding amount similar to that of the center electrode 21. Further, the shape, number, arrangement, and the like of the opening 24 are arbitrary. For example, a slit shape or the like may be used.

信号処理部52の構成も任意である。例えば、絶対値増幅器73を使用する例を示したが、整流回路と増幅器を組み合わせて使用してもよい。
デジタル信号処理の例を示したが、アナログ信号処理でもよい。
The configuration of the signal processing unit 52 is also arbitrary. For example, although the example using the absolute value amplifier 73 has been shown, a rectifier circuit and an amplifier may be used in combination.
Although an example of digital signal processing has been shown, analog signal processing may be used.

水質を表す指標として導電率を測定する例を示したが、他の電気的特性を測定してもよい。例えば、抵抗値(1/導電率)を測定してもよい。   Although an example of measuring conductivity as an index representing water quality has been shown, other electrical characteristics may be measured. For example, the resistance value (1 / conductivity) may be measured.

10 水質センサ
20 電極部
21 中心電極
22 円筒外部電極
30 電極保持部
40 六角頭部
50 本体部
51 回路基板
60 接続部
DESCRIPTION OF SYMBOLS 10 Water quality sensor 20 Electrode part 21 Center electrode 22 Cylindrical external electrode 30 Electrode holding part 40 Hexagon head 50 Main-body part 51 Circuit board 60 Connection part

Claims (6)

電極部と測定対象流体の電気的特性を測定する測定部とが一体化された構成を有する水質センサであって、
前記電極部は、同心円状に配置された第1の電極と第2の電極とを備え、
前記測定部は、前記電極部と一体化して構成され、前記第1の電極と前記第2の電極とに接続され、前記第1の電極と前記第2の電極との間の電気的特性を測定する、
水質センサ。
A water quality sensor having a configuration in which an electrode part and a measurement part for measuring electrical characteristics of a fluid to be measured are integrated,
The electrode part includes a first electrode and a second electrode arranged concentrically,
The measurement unit is configured integrally with the electrode unit, is connected to the first electrode and the second electrode, and has electrical characteristics between the first electrode and the second electrode. taking measurement,
Water quality sensor.
前記測定部は、前記第1の電極と前記第2の電極との間の導電率を測定する、ことを特徴とする請求項1に記載の水質センサ。   The water quality sensor according to claim 1, wherein the measurement unit measures conductivity between the first electrode and the second electrode. 前記第1の電極は、円の中心位置に配置され、前記第2の電極は前記円の円周上に配置された円筒形状を有する、ことを特徴とする請求項1又は2に記載の水質センサ。   3. The water quality according to claim 1, wherein the first electrode is disposed at a center position of a circle, and the second electrode has a cylindrical shape disposed on a circumference of the circle. Sensor. 前記第2の電極は、前記第1の電極よりも突出して形成され、
前記第1の電極は前記第2の電極が形成する円筒状の空間内に配置されている、ことを特徴とする請求項3に記載の水質センサ。
The second electrode is formed so as to protrude from the first electrode,
The water quality sensor according to claim 3, wherein the first electrode is disposed in a cylindrical space formed by the second electrode.
前記第2の電極には、流体の流通を可能にする開口が形成されている、ことを特徴とする請求項3又4に記載の水質センサ。   5. The water quality sensor according to claim 3, wherein the second electrode has an opening that allows fluid to flow therethrough. 前記測定部は、前記第1と第2の電極間に電圧を印加し、流れる電流を測定する回路を備える、ことを特徴とする請求項1乃至5の何れか1項に記載の水質センサ。   The water quality sensor according to claim 1, wherein the measurement unit includes a circuit that applies a voltage between the first and second electrodes and measures a flowing current.
JP2015142511A 2015-07-16 2015-07-16 Water quality sensor Pending JP2017026359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142511A JP2017026359A (en) 2015-07-16 2015-07-16 Water quality sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142511A JP2017026359A (en) 2015-07-16 2015-07-16 Water quality sensor

Publications (1)

Publication Number Publication Date
JP2017026359A true JP2017026359A (en) 2017-02-02

Family

ID=57945760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142511A Pending JP2017026359A (en) 2015-07-16 2015-07-16 Water quality sensor

Country Status (1)

Country Link
JP (1) JP2017026359A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101914714B1 (en) * 2018-05-31 2018-11-05 한국건설기술연구원 Chamber integrated resistivity measuring device for real-time water quality monitoring of ultra pure water production process and water quality monitoring method using the same
JP2019155297A (en) * 2018-03-14 2019-09-19 水ing株式会社 Conductivity measuring structure, pure water production apparatus and pure water production method
JP2020016498A (en) * 2018-07-24 2020-01-30 アズビル株式会社 Electrical conductivity meter
JP2020016500A (en) * 2018-07-24 2020-01-30 アズビル株式会社 Electrical conductivity meter
WO2020179991A1 (en) * 2019-03-07 2020-09-10 주식회사 경동나비엔 Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same
KR20200107759A (en) * 2019-03-07 2020-09-16 주식회사 경동나비엔 Electrode-terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064657U (en) * 1992-06-26 1994-01-21 古河電気工業株式会社 Moisture detector
JPH11287776A (en) * 1998-04-04 1999-10-19 Kosu:Kk Method for monitoring purity of liquid
JP2000074865A (en) * 1998-08-31 2000-03-14 Daikin Ind Ltd Conductivity sensor for water quality control, and absorption type cold and hot water machine
JP2000162168A (en) * 1998-11-30 2000-06-16 Kosu:Kk Conductivity meter
JP2003107028A (en) * 2001-10-01 2003-04-09 Saginomiya Seisakusho Inc Method for connecting electrode and resistivity meter
JP2005519279A (en) * 2002-03-01 2005-06-30 カブリコ・コーポレイション Stabilized conductivity detection system
JP2012027027A (en) * 2010-07-26 2012-02-09 Mettler-Toledo Thornton Inc Calibration of conductivity measurement system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064657U (en) * 1992-06-26 1994-01-21 古河電気工業株式会社 Moisture detector
JPH11287776A (en) * 1998-04-04 1999-10-19 Kosu:Kk Method for monitoring purity of liquid
JP2000074865A (en) * 1998-08-31 2000-03-14 Daikin Ind Ltd Conductivity sensor for water quality control, and absorption type cold and hot water machine
JP2000162168A (en) * 1998-11-30 2000-06-16 Kosu:Kk Conductivity meter
JP2003107028A (en) * 2001-10-01 2003-04-09 Saginomiya Seisakusho Inc Method for connecting electrode and resistivity meter
JP2005519279A (en) * 2002-03-01 2005-06-30 カブリコ・コーポレイション Stabilized conductivity detection system
JP2012027027A (en) * 2010-07-26 2012-02-09 Mettler-Toledo Thornton Inc Calibration of conductivity measurement system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155297A (en) * 2018-03-14 2019-09-19 水ing株式会社 Conductivity measuring structure, pure water production apparatus and pure water production method
KR101914714B1 (en) * 2018-05-31 2018-11-05 한국건설기술연구원 Chamber integrated resistivity measuring device for real-time water quality monitoring of ultra pure water production process and water quality monitoring method using the same
JP2020016498A (en) * 2018-07-24 2020-01-30 アズビル株式会社 Electrical conductivity meter
JP2020016500A (en) * 2018-07-24 2020-01-30 アズビル株式会社 Electrical conductivity meter
JP7132014B2 (en) 2018-07-24 2022-09-06 アズビル株式会社 electrical conductivity meter
JP7132015B2 (en) 2018-07-24 2022-09-06 アズビル株式会社 electrical conductivity meter
WO2020179991A1 (en) * 2019-03-07 2020-09-10 주식회사 경동나비엔 Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same
KR20200107759A (en) * 2019-03-07 2020-09-16 주식회사 경동나비엔 Electrode-terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus including the same
US20220099612A1 (en) * 2019-03-07 2022-03-31 Kyungdong Navien Co., Ltd. Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same
KR102580325B1 (en) * 2019-03-07 2023-09-20 주식회사 경동나비엔 Electrode-terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus including the same
US11852601B2 (en) 2019-03-07 2023-12-26 Kyungdong Navien Co., Ltd. Electrode terminal assembly for liquid quality meter apparatus and liquid quality meter apparatus comprising same

Similar Documents

Publication Publication Date Title
JP2017026359A (en) Water quality sensor
US4366714A (en) Pressure/temperature probe
US10416107B2 (en) Conductivity sensor with void correction
JP2011145294A (en) Liquid level measuring probe
JP7245673B2 (en) Probes and thickness gauges
US20220074769A1 (en) Magnetic inductive flow sensor and measurement point
JP2011007639A (en) Conductivity detector
JP6924106B2 (en) Fluid property detector
US6693445B1 (en) Probe device for apparatus for monitoring corrosion of a material
EP3499224B1 (en) Electrode assembly for conductivity meter or resistivity meter, conductivity meter and resistivity meter using the same electrode assembly
WO2015083298A1 (en) Water level sensor
US9772300B2 (en) Inductive conductivity sensor for measuring the specific electrical conductivity of a medium
JP2016161383A (en) Terminal unit and resistance device
JPS60186751A (en) Ph meter
JP5189419B2 (en) Temperature sensor
JPH11287776A (en) Method for monitoring purity of liquid
TWI667472B (en) Solution property sensor
CN109470297B (en) Moisture detector
JP6874400B2 (en) Guide wire and manufacturing method of guide wire
CN205262642U (en) Measure probe of multidimension degree temperature
JP6327389B1 (en) Resistance temperature detector and temperature sensor including the resistance temperature detector
US3155933A (en) Probe for insertion in condenser tubes or the like
US20230194357A1 (en) Temperature probe and method for manufacturing a temperature probe
CN105157862A (en) Thermal resistance temperature sensor
WO2015125289A1 (en) Hot-wire flow meter and blood-flow meter using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924