JP2018187556A - Manufacturing method of catalyst for manufacturing hydrocarbon from synthetic gas and manufacturing method of hydrocarbon for manufacturing hydrocarbon from synthetic gas - Google Patents

Manufacturing method of catalyst for manufacturing hydrocarbon from synthetic gas and manufacturing method of hydrocarbon for manufacturing hydrocarbon from synthetic gas Download PDF

Info

Publication number
JP2018187556A
JP2018187556A JP2017091290A JP2017091290A JP2018187556A JP 2018187556 A JP2018187556 A JP 2018187556A JP 2017091290 A JP2017091290 A JP 2017091290A JP 2017091290 A JP2017091290 A JP 2017091290A JP 2018187556 A JP2018187556 A JP 2018187556A
Authority
JP
Japan
Prior art keywords
catalyst
component
cobalt
noble metal
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017091290A
Other languages
Japanese (ja)
Other versions
JP6839602B2 (en
Inventor
典之 山根
Noriyuki Yamane
典之 山根
公人 鈴木
Kimihito Suzuki
公人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2017091290A priority Critical patent/JP6839602B2/en
Publication of JP2018187556A publication Critical patent/JP2018187556A/en
Application granted granted Critical
Publication of JP6839602B2 publication Critical patent/JP6839602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a catalyst for manufacturing hydrocarbon from a synthetic gas exhibiting high activity, and a manufacturing method of hydrocarbon using the catalyst manufactured by the manufacturing method.SOLUTION: There is provided a manufacturing method of a catalyst for manufacturing hydrocarbon from a synthetic gas, manufactured by carrying a cobalt component and a noble metal component on a catalyst carrier mainly containing silica, the carrying includes a process for impregnating and carrying the cobalt component into/on a catalyst carrier mainly containing the silica with total content of sodium, potassium, magnesium, calcium of 1,000 ppm or less in terms of metals by using a precursor solution of cobalt acetate, a process for impregnating and carrying the noble metal component by using a precursor of the noble metal compound after the process, and a process for reducing the catalyst after the process with a gas containing hydrogen.SELECTED DRAWING: None

Description

本発明は、一酸化炭素と水素を主成分とする、いわゆる合成ガスから、炭化水素を製造する触媒の製造方法、および該製造方法で製造された触媒を用いて、合成ガスから炭化水素を製造する炭化水素の製造方法に関する。   The present invention relates to a method for producing a catalyst for producing hydrocarbons from so-called synthesis gas mainly composed of carbon monoxide and hydrogen, and to produce hydrocarbons from synthesis gas using the catalyst produced by the production method. The present invention relates to a method for producing hydrocarbons.

近年、地球温暖化等の環境問題が顕在化し、石油や石炭以外の炭化水素燃料が見直されている。なかでも、石炭等と比較してH/Cが高く、地球温暖化の原因物質である二酸化炭素排出量を抑えることができ、埋蔵量も豊富な天然ガスの重要性が見直されてきている。今後ますます天然ガスの需要は増加するものと予想されている。そのような状況の中、東南アジア・オセアニア地域等では、パイプライン・LNGプラント等のインフラが未整備の遠隔地で、天然ガスが発見されている。しかしながら、天然ガスの可採埋蔵量が巨額の投資を必要とするインフラ建設には見合わないため、未開発のまま残されている数多くの中小規模ガス田が存在する。これらの未開発の中小規模ガス田は、開発促進が望まれている。その有効な開発手段の1つとして、天然ガスを合成ガスに変換した後、下記の式(1)で表わされる、合成ガスからフィッシャー・トロプシュ(Fischer−Tropsch)合成反応(F−T合成反応)を用いて輸送性・ハンドリング性の優れた灯油・軽油等の液体炭化水素燃料に転換する技術の開発が各所で精力的に行われている。   In recent years, environmental problems such as global warming have become apparent, and hydrocarbon fuels other than oil and coal have been reviewed. Among them, the importance of natural gas, which has a higher H / C than coal and the like, can suppress carbon dioxide emissions that are a cause of global warming, and has abundant reserves, has been reviewed. The demand for natural gas is expected to increase in the future. Under such circumstances, in Southeast Asia and Oceania, natural gas has been discovered in remote areas where infrastructure such as pipelines and LNG plants has not been developed. However, there are many small and medium-sized gas fields that remain undeveloped because natural gas recoverable reserves are not suitable for infrastructure construction that requires huge investments. The development of these undeveloped small and medium-sized gas fields is desired. As one of the effective development means, after natural gas is converted into synthesis gas, the synthesis gas represented by the following formula (1) is subjected to a Fischer-Tropsch synthesis reaction (FT synthesis reaction). Development of technology to convert to liquid hydrocarbon fuels such as kerosene and light oil, which are excellent in transportability and handling properties, has been vigorously carried out in various places.

Figure 2018187556
Figure 2018187556

このF−T合成反応は、触媒を用いて合成ガスを炭化水素に転換する発熱反応である。F−T合成反応では、触媒として、コバルト、ルテニウム、鉄等が使用されるが、性能やコストの観点から、コバルト触媒が主に使用されている。このような触媒を使用したプラントの安定操業のためには、反応熱を効果的に除去することが極めて重要である。現在までに実績のある反応形式としては、気相合成プロセス(固定床、噴流床、流動床)と、液相合成プロセス(スラリー床)が挙げられる。これらの反応形式は、それぞれ特徴を有している。なかでも、熱除去効率が高く、生成した高沸点の炭化水素の触媒上への蓄積やそれに伴う反応管閉塞が起こらないことから、スラリー床液相合成プロセスが注目を集め、精力的に開発が進められている。   This FT synthesis reaction is an exothermic reaction in which synthesis gas is converted into hydrocarbon using a catalyst. In the FT synthesis reaction, cobalt, ruthenium, iron or the like is used as a catalyst, but a cobalt catalyst is mainly used from the viewpoint of performance and cost. Effective removal of heat of reaction is extremely important for stable operation of a plant using such a catalyst. The reaction modes that have been proven to date include gas phase synthesis processes (fixed bed, spouted bed, fluidized bed) and liquid phase synthesis processes (slurry bed). Each of these reaction modes has its characteristics. Above all, the heat removal efficiency is high, and the high boiling point hydrocarbons produced do not accumulate on the catalyst and the resulting reaction tube clogging does not occur. It is being advanced.

一般的に触媒の活性は、高ければ高いほど好ましいことは言うまでもない。特にスラリー床では、良好なスラリー流動状態を保持するためには、スラリー濃度を一定の値以下にする必要があるという制限が存在する。そのため、触媒の高活性化は、プロセス設計の自由度を拡大する上で、非常に重要な要素となる。   Needless to say, the higher the activity of the catalyst, the better. Particularly in the slurry bed, there is a limitation that the slurry concentration needs to be a certain value or less in order to maintain a good slurry flow state. Therefore, high activation of the catalyst is a very important factor in expanding the degree of freedom in process design.

炭化水素を製造するプラントでは、転化率を高く設定することが望ましい。上記の式(1)に示すように、F−T合成反応では水が副生するため、転化率の増加と共に反応器内の水分圧は増加する。水分圧が高い条件下においては、コバルト触媒は一般的に活性が低下しやすくなる。そのため、ワンパス転化率を60%程度として、テールガスリサイクルにて総合転化率を高くする運転が行われることが多い。従って、触媒の活性に応じて反応温度等の条件を変動させることで、ワンパス転化率を一定の値に設定することになる。触媒の活性低下と共に反応温度を増加しながらワンパス転化率を一定値に保持し、特定の反応温度に到達した時点で運転を終了する方式の場合、活性が高い触媒を使用することで反応開始時の温度が低くなる。そのため、触媒を長く使用することが可能となる。   In plants that produce hydrocarbons, it is desirable to set the conversion rate high. As shown in the above formula (1), water is by-produced in the FT synthesis reaction, so that the water pressure in the reactor increases as the conversion rate increases. Under conditions where the moisture pressure is high, the activity of the cobalt catalyst generally tends to decrease. For this reason, an operation is often performed in which the one-pass conversion rate is set to about 60% and the total conversion rate is increased by tail gas recycling. Therefore, the one-pass conversion rate is set to a constant value by changing the reaction temperature and other conditions according to the activity of the catalyst. When the reaction temperature is increased and the reaction temperature is increased, the one-pass conversion rate is maintained at a constant value and the operation is terminated when a specific reaction temperature is reached. The temperature becomes lower. Therefore, the catalyst can be used for a long time.

高活性化を目的として、シリカを主成分とする触媒担体に、硝酸コバルトの前駆体溶液を用いてコバルトを担持した触媒において、アルカリ金属、アルカリ土類金属等の不純物が触媒の活性に与える影響が詳細に検討されている。その結果、不純物濃度を一定範囲の触媒とすることで、従来の触媒と比較して活性を大きく向上させた例が知られている(例えば、特許文献1参照)。   Effect of impurities such as alkali metals and alkaline earth metals on the activity of a catalyst in which cobalt is supported on a catalyst carrier mainly composed of silica for the purpose of high activation, using a precursor solution of cobalt nitrate Has been studied in detail. As a result, there has been known an example in which the activity is greatly improved as compared with a conventional catalyst by setting the impurity concentration within a certain range (see, for example, Patent Document 1).

また、シリカを主成分とする触媒担体に、硝酸コバルトの前駆体溶液を用いてコバルトを担持し、且つ、アルカリ金属、アルカリ土類金属等の不純物濃度を低くした触媒に対して、更に、貴金属を助触媒として添加することで活性を向上させた例が知られている(例えば、特許文献2参照)。   In addition, for a catalyst in which cobalt is supported on a catalyst carrier mainly composed of silica using a cobalt nitrate precursor solution and the impurity concentration of alkali metal, alkaline earth metal or the like is lowered, noble metal is further provided. An example is known in which the activity is improved by adding as a promoter (see, for example, Patent Document 2).

特開2004−322085号公報Japanese Patent Laid-Open No. 2004-322085 特開2007−260669号公報JP 2007-260669 A

特許文献1および2には、硝酸コバルトの前駆体溶液を用いて、触媒担体にコバルトを担持する触媒の製造方法が記載されている。この製造製法で製造された触媒は、比較的良好な活性を示している。また、活性向上の観点からは、従来、触媒担体に貴金属を添加する手法が知られている。しかしながら、特許文献2に記載されている、硝酸コバルトの前駆体溶液を用いて、触媒担体にコバルトを担持し、それに貴金属を添加する製造方法で製造された触媒は、活性向上効果は必ずしも大きくなく、更なる活性向上が望まれていた。   Patent Documents 1 and 2 describe a method for producing a catalyst in which cobalt is supported on a catalyst carrier using a precursor solution of cobalt nitrate. The catalyst produced by this production method shows relatively good activity. From the viewpoint of improving the activity, a method of adding a noble metal to a catalyst carrier is conventionally known. However, a catalyst manufactured by a manufacturing method described in Patent Document 2 using a cobalt nitrate precursor solution, in which cobalt is supported on a catalyst carrier and noble metal is added thereto, does not necessarily have a large activity improvement effect. Therefore, further improvement in activity has been desired.

そこで、本発明では、コバルトと貴金属を共に担持した触媒を製造する方法であって、製造された触媒が、従来法で製造された触媒よりも、より活性向上を図ることができる、合成ガスから炭化水素を製造する触媒の製造方法、および該製造方法で製造された触媒を用いて、合成ガスから炭化水素を製造する炭化水素の製造方法を提供することを目的とする。   Therefore, in the present invention, a method for producing a catalyst carrying both cobalt and a noble metal, wherein the produced catalyst can be more improved in activity than a catalyst produced by a conventional method. It is an object of the present invention to provide a method for producing a catalyst for producing hydrocarbons, and a method for producing hydrocarbons for producing hydrocarbons from synthesis gas using the catalyst produced by the production method.

本発明は、高い活性を有するF−T合成用触媒と触媒の製造方法および該触媒を用いた炭化水素の製造方法に関する。本発明者らは、鋭意検討した結果、アルカリ金属またはアルカリ土類金属の含有量が1,000ppm以下のシリカを主成分とする触媒担体に、酢酸コバルトを前駆体としてコバルトを担持した後、貴金属を更に担持させること、または、酢酸コバルトと貴金属の前駆体を混合した溶液を用いて同時に担持させた後、焼成処理を実施することによって、高分散して還元されにくい小粒径コバルトの還元を促進し、活性を示すコバルト金属粒子を高分散に形成される極めて高い活性を示す触媒が得られることを見出した。   The present invention relates to a catalyst for FT synthesis having high activity, a method for producing the catalyst, and a method for producing hydrocarbons using the catalyst. As a result of intensive studies, the present inventors have found that noble metal is supported after cobalt is supported on a catalyst carrier mainly composed of silica having an alkali metal or alkaline earth metal content of 1,000 ppm or less, with cobalt acetate as a precursor. Or by simultaneously carrying using a mixed solution of cobalt acetate and a noble metal precursor, followed by a calcination treatment to reduce the small particle size cobalt that is highly dispersed and difficult to reduce. The present inventors have found that a catalyst exhibiting extremely high activity can be obtained in which cobalt metal particles exhibiting activity are formed in a highly dispersed state.

また、上記シリカを主成分とする触媒担体に、最初にジルコニウムを担持した後、上記方法で、コバルト成分および貴金属成分を担持した場合にも、極めて高い活性を示す触媒が得られることも見出した。これらの知見により、本発明を成すに至った。   Further, it was also found that a catalyst exhibiting extremely high activity can be obtained even when a cobalt component and a noble metal component are supported by the above method after zirconium is first supported on the catalyst carrier mainly composed of silica. . These findings have led to the present invention.

本発明者等の検討の結果、硝酸コバルトを前駆体とした場合と、酢酸コバルトを前駆体とした場合とでは、コバルト粒子の分散度が大きく異なり、酢酸コバルトを前駆体とした場合には分散度が高いものの活性化処理で十分に還元が進行しないため、酢酸コバルトを前駆体とした場合の活性は硝酸コバルトを前駆体とした場合と同等となることが判ってきた。また、特許文献2では、更に貴金属を助触媒として添加することで活性が向上しているものの、硝酸コバルトを前駆体とした場合には貴金属が共存しなくとも比較的還元が進みやすいため、貴金属添加による活性向上効果は必ずしも大きくないことが判ってきた。   As a result of the study by the present inventors, the case where cobalt nitrate is used as a precursor and the case where cobalt acetate is used as a precursor differ greatly in the degree of dispersion of cobalt particles, and the case where cobalt acetate is used as a precursor is dispersed. Although the degree of reduction is not sufficiently advanced by the activation treatment, it has been found that the activity when cobalt acetate is used as a precursor is equivalent to that when cobalt nitrate is used as a precursor. Further, in Patent Document 2, the activity is improved by further adding a noble metal as a cocatalyst. However, when cobalt nitrate is used as a precursor, reduction is relatively easy even if the noble metal does not coexist. It has been found that the activity improvement effect by addition is not necessarily great.

これに対して、本発明では、酢酸コバルトを前駆体とした場合では、貴金属を添加しないと、多くが未還元の状態である小粒径コバルトを、貴金属添加により還元することができることが判り、極めて高い活性を示すことを見出したのである。本発明の主旨は、以下に記す通りである。   On the other hand, in the present invention, when cobalt acetate is used as a precursor, it can be seen that, if noble metal is not added, small particle size cobalt which is in an unreduced state can be reduced by addition of noble metal, It was found that it exhibits extremely high activity. The gist of the present invention is as described below.

(1)シリカを主成分とする触媒担体に、コバルト成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液を用いて、前記コバルト成分を含浸担持する工程と、前記コバルト成分が担持された前記シリカを主成分とする触媒担体に、貴金属化合物の前駆体溶液を用いて、前記貴金属成分を含浸担持する工程と、前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を、水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
(2)シリカを主成分とする触媒担体に、コバルト成分とジルコニウム成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、ジルコニウム化合物の前駆体溶液を用いて、前記ジルコニウム成分を含浸担持する工程と、前記ジルコニウム成分が担持された前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液を用いて、前記コバルト成分を含浸担持する工程と、前記ジルコニウム成分と前記コバルト成分が担持された前記シリカを主成分とする触媒担体に、貴金属化合物の前駆体溶液を用いて、前記貴金属成分を含浸担持する工程と、前記ジルコニウム成分と前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を、水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
(3)シリカを主成分とする触媒担体に、コバルト成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液と貴金属化合物の前駆体溶液を混合した溶液を用いて、前記コバルト成分と前記貴金属成分を同時に含浸担持する工程と、前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を焼成する工程と、前記焼成後に水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
(4)シリカを主成分とする触媒担体に、コバルト成分とジルコニウム成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、ジルコニウム化合物の前駆体溶液を用いて、前記ジルコニウム成分を含浸担持する工程と、前記ジルコニウム成分が担持された前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液と貴金属化合物の前駆体溶液を混合した溶液を用いて、前記コバルト成分と前記貴金属成分を同時に含浸担持する工程と、前記ジルコニウム成分と前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を焼成する工程と、前記焼成後に水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
(5)前記貴金属が、白金およびルテニウムの少なくともいずれか一方であることを特徴とする(1)〜(4)の何れかに記載の合成ガスから炭化水素を製造する触媒の製造方法。
(6)前記シリカを主成分とする触媒担体中に含まれるナトリウム、カリウム、カルシウムおよびマグネシウムの含有量が、金属換算でそれぞれ300ppm以下であることを特徴とする(1)〜(5)の何れかに記載の合成ガスから炭化水素を製造する触媒の製造方法。
(7)前記シリカを主成分とする触媒担体へ、前記コバルト成分、前記貴金属成分を担持する方法は、それぞれインシピエントウェットネス法を用いた含浸担持であることを特徴とする(1)、(3)、(5)または(6)の何れかに記載の合成ガスから炭化水素を製造する触媒の製造方法。
(8)前記シリカを主成分とする触媒担体へ、前記コバルト成分、前記ジルコニウム成分、前記貴金属成分を担持する方法は、それぞれインシピエントウェットネス法を用いた含浸担持であることを特徴とする(2)、(4)、(5)または(6)の何れかに記載の合成ガスから炭化水素を製造する触媒の製造方法。
(9)前記水素を含むガスで還元する工程において、
前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体1g当たりの水素流量が0.1mL/min〜60mL/minの範囲で還元することを特徴とする(1)、(3)、(5)、(6)または(7)の何れかに記載の合成ガスから炭化水素を製造する触媒の製造方法。
(10)前記水素を含むガスで還元する工程において、
前記ジルコニウム成分と前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体1g当たりの水素流量が0.1mL/min〜60mL/minの範囲で還元することを特徴とする(2)、(4)、(5)、(6)または(8)の何れかに記載の合成ガスから炭化水素を製造する触媒の製造方法。
(11)(1)〜(10)のいずれかに記載の製造方法にて製造した触媒を用いて、スラリー床でのフィッシャー・トロプシュ合成反応で、合成ガスから炭化水素を製造することを特徴とする合成ガスから炭化水素を製造する炭化水素の製造方法。
(1) A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by supporting a cobalt component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is obtained by using a precursor solution of cobalt acetate on a catalyst support mainly composed of silica having a total content of sodium, potassium, magnesium and calcium of 1,000 ppm or less in terms of metal, Impregnating and supporting, using a noble metal compound precursor solution on the silica-based catalyst carrier on which the cobalt component is supported, impregnating and supporting the noble metal component, the cobalt component and the noble metal And a step of reducing the catalyst carrier mainly composed of silica on which a component is supported with a gas containing hydrogen, and a method for producing a catalyst for producing hydrocarbons from synthesis gas.
(2) A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by carrying a cobalt component, a zirconium component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is obtained by using a precursor solution of a zirconium compound on a catalyst carrier mainly composed of silica having a total content of sodium, potassium, magnesium, and calcium of 1,000 ppm or less in terms of metal, and using the zirconium compound precursor solution. A step of impregnating and supporting, a step of impregnating and supporting the cobalt component using a precursor solution of cobalt acetate on a catalyst support mainly composed of silica on which the zirconium component is supported, the zirconium component and the cobalt A step of impregnating and supporting the noble metal component using a precursor solution of a noble metal compound on the catalyst carrier mainly composed of silica on which the component is supported, and supporting the zirconium component, the cobalt component, and the noble metal component Reducing the silica-based catalyst carrier as a main component with a gas containing hydrogen. Process for preparing a catalyst for producing a hydrocarbon from a syngas, wherein.
(3) A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by carrying a cobalt component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is prepared by adding a cobalt acetate precursor solution and a noble metal compound precursor solution to a catalyst carrier mainly composed of silica having a total content of sodium, potassium, magnesium and calcium of 1,000 ppm or less in terms of metal. Using the mixed solution, simultaneously impregnating and supporting the cobalt component and the noble metal component, firing the catalyst support mainly composed of silica on which the cobalt component and the noble metal component are supported, And a step of reducing with a gas containing hydrogen after calcination, a method for producing a catalyst for producing hydrocarbons from synthesis gas.
(4) A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by carrying a cobalt component, a zirconium component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is obtained by using a precursor solution of a zirconium compound on a catalyst carrier mainly composed of silica having a total content of sodium, potassium, magnesium, and calcium of 1,000 ppm or less in terms of metal, and using the zirconium compound precursor solution. A step of impregnating and using a solution in which a precursor solution of cobalt acetate and a precursor solution of a noble metal compound are mixed in a catalyst support mainly composed of silica on which the zirconium component is supported; A step of impregnating and supporting a noble metal component at the same time; a step of calcining the silica-based catalyst carrier on which the zirconium component, the cobalt component and the noble metal component are supported; and reduction with a gas containing hydrogen after the calcining A method for producing a catalyst for producing hydrocarbons from synthesis gas.
(5) The method for producing a catalyst for producing a hydrocarbon from a synthesis gas according to any one of (1) to (4), wherein the noble metal is at least one of platinum and ruthenium.
(6) Any of (1) to (5), wherein the content of sodium, potassium, calcium and magnesium contained in the catalyst carrier mainly composed of silica is 300 ppm or less in terms of metal. A method for producing a catalyst for producing hydrocarbons from the synthesis gas according to claim 1.
(7) The method of supporting the cobalt component and the noble metal component on the catalyst carrier containing silica as a main component is impregnation support using an incipient wetness method, respectively (1), (3) A method for producing a catalyst for producing hydrocarbons from the synthesis gas according to any one of (5) and (6).
(8) The method of loading the cobalt component, the zirconium component, and the noble metal component on the catalyst carrier mainly composed of silica is impregnation loading using an incipient wetness method. (2), (4), (5) or a method for producing a catalyst for producing a hydrocarbon from the synthesis gas according to any one of (6).
(9) In the step of reducing with the gas containing hydrogen,
The hydrogen flow rate per 1 g of the catalyst support mainly composed of the silica on which the cobalt component and the noble metal component are supported is reduced in the range of 0.1 mL / min to 60 mL / min (1), (3) A method for producing a catalyst for producing a hydrocarbon from a synthesis gas according to any one of (5), (6) and (7).
(10) In the step of reducing with the gas containing hydrogen,
The hydrogen flow rate per 1 g of the catalyst carrier mainly composed of the silica on which the zirconium component, the cobalt component, and the noble metal component are supported is reduced within a range of 0.1 mL / min to 60 mL / min. (2), (4), (5), (6) or a method for producing a catalyst for producing a hydrocarbon from a synthesis gas according to any one of (8).
(11) Using the catalyst produced by the production method according to any one of (1) to (10), a hydrocarbon is produced from synthesis gas by a Fischer-Tropsch synthesis reaction in a slurry bed. A hydrocarbon production method for producing hydrocarbons from synthesis gas.

本発明によれば、活性を示すコバルト金属粒子を高分散に形成させることができるため、極めて活性の高いF−T合成用触媒を提供できる。   According to the present invention, cobalt metal particles exhibiting activity can be formed in a highly dispersed state, and therefore an extremely high activity FT synthesis catalyst can be provided.

以下、本発明を更に詳述する。   The present invention is described in further detail below.

[合成ガスから炭化水素を製造する触媒の製造方法]
本発明者らは鋭意検討した結果、酢酸コバルトを前駆体として担持したコバルト成分は、シリカを主成分とする触媒担体上に小粒子径で分散性高く担持されるが、このような小粒子径のコバルトは還元されにくいため、活性種であるコバルト金属の量が、硝酸コバルト等の前駆体で担持した場合と比較して少なく、高い活性が得られないことが判った。貴金属成分を微量担持することにより、貴金属成分が存在しない場合には未還元であった小粒子径のコバルトがコバルト金属に変換されることで極めて高い活性が得られる。
[Method for producing a catalyst for producing hydrocarbons from synthesis gas]
As a result of intensive studies, the present inventors have determined that a cobalt component supported by cobalt acetate as a precursor is supported on a catalyst support mainly composed of silica with a small particle size and high dispersibility. Since cobalt of this type is difficult to be reduced, the amount of cobalt metal as an active species is small compared to the case where it is supported by a precursor such as cobalt nitrate, and it has been found that high activity cannot be obtained. By carrying a trace amount of the noble metal component, when the noble metal component is not present, the cobalt having a small particle diameter, which has not been reduced, is converted into cobalt metal, thereby obtaining extremely high activity.

本発明の合成ガスから炭化水素を製造する触媒の製造方法(以下、「触媒の製造方法」と略すこともある。)に係る触媒(F−T合成反応に用いる触媒)は、コバルトを活性種とするものである。また、触媒担体としてはシリカを主成分とするもの(以下、「シリカ担体」ということもある。)を選定し、使用するものである。
ここでいうシリカを主成分とする触媒担体とは、50質量%以上のシリカと、残部の不可避的不純物とからなるものをいう。シリカを主成分とする触媒担体は、さらに、アルミナを含有してもよい。シリカを主成分とする触媒担体は、シリカ含有量が50質量%以上100質量%未満であることが好ましい。
ここでいう不可避的不純物とは、シリカ担体の製造工程で使用される洗浄水に含有される不純物種や出発原料に含有される元素にもよるのであり、限定できないが、例えば、ナトリウム、カルシウム、マグネシウム、鉄等である。
The catalyst (catalyst used in the FT synthesis reaction) according to the method for producing a catalyst for producing hydrocarbons from the synthesis gas of the present invention (hereinafter sometimes abbreviated as “catalyst production method”) is an active species of cobalt. It is what. In addition, as a catalyst carrier, one having silica as a main component (hereinafter sometimes referred to as “silica carrier”) is selected and used.
As used herein, the catalyst carrier mainly composed of silica refers to a catalyst carrier composed of 50% by mass or more of silica and the balance of inevitable impurities. The catalyst carrier mainly composed of silica may further contain alumina. The catalyst carrier mainly composed of silica preferably has a silica content of 50% by mass or more and less than 100% by mass.
The inevitable impurities referred to here are based on the impurity species contained in the washing water used in the production process of the silica carrier and the elements contained in the starting material, and are not limited. For example, sodium, calcium, Magnesium, iron and the like.

鉄は、数百ppm程度の微量を含有しても触媒活性への影響はほとんど無い。これに対して、アルカリ金属のナトリウム、カリウム、アルカリ土類金属のマグネシウム、カルシウムは、触媒活性に影響することから、これらの含有量を制御することが触媒活性向上のためには重要である。なお、ナトリウム、カリウム以外のアルカリ金属、マグネシウム、カルシウム以外のアルカリ土類金属についても、触媒活性に影響すると考えられるが、シリカ担体の製造工程では混入しにくい。そのため、ナトリウム、カリウム、マグネシウム、カルシウムの含有量を制御すれば良い。なお、ナトリウム、カリウム、マグネシウム、カルシウムの混入は、シリカ担体の製造工程、担持、焼成、還元等の触媒製造工程のいずれでも起こり得る。例えば、シリカを主成分とする触媒担体の製造工程では、原料中にナトリウムを含有し、洗浄水中にカルシウムを含有することが多く、シリカ担体に混入されやすい。   Even if iron contains a trace amount of about several hundred ppm, there is almost no influence on catalyst activity. On the other hand, the alkali metals sodium and potassium, and the alkaline earth metals magnesium and calcium affect the catalytic activity. Therefore, controlling their contents is important for improving the catalytic activity. Alkaline metals other than sodium and potassium, and alkaline earth metals other than magnesium and calcium are also considered to affect the catalytic activity, but are hardly mixed in the production process of the silica support. Therefore, what is necessary is just to control content of sodium, potassium, magnesium, and calcium. In addition, mixing of sodium, potassium, magnesium, and calcium can occur in any of the manufacturing processes of the silica carrier, the catalyst manufacturing processes such as loading, firing, and reduction. For example, in a process for producing a catalyst carrier mainly composed of silica, sodium is contained in the raw material and calcium is often contained in the washing water, which is easily mixed into the silica carrier.

シリカを主成分とする触媒担体へのコバルト成分、ジルコニウム成分、貴金属成分の担持方法としては、通常の含浸法、インシピエントウェットネス(Incipient Wetness)法、沈殿法、イオン交換法等が用いられる。担持において使用される原料(前駆体)としては、ジルコニウム化合物や貴金属化合物では、担持後に還元処理、または焼成処理および還元処理する際に、カウンターイオン(例えば、硝酸酸化ジルコニウム塩であればZrO(NO中の(NO)が揮散するものであり、溶媒に溶解するものであれば特に制限はない。ジルコニウム化合物や貴金属化合物としては、硝酸塩、炭酸塩、酢酸塩、塩化物、アセチルアセトナート等が使用可能である。なかでも、担持操作をする際に水溶液を用いることができる水溶性の化合物を用いることが、製造コストの低減や安全な製造作業環境の確保のためには好ましい。具体的には、硝酸酸化ジルコニウムや塩化貴金属酸等は、焼成時にジルコニウム酸化物や貴金属酸化物または貴金属に容易に変化するため好ましい。ジルコニウム化合物からなる前駆体水溶液を含浸する際の前駆体水溶液濃度は特に限定されないが、0.5mol/L〜4.0mol/Lが好ましく、1.0mol/L〜3.0mol/Lが特に好ましい。また、貴金属化合物からなる前駆体水溶液を含浸する際の前駆体水溶液濃度も特に限定されないが、0.001mol/L〜0.5mol/Lが好ましく、0.003mol/L〜0.05mol/Lが特に好ましい。 As a method for supporting a cobalt component, a zirconium component, and a noble metal component on a catalyst carrier containing silica as a main component, a normal impregnation method, an incipient wetness method, a precipitation method, an ion exchange method, or the like is used. . As a raw material (precursor) used for loading, in the case of a zirconium compound or a noble metal compound, a counter ion (for example, ZrO (NO in the case of a zirconium nitrate oxide salt) is used in the reduction treatment or the firing treatment and the reduction treatment after the loading. 3) in 2 (nO 3) -) is intended to volatilization is not particularly limited as long as it dissolves in the solvent. As the zirconium compound and the noble metal compound, nitrates, carbonates, acetates, chlorides, acetylacetonates and the like can be used. Among these, it is preferable to use a water-soluble compound that can be used as an aqueous solution during the carrying operation in order to reduce manufacturing costs and secure a safe manufacturing work environment. Specifically, zirconium nitrate oxide, chlorinated noble metal acid, and the like are preferable because they easily change to zirconium oxide, noble metal oxide, or noble metal during firing. The concentration of the precursor aqueous solution when impregnating the precursor aqueous solution composed of the zirconium compound is not particularly limited, but is preferably 0.5 mol / L to 4.0 mol / L, and particularly preferably 1.0 mol / L to 3.0 mol / L. . Further, the precursor aqueous solution concentration when impregnating the precursor aqueous solution composed of the noble metal compound is not particularly limited, but is preferably 0.001 mol / L to 0.5 mol / L, and is preferably 0.003 mol / L to 0.05 mol / L. Particularly preferred.

コバルトの前駆体は、酢酸コバルトである。酢酸コバルトの前駆体水溶液を含浸する際の前駆体水溶液濃度は特に限定されないが、0.53mol/L〜3mol/Lが好ましく、1.03mol/L〜2.0mol/Lが特に好ましい。ジルコニウム成分を助触媒として含有しない場合には、最初に酢酸コバルト水溶液を用いてシリカを主成分とする触媒担体にコバルト成分を担持し、次いで、貴金属成分を担持する逐次担持の方法を採用することができる。   The precursor of cobalt is cobalt acetate. The concentration of the precursor aqueous solution when impregnating the precursor aqueous solution of cobalt acetate is not particularly limited, but is preferably 0.53 mol / L to 3 mol / L, and particularly preferably 1.03 mol / L to 2.0 mol / L. When the zirconium component is not included as a co-catalyst, the cobalt component is first supported on a catalyst carrier mainly composed of silica using an aqueous cobalt acetate solution, and then a sequential loading method is employed in which a noble metal component is supported. Can do.

また、酢酸コバルトの前駆体水溶液と、貴金属化合物の前駆体水溶液とを混合した溶液を用いて、コバルト成分と貴金属成分を同時に担持する共担持の方法を採用しても構わない。製造コストの観点からは、共担持の方が有利となる。共担持の方法では、担持後に焼成工程を実施することが必要である(逐次担持の方法でも、担持後に焼成工程を実施することが好ましい)。共担持では、貴金属成分がコバルト成分の内部に取り込まれて、コバルト成分の還元を促進する機能の低下が懸念される。そこで、焼成処理を実施することによって、逐次担持を行った場合と同等の触媒活性を得ることができる。これは、コバルト成分と貴金属成分の結晶構造が異なるため、共担持において貴金属成分がコバルト成分の内部に取り込まれる場合でも、焼成処理によって貴金属成分はコバルト表面に形成されやすくなるためであると考えられる。   Further, a co-supporting method in which a cobalt component and a noble metal component are simultaneously supported using a solution obtained by mixing a precursor aqueous solution of cobalt acetate and a precursor aqueous solution of a noble metal compound may be employed. From the viewpoint of production cost, co-supporting is more advantageous. In the co-supporting method, it is necessary to carry out the firing step after the support (even in the sequential support method, it is preferable to carry out the firing step after the support). In the co-supporting, there is a concern that the noble metal component is taken into the cobalt component and the function of promoting the reduction of the cobalt component is deteriorated. Therefore, by carrying out the calcination treatment, it is possible to obtain a catalytic activity equivalent to that in the case where sequential loading is performed. This is because the crystal structure of the cobalt component and the noble metal component are different, so that even when the noble metal component is incorporated into the cobalt component in the co-supporting, the noble metal component is easily formed on the cobalt surface by the firing treatment. .

ジルコニウム成分を助触媒として含有する場合には、最初にシリカを主成分とする触媒担体にジルコニウム成分を担持した後、酢酸コバルト成分と貴金属成分を担持する。ジルコニウム成分を助触媒として含有しない場合と同様に、コバルト成分、貴金属成分は逐次担持でも共担持でも良いが、共担持の場合には共担持後の焼成処理が必要である。ジルコニウム成分は、コバルト成分とシリカを主成分とする触媒担体との界面で形成されるコバルトシリケートの形成を防止するばかりでなく、シリカを主成分とする触媒担体にジルコニウム成分を添加することによってシリカの水に対する耐性が向上する。このことから、ジルコニウム成分とシリカを主成分とする触媒担体は接触すると良く、シリカを主成分とする触媒担体にジルコニウム成分を最初に担持することが好ましい。また、ジルコニウム成分をコバルト成分や貴金属成分の後に担持すると、コバルト成分や貴金属成分の表面をジルコニウム成分が覆うことになり、コバルトの活性表面積が低下したり、貴金属の還元促進効果が十分に発現しないことが考えられる。更に、貴金属成分は、コバルト成分の還元促進を目的としており、還元処理時に水素と接触することが効果的である。このことから、貴金属成分は、コバルト成分中に取り込まれることは好ましくなく、逐次担持の場合には、最後に担持、共担持の場合には焼成処理すると貴金属成分のロスが少なくなる。   When a zirconium component is contained as a cocatalyst, a zirconium component is first supported on a catalyst carrier mainly composed of silica, and then a cobalt acetate component and a noble metal component are supported. As in the case of not containing a zirconium component as a promoter, the cobalt component and the noble metal component may be sequentially supported or co-supported. The zirconium component not only prevents the formation of cobalt silicate formed at the interface between the cobalt component and the catalyst carrier mainly composed of silica, but also adds the zirconium component to the catalyst carrier mainly composed of silica. Improves water resistance. Therefore, the zirconium component and the catalyst carrier mainly composed of silica are preferably brought into contact with each other, and the zirconium component is preferably first supported on the catalyst carrier mainly composed of silica. In addition, when the zirconium component is supported after the cobalt component or the noble metal component, the surface of the cobalt component or the noble metal component is covered with the zirconium component, so that the active surface area of cobalt is reduced or the effect of promoting the reduction of the noble metal is not sufficiently exhibited. It is possible. Further, the noble metal component is intended to promote the reduction of the cobalt component, and it is effective to come into contact with hydrogen during the reduction treatment. For this reason, it is not preferable that the noble metal component is incorporated into the cobalt component. In the case of sequential loading, the loss of the noble metal component is reduced by a final firing or co-supporting firing process.

ジルコニウム成分、コバルト成分、貴金属成分を逐次担持する場合には、ジルコニウム成分の担持後に焼成処理、または、乾燥および焼成処理を行う。その後、コバルト成分、貴金属成分それぞれの化合物を担持した後、焼成処理、または、乾燥および焼成処理を行っても良く、両方の化合物を担持した後に乾燥または乾燥および焼成処理を実施せずに、水素を含むガスで還元処理することも可能である。乾燥および焼成処理は、コバルト成分、貴金属成分を逐次担持する工程のいずれの化合物の担持後にも実施することができる。両方の化合物について、それぞれ担持した後に乾燥および焼成処理を実施することが好ましい。コバルト成分を担持した後、焼成処理をせずに貴金属成分を担持する場合、貴金属成分の前駆体溶液にコバルト成分が溶出する可能性がある。すると、触媒外表面に形成されることが好ましい貴金属成分がコバルト成分に取り込まれ、性能が低下する可能性があることから、担持した後に乾燥および焼成処理を実施することが好ましい。また、貴金属成分の担持後にも、乾燥および焼成処理を実施することが好ましい。しかし、水素を含むガスで還元する工程において、貴金属成分前駆体のカウンターイオンが揮散するものである場合には、焼成処理を実施しなくても構わない。   When the zirconium component, the cobalt component, and the noble metal component are sequentially supported, the firing treatment or the drying and firing treatment is performed after the zirconium component is supported. Then, after supporting each compound of the cobalt component and the noble metal component, firing treatment, or drying and firing treatment may be performed. After both compounds are supported, without performing drying or drying and firing treatment, hydrogen It is also possible to perform a reduction treatment with a gas containing. The drying and firing treatment can be performed after supporting any compound in the step of sequentially supporting the cobalt component and the noble metal component. About both compounds, it is preferable to carry out a drying and baking process after carrying | supporting respectively. When the noble metal component is supported without firing after the cobalt component is supported, the cobalt component may be eluted in the precursor solution of the noble metal component. Then, since a precious metal component that is preferably formed on the outer surface of the catalyst is taken into the cobalt component and performance may be lowered, it is preferable to carry out drying and firing treatment after loading. Moreover, it is preferable to carry out drying and baking treatment after the noble metal component is supported. However, in the step of reducing with a gas containing hydrogen, if the counter ions of the noble metal component precursor are volatilized, the firing treatment may not be performed.

ジルコニウム成分を担持した後、コバルト成分、貴金属成分を共担持する場合には、ジルコニウム成分の担持後に焼成処理、または、乾燥および焼成処理を行う。その後、コバルト成分、貴金属成分を同時に担持した後、焼成処理、または、乾燥および焼成処理を行い、水素を含むガスで還元処理する。   In the case where the cobalt component and the noble metal component are co-supported after the zirconium component is supported, a firing treatment or a drying and firing treatment is performed after the zirconium component is supported. Then, after simultaneously carrying a cobalt component and a noble metal component, a calcination process or a drying and calcination process is performed, and a reduction process is performed with a gas containing hydrogen.

コバルト成分の担持率は、活性を発現するための最低量以上であり、担持したコバルトの分散度が極端に低下して、コバルトの反応寄与効率が低下する担持量以下であれば良い。コバルト成分の担持率は、好ましくは5質量%〜50質量%であり、より好ましくは10質量%〜40質量%である。
コバルト成分の担持率が上記の範囲を下回ると、活性を十分発現しない場合がある。一方、コバルト成分の担持率が上記の範囲を上回ると、分散度が低下して、担持したコバルトの利用効率が低下することがあり、不経済となる。
The loading ratio of the cobalt component is not less than the minimum amount for exhibiting the activity and may be equal to or less than the loading amount at which the degree of dispersion of the supported cobalt is extremely lowered and the reaction contribution efficiency of cobalt is reduced. The loading ratio of the cobalt component is preferably 5% by mass to 50% by mass, and more preferably 10% by mass to 40% by mass.
When the loading ratio of the cobalt component is below the above range, the activity may not be sufficiently exhibited. On the other hand, when the loading ratio of the cobalt component exceeds the above range, the degree of dispersion is lowered, and the utilization efficiency of the loaded cobalt may be lowered, which is uneconomical.

ここでいうコバルト成分の担持率とは、担持したコバルトが最終的に100%還元されるとは限らないため、100%還元されたと考えて金属換算した場合のコバルトの質量が触媒質量全体に占める割合を指す。製造工程においては、上記の適正な担持率になるように、出発原料中の酢酸コバルトの量を調整することが好ましい。なお、触媒質量全体とは、コバルト成分、貴金属成分を担持した後、またはジルコニウム成分、コバルト成分、貴金属成分を担持した後、還元処理した後の触媒質量である。   The loading ratio of the cobalt component here is not necessarily that the loaded cobalt is finally reduced by 100%, so that the mass of cobalt when converted to metal considering that it is reduced by 100% occupies the entire catalyst mass. Refers to the percentage. In the production process, it is preferable to adjust the amount of cobalt acetate in the starting material so as to achieve the proper loading rate. The total catalyst mass is the catalyst mass after reduction treatment after supporting a cobalt component and a noble metal component, or after supporting a zirconium component, a cobalt component and a noble metal component.

ジルコニウム成分の担持率は、コバルトを担持する前のジルコニウム酸化物、シリカを主成分とする触媒担体の総重量の内、ジルコニウム酸化物として、好ましくは0.2質量%〜30質量%であり、より好ましくは0.5質量%〜20質量%、更に好ましくは1質量%〜15質量%である。
ジルコニウム成分の担持率が上記の範囲を下回ると、ジルコニウム成分を担持することで得られる耐水性を十分発現しない場合がある。一方、ジルコニウム成分の担持率が上記の範囲を上回ると、ジルコニウム成分の利用効率が低下することがあり、不経済となる。
The loading ratio of the zirconium component is preferably 0.2% by mass to 30% by mass as the zirconium oxide among the total weight of the zirconium oxide before supporting cobalt and the catalyst support mainly composed of silica, More preferably, it is 0.5 mass%-20 mass%, More preferably, it is 1 mass%-15 mass%.
If the loading ratio of the zirconium component is below the above range, the water resistance obtained by loading the zirconium component may not be sufficiently exhibited. On the other hand, if the loading ratio of the zirconium component exceeds the above range, the utilization efficiency of the zirconium component may be lowered, which is uneconomical.

ここでいうジルコニウム酸化物の担持率とは、ジルコニウムを担持した後、焼成処理することで形成される二酸化ジルコニウムの担持率である。なお、焼成処理しない場合には、ZrOに換算する。製造工程においては、上記の適正な担持率になるように、出発原料中のジルコニウム前駆体の量を調整することが好ましい。また、ジルコニウム酸化物の担持率を測定する場合は、硝酸酸化ジルコニウムを担持し焼成処理した後の、シリカを主成分とする触媒担体にジルコニウム酸化物が担持された状態で測定する。 The supporting rate of zirconium oxide here is the supporting rate of zirconium dioxide formed by supporting zirconium and then performing a firing treatment. When not firing process is converted into ZrO 2. In the production process, it is preferable to adjust the amount of the zirconium precursor in the starting material so that the above-mentioned proper loading ratio is obtained. Moreover, when measuring the supporting rate of a zirconium oxide, it measures in the state by which the zirconium oxide was carry | supported by the catalyst support | carrier which has a silica as a main component after carrying | supporting a zirconium nitrate oxide and baking processing.

担持する貴金属成分としては、Ru、Rh、Pt、Pd、Ir、Osを用いることができる。これらの貴金属は、1種を単独で使用しても、2種以上を組み合わせて使用しても良い。効果の大きい貴金属は、Ru、Rh、Pt、Pdであり、これらを選択することが好ましい。   As the noble metal component to be supported, Ru, Rh, Pt, Pd, Ir, and Os can be used. These noble metals may be used alone or in combination of two or more. The noble metals having a large effect are Ru, Rh, Pt, and Pd, and it is preferable to select them.

これら貴金属成分の担持率の適正範囲は、コバルト化合物の還元を促進する効果を発現するための最低量以上であり、担持した貴金属の分散度が極端に低下して、添加した貴金属のうち効果発現に寄与しない貴金属の割合が高くなり不経済となる担持率以下であればよい。具体的には、触媒中の金属換算した貴金属成分が、0.01質量%〜2.00質量%であり、好ましくは0.02質量%〜1.00質量%、更に好ましくは0.05質量%〜0.20質量%である。分母となる触媒はシリカを主成分とする触媒担体、ZrOに換算したジルコニウム成分、金属換算したコバルト成分、金属換算した貴金属の合計量である。
貴金属成分の担持率が上記の範囲を下回ると、コバルト化合物の還元を促進する効果を十分発現することができない。一方、貴金属成分の担持率が上記の範囲を上回ると、担持した貴金属成分の利用効率が低下して不経済となるため、好ましくない。
The proper range of the loading ratio of these noble metal components is at least the minimum amount for exhibiting the effect of promoting the reduction of the cobalt compound, and the dispersibility of the loaded noble metal is extremely lowered, and the effect is manifested among the added noble metals. It is sufficient that the ratio of the precious metal not contributing to the increase is not higher than the supporting rate, which is uneconomical. Specifically, the precious metal component in terms of metal in the catalyst is 0.01% by mass to 2.00% by mass, preferably 0.02% by mass to 1.00% by mass, and more preferably 0.05% by mass. % To 0.20 mass%. The catalyst as a denominator is the total amount of a catalyst carrier mainly composed of silica, a zirconium component converted to ZrO 2 , a cobalt component converted to metal, and a noble metal converted to metal.
When the loading ratio of the noble metal component is below the above range, the effect of promoting the reduction of the cobalt compound cannot be sufficiently exhibited. On the other hand, if the loading ratio of the noble metal component exceeds the above range, the utilization efficiency of the loaded noble metal component is reduced, which is not preferable.

製造された触媒中のジルコニウム酸化物、コバルトおよび貴金属の担持量は、酸分解やアルカリ溶融等の前処理後にICP−AES(Inductively Coupled Plasma Atomic Emission Spectroscopy、ICP(誘導結合プラズマ)発光分光分析)法にて測定することができる。   The amount of zirconium oxide, cobalt and noble metal supported in the produced catalyst is determined by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy, ICP (Inductively Coupled Plasma) emission spectroscopy) after pretreatment such as acid decomposition and alkali melting. Can be measured.

コバルト成分、貴金属成分のシリカを主成分とする触媒担体への担持は、逐次担持することが必要である。同時に担持すると、貴金属成分の一部はコバルト成分に取り込まれる可能性があるため、触媒性能の観点から、ジルコニウム成分、コバルト成分、貴金属成分の順に逐次担持する必要がある。   It is necessary that the cobalt component and the noble metal component be supported on the catalyst carrier containing silica as a main component. If supported simultaneously, a part of the noble metal component may be taken into the cobalt component, so from the viewpoint of catalyst performance, it is necessary to sequentially support the zirconium component, the cobalt component, and the noble metal component in this order.

十分な効果を発現させるために必要なジルコニウム成分や貴金属成分の添加量は、不純物が多い触媒では極めて多くなる。ジルコニウム成分や貴金属成分を多量に添加することは不経済である。また、従来、ジルコニウム成分や貴金属成分を添加しても、その効果が十分得られなかった。本発明の触媒の製造方法によって得られる触媒によれば、ジルコニウム成分や貴金属成分の添加量が比較的少なくても、十分かつ高度な効果が得られることが判明した。これは、特に不純物が少ない担体を使用した場合に顕著である。不純物が少ないことでシリカ表面にジルコニウム酸化物や貴金属が高分散かつ均質に形成されやすい。そのため、少量で効率的に触媒表面の特性を変えることができたためと推定される。   The amount of zirconium component or noble metal component necessary for exhibiting a sufficient effect is extremely large in a catalyst with many impurities. It is uneconomical to add a large amount of a zirconium component or a noble metal component. Conventionally, even when a zirconium component or a noble metal component is added, the effect cannot be sufficiently obtained. According to the catalyst obtained by the method for producing a catalyst of the present invention, it has been found that a sufficient and advanced effect can be obtained even if the amount of zirconium component or noble metal component is relatively small. This is particularly noticeable when a carrier with few impurities is used. Zirconium oxide and noble metals are easily formed in a highly dispersed and homogeneous manner on the silica surface due to the small amount of impurities. For this reason, it is presumed that the characteristics of the catalyst surface could be changed efficiently with a small amount.

以下に、コバルト成分、貴金属成分を担持する触媒を得る方法の一例を示す。
まず、シリカを主成分とする不純物の少ない触媒担体に、酢酸コバルト水溶液を含浸した後、乾燥、焼成処理を行う。これにより、シリカを主成分とする触媒担体に、コバルト成分を含浸担持する。
次いで、コバルト成分が担持されたシリカを主成分とする触媒担体に、貴金属化合物からなる前駆体溶液を含浸担持する。
次いで、コバルト成分と貴金属成分とが担持されたシリカを主成分とする触媒担体の乾燥、焼成、還元処理を行い、F−T合成触媒を得る。
Below, an example of the method of obtaining the catalyst which carries a cobalt component and a noble metal component is shown.
First, after impregnating an aqueous cobalt acetate solution into a catalyst carrier containing silica as a main component and having a small amount of impurities, drying and firing are performed. As a result, the cobalt carrier is impregnated and supported on the catalyst carrier mainly composed of silica.
Next, a precursor solution made of a noble metal compound is impregnated and supported on a catalyst carrier mainly composed of silica on which a cobalt component is supported.
Next, the catalyst carrier mainly composed of silica on which the cobalt component and the noble metal component are supported is dried, calcined, and reduced to obtain an FT synthesis catalyst.

コバルト化合物の担持後には乾燥処理(例えば、空気中100℃−1h)を行い、引き続き焼成処理(例えば、空気中450℃−5h)を行っても、乾燥処理を行うだけで次工程である貴金属成分の含浸担持を行っても良い。コバルト成分が貴金属成分の含浸担持中に貴金属を取り込むことで貴金属の添加効果が低下しないようにするためには、焼成処理を行って酸化コバルトに変換しておくと良い。   After the cobalt compound is supported, a drying process (for example, 100 ° C.-1 h in the air) is performed, and even if a subsequent baking process (for example, 450 ° C.-5 h in the air) is performed, the precious metal that is the next step is simply the drying process. The component may be impregnated and supported. In order to prevent the addition effect of the noble metal by taking the noble metal during the impregnation of the noble metal component, the cobalt component is preferably converted into cobalt oxide by performing a baking treatment.

貴金属成分の含浸担持を行った後、必要に応じて乾燥処理を行い、引き続き触媒担体表面のコバルト化合物をコバルト金属に還元(例えば、常圧水素気流中350℃−15h、水素流量は触媒1g当たり60mL/min)することでF−T合成触媒が得られる。ここでは、焼成して酸化物に変換した後に還元処理を行っても、焼成せずに直接還元処理を行っても良い。還元処理の温度を高くしたり時間を長くしたりすることにより還元条件を厳しくすると、還元処理後にコバルトが酸化物の状態から金属状態まで還元される比率が高くなる。一般的な還元条件では、コバルト金属の酸化物を一部含有するコバルト金属となることが多い。還元処理後の触媒は、大気に触れて酸化失活しないように取り扱う必要がある。触媒担体上のコバルト金属の表面を大気から遮断するような安定化処理を行うと、大気中での取り扱いが可能となり好適である。この安定化処理としては、低濃度の酸素を含有する窒素、二酸化炭素、不活性ガスを触媒に触れさせて、触媒担体上のコバルト金属の極表面のみを酸化する、いわゆるパッシベーション(表面不導体化処理)や、F−T合成反応を液相で行う場合には、反応溶媒や溶融したFTワックス等に浸漬して大気と遮断する方法が用いられる。これらの安定化処理は、状況に応じて適切に選択すれば良い。   After impregnating and supporting the noble metal component, drying treatment is performed as necessary, and the cobalt compound on the surface of the catalyst support is subsequently reduced to cobalt metal (for example, 350 ° C.-15 h in a normal pressure hydrogen stream, the hydrogen flow rate per gram of catalyst. FT synthesis catalyst is obtained by carrying out 60 mL / min). Here, the reduction treatment may be performed after firing and converting to an oxide, or the reduction treatment may be performed directly without firing. If the reduction conditions are made stricter by increasing the temperature of the reduction treatment or lengthening the time, the ratio of cobalt being reduced from the oxide state to the metal state after the reduction treatment increases. In general reducing conditions, the cobalt metal often contains a part of the cobalt metal oxide. The catalyst after the reduction treatment needs to be handled so as not to be oxidized and deactivated by contact with the atmosphere. It is preferable to perform a stabilization treatment in which the surface of the cobalt metal on the catalyst support is shielded from the atmosphere because it can be handled in the atmosphere. This stabilization treatment involves so-called passivation (surface decontamination) in which only the extreme surface of cobalt metal on the catalyst carrier is oxidized by bringing the catalyst into contact with nitrogen, carbon dioxide, or an inert gas containing a low concentration of oxygen. Treatment) or when the FT synthesis reaction is carried out in a liquid phase, a method of immersing in a reaction solvent, molten FT wax or the like and blocking from the atmosphere is used. These stabilization processes may be appropriately selected according to the situation.

また、以下にコバルト成分、ジルコニウム成分、貴金属成分を担持する触媒を得る方法の一例を示す。
まず、シリカを主成分とする不純物の少ない触媒担体に、ジルコニウム化合物からなる前駆体水溶液を含浸した後、乾燥、焼成処理を行う。これにより、シリカを主成分とする触媒担体に、ジルコニウム成分を含浸担持する。
次いで、ジルコニウム成分が担持されたシリカを主成分とする触媒担体に、酢酸コバルト水溶液を含浸担持した後、乾燥、焼成処理を行う。これにより、シリカを主成分とする触媒担体に、コバルト成分を含浸担持する。
次いで、ジルコニウム成分とコバルト成分が担持されたシリカを主成分とする触媒担体に、貴金属化合物からなる前駆体溶液を含浸担持する。
次いで、ジルコニウム成分とコバルト成分と貴金属成分とが担持されたシリカを主成分とする触媒担体の乾燥、焼成、還元処理を行い、F−T合成触媒を得る。
In addition, an example of a method for obtaining a catalyst supporting a cobalt component, a zirconium component, and a noble metal component will be described below.
First, after impregnating a catalyst carrier containing silica as a main component with few impurities with an aqueous precursor solution composed of a zirconium compound, drying and firing are performed. Thus, the zirconium carrier is impregnated and supported on the catalyst carrier mainly composed of silica.
Next, after impregnating and supporting a cobalt acetate aqueous solution on a catalyst carrier mainly composed of silica on which a zirconium component is supported, drying and firing are performed. As a result, the cobalt carrier is impregnated and supported on the catalyst carrier mainly composed of silica.
Next, a precursor solution made of a noble metal compound is impregnated and supported on a catalyst carrier mainly composed of silica on which a zirconium component and a cobalt component are supported.
Next, the catalyst carrier mainly composed of silica on which a zirconium component, a cobalt component, and a noble metal component are supported is dried, calcined, and reduced to obtain an FT synthesis catalyst.

ジルコニウム化合物、コバルト化合物、貴金属化合物の担持後には乾燥処理(例えば、空気中100℃−1h)を行い、引き続き焼成処理(例えば、空気中450℃−5h)を行っても、乾燥処理を行うだけで次工程の含浸担持を行っても良い。ジルコニウム化合物がコバルト化合物の含浸担持中にコバルトを取り込むことや、コバルト化合物やジルコニウム化合物が貴金属化合物の含浸担持中に貴金属を取り込むことで、添加効果が低下しないようにするためには、それぞれの担持後に焼成処理を行い、ジルコニウム酸化物、酸化コバルトに変換しておくことが好ましい。還元処理、安定化処理については、上述のコバルト成分、貴金属成分を担持する触媒と同様に実施することができる。   After supporting the zirconium compound, the cobalt compound, and the noble metal compound, a drying process (for example, 100 ° C.-1 h in the air) is performed, and a subsequent baking process (for example, 450 ° C.-5 h in the air) is performed. The impregnation support in the next step may be performed. In order for the zirconium compound to incorporate cobalt during the impregnation support of the cobalt compound, and to prevent the addition effect from being reduced by the cobalt compound or zirconium compound incorporating the precious metal during the impregnation support of the noble metal compound, each support It is preferable to carry out a firing treatment later to convert into zirconium oxide and cobalt oxide. About a reduction process and a stabilization process, it can implement similarly to the catalyst which carry | supports the above-mentioned cobalt component and a noble metal component.

上記の触媒を得る方法の一例では、コバルト化合物をコバルト金属に還元する際の還元ガスとしては水素を使用し、水素流量は触媒1g当たり60mL/minの大過剰な流量である。このような大過剰の水素流量においては、温度や保持時間にもよるが、酢酸コバルトを前駆体としてコバルト成分を担持した後、貴金属成分を担持してなる触媒、またはジルコニウム化合物を担持した後、酢酸コバルトを前駆体としてコバルト成分を担持し、次いで、貴金属成分を担持してなる触媒と、貴金属成分を担持しない、酢酸コバルトを前駆体としてコバルトを担持してなる触媒、またはジルコニウム化合物を担持した後、酢酸コバルトを前駆体としてコバルト成分を担持した触媒との活性差は、水素流量が少ない場合と比較すると小さくなる。貴金属種や添加量といった触媒組成、還元温度や保持時間といった製造条件によって異なるが、水素流量10mL/min〜20mL/min程度まで低下させると、貴金属含有の有無によって触媒活性やコバルトの還元度の差が大きくなる。商業規模での大量製造において採用される通常の還元ガス流量範囲は、触媒1g当たり20mL/min以下とする場合が多い。   In an example of the method for obtaining the above catalyst, hydrogen is used as a reducing gas when reducing the cobalt compound to cobalt metal, and the hydrogen flow rate is a large excess flow rate of 60 mL / min per 1 g of the catalyst. In such a large excess of hydrogen flow rate, depending on the temperature and holding time, after supporting a cobalt component with cobalt acetate as a precursor, after supporting a catalyst that supports a noble metal component, or a zirconium compound, A cobalt component is supported using cobalt acetate as a precursor, and then a catalyst that supports a noble metal component, a catalyst that does not support a noble metal component, cobalt is supported using cobalt acetate as a precursor, or a zirconium compound is supported. Thereafter, the activity difference from the catalyst supporting cobalt component with cobalt acetate as a precursor is smaller than that when the hydrogen flow rate is small. Depending on the catalyst composition such as precious metal species and amount added, production conditions such as reduction temperature and holding time, when the hydrogen flow rate is reduced to about 10 mL / min to 20 mL / min, the difference in catalytic activity and cobalt reduction degree depends on whether or not noble metal is contained. Becomes larger. The normal reducing gas flow rate range employed in mass production on a commercial scale is often 20 mL / min or less per gram of catalyst.

酢酸コバルトを前駆体としてコバルト成分を担持した後、貴金属成分を担持してなる触媒、またはジルコニウム化合物を担持した後、酢酸コバルトを前駆体としてコバルト成分を担持し、次いで貴金属成分を担持してなる触媒に対する還元処理における好ましい水素流量の範囲は、温度や保持時間に応じて適宜調整される。水素流量の範囲は、触媒1g当たり0.1mL/min〜60mL/minであることが好ましく、より好ましくは触媒1g当たり0.1mL/min〜40mL/min、更に好ましくは触媒1g当たり0.2mL/min〜20mL/min、最も好ましくは0.5mL/min〜10mL/minである。
水素流量が触媒1g当たり0.1mL/minを下回ると、貴金属による還元促進効果を増加させるために触媒中の貴金属量を増加させる必要性が生じて不経済となることや、還元操作において著しく温度を向上させる必要性が生じ、高温での還元中にコバルト金属や貴金属のシンタリングが生じることで性能低下したり、時間延長が必要となり処理コストが増加することとなる。一方、水素流量が触媒1g当たり60mL/minを上回ると、大過剰な還元ガスを確保できる際には貴金属による還元促進効果が無くとも一定の触媒活性が得られるものの、触媒量当たりの還元ガス量を確保しようとするあまり、一度に処理可能な触媒量が相対的に少なくなることで、製造コストが増加し不経済となる。
After a cobalt component is supported using cobalt acetate as a precursor, a catalyst that supports a noble metal component, or a zirconium compound, a cobalt component is supported using cobalt acetate as a precursor, and then a noble metal component is supported. The range of the preferable hydrogen flow rate in the reduction treatment for the catalyst is appropriately adjusted according to the temperature and holding time. The range of the hydrogen flow rate is preferably 0.1 mL / min to 60 mL / min per gram of catalyst, more preferably 0.1 mL / min to 40 mL / min per gram of catalyst, and still more preferably 0.2 mL / min per gram of catalyst. It is min-20mL / min, Most preferably, it is 0.5mL / min-10mL / min.
If the hydrogen flow rate is less than 0.1 mL / min per gram of catalyst, it is necessary to increase the amount of noble metal in the catalyst in order to increase the reduction promotion effect by the noble metal, which is uneconomical, and the temperature is significantly reduced in the reduction operation. As a result of the sintering of cobalt metal or noble metal during reduction at high temperature, the performance is lowered, and the processing time is increased due to time extension. On the other hand, when the hydrogen flow rate exceeds 60 mL / min per gram of catalyst, when a large excess of reducing gas can be secured, a constant catalytic activity can be obtained even if there is no reduction promoting effect by noble metals, but the amount of reducing gas per catalyst amount. As the amount of catalyst that can be treated at one time is relatively reduced, the production cost increases and becomes uneconomical.

また、触媒担体中のアルカリ金属、アルカリ土類金属を低減し、所定の範囲内に制御することが、活性向上に対して極めて効果的である。シリカを触媒担体とした場合には、前記したように、アルカリ金属のナトリウム、カリウム、アルカリ土類金属のマグネシウム、カルシウムや、Fe等が不純物としてシリカ中に含まれることが多く、ナトリウム、カリウム、マグネシウム、カルシウムの影響が強く、なかでもナトリウムの存在の影響が最も強い。カリウム、マグネシウム、カルシウムは、ナトリウムと比較すると影響は小さいが、含有量が多いと影響も大きくなる。   In addition, it is extremely effective for improving the activity to reduce the alkali metal and alkaline earth metal in the catalyst carrier and control them within a predetermined range. When silica is used as a catalyst support, alkali metal sodium, potassium, alkaline earth metal magnesium, calcium, Fe, and the like are often contained in silica as impurities, as described above. The influence of magnesium and calcium is strong, and the presence of sodium is the strongest. Potassium, magnesium, and calcium are less affected than sodium, but the greater the content, the greater the effect.

良好な触媒活性を発現させるためには、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの合計量は1,000ppm以下に抑える。この量を上回ると活性が大きく低下するため、著しく不利となる。しかし、不純物量を必要以上に低減することは純度向上にコストがかかり不経済となるため、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの合計量は100ppm以下とする。担持率や前駆体の種類にもよるため限定することが困難ではあるが、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの合計量を低減するためには、前記したような活性金属の前駆体中の不純物の合計量を5質量%以下に抑えることが効果的である。前駆体中の不純物としては、ナトリウム、カリウム、マグネシウム、カルシウムの含有量は、触媒担体と比較すると通常は多くないが、多い場合にはこれらの含有量を低減することが好ましい。なお、上記のナトリウム、カリウム、マグネシウム、カルシウムの合計量は、活性化処理にて酸化コバルトからコバルト金属に変換した後の触媒重量に対する金属換算の量である。上記のナトリウム、カリウム、マグネシウム、カルシウムの合計量は、活性化処理を実施せずコバルトが酸化物である触媒中のナトリウム、カリウム、マグネシウム、カルシウムの含有量を測定した場合には、コバルトが100%還元されたと仮定し、換算した量である。   In order to develop good catalytic activity, the total amount of sodium, potassium, magnesium and calcium in the catalyst carrier is suppressed to 1,000 ppm or less. If this amount is exceeded, the activity is greatly reduced, which is a disadvantage. However, reducing the amount of impurities more than necessary increases the cost of purity and is uneconomical, so the total amount of sodium, potassium, magnesium, and calcium in the catalyst support is 100 ppm or less. Although it is difficult to limit because it depends on the loading rate and the type of precursor, in order to reduce the total amount of sodium, potassium, magnesium and calcium in the catalyst support, the active metal precursor as described above is used. It is effective to suppress the total amount of impurities therein to 5% by mass or less. As impurities in the precursor, the contents of sodium, potassium, magnesium, and calcium are not usually large as compared with the catalyst carrier, but when they are large, it is preferable to reduce these contents. In addition, the total amount of said sodium, potassium, magnesium, and calcium is a metal conversion amount with respect to the catalyst weight after converting from cobalt oxide to cobalt metal by an activation process. The total amount of sodium, potassium, magnesium, and calcium is 100% when the content of sodium, potassium, magnesium, and calcium in the catalyst in which cobalt is an oxide without measuring the activation is measured. It is an amount converted based on the assumption that the product has been reduced.

触媒担体中の不純物の中で活性低下の抑制効果に最も悪い影響を及ぼす元素は、ナトリウム、カリウム、マグネシウム、カルシウムである。これら金属の触媒担体中の含有量が30ppmを下回る範囲内では、ナトリウム、カリウム、マグネシウム、カルシウムの影響はほとんど見られないものの、100ppmを上回ると活性は低下する。従って、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの合計量は1,000ppmであり、好ましくは30ppm〜700ppm、より好ましくは30ppm〜400ppmである。また、アルカリ金属、アルカリ土類金属それぞれの元素の含有量は、300ppm以下であることが好ましく、より好ましくは200ppm以下である。なお、それぞれの元素の含有量の下限は測定における検出限界である。   Among the impurities in the catalyst carrier, the elements that have the worst effect on the effect of suppressing the decrease in activity are sodium, potassium, magnesium and calcium. When the content of these metals in the catalyst support is less than 30 ppm, the influence of sodium, potassium, magnesium, and calcium is hardly observed, but when it exceeds 100 ppm, the activity decreases. Therefore, the total amount of sodium, potassium, magnesium and calcium in the catalyst support is 1,000 ppm, preferably 30 ppm to 700 ppm, more preferably 30 ppm to 400 ppm. The content of each element of alkali metal and alkaline earth metal is preferably 300 ppm or less, more preferably 200 ppm or less. The lower limit of the content of each element is the detection limit in the measurement.

触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの合計量が、前述したように1,000ppmを上回ると、触媒の活性が大きく低下する。ここでも上記と同様に、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの含有量を必要以上に低減することは不経済となる。そのため、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムは、触媒活性に悪影響を与えない範囲で含有していても構わない。上記したように、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの合計量を100ppm程度まで低下させれば、十分な効果が得られる。したがって、触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの含有量を100ppm以上とすることが、コスト面から好ましい。   When the total amount of sodium, potassium, magnesium and calcium in the catalyst support exceeds 1,000 ppm as described above, the activity of the catalyst is greatly reduced. Here again, as described above, it is uneconomical to reduce the contents of sodium, potassium, magnesium and calcium in the catalyst carrier more than necessary. Therefore, sodium, potassium, magnesium, and calcium in the catalyst carrier may be contained in a range that does not adversely affect the catalyst activity. As described above, if the total amount of sodium, potassium, magnesium and calcium in the catalyst support is reduced to about 100 ppm, a sufficient effect can be obtained. Therefore, it is preferable from the viewpoint of cost that the content of sodium, potassium, magnesium and calcium in the catalyst carrier is 100 ppm or more.

このようにして製造する触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの不純物の合計量としては、30ppm〜1,000ppmである。この範囲を上回ると、水分圧が高い条件下での活性低下が大きくなる。触媒担体中のナトリウム、カリウム、マグネシウム、カルシウムの定量方法は、前記触媒担体中の方法と同様であり、例えば、酸分解やアルカリ溶融等の前処理後にICP−AES法にて測定することができる。   The total amount of sodium, potassium, magnesium, and calcium impurities in the catalyst carrier thus produced is 30 ppm to 1,000 ppm. Beyond this range, the decrease in activity under conditions of high moisture pressure increases. The determination method of sodium, potassium, magnesium and calcium in the catalyst carrier is the same as the method in the catalyst carrier, and can be measured by, for example, ICP-AES method after pretreatment such as acid decomposition or alkali melting. .

製造工程でナトリウム、カリウム、マグネシウム、カルシウムのような不純物が入らないような工夫が可能な触媒担体であれば、製造中に不純物が混入しないような施策を施すことが好ましい。一般にシリカの製造方法は、乾式法と湿式法に大別される。乾式法としては、燃焼法、アーク法等が挙げられる。湿式法としては、沈降法、ゲル法等が挙げられる。いずれの製造方法でも、触媒担体を製造することは可能であるが、ゲル法を除く上記の方法では、触媒担体を球状に成形することが技術的、経済的に困難である。そのため、シリカゾルを気体媒体中または液体媒体中で噴霧させて容易に球状に成形することが可能であるゲル法にて製造することが好ましい。ナトリウム、カリウム、マグネシウム、カルシウムは、原料、洗浄水から混入することが多い。ナトリウムは主に原料由来であることが多く、カルシウムは主に洗浄水由来であることが多い。   If the catalyst carrier can be devised so that impurities such as sodium, potassium, magnesium and calcium do not enter during the production process, it is preferable to take measures to prevent impurities from being mixed during production. In general, silica production methods are roughly classified into a dry method and a wet method. Examples of the dry method include a combustion method and an arc method. Examples of the wet method include a sedimentation method and a gel method. Although any production method can produce a catalyst carrier, it is technically and economically difficult to form the catalyst carrier into a spherical shape by the above method except the gel method. Therefore, it is preferable to manufacture by a gel method in which silica sol can be easily formed into a spherical shape by spraying in a gaseous medium or a liquid medium. Sodium, potassium, magnesium, and calcium are often mixed from raw materials and washing water. Sodium is often mainly derived from raw materials, and calcium is often mainly derived from washing water.

上記のゲル法にてシリカを主成分とする触媒担体を製造する際には、通常、多量の洗浄水を用いる。工業用水等の不純物を多く含んだ洗浄水を用いると、担体中に多量の不純物が残留することになり、触媒の活性が大幅に低下する。しかし、洗浄水として、不純物の含有率が低い、あるいはイオン交換水等の不純物を全く含まないものを用いることにより、不純物含有量の少ない良好なシリカ担体を得ることが可能となる。この場合、洗浄水中のナトリウム、カリウム、マグネシウム、カルシウムの含有量は600ppm以下とすることが好ましい。これを上回ると、シリカを主成分とする触媒担体中の不純物含有量が多くなり、調製後の触媒の活性が大きく低下する。洗浄水に酸性の水溶液を用いる場合にも同様な理由で、酸性の水溶液中のナトリウム、カリウム、マグネシウム、カルシウムの含有量は600ppm以下とすることが好ましい。不純物量を低減する観点からは、理想的にはイオン交換水の使用が好ましい。イオン交換水を得るためには、イオン交換樹脂等を用いても良いが、シリカの製造ラインにて規格外品として発生するシリカゲルを用いてイオン交換を行い、イオン交換水を製造することも可能である。原理的に、洗浄水中の不純物をシリカが補足するのは、シリカ表面のシラノール中水素とナトリウムイオン、カリウムイオン、マグネシウムイオンやカルシウムイオン等の不純物イオンとがイオン交換することによる。よって、少々不純物を含んだ洗浄水であっても、洗浄水のpHを低めに調整することで、不純物の補足をある程度防ぐことが可能となる。また、イオン交換量(不純物混入量)は用いる洗浄水の量に比例する。そのため、洗浄水量を低減すること、換言すれば水洗終了までの水の使用効率を上げることでも、シリカ中の不純物量の低減が可能となる。   When producing a catalyst carrier mainly composed of silica by the gel method described above, a large amount of washing water is usually used. When washing water containing a large amount of impurities such as industrial water is used, a large amount of impurities remain in the carrier, and the activity of the catalyst is greatly reduced. However, it is possible to obtain a good silica carrier having a low impurity content by using a cleaning water having a low impurity content or no impurities such as ion-exchanged water. In this case, the content of sodium, potassium, magnesium and calcium in the washing water is preferably 600 ppm or less. If it exceeds this, the impurity content in the catalyst carrier containing silica as a main component will increase, and the activity of the catalyst after preparation will be greatly reduced. Even when an acidic aqueous solution is used as the washing water, the content of sodium, potassium, magnesium, and calcium in the acidic aqueous solution is preferably 600 ppm or less for the same reason. From the viewpoint of reducing the amount of impurities, ideally ion-exchanged water is preferably used. In order to obtain ion-exchanged water, ion-exchange resin or the like may be used, but ion-exchanged water can also be produced by performing ion exchange using silica gel generated as a non-standard product on the silica production line. It is. In principle, silica supplements impurities in the wash water by ion exchange between hydrogen in silanol on the silica surface and impurity ions such as sodium ion, potassium ion, magnesium ion and calcium ion. Therefore, even if the cleaning water contains a little impurities, it is possible to prevent impurities from being captured to some extent by adjusting the pH of the cleaning water to be low. Further, the amount of ion exchange (amount of impurities mixed) is proportional to the amount of cleaning water used. Therefore, it is possible to reduce the amount of impurities in silica by reducing the amount of washing water, in other words, by increasing the efficiency of use of water until the end of washing.

触媒担体の物理的特性、化学的特性を大きく変化させずに、水による洗浄、酸による洗浄、アルカリによる洗浄等の前処理を施すことで、シリカを主成分とする触媒担体中の不純物を低下させることができる場合には、これらの前処理が触媒の活性向上に極めて有効である。   Improve impurities in the catalyst carrier mainly composed of silica by pretreatment such as washing with water, washing with acid, washing with alkali, etc. without greatly changing the physical and chemical properties of the catalyst carrier. These pretreatments are extremely effective in improving the activity of the catalyst.

例えば、シリカを主成分とする触媒担体の洗浄には、硝酸、塩酸、酢酸等の酸性水溶液にて洗浄することや、イオン交換水にて洗浄することが特に効果的である。これらの酸による洗浄処理の後に、酸の一部が担体中に残留することが障害となる場合には、イオン交換水等の清浄な水で更に洗浄することが効果的である。   For example, for washing a catalyst carrier mainly composed of silica, washing with an acidic aqueous solution such as nitric acid, hydrochloric acid or acetic acid, or washing with ion exchange water is particularly effective. If it becomes an obstacle that a part of the acid remains in the carrier after the washing treatment with these acids, it is effective to further wash with clean water such as ion-exchanged water.

また、シリカを主成分とする触媒担体の製造においては、粒子強度向上、表面シラノール基活性向上等を目的とした焼成処理が良く行われる。しかしながら、不純物が比較的多い状態で、焼成処理を行うと、シリカを主成分とする触媒担体を洗浄して不純物濃度を低下させる際に、シリカ骨格内に不純物元素が取り込まれて、不純物含有量を低減させることが困難となる。よって、シリカを主成分とする触媒担体を洗浄して不純物濃度を低下させたい場合には、未焼成シリカゲルを用いることが好ましい。   Further, in the production of a catalyst carrier mainly composed of silica, a calcination treatment for the purpose of improving particle strength, surface silanol group activity and the like is often performed. However, if firing is performed in a state where there are relatively many impurities, the impurity element is incorporated into the silica skeleton when the catalyst carrier mainly composed of silica is washed to reduce the impurity concentration, and the impurity content Is difficult to reduce. Therefore, when it is desired to reduce the impurity concentration by washing the catalyst carrier mainly composed of silica, it is preferable to use unfired silica gel.

F−T合成触媒の活性の観点からは、コバルトの分散度を高く保ち、担持した活性コバルトの反応に寄与する効率を向上させるためには、比表面積が大きい触媒担体を使用することが好ましい。触媒担体の比表面積を大きくするためには、気孔径を小さくし、細孔容積を大きくする必要がある。しかしながら、この二つの要因を増大させ過ぎると、耐摩耗性や強度が低下することになる。そのため、触媒担体の物理性状としては、細孔径が8nm〜50nm、比表面積が80m/g〜450m/g、細孔容積が0.2mL/g〜1.2mL/gを同時に満足するものが、触媒用の担体として好適である。細孔径が8nm〜30nm、比表面積が100m/g〜400m/g、細孔容積が0.2mL/g〜0.9mL/gを同時に満足するものであればより好ましく、細孔径が8nm〜20nm、比表面積が150m/g〜350m/g、細孔容積が0.3mL/g〜0.8mL/gを同時に満足するものであれば更に好ましい。特にスラリー床では触媒の強度が必要となることから、細孔容積は0.3mL/g〜0.6mL/gであることが特に好ましい。 From the viewpoint of the activity of the FT synthesis catalyst, it is preferable to use a catalyst carrier having a large specific surface area in order to keep the dispersibility of cobalt high and improve the efficiency of contributing to the reaction of the supported active cobalt. In order to increase the specific surface area of the catalyst support, it is necessary to reduce the pore diameter and increase the pore volume. However, if these two factors are increased too much, the wear resistance and strength will decrease. Therefore, the physical properties of the catalyst support, as the pore size is 8Nm~50nm, the specific surface area of 80m 2 / g~450m 2 / g, pore volume satisfies 0.2mL / g~1.2mL / g simultaneously Is suitable as a support for the catalyst. Pore size 8Nm~30nm, a specific surface area of 100m 2 / g~400m 2 / g, a pore volume of more preferable as long as it simultaneously satisfies 0.2mL / g~0.9mL / g, pore size 8nm to 20 nm, a specific surface area of 150m 2 / g~350m 2 / g, a pore volume of more preferable as long as it simultaneously satisfies 0.3mL / g~0.8mL / g. In particular, since the strength of the catalyst is required in the slurry bed, the pore volume is particularly preferably from 0.3 mL / g to 0.6 mL / g.

上記の比表面積はBET法で、細孔容積は前記水銀圧入法や水滴定法で測定することができる。また、細孔径はガス吸着法や水銀ポロシメーター等による水銀圧入法で測定可能であるが、比表面積、細孔容積から計算で求めることもできる。   The specific surface area can be measured by the BET method, and the pore volume can be measured by the mercury intrusion method or the water titration method. The pore diameter can be measured by a mercury adsorption method using a gas adsorption method or a mercury porosimeter, but can also be calculated from the specific surface area and pore volume.

F−T合成反応に十分な活性を発現する触媒を得るためには、触媒担体の比表面積は80m/g以上であることが好ましい。この比表面積を下回ると、担持した金属の分散度が低下してしまい、活性コバルトの反応への寄与効率が低下することがある。一方、触媒担体の比表面積が450m/g上回ると、細孔容積と細孔径が上記範囲を同時に満足することが困難となることがあるため、触媒担体の比表面積は450m/g以下であることが好ましい。 In order to obtain a catalyst that exhibits sufficient activity for the FT synthesis reaction, the specific surface area of the catalyst carrier is preferably 80 m 2 / g or more. Below this specific surface area, the degree of dispersion of the supported metal may decrease, and the contribution efficiency to the reaction of active cobalt may decrease. On the other hand, if the specific surface area of the catalyst support exceeds 450 m 2 / g, it may be difficult for the pore volume and the pore diameter to satisfy the above ranges at the same time. Therefore, the specific surface area of the catalyst support is 450 m 2 / g or less. Preferably there is.

触媒担体の細孔径を小さくするほど比表面積を大きくすることが可能となるが、細孔径は8nm以上であることが好ましい。細孔径が8nmを下回ると、細孔内のガス拡散速度が水素と一酸化炭素では異なり、細孔の奥へ行くほど水素分圧が高くなるという結果を招き、F−T合成反応では副生成物といえるメタン等の軽質炭化水素が、多量に生成することになることがある。加えて、生成した炭化水素の細孔内拡散速度も低下し、結果として、見かけの反応速度を低下させることもある。また、一定の細孔容積で比較を行うと、細孔径が大きくなるほど触媒担体の比表面積が低下するため、細孔径が50nm以下であることが好ましい。細孔径が50nmを超えると、触媒担体の比表面積を増大させることが困難となり、活性コバルトの分散度が低下する。   Although the specific surface area can be increased as the pore size of the catalyst carrier is reduced, the pore size is preferably 8 nm or more. When the pore diameter is less than 8 nm, the gas diffusion rate in the pore is different between hydrogen and carbon monoxide, and the hydrogen partial pressure increases as it goes deeper into the pore. A large amount of light hydrocarbons such as methane can be produced. In addition, the diffusion rate of the produced hydrocarbons in the pores is reduced, and as a result, the apparent reaction rate may be reduced. Further, when the comparison is made with a constant pore volume, the specific surface area of the catalyst carrier decreases as the pore diameter increases, so the pore diameter is preferably 50 nm or less. When the pore diameter exceeds 50 nm, it is difficult to increase the specific surface area of the catalyst support, and the dispersity of the active cobalt is lowered.

触媒担体の細孔容積は0.2mL/g〜1.2mL/gであることが好ましい。細孔容積が0.2mL/gを下回ると、細孔径と比表面積が上記の範囲を同時に満足することが困難である。一方、細孔容積が1.2mL/gを上回ると、触媒担体の強度が低下することがある。   The pore volume of the catalyst support is preferably 0.2 mL / g to 1.2 mL / g. When the pore volume is less than 0.2 mL / g, it is difficult for the pore diameter and the specific surface area to satisfy the above ranges at the same time. On the other hand, when the pore volume exceeds 1.2 mL / g, the strength of the catalyst carrier may be reduced.

スラリー床反応用のF−T合成触媒には、耐摩耗性、強度が要求される。また、F−T合成反応では、多量の水が副生するために、水の存在下で破壊、粉化するような触媒または触媒担体を用いると、前述したような不都合が生じることになるために注意を要する。よって、予め亀裂が入っている可能性が高く、鋭角な角が折損、剥離し易い破砕状の触媒担体ではなく、球状の触媒担体を用いた触媒が好ましい。
触媒担体の粒子径は、10μm〜250μm程度であることが好ましい。触媒担体の平均粒子径は、20μm〜150μmであることが好ましく、30μm〜120μmであることがより好ましく、40μm〜100μmであることがさらに好ましい。球状の触媒担体を製造する際には、一般的なスプレードライ法等の噴霧法が用いられる。特に、10μm〜250μm程度の粒径の球状シリカ担体を製造する際には、噴霧法が好適に用いられ、耐摩耗性、強度、耐水性に優れた球状シリカ担体が得られる。
The FT synthesis catalyst for slurry bed reaction is required to have wear resistance and strength. In addition, since a large amount of water is produced as a by-product in the FT synthesis reaction, the use of a catalyst or catalyst carrier that is destroyed or pulverized in the presence of water causes the disadvantages described above. Attention is required. Therefore, a catalyst using a spherical catalyst carrier is preferable instead of a crushed catalyst carrier which has a high possibility of being cracked in advance and whose sharp corners are easily broken and peeled off.
The particle size of the catalyst carrier is preferably about 10 μm to 250 μm. The average particle size of the catalyst carrier is preferably 20 μm to 150 μm, more preferably 30 μm to 120 μm, and even more preferably 40 μm to 100 μm. When producing a spherical catalyst carrier, a spraying method such as a general spray drying method is used. In particular, when producing a spherical silica carrier having a particle size of about 10 μm to 250 μm, a spray method is suitably used, and a spherical silica carrier excellent in wear resistance, strength and water resistance can be obtained.

このようなシリカを主成分とする触媒担体の製造法を以下に例示する。
珪酸アルカリ水溶液と酸水溶液とを混合し、生成させたシリカゾルを、空気等の気体媒体中または前記シリカゾルと不溶性の有機溶媒中へ噴霧してゲル化させ、次いで、酸処理、水洗、乾燥する。
ここで、珪酸アルカリとしては、珪酸ソーダ水溶液が好適に用いられる。NaO:SiOのモル比は、1:1〜1:5であることが好ましく、シリカの濃度は、5質量%〜30質量%であることが好ましい。
A method for producing such a catalyst carrier containing silica as a main component is exemplified below.
A silica silicate aqueous solution and an acid aqueous solution are mixed, and the produced silica sol is sprayed into a gaseous medium such as air or into an organic solvent insoluble in the silica sol, followed by acid treatment, water washing and drying.
Here, as the silicate alkali, a sodium silicate aqueous solution is preferably used. The molar ratio of Na 2 O: SiO 2 is preferably 1: 1 to 1: 5, and the concentration of silica is preferably 5% by mass to 30% by mass.

シリカを主成分とする触媒担体の製造法に用いられる酸としては、硝酸、塩酸、硫酸、有機酸等が挙げられる。これらのなかでも、製造する際の容器への腐食を防ぎ、有機物が残留しないという観点からは、硫酸が好ましい。
酸の濃度は、1mol/L〜10mol/Lであることが好ましい。酸の濃度が1mol/Lを下回ると、ゲル化の進行が著しく遅くなる。一方、酸の濃度が10mol/Lを上回ると、ゲル化速度が速過ぎてその制御が困難となり、所望の物性値を得ることが難しくなる。
Examples of the acid used in the production method of the catalyst carrier mainly composed of silica include nitric acid, hydrochloric acid, sulfuric acid, and organic acid. Among these, sulfuric acid is preferable from the viewpoint of preventing corrosion of the container during production and leaving no organic matter.
The acid concentration is preferably 1 mol / L to 10 mol / L. When the acid concentration is less than 1 mol / L, the progress of gelation is remarkably slowed. On the other hand, when the acid concentration exceeds 10 mol / L, the gelation rate is too fast and it is difficult to control the gel, and it is difficult to obtain desired physical property values.

また、有機溶媒中へ噴霧する方法を採用する場合には、有機溶媒として、ケロシン、パラフィン、キシレン、トルエン等を用いることができる。
なお、アルミ二ウムを含有させる場合には、アルミニウム源を原料に混合したり、シリカを製造した後にドープする手法が用いられる。
Moreover, when employ | adopting the method sprayed in an organic solvent, kerosene, paraffin, xylene, toluene etc. can be used as an organic solvent.
In addition, when aluminum is contained, a method of doping after mixing an aluminum source with a raw material or manufacturing silica is used.

以上述べたようなシリカを主成分とする触媒担体と、触媒の製造方法とを用いて得られる触媒を使用することにより、極めて高い活性を示すF−T合成反応触媒を得ることが可能となる。酢酸コバルトを前駆体とするが、貴金属を含有しない触媒では、コバルトの還元が十分に進行せずにコバルト粒子径が小さくコバルトの比表面積が大きいにも関わらず、極めて高い活性を得ることが難しい。一方、本発明による触媒では、貴金属によるコバルト粒子の還元促進効果にて、著しく高い活性を示す。   By using a catalyst obtained by using the catalyst carrier mainly composed of silica as described above and a method for producing the catalyst, an FT synthesis reaction catalyst having extremely high activity can be obtained. . It is difficult to obtain a very high activity with a catalyst that uses cobalt acetate as a precursor but does not contain a noble metal, although the reduction of cobalt does not proceed sufficiently and the cobalt particle size is small and the cobalt specific surface area is large. . On the other hand, the catalyst according to the present invention exhibits extremely high activity due to the effect of promoting the reduction of cobalt particles by a noble metal.

本発明による触媒を用いれば、極めて活性が高いため、反応条件によっては単位触媒重量・単位時間当たりの炭化水素生産性が2kg/g−cat./h以上の生産性で製造することも可能である。これにより、プラントの炭化水素生産量が同一の条件においては使用する触媒量が少なくてすむため、運転時のスラリー濃度を低く設定したり、反応器を小さくしたりすることができる。   Since the activity according to the present invention is extremely high, the hydrocarbon productivity per unit catalyst weight / unit time is 2 kg / g-cat. It is also possible to manufacture with a productivity of / h or more. Thereby, since the amount of catalyst to be used can be reduced under the same conditions for the amount of hydrocarbon production in the plant, the slurry concentration during operation can be set low, or the reactor can be made small.

[合成ガスから炭化水素を製造する炭化水素の製造方法]
本発明の合成ガスから炭化水素を製造する炭化水素の製造方法は、本発明の触媒の製造方法にて製造した触媒を用いて、スラリー床での上述のフィッシャー・トロプシュ(Fischer−Tropsch)合成反応(F−T合成反応)で、合成ガスから炭化水素を製造する。
[Hydrocarbon production method for producing hydrocarbons from synthesis gas]
The hydrocarbon production method for producing hydrocarbons from the synthesis gas of the present invention comprises the above-described Fischer-Tropsch synthesis reaction in a slurry bed using the catalyst produced by the catalyst production method of the present invention. In (FT synthesis reaction), hydrocarbons are produced from synthesis gas.

本発明で使用する合成ガスとしては、水素と一酸化炭素の合計が全体の50体積%以上であるガスが生産性の面から好ましく、特に、水素と一酸化炭素のモル比(水素/一酸化炭素)が0.5〜4.0の範囲であることが好ましい。これは、水素と一酸化炭素のモル比が0.5未満の場合には、原料ガス中の水素の存在量が少な過ぎるため、一酸化炭素の水素化反応(FT合成反応)が進み難く、液状炭化水素の生産性が高くならないからである。一方、水素と一酸化炭素のモル比が4.0を超える場合には、原料ガス中の一酸化炭素の存在量が少な過ぎるため、触媒活性に関わらず液状炭化水素の生産性が高くならないためである。   As the synthesis gas used in the present invention, a gas in which the total of hydrogen and carbon monoxide is 50% by volume or more is preferable from the viewpoint of productivity, and in particular, the molar ratio of hydrogen to carbon monoxide (hydrogen / monoxide) Carbon) is preferably in the range of 0.5 to 4.0. This is because when the molar ratio of hydrogen to carbon monoxide is less than 0.5, the amount of hydrogen in the raw material gas is too small, so that the carbon monoxide hydrogenation reaction (FT synthesis reaction) is difficult to proceed. This is because the productivity of liquid hydrocarbons does not increase. On the other hand, when the molar ratio of hydrogen to carbon monoxide exceeds 4.0, the amount of carbon monoxide present in the raw material gas is too small, and the productivity of liquid hydrocarbons does not increase regardless of the catalyst activity. It is.

以下、実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。   Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these examples.

[触媒の合成]
下記の2つの製造方法のいずれかにより、貴金属−Co/SiO触媒または貴金属−Co/ZrO/SiO触媒を製造した。
(第1の製造方法)
シリカを主成分とする触媒担体(前述のシリカ製造方法で製造する際、洗浄工程を制御(洗浄時間、洗浄水純度)した不純物の少ないシリカ)に、インシピエントウェットネス法で酢酸コバルトを前駆体としてコバルト化合物を担持して乾燥処理、焼成処理をした後、貴金属化合物を担持して乾燥処理、焼成処理、還元処理(15h)、パッシベーションを施して調製して貴金属−Co/SiO触媒を得た。酢酸コバルト四水和物水溶液の濃度は1.7mol/Lであった。
[Catalyst synthesis]
A noble metal-Co / SiO 2 catalyst or a noble metal-Co / ZrO 2 / SiO 2 catalyst was produced by one of the following two production methods.
(First manufacturing method)
A catalyst support based on silica (silica with few impurities with controlled washing process (washing time, washing water purity) when producing by the above-mentioned silica production method), precursor of cobalt acetate by the incipient wetness method. A cobalt compound is supported as a body, dried and fired, and then a noble metal compound is supported and dried, fired, reduced (15 h), and passivated to prepare a noble metal-Co / SiO 2 catalyst. Obtained. The concentration of the cobalt acetate tetrahydrate aqueous solution was 1.7 mol / L.

(第2の製造方法)
シリカを主成分とする触媒担体にインシピエントウェットネス法でジルコニウム化合物を担持して乾燥処理、焼成処理をした後、酢酸コバルトを前駆体としてコバルト化合物を担持して乾燥処理、焼成処理を行い、次いで、貴金属化合物を担持して乾燥処理、焼成処理、還元処理(15h)、パッシベーションを施して調製して貴金属−Co/ZrO/SiO触媒(シリカを主成分とする触媒担体は平均粒径100μmの球形)を得た。ジルコニウム化合物の前駆体には硝酸酸化ジルコニウムを用い、硝酸酸化ジルコニム二水和物水溶液の濃度は1.8mol/L、貴金属化合物の濃度は0.005mol/L〜0.02mol/Lの範囲であった。貴金属化合物の前駆体は、Ptを担持する場合にはヘキサクロロ白金酸六水和物、Ruを担持する場合には塩化ルテニウムn水和物、Rhを担持する場合には塩化ロジウム酸水和物を使用した。
(Second manufacturing method)
After a zirconium compound is supported on a catalyst carrier mainly composed of silica by an incipient wetness method and dried and fired, the cobalt compound is supported using cobalt acetate as a precursor and dried and fired. Next, a noble metal compound is supported, dried, calcined, reduced (15 h), and passivated to prepare a noble metal-Co / ZrO 2 / SiO 2 catalyst (silica-based catalyst carrier has an average particle size) A spherical shape having a diameter of 100 μm). Zirconium nitrate oxide was used as the precursor of the zirconium compound, the concentration of the zirconium oxide nitrate dihydrate aqueous solution was 1.8 mol / L, and the concentration of the noble metal compound was in the range of 0.005 mol / L to 0.02 mol / L. It was. The precursor of the noble metal compound is hexachloroplatinic acid hexahydrate when carrying Pt, ruthenium chloride n-hydrate when carrying Ru, and rhodium chloride hydrate when carrying Rh. used.

[炭化水素の合成]
内容積300mLのオートクレーブに貴金属−Co/SiO触媒1gまたは貴金属−Co/ZrO/SiO触媒1gと、50mLのn−C16(n−ヘキサデカン)とを仕込んだ後、230℃、2.2MPa−Gの条件下、撹拌子を800min−1で回転させながら、W(触媒質量)/F(合成ガス流量);(g・h/mol)=1.5となるようにW/FのF(合成ガス(H/CO=2)流量)を調整し、供給ガスおよびオートクレーブ出口ガスの組成をガスクロマトグラフィーにより求め、CO転化率、CH選択率、CO選択率、炭化水素生産性を得た。
[Hydrocarbon synthesis]
After charging 1 g of noble metal-Co / SiO 2 catalyst or 1 g of noble metal-Co / ZrO 2 / SiO 2 catalyst and 50 mL of n-C 16 (n-hexadecane) in an autoclave having an internal volume of 300 mL, While rotating the stir bar at 800 min −1 under the condition of 2 MPa-G, W (catalyst mass) / F (synthesis gas flow rate); (g · h / mol) = 1.5 F (syngas (H 2 / CO = 2) flow rate) is adjusted, and the composition of the supply gas and autoclave outlet gas is obtained by gas chromatography, CO conversion, CH 4 selectivity, CO 2 selectivity, hydrocarbon production Got sex.

(実施例1)
表1のAに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表1に示す。
CO転化率は82.3%、CH選択率は4.5%、CO選択率は1.4%、炭素原子数5以上の炭化水素生産性は2.5(kg−炭化水素/kg−触媒/時間)であった。
(Example 1)
Using a catalyst carrier as shown in Table 1 A, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 1.
CO conversion is 82.3%, CH 4 selectivity is 4.5%, CO 2 selectivity is 1.4%, and hydrocarbon productivity of 5 or more carbon atoms is 2.5 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例2)
表1のBに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/ZrO/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/ZrO/SiO触媒を活性化した。
その後、このPt−Co/ZrO/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表1に示す。
CO転化率は79.8%、CH選択率は6.0%、CO選択率は1.6%、炭素原子数5以上の炭化水素生産性は2.4(kg−炭化水素/kg−触媒/時間)であった。
(Example 2)
Using a catalyst carrier as shown in Table 1 B, a Pt—Co / ZrO 2 / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. This Pt—Co / ZrO 2 / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / ZrO 2 / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 1.
CO conversion is 79.8%, CH 4 selectivity is 6.0%, CO 2 selectivity is 1.6%, hydrocarbon productivity with 5 or more carbon atoms is 2.4 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例3)
表1のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表1に示す。
CO転化率は78.7%、CH選択率は5.0%、CO選択率は1.2%、炭素原子数5以上の炭化水素生産性は2.4(kg−炭化水素/kg−触媒/時間)であった。
Example 3
Using a catalyst carrier as shown in Table 1 C, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst, The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 1.
CO conversion is 78.7%, CH 4 selectivity is 5.0%, CO 2 selectivity is 1.2%, and hydrocarbon productivity of 5 or more carbon atoms is 2.4 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例4)
表1のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt前駆体と混合して共含浸にてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表1に示す。
CO転化率は76.2%、CH選択率は5.4%、CO選択率は0.8%、炭素原子数5以上の炭化水素生産性は2.3(kg−炭化水素/kg−触媒/時間)であった。
(Example 4)
Using a catalyst carrier as shown in Table 1 C, cobalt acetate is mixed as a cobalt precursor with a Pt precursor to prepare a Pt-Co / SiO 2 catalyst by co-impregnation, and the hydrogen flow rate during the reduction treatment is adjusted. The Pt—Co / SiO 2 catalyst was activated by setting to 40 mL / min per gram of catalyst.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 1.
CO conversion is 76.2%, CH 4 selectivity is 5.4%, CO 2 selectivity is 0.8%, hydrocarbon productivity with 5 or more carbon atoms is 2.3 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例5)
表1のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてRu−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このRu−Co/SiO触媒を活性化した。
その後、このRu−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表1に示す。
CO転化率は78.0%、CH選択率は4.9%、CO選択率は1.0%、炭素原子数5以上の炭化水素生産性は2.4(kg−炭化水素/kg−触媒/時間)であった。
(Example 5)
Using a catalyst support as shown in Table 1 C, a Ru-Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst, The Ru—Co / SiO 2 catalyst was activated.
Thereafter, using this Ru—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 1.
CO conversion is 78.0%, CH 4 selectivity is 4.9%, CO 2 selectivity is 1.0%, and hydrocarbon productivity of 5 or more carbon atoms is 2.4 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例6)
表1のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてRh−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このRh−Co/SiO触媒を活性化した。
その後、このRh−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表1に示す。
CO転化率は73.6%、CH選択率は5.7%、CO選択率は0.7%、炭素原子数5以上の炭化水素生産性は2.2(kg−炭化水素/kg−触媒/時間)であった。
(Example 6)
Using a catalyst carrier as shown in Table 1 C, Rh—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst, The Rh—Co / SiO 2 catalyst was activated.
Thereafter, using this Rh—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 1.
CO conversion is 73.6%, CH 4 selectivity is 5.7%, CO 2 selectivity is 0.7%, and hydrocarbon productivity of 5 or more carbon atoms is 2.2 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例7)
表1のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり10mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表1に示す。
CO転化率は78.7%、CH選択率は4.4%、CO選択率は1.0%、炭素原子数5以上の炭化水素生産性は2.4(kg−炭化水素/kg−触媒/時間)であった。
(Example 7)
Using a catalyst carrier as shown in Table 1 C, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 10 mL / min per gram of catalyst, The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 1.
CO conversion is 78.7%, CH 4 selectivity is 4.4%, CO 2 selectivity is 1.0%, and hydrocarbon productivity of 5 or more carbon atoms is 2.4 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例8)
表2のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり1mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表2に示す。
CO転化率は69.8%、CH選択率は5.0%、CO選択率は0.5%、炭素原子数5以上の炭化水素生産性は2.1(kg−炭化水素/kg−触媒/時間)であった。
(Example 8)
Using a catalyst carrier as shown in Table 2C, a Pt-Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 1 mL / min per gram of catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 2.
CO conversion is 69.8%, CH 4 selectivity is 5.0%, CO 2 selectivity is 0.5%, and hydrocarbon productivity of 5 or more carbon atoms is 2.1 (kg-hydrocarbon / kg). -Catalyst / hour).

(実施例9)
表2のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり0.5mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表2に示す。
CO転化率は66.4%、CH選択率は5.4%、CO選択率は0.4%、炭素原子数5以上の炭化水素生産性は2.0(kg−炭化水素/kg−触媒/時間)であった。
Example 9
Using a catalyst carrier as shown in Table 2C, a Pt-Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 0.5 mL / min per gram of catalyst. This Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 2.
CO conversion is 66.4%, CH 4 selectivity is 5.4%, CO 2 selectivity is 0.4%, and hydrocarbon productivity with 5 or more carbon atoms is 2.0 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例10)
表2のDに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表2に示す。
CO転化率は78.2%、CH選択率は4.6%、CO選択率は1.4%、炭素原子数5以上の炭化水素生産性は2.3(kg−炭化水素/kg−触媒/時間)であった。
(Example 10)
Using a catalyst carrier as shown in Table 2D, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 2.
CO conversion is 78.2%, CH 4 selectivity is 4.6%, CO 2 selectivity is 1.4%, and hydrocarbon productivity of 5 or more carbon atoms is 2.3 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例11)
表2のEに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成行った。結果を表2に示す。
CO転化率は68.3%、CH選択率は5.9%、CO選択率は1.4%、炭素原子数5以上の炭化水素生産性は2.0(kg−炭化水素/kg−触媒/時間)であった。
(Example 11)
Using a catalyst carrier as shown in Table 2 E, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 2.
CO conversion is 68.3%, CH 4 selectivity is 5.9%, CO 2 selectivity is 1.4%, and hydrocarbon productivity of 5 or more carbon atoms is 2.0 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例12)
表2のFに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表2に示す。
CO転化率は73.1%、CH選択率は4.8%、CO選択率は0.9%、炭素原子数5以上の炭化水素生産性は2.3(kg−炭化水素/kg−触媒/時間)であった。
(Example 12)
Using a catalyst carrier as shown in Table 2 F, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 2.
CO conversion is 73.1%, CH 4 selectivity is 4.8%, CO 2 selectivity is 0.9%, and hydrocarbon productivity of 5 or more carbon atoms is 2.3 (kg-hydrocarbon / kg -Catalyst / hour).

(実施例13)
表2のGに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表2に示す。
CO転化率は59.2%、CH選択率は7.0%、CO選択率は0.7%、炭素原子数5以上の炭化水素生産性は1.7(kg−炭化水素/kg−触媒/時間)であった。
(Example 13)
Using a catalyst carrier as shown in G of Table 2, a Pt-Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 2.
The CO conversion is 59.2%, the CH 4 selectivity is 7.0%, the CO 2 selectivity is 0.7%, and the hydrocarbon productivity of 5 or more carbon atoms is 1.7 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例1)
表3のAに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてCo/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このCo/SiO触媒を活性化した。
その後、このCo/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は69.8%、CH選択率は4.9%、CO選択率は0.4%、炭素原子数5以上の炭化水素生産性は2.2(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 1)
Using a catalyst carrier as shown in Table 3A, a Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The / SiO 2 catalyst was activated.
Thereafter, using this Co / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 3.
CO conversion is 69.8%, CH 4 selectivity is 4.9%, CO 2 selectivity is 0.4%, and hydrocarbon productivity of 5 or more carbon atoms is 2.2 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例2)
表3のBに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてCo/ZrO/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このCo/ZrO/SiO触媒を活性化した。
その後、このCo/ZrO/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は71.2%、CH選択率は5.3%、CO選択率は0.9%、炭素原子数5以上の炭化水素生産性は2.2(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 2)
Using a catalyst carrier as shown in Table 3B, a Co / ZrO 2 / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. The Co / ZrO 2 / SiO 2 catalyst was activated.
Thereafter, using this Co / ZrO 2 / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 3.
CO conversion is 71.2%, CH 4 selectivity is 5.3%, CO 2 selectivity is 0.9%, hydrocarbon productivity with 5 or more carbon atoms is 2.2 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例3)
表3のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてCo/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このCo/SiO触媒を活性化した。
その後、このCo/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は58.8%、CH選択率は6.3%、CO選択率は0.3%、炭素原子数5以上の炭化水素生産性は1.8(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 3)
Using a catalyst carrier as shown in Table 3C, a Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The / SiO 2 catalyst was activated.
Thereafter, using this Co / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 3.
CO conversion is 58.8%, CH 4 selectivity is 6.3%, CO 2 selectivity is 0.3%, and hydrocarbon productivity with 5 or more carbon atoms is 1.8 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例4)
表3のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてCo/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり10mL/minに設定して、このCo/SiO触媒を活性化した。
その後、このCo/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は22.9%、CH選択率は9.5%、CO選択率は0.2%、炭素原子数5以上の炭化水素生産性は0.7(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 4)
Using a catalyst carrier as shown in Table 3C, a Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 10 mL / min per gram of the catalyst. The / SiO 2 catalyst was activated.
Thereafter, using this Co / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 3.
The CO conversion is 22.9%, the CH 4 selectivity is 9.5%, the CO 2 selectivity is 0.2%, and the hydrocarbon productivity of 5 or more carbon atoms is 0.7 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例5)
表3のCに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてCo/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このCo/SiO触媒を活性化した。
その後、このCo/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は72.3%、CH選択率は3.9%、CO選択率は0.5%、炭素原子数5以上の炭化水素生産性は2.3(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 5)
Using a catalyst carrier as shown in Table 3C, a Co / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The / SiO 2 catalyst was activated.
Thereafter, using this Co / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 3.
CO conversion is 72.3%, CH 4 selectivity is 3.9%, CO 2 selectivity is 0.5%, and hydrocarbon productivity of 5 or more carbon atoms is 2.3 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例6)
表3のCに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてCo/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり10mL/minに設定して、このCo/SiO触媒を活性化した。
その後、このCo/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は65.1%、CH選択率は4.5%、CO選択率は0.4%、炭素原子数5以上の炭化水素生産性は2.0(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 6)
Using a catalyst carrier as shown in Table 3C, a Co / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 10 mL / min per gram of the catalyst. The / SiO 2 catalyst was activated.
Thereafter, using this Co / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 3.
CO conversion is 65.1%, CH 4 selectivity is 4.5%, CO 2 selectivity is 0.4%, and hydrocarbon productivity of 5 or more carbon atoms is 2.0 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例7)
表3のCに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は74.0%、CH選択率は3.8%、CO選択率は0.5%、炭素原子数5以上の炭化水素生産性は2.3(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 7)
Using a catalyst carrier as shown in Table 3C, a Pt—Co / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst, The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 3.
CO conversion is 74.0%, CH 4 selectivity is 3.8%, CO 2 selectivity is 0.5%, and hydrocarbon productivity of 5 or more carbon atoms is 2.3 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例8)
表3のCに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり10mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は72.5%、CH選択率は3.9%、CO選択率は0.5%、炭素原子数5以上の炭化水素生産性は2.3(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 8)
Using a catalyst carrier as shown in Table 3C, a Pt—Co / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 10 mL / min per gram of catalyst, The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 3.
CO conversion is 72.5%, CH 4 selectivity is 3.9%, CO 2 selectivity is 0.5%, and hydrocarbon productivity of 5 or more carbon atoms is 2.3 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例9)
表3のCに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt前駆体と混合して共含浸にてPt−Co/SiO触媒を調製し、焼成処理を行わずに還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は62.8%、CH選択率は4.0%、CO選択率は0.5%、炭素原子数5以上の炭化水素生産性は2.0(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 9)
Using a catalyst carrier as shown in Table 3C, cobalt acetate as a cobalt precursor is mixed with a Pt precursor to prepare a Pt—Co / SiO 2 catalyst by co-impregnation, and reduced without firing. The Pt—Co / SiO 2 catalyst was activated by setting the hydrogen flow rate during the treatment to 40 mL / min per gram of catalyst.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 3.
CO conversion is 62.8%, CH 4 selectivity is 4.0%, CO 2 selectivity is 0.5%, and hydrocarbon productivity of 5 or more carbon atoms is 2.0 (kg-hydrocarbon / kg). -Catalyst / hour).

(比較例10)
表3のDに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてCo/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このCo/SiO触媒を活性化した。
その後、このCo/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表3に示す。
CO転化率は66.5%、CH選択率は5.2%、CO選択率は0.4%、炭素原子数5以上の炭化水素生産性は2.0(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 10)
Using a catalyst carrier as shown in Table 3D, a Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The / SiO 2 catalyst was activated.
Thereafter, using this Co / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 3.
CO conversion is 66.5%, CH 4 selectivity is 5.2%, CO 2 selectivity is 0.4%, and hydrocarbon productivity of 5 or more carbon atoms is 2.0 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例11)
表4のHに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてCo/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このCo/SiO触媒を活性化した。
その後、このCo/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は73.2%、CH選択率は4.6%、CO選択率は0.6%、炭素原子数5以上の炭化水素生産性は2.3(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 11)
Using a catalyst carrier as shown in Table 4H, a Co / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The / SiO 2 catalyst was activated.
Thereafter, using this Co / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 4.
The CO conversion is 73.2%, the CH 4 selectivity is 4.6%, the CO 2 selectivity is 0.6%, and the hydrocarbon productivity of 5 or more carbon atoms is 2.3 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例12)
表4のHに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は76.8%、CH選択率は4.2%、CO選択率は1.0%、炭素原子数5以上の炭化水素生産性は2.4(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 12)
Using a catalyst carrier as shown in H of Table 4, a Pt-Co / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 4.
CO conversion is 76.8%, CH 4 selectivity is 4.2%, CO 2 selectivity is 1.0%, and hydrocarbon productivity with 5 or more carbon atoms is 2.4 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例13)
表4のHに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてRu−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このRu−Co/SiO触媒を活性化した。
その後、このRu−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は75.5%、CH選択率は4.2%、CO選択率は0.7%、炭素原子数5以上の炭化水素生産性は2.4(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 13)
Using a catalyst carrier as shown in Table 4 H, a Ru—Co / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst, The Ru—Co / SiO 2 catalyst was activated.
Thereafter, using this Ru—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 4.
The CO conversion is 75.5%, the CH 4 selectivity is 4.2%, the CO 2 selectivity is 0.7%, and the hydrocarbon productivity of 5 or more carbon atoms is 2.4 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例14)
表4のIに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてCo/ZrO/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このCo/ZrO/SiO触媒を活性化した。
その後、このCo/ZrO/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は66.5%、CH選択率は5.1%、CO選択率は0.4%、炭素原子数5以上の炭化水素生産性は2.0(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 14)
Using a catalyst carrier as shown in Table 4 I, a Co / ZrO 2 / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. The Co / ZrO 2 / SiO 2 catalyst was activated.
Thereafter, using this Co / ZrO 2 / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 4.
The CO conversion is 66.5%, the CH 4 selectivity is 5.1%, the CO 2 selectivity is 0.4%, and the hydrocarbon productivity of 5 or more carbon atoms is 2.0 (kg-hydrocarbon / kg). -Catalyst / hour).

(比較例15)
表4のIに示すような触媒担体を用いて、硝酸コバルトをコバルト前駆体としてPt−Co/ZrO/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/ZrO/SiO触媒を活性化した。
その後、このPt−Co/ZrO/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は69.5%、CH選択率は4.9%、CO選択率は0.5%、炭素原子数5以上の炭化水素生産性は2.1(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 15)
Using a catalyst support as shown in Table 4 I, a Pt—Co / ZrO 2 / SiO 2 catalyst was prepared using cobalt nitrate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. This Pt—Co / ZrO 2 / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / ZrO 2 / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 4.
CO conversion is 69.5%, CH 4 selectivity is 4.9%, CO 2 selectivity is 0.5%, and hydrocarbon productivity of 5 or more carbon atoms is 2.1 (kg-hydrocarbon / kg). -Catalyst / hour).

(比較例16)
表4のBに示すような触媒担体を用いて、ジルコニウム成分と、酢酸コバルト前駆体とを共担持し、更に白金を担持したPt/Co−ZrO/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt/Co−ZrO/SiO触媒を活性化した。
その後、このPt/Co−ZrO/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は61.5%、CH選択率は5.9%、CO選択率は0.4%、炭素原子数5以上の炭化水素生産性は1.9(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 16)
Using a catalyst carrier as shown in Table 4B, a Pt / Co—ZrO 2 / SiO 2 catalyst in which a zirconium component and a cobalt acetate precursor are co-supported and platinum is further supported is prepared. The Pt / Co—ZrO 2 / SiO 2 catalyst was activated by setting the hydrogen flow rate at 40 mL / min per gram of catalyst.
Thereafter, using this Pt / Co—ZrO 2 / SiO 2 catalyst, hydrocarbons were synthesized according to the above-described method. The results are shown in Table 4.
CO conversion is 61.5%, CH 4 selectivity is 5.9%, CO 2 selectivity is 0.4%, and hydrocarbon productivity of 5 or more carbon atoms is 1.9 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例17)
表4のFに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は46.2%、CH選択率は7.4%、CO選択率は0.2%、炭素原子数5以上の炭化水素生産性は1.4(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 17)
Using a catalyst carrier as shown in Table 4 F, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of the catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 4.
The CO conversion is 46.2%, the CH 4 selectivity is 7.4%, the CO 2 selectivity is 0.2%, and the hydrocarbon productivity of 5 or more carbon atoms is 1.4 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例18)
表4のGに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は12.4%、CH選択率は12.1%、CO選択率は0.4%、炭素原子数5以上の炭化水素生産性は0.3(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 18)
Using a catalyst carrier as shown in Table 4 G, a Pt-Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, and the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst. The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 4.
CO conversion is 12.4%, CH 4 selectivity is 12.1%, CO 2 selectivity is 0.4%, and hydrocarbon productivity of 5 or more carbon atoms is 0.3 (kg-hydrocarbon / kg -Catalyst / hour).

(比較例19)
表4のJに示すような触媒担体を用いて、酢酸コバルトをコバルト前駆体としてPt−Co/SiO触媒を調製し、還元処理時の水素流量を触媒1g当たり40mL/minに設定して、このPt−Co/SiO触媒を活性化した。
その後、このPt−Co/SiO触媒を用いて、上述の方法に従って、炭化水素の合成を行った。結果を表4に示す。
CO転化率は32.9%、CH選択率は8.8%、CO選択率は1.5%、炭素原子数5以上の炭化水素生産性は0.9(kg−炭化水素/kg−触媒/時間)であった。
(Comparative Example 19)
Using a catalyst carrier as shown in Table 4 J, a Pt—Co / SiO 2 catalyst was prepared using cobalt acetate as a cobalt precursor, the hydrogen flow rate during the reduction treatment was set to 40 mL / min per gram of catalyst, The Pt—Co / SiO 2 catalyst was activated.
Thereafter, using this Pt—Co / SiO 2 catalyst, hydrocarbons were synthesized according to the method described above. The results are shown in Table 4.
CO conversion is 32.9%, CH 4 selectivity is 8.8%, CO 2 selectivity is 1.5%, and hydrocarbon productivity with 5 or more carbon atoms is 0.9 (kg-hydrocarbon / kg -Catalyst / hour).

Figure 2018187556
Figure 2018187556

Figure 2018187556
Figure 2018187556

Figure 2018187556
Figure 2018187556

Figure 2018187556
Figure 2018187556

Claims (11)

シリカを主成分とする触媒担体に、コバルト成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液を用いて、前記コバルト成分を含浸担持する工程と、前記コバルト成分が担持された前記シリカを主成分とする触媒担体に、貴金属化合物の前駆体溶液を用いて、前記貴金属成分を含浸担持する工程と、前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を、水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by carrying a cobalt component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is obtained by using a precursor solution of cobalt acetate on a catalyst support mainly composed of silica having a total content of sodium, potassium, magnesium and calcium of 1,000 ppm or less in terms of metal, Impregnating and supporting, using a noble metal compound precursor solution on the silica-based catalyst carrier on which the cobalt component is supported, impregnating and supporting the noble metal component, the cobalt component and the noble metal And a step of reducing the catalyst carrier mainly composed of silica on which a component is supported with a gas containing hydrogen, and a method for producing a catalyst for producing hydrocarbons from synthesis gas.
シリカを主成分とする触媒担体に、コバルト成分とジルコニウム成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、ジルコニウム化合物の前駆体溶液を用いて、前記ジルコニウム成分を含浸担持する工程と、前記ジルコニウム成分が担持された前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液を用いて、前記コバルト成分を含浸担持する工程と、前記ジルコニウム成分と前記コバルト成分が担持された前記シリカを主成分とする触媒担体に、貴金属化合物の前駆体溶液を用いて、前記貴金属成分を含浸担持する工程と、前記ジルコニウム成分と前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を、水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by carrying a cobalt component, a zirconium component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is obtained by using a precursor solution of a zirconium compound on a catalyst carrier mainly composed of silica having a total content of sodium, potassium, magnesium, and calcium of 1,000 ppm or less in terms of metal, and using the zirconium compound precursor solution. A step of impregnating and supporting, a step of impregnating and supporting the cobalt component using a precursor solution of cobalt acetate on a catalyst support mainly composed of silica on which the zirconium component is supported, the zirconium component and the cobalt A step of impregnating and supporting the noble metal component using a precursor solution of a noble metal compound on the catalyst carrier mainly composed of silica on which the component is supported, and supporting the zirconium component, the cobalt component, and the noble metal component Reducing the silica-based catalyst carrier as a main component with a gas containing hydrogen. Process for preparing a catalyst for producing a hydrocarbon from a syngas, wherein.
シリカを主成分とする触媒担体に、コバルト成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液と貴金属化合物の前駆体溶液を混合した溶液を用いて、前記コバルト成分と前記貴金属成分を同時に含浸担持する工程と、前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を焼成する工程と、前記焼成後に水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by carrying a cobalt component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is prepared by adding a cobalt acetate precursor solution and a noble metal compound precursor solution to a catalyst carrier mainly composed of silica having a total content of sodium, potassium, magnesium and calcium of 1,000 ppm or less in terms of metal. Using the mixed solution, simultaneously impregnating and supporting the cobalt component and the noble metal component, firing the catalyst support mainly composed of silica on which the cobalt component and the noble metal component are supported, And a step of reducing with a gas containing hydrogen after calcination, a method for producing a catalyst for producing hydrocarbons from synthesis gas.
シリカを主成分とする触媒担体に、コバルト成分とジルコニウム成分と貴金属成分とを担持して製造する、合成ガスから炭化水素を製造する触媒の製造方法であって、
前記担持は、ナトリウム、カリウム、マグネシウム、カルシウムの含有量の合計が金属換算で1,000ppm以下の前記シリカを主成分とする触媒担体に、ジルコニウム化合物の前駆体溶液を用いて、前記ジルコニウム成分を含浸担持する工程と、前記ジルコニウム成分が担持された前記シリカを主成分とする触媒担体に、酢酸コバルトの前駆体溶液と貴金属化合物の前駆体溶液を混合した溶液を用いて、前記コバルト成分と前記貴金属成分を同時に含浸担持する工程と、前記ジルコニウム成分と前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体を焼成する工程と、前記焼成後に水素を含むガスで還元する工程と、を含むことを特徴とする合成ガスから炭化水素を製造する触媒の製造方法。
A method for producing a catalyst for producing hydrocarbons from synthesis gas, which is produced by carrying a cobalt component, a zirconium component and a noble metal component on a catalyst carrier mainly composed of silica,
The support is obtained by using a precursor solution of a zirconium compound on a catalyst carrier mainly composed of silica having a total content of sodium, potassium, magnesium, and calcium of 1,000 ppm or less in terms of metal, and using the zirconium compound precursor solution. A step of impregnating and using a solution in which a precursor solution of cobalt acetate and a precursor solution of a noble metal compound are mixed in a catalyst support mainly composed of silica on which the zirconium component is supported; A step of impregnating and supporting a noble metal component at the same time; a step of calcining the silica-based catalyst carrier on which the zirconium component, the cobalt component and the noble metal component are supported; and reduction with a gas containing hydrogen after the calcining A method for producing a catalyst for producing hydrocarbons from synthesis gas.
前記貴金属が、白金およびルテニウムの少なくともいずれか一方であることを特徴とする請求項1〜4の何れか1項に記載の合成ガスから炭化水素を製造する触媒の製造方法。   The method for producing a catalyst for producing hydrocarbons from synthesis gas according to any one of claims 1 to 4, wherein the noble metal is at least one of platinum and ruthenium. 前記シリカを主成分とする触媒担体中に含まれるナトリウム、カリウム、カルシウムおよびマグネシウムの含有量が、金属換算でそれぞれ300ppm以下であることを特徴とする請求項1〜5の何れか1項に記載の合成ガスから炭化水素を製造する触媒の製造方法。   The content of sodium, potassium, calcium, and magnesium contained in the catalyst carrier mainly composed of silica is 300 ppm or less in terms of metal, respectively. A method for producing a catalyst for producing hydrocarbons from synthesis gas. 前記シリカを主成分とする触媒担体へ、前記コバルト成分、前記貴金属成分を担持する方法は、それぞれインシピエントウェットネス法を用いた含浸担持であることを特徴とする請求項1、3、5または6の何れか1項に記載の合成ガスから炭化水素を製造する触媒の製造方法。   6. The method for supporting the cobalt component and the noble metal component on the catalyst carrier mainly composed of silica is impregnation support using an incipient wetness method, respectively. 7. A method for producing a catalyst for producing hydrocarbons from the synthesis gas according to any one of 6 above. 前記シリカを主成分とする触媒担体へ、前記コバルト成分、前記ジルコニウム成分、前記貴金属成分を担持する方法は、それぞれインシピエントウェットネス法を用いた含浸担持であることを特徴とする請求項2、4、5または6の何れか1項に記載の合成ガスから炭化水素を製造する触媒の製造方法。   3. The method for supporting the cobalt component, the zirconium component, and the noble metal component on the catalyst support mainly composed of silica is impregnation support using an incipient wetness method, respectively. A method for producing a catalyst for producing hydrocarbons from the synthesis gas according to any one of 4, 5, and 6. 前記水素を含むガスで還元する工程において、前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体1g当たりの水素流量が0.1mL/min〜60mL/minの範囲で還元することを特徴とする請求項1、3、5、6または7の何れか1項に記載の合成ガスから炭化水素を製造する触媒の製造方法。   In the step of reducing with the gas containing hydrogen, the hydrogen flow rate per 1 g of the catalyst carrier mainly composed of the silica on which the cobalt component and the noble metal component are supported is in the range of 0.1 mL / min to 60 mL / min. The method for producing a catalyst for producing hydrocarbons from synthesis gas according to any one of claims 1, 3, 5, 6, and 7, wherein reduction is performed. 前記水素を含むガスで還元する工程において、前記ジルコニウム成分と前記コバルト成分と前記貴金属成分とが担持された前記シリカを主成分とする触媒担体1g当たりの水素流量が0.1mL/min〜60mL/minの範囲で還元することを特徴とする請求項2、4、5、6または8の何れか1項に記載の合成ガスから炭化水素を製造する触媒の製造方法。   In the step of reducing with the hydrogen-containing gas, the hydrogen flow rate per 1 g of the catalyst carrier mainly composed of the silica on which the zirconium component, the cobalt component, and the noble metal component are supported is 0.1 mL / min to 60 mL / The method for producing a catalyst for producing hydrocarbons from synthesis gas according to any one of claims 2, 4, 5, 6, or 8, wherein the reduction is performed in a range of min. 請求項1〜10のいずれか1項に記載の製造方法にて製造した触媒を用いて、スラリー床でのフィッシャー・トロプシュ合成反応で、合成ガスから炭化水素を製造することを特徴とする合成ガスから炭化水素を製造する炭化水素の製造方法。   A synthesis gas comprising producing a hydrocarbon from synthesis gas by a Fischer-Tropsch synthesis reaction in a slurry bed using the catalyst produced by the production method according to any one of claims 1 to 10. A method for producing hydrocarbons from hydrocarbons.
JP2017091290A 2017-05-01 2017-05-01 A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon for producing a hydrocarbon from a synthetic gas. Active JP6839602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091290A JP6839602B2 (en) 2017-05-01 2017-05-01 A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon for producing a hydrocarbon from a synthetic gas.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091290A JP6839602B2 (en) 2017-05-01 2017-05-01 A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon for producing a hydrocarbon from a synthetic gas.

Publications (2)

Publication Number Publication Date
JP2018187556A true JP2018187556A (en) 2018-11-29
JP6839602B2 JP6839602B2 (en) 2021-03-10

Family

ID=64477802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091290A Active JP6839602B2 (en) 2017-05-01 2017-05-01 A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon for producing a hydrocarbon from a synthetic gas.

Country Status (1)

Country Link
JP (1) JP6839602B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085055A1 (en) * 2003-03-26 2004-10-07 Nippon Oil Corporation Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon
JP2004322085A (en) * 2003-04-07 2004-11-18 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing the catalyst and method for producing hydrocarbon
JP2007260669A (en) * 2006-02-28 2007-10-11 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing catalyst, method for producing hydrocarbon from synthetic gas and method for regenerating catalyst
JP2014046298A (en) * 2012-09-03 2014-03-17 Nippon Steel & Sumikin Engineering Co Ltd Catalyst for producing hydrocarbon from synthesis gas, method for manufacturing the catalyst, method for recycling catalyst, and method for producing hydrocarbon from synthesis gas
JP2015097980A (en) * 2013-11-18 2015-05-28 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085055A1 (en) * 2003-03-26 2004-10-07 Nippon Oil Corporation Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon
JP2004322085A (en) * 2003-04-07 2004-11-18 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing the catalyst and method for producing hydrocarbon
JP2007260669A (en) * 2006-02-28 2007-10-11 Nippon Steel Corp Catalyst for producing hydrocarbon from synthetic gas, method for manufacturing catalyst, method for producing hydrocarbon from synthetic gas and method for regenerating catalyst
JP2014046298A (en) * 2012-09-03 2014-03-17 Nippon Steel & Sumikin Engineering Co Ltd Catalyst for producing hydrocarbon from synthesis gas, method for manufacturing the catalyst, method for recycling catalyst, and method for producing hydrocarbon from synthesis gas
JP2015097980A (en) * 2013-11-18 2015-05-28 Jx日鉱日石エネルギー株式会社 Method for manufacturing catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon

Also Published As

Publication number Publication date
JP6839602B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
AU2003277409B2 (en) Fischer-Tropsch processes and catalysts using stabilized supports
CA3115700C (en) Fischer-tropsch catalysts
JP7219474B2 (en) Composite oxides, metal supports and ammonia synthesis catalysts
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP6007167B2 (en) Fischer-Tropsch synthesis catalyst production method and hydrocarbon production method
KR101430775B1 (en) Catalyst for producing hydrocarbon from synthetic gas, method for producing catalyst, method for regenerating catalyst, and method for producing hydrocarbon from synthetic gas
JP4808688B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, catalyst regeneration method, and method for producing hydrocarbons from synthesis gas
JP5010547B2 (en) Highly active catalyst and method for producing the same
JP4698343B2 (en) Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst
JP5100151B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, method for producing hydrocarbons from synthesis gas, and catalyst regeneration method
JP5919145B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, method for producing hydrocarbons from synthesis gas, and method for regenerating catalyst
JP7009294B2 (en) A catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.
JP4773116B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst
JP6839602B2 (en) A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon for producing a hydrocarbon from a synthetic gas.
JP7012595B2 (en) A method for producing a catalyst that produces a hydrocarbon from carbon dioxide and hydrogen, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.
JP6858109B2 (en) A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon from a synthetic gas.
JP7012596B2 (en) A method for producing a catalyst for producing a hydrocarbon from syngas, and a method for producing a hydrocarbon from syngas.
JP6920952B2 (en) Catalysts for producing hydrocarbons from syngas, methods for producing catalysts, and methods for producing hydrocarbons from syngas
JP7145653B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas
JP7018754B2 (en) A catalyst for producing a hydrocarbon from syngas, a method for producing the catalyst, a method for producing a hydrocarbon from syngas, and a catalyst carrier.
JP2015157249A (en) Catalyst for producing hydrocarbon from synthesis gas, method for producing catalyst for producing hydrocarbon from synthesis gas, method for producing hydrocarbon from synthesis gas and catalyst carrier
AU2015264798A1 (en) Fischer-Tropsch catalysts and method of preparation thereof
WO2016039861A1 (en) Stable support for fischer-tropsch catalyst
JP2019181332A (en) Catalyst for decomposing hydrogen iodide
WO2016039896A1 (en) Stable support for fischer-tropsch catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6839602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250