WO2004085055A1 - Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon - Google Patents

Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon Download PDF

Info

Publication number
WO2004085055A1
WO2004085055A1 PCT/JP2004/003750 JP2004003750W WO2004085055A1 WO 2004085055 A1 WO2004085055 A1 WO 2004085055A1 JP 2004003750 W JP2004003750 W JP 2004003750W WO 2004085055 A1 WO2004085055 A1 WO 2004085055A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
catalyst
mass
silica
alkaline earth
Prior art date
Application number
PCT/JP2004/003750
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Aoki
Hiroyuki Seki
Masakazu Ikeda
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AU2004224536A priority Critical patent/AU2004224536B2/en
Priority to CN200480008020.8A priority patent/CN1764499B/en
Priority to JP2005504025A priority patent/JP4911974B2/en
Publication of WO2004085055A1 publication Critical patent/WO2004085055A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group

Definitions

  • the present invention relates to a catalyst for synthesizing a hydrocarbon from a synthesis gas containing hydrogen and carbon monoxide as main components, and a method for producing a hydrocarbon using the catalyst.
  • FT synthesis The reaction of synthesizing hydrocarbons from synthesis gas containing hydrogen and carbon monoxide as main components is called Fisher-Tropsch synthesis (FT synthesis) and is well known in the past.
  • This FT synthesis has been carried out using a catalyst obtained by supporting an active metal such as iron or cobalt on a carrier such as silica or alumina (see, for example, Japanese Patent Application Laid-Open No. See the gazette.)
  • the FT synthesis reaction is defined by such indicators as carbon monoxide conversion (CO conversion), methane selectivity and chain growth probability ⁇ .
  • Low methane selectivity means that the methane formation reaction, which is a side reaction of the FT synthesis reaction, is kept low.
  • the chain growth probability cd is a measure of the molecular weight of the hydrocarbon obtained, and the higher the chain growth probability ⁇ (ie, closer to 1.0), the higher the molecular weight of the hydrocarbon obtained. . '
  • the FT synthesis product is usually produced as a clean liquid fuel through a subsequent hydrocracking step.
  • clean liquid fuels the demand for middle distillates such as kerosene and light oil has been particularly high in recent years.
  • middle distillates such as kerosene and light oil
  • a low methane selectivity and a high chain growth probability ⁇ are required.
  • a high C F conversion rate, a low methane selectivity and a high ⁇ FT synthesis reaction have been set as development goals, and improvements in the FT synthesis catalyst have been promoted in order to achieve this goal.
  • An object of the present invention is to eliminate the obstacles to practical use of F ⁇ synthesis by providing a new F ⁇ synthesis catalyst having a low methane selectivity and a high chain growth probability ⁇ in a high CO conversion region. .
  • a silica-based support containing 0.03% by mass or more and 0.30% by mass or less of an alkali metal and an alkali metal or alkaline earth metal contains a precursor containing a specific active metal component.
  • the present inventors have found that a catalyst supporting the metal using two or more kinds of solid compounds can solve the above-mentioned problems, and have completed the present invention.
  • the present invention provides a precursor comprising an active metal selected from cobalt, nickel and ruthenium in a silica-based support containing at least 0.33% by mass and not more than 0.30% by mass of an alkali metal and / or an alkaline earth metal.
  • the present invention relates to a Fischer-Tropsch synthesis catalyst obtained by supporting two or more compounds.
  • the present invention also relates to a metal carrier selected from the group consisting of copartite and a nickel-based carrier containing an alkali metal and / or an alkaline earth metal in an amount of 0.3% by mass or more and 0.3% by mass or less.
  • a metal carrier selected from the group consisting of copartite and a nickel-based carrier containing an alkali metal and / or an alkaline earth metal in an amount of 0.3% by mass or more and 0.3% by mass or less.
  • the alkali metal or alkaline earth metal is selected from one or more alkali metals selected from lithium, sodium, and iron or magnesium and calcium.
  • a precursor compound containing a metal selected from cobalt, nickel, and ruthenium is used when the nitrate, hydrochloride, sulfate, formate, acetate, propionate, oxalate, or the like of the metal is used.
  • the supported amount of cobalt, nickel and ruthenium on the silica-based carrier is 3 to 50% by mass per metal. Medium.
  • the average particle diameter of the sily-force-based carrier is 10 ⁇ ! ⁇ 10 mm, specific surface area of 100 ⁇ 500 m 2 Zg.
  • the present invention also relates to a method for producing a hydrocarbon, comprising reacting hydrogen with carbon monoxide using the catalyst described above to synthesize a hydrocarbon.
  • a method for producing a hydrocarbon comprising reacting hydrogen with carbon monoxide using the catalyst described above to synthesize a hydrocarbon.
  • the siliceous carrier refers to a carrier obtained by modifying silica or a carrier containing silica as a main component with an alkali metal and / or an alkaline earth metal.
  • Lithium, sodium and potassium are preferred as alkali metals used to modify the silica.
  • magnesium or calcium is preferably used as the alkaline earth metal.
  • the method for modifying silica with an alkali metal and / or an alkaline earth metal is not particularly limited, but a commonly used modification method such as an impregnation method or a metal alkoxide method may be appropriately selected. it can. Among them, a particularly preferred modification method includes an impregnation method. In addition, among the impregnation methods, the Incipient method is the most preferable method.
  • the silica After impregnating the silica with an alkali metal and / or an alkaline earth metal, the silica is modified with an alkali metal and / or an alkaline earth metal through steps such as drying and baking.
  • the drying treatment is not particularly limited, and includes, for example, natural drying in air, degassing drying under reduced pressure, and the like.
  • the reaction is carried out at 100 to 200 ° C., preferably 110 to 150 ° C., for 0.5 to 48 hours, preferably 5 to 24 hours under an air atmosphere.
  • the calcination treatment is usually performed at 300 to 600 ° C., preferably 400 to 450 ° C. in an air atmosphere. C, for 0.5 to 10 hours, preferably 1 to 5 hours.
  • the amount of the alkali metal Z or alkaline earth metal that modifies the silica is 0.03% by mass or more and 0.30% by mass or less, preferably 0.04% by mass or more, 20 mass% or less, more preferably 0.05 mass% or more and 0.13 mass% or less.
  • the amount of alkali metal and / or alkaline earth metal is 0.
  • the amount is less than 0.3% by mass, the effect of modification does not lower the methane selectivity and the effect of increasing the chain growth probability a.
  • the amount is more than 0.3% by mass, the CO conversion decreases, which is not preferable. .
  • the silica used in the present invention is preferably a silica having an average pore size of 8 to 20 nm, more preferably a silica having an average pore size of 10 to 18 nm, and further preferably an average pore size of 11 to 10 nm. ⁇ 16 nm silica.
  • the average pore diameter is a value obtained by measurement by a nitrogen adsorption method.
  • the shape of the silica and the silica-based carrier is not particularly limited, and a shape suitable for the process to be used can be selected from various shaped products such as a spherical product, a crushed product, and a cylindrical molded product.
  • a shape suitable for the process to be used can be selected from various shaped products such as a spherical product, a crushed product, and a cylindrical molded product.
  • the precursor compound containing a metal selected from cobalt, nickel and ruthenium supported on a silica-based carrier refers to all compounds having the metal in the molecule in the form of a salt or a complex.
  • the type of compound but preferred examples thereof include nitrates, hydrochlorides, sulfates, formates, acetates, propionates, oxalates, and acetylacetonate.
  • the present invention is characterized in that two or more kinds of the above-mentioned precursor compounds containing an active metal are used. Normally, two kinds of precursor compounds are combined to avoid complicated work, but three or more kinds of precursor compounds may be combined as needed.
  • the combination of the precursor compounds is not particularly limited, but preferred combinations of the two types include nitrate and formate, nitrate and acetate, and nitrate and acetyl acetate. Particularly preferred combinations include nitrate and formate, and nitrate and acetate. Most preferred combinations include nitrate and acetate.
  • a specific amount of an alkali metal and / or an alkaline earth metal is contained in a silica-based carrier, and a specific precursor compound containing a specific active metal is contained.
  • the active metal supported on the silica-based support a metal selected from cobalt, nickel and ruthenium is used. Of these, cobalt and ruthenium are more preferable, and cobalt is most preferable.
  • the active metal component is usually obtained by immersing a silica-based carrier in a solution containing two or more types of precursor compounds containing the metal, impregnating and supporting the precursor compound on the carrier, and then drying and calcining. After that, it is supported as a metal oxide on a silica carrier.
  • the drying treatment is not particularly limited, and includes, for example, natural drying in air, degassing drying under reduced pressure, and the like. Usually, under air atmosphere, 100 to 200 ° C, preferably 110 to: L50. (: 0.5 to 48 hours, preferably 5 to 24 hours.
  • the baking treatment is usually performed at 300 to 600 ° C., preferably 400 to 450 ° C. in an air atmosphere. At 0.5 ° C., 0.5 to: L 0 h, preferably 1 to 5 h.
  • the amount of the active metal supported in the present invention is not particularly limited, but is usually 3 to 50%, preferably 5 to 40%, particularly preferably 5 to 50% by mass per metal with respect to the silica-based support. It is carried in the range of 10 to 30%. If the amount of the active metal carried is less than 3% by mass, the activity is insufficient. If the amount exceeds 50% by mass, the active metal is significantly aggregated, and the effect of the present invention may not be sufficiently exhibited. Absent.
  • a promoter such as zirconia or lantania can be carried.
  • the amount of these promoters is generally used in the range of 1 to 20% by mass per metal with respect to the silica-based carrier.
  • the catalyst of the present invention is subjected to an FT synthesis reaction, it is also preferably employed to carry out a reduction treatment with hydrogen or the like in advance.
  • the raw material for performing the FT synthesis reaction using the catalyst of the present invention is not particularly limited as long as it is a synthesis gas containing hydrogen and carbon monoxide as main components. It is desirable that the molar ratio of carbon is in the range of 1.5 to 2.5, preferably 1.8 to 2.2.
  • the catalyst of the present invention can be applied to any process known as a reaction process of FT synthesis, that is, a fixed bed, a supercritical fixed bed, a slurry bed, a fluidized bed, and the like. Beds, supercritical fixed beds and slurry beds can be mentioned. Particularly preferred processes include fixed beds and supercritical fixed beds, and most preferred processes include fixed beds.
  • the reaction conditions for the FT synthesis reaction are not particularly limited, and the reaction can be performed under known conditions. 'Normally, 200 to 280 ° C as reaction temperature, the gas space velocity can carry out the reaction in the range of h 1 of 1 000-3000.
  • a silica-based support containing 0.03% by mass or more and 0.30% by mass or less of an alkali metal and Z or an alkaline earth metal contains a precursor compound containing a metal selected from cobalt, nickel, and ruthenium.
  • An aqueous solution containing magnesium nitrate in an amount corresponding to mass% was impregnated by the Incipient Wetness method. After impregnation, the water was dried at 120 ° C overnight. After drying, bake at 450 ° C for 2 hours. To obtain a silica-based carrier.
  • the total content of alkali metal and alkaline earth metal was 0.08% by mass.
  • An aqueous solution containing an amount of cobalt nitrate equivalent to 10.0% by mass as metal cobalt and an amount of cobalt acetate equivalent to 10.0% by mass as metal cobalt is impregnated into the silica-based carrier by an incipient wetness method. I let it. After impregnation, water was removed by drying at 120 ° C. After drying, the catalyst was obtained by calcining at 450 ° C for 2 hours.
  • This catalyst was packed in a fixed bed flow reactor, and reduced at 400 ° C. for 2 hours under a hydrogen stream before the reaction.
  • the next material mixed gas of hydrogen Z- carbon oxides 2Z1 (molar ratio) was supplied at a gas hourly space velocity 2000 h 1, temperature 250 ° C, the reaction was started Te pressure IMP a smell.
  • the gas composition at the outlet of the reaction section was analyzed over time by gas chromatography, and using this analysis data, the CO conversion, methane selectivity, and chain growth probability were calculated in accordance with ordinary methods. The results are shown in Table 1.
  • Example 1 The same operation as in Example 1 was performed except that silica having an average pore diameter of 12.8 nm and a specific surface area of 347 m 2 / g was used, and the CO conversion, methane selectivity, and chain growth probability ⁇ were determined. .
  • the results are shown in Table 1.
  • Example 2 Sodium acetate in an amount equivalent to 0.08% by mass of silica as metal sodium And the use of an aqueous solution containing magnesium nitrate in an amount equivalent to 0.08% by mass of silica as the metallic magnesium, so that the content of alkali metal and alkaline earth metal is 0.16% by mass.
  • the same operation as in Example 1 was performed except that the carrier was obtained, and the CO conversion, methane selectivity, and chain growth probability ⁇ were obtained. The result
  • Example 1 By using an aqueous solution containing sodium acetate in an amount equivalent to 0.12% by mass of silica as metallic sodium and magnesium nitrate in an amount equivalent to 0.12% by mass of silica as metallic magnesium, The same operation as in Example 1 was carried out except that a silica-based carrier containing 0.24% by mass of lithium metal and alkaline earth metal was obtained, and the CO conversion, methane selectivity, and chain growth probability were obtained. ⁇ was determined. Table 1 shows the results.
  • Silica-based support with an average pore diameter of 15.2 nm, specific surface area of 320 m 2 Zg, and a total content of alkali metal and alkaline earth metal of 0.02% by mass, and 10.0% by mass as metallic cobalt
  • An aqueous solution containing an equivalent amount of cobalt nitrate and an amount of cobalt acetate equivalent to 10.0% by mass as metal cobalt was impregnated by the Incipient Wetness method. After impregnation, water was removed by drying at 120 ° C overnight. After drying, the catalyst was obtained by calcining at 450 ° C for 2 hours. The catalyst is passed through a fixed bed flow.
  • the mixture Prior to the reaction, the mixture was reduced in a stream of hydrogen at 400 ° C for 2 hours. Then the raw material mixed gas of hydrogen carbon monoxide 2/1 (molar ratio) was supplied at a gas hourly space velocity 2000 h 1, temperature 250 ° C, the reaction was started at a pressure IMP a. The gas composition at the outlet of the reaction section was analyzed over time by gas chromatography, and the CO conversion rate, methane selectivity, and chain growth probability ct were calculated in accordance with ordinary methods using the analysis data. The results are shown in Table 1.
  • Comparative Example 1 except that a silica-based carrier having an average pore diameter of 12.8 nm, a specific surface area of 347 m 2 / g, and a total content of alkali metals and alkaline earth metals of 0.02% by mass was used. The same operation was performed to determine the CO conversion rate, methane selectivity, and chain growth probability ⁇ . The results are shown in Table 1.
  • the alkali metal is used.
  • a silica-based carrier having an alkaline earth metal content of 0.32% by mass was obtained, and the CO conversion, methane selectivity, and chain growth probability a were obtained. Table 1 shows the results.
  • Example 1 The same operation as in Example 1 was carried out, except that only the cobalt nitrate in an amount equivalent to 20.0% by mass of the silica before modification was supported on the silica-based carrier as metallic cobalt, and the C ⁇ conversion rate and the methane selectivity were changed. And the chain growth probability ⁇ .
  • Table 1 a precursor containing a metal selected from cobalt, nickel and platinum in a silica-based carrier containing 0.03% by mass or more and 0.30% by mass or less of an alkali metal and / or an alkaline earth metal. Carrying two or more compounds It can be seen that the catalyst obtained by (1) simultaneously satisfies high CO conversion, low methane selectivity, and high chain growth probability ⁇ .
  • Example 2 90. 0 14. 0 0.87
  • Example 4 85.0 13.6 0.98
  • Example 5 90.0 9.0 0.91
  • Example 6 83.3 14.0 0.89
  • Comparative Example 1 85.2 1 7.20 .
  • Comparative Example 2 90. 0 20. 0 0.81 Comparative Example 3 78. 0 1 1. 0 0.89 Comparative Example 4 64. 0 1 3.5 0.88

Abstract

A catalyst for Fischer-Tropsch synthesis which attains a low selectivity to methane and a high probability of chain growth α in a region where the conversion of Co is high. The catalyst for Fischer-Tropsch synthesis is obtained by depositing two or more precursor compounds containing a metal selected among cobalt, nickel, and ruthenium on a silica-based support containing 0.03 to 0.30 mass % alkali metal and/or alkaline earth metal.

Description

明 細 書 フィッシヤー · トロプシュ合成用触媒および炭化水素の製造法 [技術分野]  Description Catalysts for Fischer-Tropsch synthesis and methods for producing hydrocarbons [Technical field]
本発明は、 水素と一酸化炭素を主成分とする合成ガスから炭化水素を合成する ための触媒およびこの触媒を使用した炭化水素の製造法に関する。  The present invention relates to a catalyst for synthesizing a hydrocarbon from a synthesis gas containing hydrogen and carbon monoxide as main components, and a method for producing a hydrocarbon using the catalyst.
[背景技術] [Background technology]
水素と一酸化炭素を主成分とする合成ガスから炭化水素を合成する反応はフィ ッシヤー . トロプシュ合成 (F T合成) と呼ばれ、 従来からよく知られている。 この F T合成は鉄やコバルト等の活性金属を、 シリ力やアルミナ等の担体上に担 持して得られる触媒を用いて実施されている (例えば、 特開平 4一 2 2 7 8 4 7 号公報参照。 ) 。  The reaction of synthesizing hydrocarbons from synthesis gas containing hydrogen and carbon monoxide as main components is called Fisher-Tropsch synthesis (FT synthesis) and is well known in the past. This FT synthesis has been carried out using a catalyst obtained by supporting an active metal such as iron or cobalt on a carrier such as silica or alumina (see, for example, Japanese Patent Application Laid-Open No. See the gazette.)
F T合成反応は一酸化炭素転化率 (C O転化率) 、 メタン選択率と連鎖成長確 率 αといった指標によって規定される。 メタン選択率が低いということは F T合 成反応の副反応であるメタン生成反応が低く抑えられていることを意味する。 ま た、 連鎖成長確率 cdま得られる炭化水素の分子量の目安となるもので、 連鎖成長 確率 αが高い (すなわち、 1 . 0に近い) ほど高分子量の炭化水素が得られるこ とを意味する。 ' The FT synthesis reaction is defined by such indicators as carbon monoxide conversion (CO conversion), methane selectivity and chain growth probability α. Low methane selectivity means that the methane formation reaction, which is a side reaction of the FT synthesis reaction, is kept low. In addition, the chain growth probability cd is a measure of the molecular weight of the hydrocarbon obtained, and the higher the chain growth probability α (ie, closer to 1.0), the higher the molecular weight of the hydrocarbon obtained. . '
F T合成生成物は、 通常その後段の水素化分解工程を経て、 クリーン液体燃料 として製品化される。 クリーン液体燃料の中では灯油、 軽油等の中間留分への需 要が近年特に高まっており、 この中間留分の収量を高めるためには低いメタン選 択率および高い連鎖成長確率 αが必要になる。 このため、 産業界においては高 C Ο転化率かつ低メタン選択率、 高 αの F T合成反応が開発目標に掲げられ、 それ を実現するために F T合成触媒の改良が進められてきた。  The FT synthesis product is usually produced as a clean liquid fuel through a subsequent hydrocracking step. Among clean liquid fuels, the demand for middle distillates such as kerosene and light oil has been particularly high in recent years.In order to increase the yield of these middle distillates, a low methane selectivity and a high chain growth probability α are required. Become. For this reason, in the industry, a high C F conversion rate, a low methane selectivity and a high α FT synthesis reaction have been set as development goals, and improvements in the FT synthesis catalyst have been promoted in order to achieve this goal.
ところが C O転化率が高くなるとメタン選択率も高くなる傾向があることに加 え、 C O転化率と連鎖成長確率 αは二律背反の傾向にある。 つまり C O転化率が 高い領域でメタン選択率は低く、 かつ連鎖成長確率 αは高い触媒は未だ開発され ていない。 このことが、 F T合成およびこれを用いたクリーン液体燃料製造法を 本格的に実用化する際の最大の障害となっている。 However, as the CO conversion rate increases, the methane selectivity tends to increase, and the CO conversion rate and chain growth probability α tend to trade off. In other words, catalysts with low methane selectivity and high chain growth probability α in the high CO conversion region are still being developed. Not. This is the biggest obstacle to full-scale commercialization of FT synthesis and the production of clean liquid fuels using it.
[発明の開示] [Disclosure of the Invention]
本発明の目的は、 C O転化率が高い領域でメタン選択率は低く、 かつ連鎖成長 確率 αは高い新規 F Τ合成用触媒を提供することにより、 F Τ合成実用化の障害 を取り除くことにある。  An object of the present invention is to eliminate the obstacles to practical use of FΤ synthesis by providing a new FΤ synthesis catalyst having a low methane selectivity and a high chain growth probability α in a high CO conversion region. .
本発明者らは鋭意検討した結果、 アルカリ金属および Ζまたはアルカリ土類金 属を 0 . 0 3質量%以上 0 . 3 0質量%以下含むシリカ系担体に、 特定の活性金 属成分を含む前駆体化合物を 2種以上用いて当該金属を担持した触媒が上述の課 題を解決できることを見出し、 本発明を完成するに至ったものである。  As a result of intensive studies, the present inventors have found that a silica-based support containing 0.03% by mass or more and 0.30% by mass or less of an alkali metal and an alkali metal or alkaline earth metal contains a precursor containing a specific active metal component. The present inventors have found that a catalyst supporting the metal using two or more kinds of solid compounds can solve the above-mentioned problems, and have completed the present invention.
すなわち、 本発明は、 アルカリ金属およびノまたはアルカリ土類金属を 0 . 0 3質量%以上 0 . 3 0質量%以下含むシリカ系担体にコバルト、 ニッケルおよび ルテニウムから選択される活性金属を含む前駆体化合物を 2種以上用いて担持す ることにより得られるフィッシャー · トロプシュ合成用触媒に関する。  That is, the present invention provides a precursor comprising an active metal selected from cobalt, nickel and ruthenium in a silica-based support containing at least 0.33% by mass and not more than 0.30% by mass of an alkali metal and / or an alkaline earth metal. The present invention relates to a Fischer-Tropsch synthesis catalyst obtained by supporting two or more compounds.
また本発明は、 アルカリ金属および/またはアルカリ土類金属を 0 . 0 3質 量%以上 0 . 3 0質量%以下含むシリ力系担体にコパルト、 -ッケルぉよぴルテ ニゥムから選択される金属を含む前駆体化合物の 2種以上を担持したのち、 乾燥 および焼成処理して製造されることを特徴とする前記記載の触媒に関する。  The present invention also relates to a metal carrier selected from the group consisting of copartite and a nickel-based carrier containing an alkali metal and / or an alkaline earth metal in an amount of 0.3% by mass or more and 0.3% by mass or less. The catalyst according to the above, characterized in that the catalyst is produced by supporting two or more kinds of precursor compounds containing, followed by drying and calcining.
また本発明は、 アルカリ金属おょぴ またはアルカリ土類金属が、 リチウム、 ナトリゥムおよび力リゥムから選択される 1種または 2種以上のアルカリ金属お よぴ Ζまたはマグネシゥムおよぴカルシゥムから選択される 1種または 2種のァ ルカリ土類金属であることを特徴とする前記記載の触媒に関する。  Also, in the present invention, the alkali metal or alkaline earth metal is selected from one or more alkali metals selected from lithium, sodium, and iron or magnesium and calcium. The catalyst as described above, which is one or two kinds of alkaline earth metals.
また本発明は、 コバルト、 ニッケルおよびルテニウムから選択される金属を含 む前駆体化合物が、 当該金属の硝酸塩、 塩酸塩、 硫酸塩、 ギ酸塩、 酢酸塩、 プロ ピオン酸塩、 シユウ酸塩、 およぴァセチルァセトナートから選択される化合物で あることを特徴とする前記記載の触媒に関する。  Further, according to the present invention, a precursor compound containing a metal selected from cobalt, nickel, and ruthenium is used when the nitrate, hydrochloride, sulfate, formate, acetate, propionate, oxalate, or the like of the metal is used. The catalyst according to the above, wherein the catalyst is a compound selected from the group consisting of acetylacetonate.
また本発明は、 シリカ系担体に対するコバルト、 ニッケルおよびルテニウムの 担持量が、 金属あたりの質量で 3〜 5 0 %であることを特徴とする前記記載の触 媒に関する。 Further, in the present invention, the supported amount of cobalt, nickel and ruthenium on the silica-based carrier is 3 to 50% by mass per metal. Medium.
また本発明は、 シリ力系担体の平均粒子径が 10 μ π!〜 10 mm、 比表面積が 100〜500m2Zgであることを特徴とする前記記載の触媒に関する。 Further, according to the present invention, the average particle diameter of the sily-force-based carrier is 10 μπ! ~ 10 mm, specific surface area of 100 ~ 500 m 2 Zg.
また本発明は、 前記記載の触媒を用いて、 水素と一酸化炭素を反応させて炭化 水素を合成することを特徴とする炭化水素の製造法に関する。 以下に本発明を詳述する。  The present invention also relates to a method for producing a hydrocarbon, comprising reacting hydrogen with carbon monoxide using the catalyst described above to synthesize a hydrocarbon. Hereinafter, the present invention will be described in detail.
本発明においてシリ力系担体とは、 シリカあるいはシリカを主成分とする担体 をアルカリ金属および/またはアル力リ土類金属により修飾した担体を言う。 シリカを修飾するのに用いられるアルカリ金属としては、 リチウム、 ナトリウ ムおよびカリウムが好ましい。 また、 アルカリ土類金属としてはマグネシウムお ょぴカルシウムが好ましく用いられる。  In the present invention, the siliceous carrier refers to a carrier obtained by modifying silica or a carrier containing silica as a main component with an alkali metal and / or an alkaline earth metal. Lithium, sodium and potassium are preferred as alkali metals used to modify the silica. Further, magnesium or calcium is preferably used as the alkaline earth metal.
シリカをアルカリ金属および/またはアル力リ土類金属で修飾する方法として は特に限定されるものではないが、 含浸法、 金属アルコキシド法等の通常用いら れている修飾方法を適宜選択することができる。 その中で特に好ましい修飾法と しては含浸法を挙げることができる。 また含浸法の中でも、 I n c i p i e n t We t n e s s法を最も好ましい方法として挙げることができる。  The method for modifying silica with an alkali metal and / or an alkaline earth metal is not particularly limited, but a commonly used modification method such as an impregnation method or a metal alkoxide method may be appropriately selected. it can. Among them, a particularly preferred modification method includes an impregnation method. In addition, among the impregnation methods, the Incipient method is the most preferable method.
シリカにアルカリ金属および/またはアルカリ土類金属を含浸させた後、 乾燥 および焼成等の工程を経てシリカはアルカリ金属および/またはアル力リ土類金 属により修飾される。  After impregnating the silica with an alkali metal and / or an alkaline earth metal, the silica is modified with an alkali metal and / or an alkaline earth metal through steps such as drying and baking.
乾燥処理は特に限定されるものではなく、 例えば、 空気中での自然乾燥、 減圧 下での脱気乾燥等を挙げることができる。 通常、 空気雰囲気下、 1 00〜20 0 °C、 好ましくは 1 10〜 150 °Cで、 0. 5〜48時間、 好ましくは 5〜 24 時間行う。 焼成処理は、 通常、 空気雰囲気下に 300〜600°C、 好ましくは 4 00〜 450。Cで、 0. 5〜 1 0時間、 好ましくは 1〜 5時間行う。  The drying treatment is not particularly limited, and includes, for example, natural drying in air, degassing drying under reduced pressure, and the like. Usually, the reaction is carried out at 100 to 200 ° C., preferably 110 to 150 ° C., for 0.5 to 48 hours, preferably 5 to 24 hours under an air atmosphere. The calcination treatment is usually performed at 300 to 600 ° C., preferably 400 to 450 ° C. in an air atmosphere. C, for 0.5 to 10 hours, preferably 1 to 5 hours.
シリカを修飾するアルカリ金属おょぴ Zまたはアルカリ土類金属の量は、 シリ 力系担体全量基準で 0. 03質量%以上 0. 30質量%以下であり、 好ましくは 0. 04質量%以上0. 20質量%以下、 より好ましくは 0. 05質量%以上0. 1 3質量%以下である。 アルカリ金属および またはアルカリ土類金属の量が 0. 0 3質量%未満の場合は修飾によるメタン選択率の低下および連鎖成長確率 aの 向上効果が発現せず、 一方、 0 . 3 0質量%より多い場合は C O転化率が低下す るため好ましくない。 The amount of the alkali metal Z or alkaline earth metal that modifies the silica is 0.03% by mass or more and 0.30% by mass or less, preferably 0.04% by mass or more, 20 mass% or less, more preferably 0.05 mass% or more and 0.13 mass% or less. The amount of alkali metal and / or alkaline earth metal is 0. When the amount is less than 0.3% by mass, the effect of modification does not lower the methane selectivity and the effect of increasing the chain growth probability a. On the other hand, when the amount is more than 0.3% by mass, the CO conversion decreases, which is not preferable. .
本発明において用いられるシリカとしては、 平均細孔径が 8〜2 0 n mのシリ 力が好ましく、 より好ましくは平均細孔径 1 0〜1 8 n mのシリカであり、 さら に好ましくは平均細孔径 1 1〜1 6 n mのシリカである。 なお、 ここでいう平均 細孔径は窒素吸着法による測定で求められる値である。  The silica used in the present invention is preferably a silica having an average pore size of 8 to 20 nm, more preferably a silica having an average pore size of 10 to 18 nm, and further preferably an average pore size of 11 to 10 nm. ~ 16 nm silica. Here, the average pore diameter is a value obtained by measurement by a nitrogen adsorption method.
シリカおよびシリカ系担体の形状については特に制限はなく、 球状品、 破碎品、 円柱状成形品等の各種形状品の中から使用するプロセスに適合した形状を選択す ることができる。 また担体の平均粒子径についても制限はなく、 通常 Ι Ο μ π!〜 1 0 mm, 好ましくは 5 0 ( m〜5 mmのものを、 プロセスに応じ適宜選択して 使用することができる。  The shape of the silica and the silica-based carrier is not particularly limited, and a shape suitable for the process to be used can be selected from various shaped products such as a spherical product, a crushed product, and a cylindrical molded product. There is no limitation on the average particle size of the carrier, and usually Ι Ο μπ!の も の 10 mm, preferably 50 (m〜5 mm) can be appropriately selected and used according to the process.
また使用するシリカおよびシリカ系担体の比表面積についても特に制限はなく、 通常 1 0 0〜5 0 O m 2Z g、 好ましくは 2 0 0〜4 0 0 m2 / gのものが用いら れる。 本発明においてシリカ系担体に担持されるコバルト、 ニッケルおよぴルテニゥ ムから選択される金属を含む前駆体化合物とは、 その金属を塩または錯体等の形 で分子内に有するすべての化合物を指す。 化合物の種類については特に制限はな いが、 例えば、 硝酸塩、 塩酸塩、 硫酸塩、 ギ酸塩、 酢酸塩、 プロピオン酸塩、 シ ユウ酸塩、 ァセチルァセトナート等を好ましく挙げることができる。 本発明にお レ、ては前記の活性金属を含む前駆体化合物を 2種類以上用いることを特徴とする。 通常は、 作業の煩雑さを避けるために 2種類の前駆体化合物を組み合わせるが、 必要に応じて 3種以上の前駆体化合物を組み合わせても良い。 本発明において前 駆体化合物の組み合わせについては特に制限はないが、 2種類の場合の好ましい 組み合わせとしては、 硝酸塩とギ酸塩、 硝酸塩と酢酸塩、 硝酸塩とァセチルァセ トナートを挙げることができる。 また特に好ましい組み合わせとしては、 硝酸塩 とギ酸塩、 硝酸塩と酢酸塩を、 最も好ましい組み合わせとしては、 硝酸塩と酢酸 塩を挙げることができる。 本発明においては、 アルカリ金属および またはアル力リ土類金属をシリカ系 担体に特定量含有させるとともに、 特定の活性金属を含む特定の前駆体化合物をThere is no particular limitation on the addition specific surface area of silica and silica-based support for use, usually 1 0 0~5 0 O m 2 Z g, is found using those preferably 2 0 0~4 0 0 m 2 / g . In the present invention, the precursor compound containing a metal selected from cobalt, nickel and ruthenium supported on a silica-based carrier refers to all compounds having the metal in the molecule in the form of a salt or a complex. . There are no particular restrictions on the type of compound, but preferred examples thereof include nitrates, hydrochlorides, sulfates, formates, acetates, propionates, oxalates, and acetylacetonate. The present invention is characterized in that two or more kinds of the above-mentioned precursor compounds containing an active metal are used. Normally, two kinds of precursor compounds are combined to avoid complicated work, but three or more kinds of precursor compounds may be combined as needed. In the present invention, the combination of the precursor compounds is not particularly limited, but preferred combinations of the two types include nitrate and formate, nitrate and acetate, and nitrate and acetyl acetate. Particularly preferred combinations include nitrate and formate, and nitrate and acetate. Most preferred combinations include nitrate and acetate. In the present invention, a specific amount of an alkali metal and / or an alkaline earth metal is contained in a silica-based carrier, and a specific precursor compound containing a specific active metal is contained.
2種以上担持することにより、 本発明の効果を達成しうる。 By carrying two or more types, the effects of the present invention can be achieved.
本発明においてシリカ系担体に担持される活性金属としては、 コバルト、 ニッ ケルおよびルテニウムから選択される金属が用いられるが、 これらのうち、 コバ ルトおよびルテニウムがより好ましく、 コバルトが最も好ましい。 活性金属分は、 通常、 その金属を含む前駆体化合物を 2種類以上含有する溶液にシリカ系担体を 浸漬させて、 該担体に該前駆体化合物を含浸担持させた後、 乾燥および焼成等の 工程を経て、 シリカ系担体上に金属酸化物として担持される。  In the present invention, as the active metal supported on the silica-based support, a metal selected from cobalt, nickel and ruthenium is used. Of these, cobalt and ruthenium are more preferable, and cobalt is most preferable. The active metal component is usually obtained by immersing a silica-based carrier in a solution containing two or more types of precursor compounds containing the metal, impregnating and supporting the precursor compound on the carrier, and then drying and calcining. After that, it is supported as a metal oxide on a silica carrier.
乾燥処理は特に限定されるものではなく、 例えば、 空気中での自然乾燥、 減圧 下での脱気乾燥等を挙げることができる。 通常、 空気雰囲気下、 1 0 0〜2 0 0 °C、 好ましくは 1 1 0〜: L 5 0。(:で、 0 . 5〜 4 8時間、 好ましくは 5〜 2 4 時間行う。 焼成処理は、 通常、 空気雰囲気下に 3 0 0〜6 0 0 °C、 好ましくは 4 0 0〜 4 5 0 °Cで、 0 . 5〜: L 0時間、 好ましくは 1〜 5時間行う。  The drying treatment is not particularly limited, and includes, for example, natural drying in air, degassing drying under reduced pressure, and the like. Usually, under air atmosphere, 100 to 200 ° C, preferably 110 to: L50. (: 0.5 to 48 hours, preferably 5 to 24 hours. The baking treatment is usually performed at 300 to 600 ° C., preferably 400 to 450 ° C. in an air atmosphere. At 0.5 ° C., 0.5 to: L 0 h, preferably 1 to 5 h.
本発明において担持する活性金属の量には特に制限はないが、 シリカ系担体に 対して金属あたりの質量で、 通常は 3〜5 0 %、 好ましくは 5〜4 0 %、 特に好 ましくは 1 0〜 3 0 %の範囲で担持する。 活性金属の担持量が 3質量%未満の場 合には活性が不十分であり、 5 0質量%を超えると活性金属の凝集が著しく、 本 発明の効果を十分に発現できないおそれがあるため好ましくない。  The amount of the active metal supported in the present invention is not particularly limited, but is usually 3 to 50%, preferably 5 to 40%, particularly preferably 5 to 50% by mass per metal with respect to the silica-based support. It is carried in the range of 10 to 30%. If the amount of the active metal carried is less than 3% by mass, the activity is insufficient. If the amount exceeds 50% by mass, the active metal is significantly aggregated, and the effect of the present invention may not be sufficiently exhibited. Absent.
さらに必要があれば、 ジルコユアやランタニア等のプロモーターを担持させる こともできる。 これらプロモーターの量は、 シリカ系担体に対して金属当たりの 質量で、 通常 1〜 2 0 %の範囲で使用する。 本発明の触媒を用いることにより、 高 C O転化率、 低メタン選択率おょぴ高 α で、 水素と一酸化炭素から炭化水素が合成できる。 If necessary, a promoter such as zirconia or lantania can be carried. The amount of these promoters is generally used in the range of 1 to 20% by mass per metal with respect to the silica-based carrier. By using the catalyst of the present invention, hydrocarbons can be synthesized from hydrogen and carbon monoxide with high CO conversion, low methane selectivity, and high α .
なお、 本発明の触媒を F T合成反応に供するに際しては、 予め水素等で還元処 理を行わせることも好ましく採用される。  When the catalyst of the present invention is subjected to an FT synthesis reaction, it is also preferably employed to carry out a reduction treatment with hydrogen or the like in advance.
本発明の触媒を用いて F T合成反応を実施する際の原料としては、 水素と一酸 化炭素を主成分とする合成ガスであれば特に制限はないが、 通常、 水素 Z—酸化 炭素のモル比が 1. 5〜2. 5、 好ましくは 1. 8〜2. 2の範囲であることが 望ましい。 The raw material for performing the FT synthesis reaction using the catalyst of the present invention is not particularly limited as long as it is a synthesis gas containing hydrogen and carbon monoxide as main components. It is desirable that the molar ratio of carbon is in the range of 1.5 to 2.5, preferably 1.8 to 2.2.
本発明の触媒は FT合成の反応プロセスとして知られているプロセス、 即ち固 定床、 超臨界固定床、 スラリー床、 流動床等のいずれにも適用でき、 特に制限は ないが、 好ましいプロセスとして固定床、 超臨界固定床、 スラリー床を挙げるこ とができ、 特に好ましいプロセスとしては固定床と超臨界固定床を、 最も好まし いプロセスとしては固定床を挙げることができる。  The catalyst of the present invention can be applied to any process known as a reaction process of FT synthesis, that is, a fixed bed, a supercritical fixed bed, a slurry bed, a fluidized bed, and the like. Beds, supercritical fixed beds and slurry beds can be mentioned. Particularly preferred processes include fixed beds and supercritical fixed beds, and most preferred processes include fixed beds.
F T合成反応の反応条件については特に制限はなく、 公知の条件にて行うこと ができる。 '通常、 反応温度としては 200〜280°C、 ガス空間速度としては 1 000〜3000の h 1の範囲で反応を行うことができる。 The reaction conditions for the FT synthesis reaction are not particularly limited, and the reaction can be performed under known conditions. 'Normally, 200 to 280 ° C as reaction temperature, the gas space velocity can carry out the reaction in the range of h 1 of 1 000-3000.
[産業上の利用可能性] [Industrial applicability]
以上のように、 アルカリ金属および Zまたはアルカリ土類金属を 0. 03質 量%以上 0. 30質量%以下含むシリカ系担体にコバルト、 ニッケルおよびルテ ニゥムから選択される金属を含む前駆体化合物の 2種以上を担持させた後、 乾燥 およぴ焼成処理を行うことにより得られる本発明の触媒を F T合成用触媒として 使用することにより、 高 CO転化率領域でメタン選択率は低く、 かつ連鎖成長確 率 αは高い F T合成反応が可能となる。  As described above, a silica-based support containing 0.03% by mass or more and 0.30% by mass or less of an alkali metal and Z or an alkaline earth metal contains a precursor compound containing a metal selected from cobalt, nickel, and ruthenium. By using the catalyst of the present invention obtained by carrying out drying and calcination treatment after supporting two or more kinds as a catalyst for FT synthesis, methane selectivity is low in a high CO conversion region, and chain The growth probability α enables a high FT synthesis reaction.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下に実施例及び比較例を挙げ、 本発明を具体的に説明するが、 本発明はこれ らに限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例 1 ) (Example 1)
平均細孔径 15. 2 nm、 比表面積 32 Om2Zgのシリカ 5. 0 gに、 金属 ナトリゥムとしてシリカの 0. 04質量0 /0に相当する量の酢酸ナトリゥムおよび 金属マグネシウムとしてシリカの 0. 04質量%に相当する量の硝酸マグネシゥ ムを含む水溶液を、 I n c i p i e n t We t n e s s法により含浸させた。 含浸後、 水分を 120°Cで一晩乾燥した。 乾燥後、 450°Cで 2時間焼成するこ とにより修飾し、 シリカ系担体を得た。 金属分析装置によりシリカ系担体中のァ ルカリ金属およびアルカリ土類金属の含有量を分析した結果、 アルカリ金属およ ぴアルカリ土類金属の総含有量は 0. 08質量%だった。 このシリカ系担体に、 金属コバルトとして 10. 0質量%に相当する量の硝酸コバルトと、 金属コバル トとして 10. 0質量%に相当する量の酢酸コバルトを含む水溶液を I n c i p l e n t We t n e s s法により含浸させた。 含浸後、 水分を 120°Cでー晚 乾燥除去した。 乾燥後、 450°Cで 2時間焼成することにより触媒を得た。 この 触媒を固定床流通式反応装置に充填し、 反応に先立ち、 水素気流下において 40 0°Cで 2時間還元した。 次に水素 Z—酸化炭素が 2Z1 (モル比) の原料混合ガ スをガス空間速度 2000 h 1で供給し、 温度 250°C、 圧力 IMP aにおい て反応を開始した。 反応部出口の'ガス組成をガスクロマトグラフィーで経時的に 分析し、 この分析データを用い、 常法に従い、 CO転化率、 メタン選択率と連鎖 成長確率ひを算出した。 その結果を表 1に示した。 The average pore diameter 15. 2 nm, the silica 5. 0 g of specific surface area 32 Om 2 Zg, silica 0.04 as acetic Natoriumu and metallic magnesium in an amount corresponding to 0.04 weight 0/0 of the silica as the metal Natoriumu An aqueous solution containing magnesium nitrate in an amount corresponding to mass% was impregnated by the Incipient Wetness method. After impregnation, the water was dried at 120 ° C overnight. After drying, bake at 450 ° C for 2 hours. To obtain a silica-based carrier. As a result of analyzing the content of alkali metal and alkaline earth metal in the silica-based support by a metal analyzer, the total content of alkali metal and alkaline earth metal was 0.08% by mass. An aqueous solution containing an amount of cobalt nitrate equivalent to 10.0% by mass as metal cobalt and an amount of cobalt acetate equivalent to 10.0% by mass as metal cobalt is impregnated into the silica-based carrier by an incipient wetness method. I let it. After impregnation, water was removed by drying at 120 ° C. After drying, the catalyst was obtained by calcining at 450 ° C for 2 hours. This catalyst was packed in a fixed bed flow reactor, and reduced at 400 ° C. for 2 hours under a hydrogen stream before the reaction. The next material mixed gas of hydrogen Z- carbon oxides 2Z1 (molar ratio) was supplied at a gas hourly space velocity 2000 h 1, temperature 250 ° C, the reaction was started Te pressure IMP a smell. The gas composition at the outlet of the reaction section was analyzed over time by gas chromatography, and using this analysis data, the CO conversion, methane selectivity, and chain growth probability were calculated in accordance with ordinary methods. The results are shown in Table 1.
(実施例 2) (Example 2)
平均細孔径 1 2. .8 nm、 比表面積 347 m 2/ gのシリカを用いたこと以外 は実施例 1と同様の操作を行い、 C O転化率、 メタン選択率と連鎖成長確率 αを 求めた。 その結果を表 1に示した。 The same operation as in Example 1 was performed except that silica having an average pore diameter of 12.8 nm and a specific surface area of 347 m 2 / g was used, and the CO conversion, methane selectivity, and chain growth probability α were determined. . The results are shown in Table 1.
(実施例 3) (Example 3)
金属ナトリゥムとしてシリカの 0. 02質量0 /0に相当する量の酢酸ナトリウム および金属マグネシウムとしてシリカの 0. 02質量%に相当する量の硝酸マグ ネシゥムを含む水溶液を用いることによりアル力リ金属おょぴアル力リ土類金属 の含有量が 0. 04質量%のシリカ系担体を得たこと以外は、 実施例 1と同様の 操作を行い、 CO転化率、 メタン選択率と連鎖成長確率 αを求めた。 その結果を 表 1に示した。 It Contact Al force Li metal by using an aqueous solution containing an amount of nitric mug Neshiumu which corresponds to the amount of 0.02% by weight of silica as sodium acetate and metallic magnesium, which corresponds to 0.02 mass 0/0 of the silica as the metal Natoriumu The same operation as in Example 1 was carried out except that a silica-based carrier containing 0.04% by mass of the alkaline earth metal was obtained, and the CO conversion, methane selectivity, and chain growth probability α I asked. Table 1 shows the results.
(実施例 4) (Example 4)
金属ナトリゥムとしてシリカの 0. 08質量%に相当する量の酢酸ナトリウム および金属マグネシウムとしてシリカの 0. 08質量%に相当する量の硝酸マグ ネシゥムを含む水溶液を用いることによりアルカリ金属おょぴアル力リ土類金属 の含有量が 0. 1 6質量%のシリカ系担体を得たこと以外は、 実施例 1と同様の 操作を行い、 CO転化率、 メタン選択率と連鎖成長確率 αを求めた。 その結果をSodium acetate in an amount equivalent to 0.08% by mass of silica as metal sodium And the use of an aqueous solution containing magnesium nitrate in an amount equivalent to 0.08% by mass of silica as the metallic magnesium, so that the content of alkali metal and alkaline earth metal is 0.16% by mass. The same operation as in Example 1 was performed except that the carrier was obtained, and the CO conversion, methane selectivity, and chain growth probability α were obtained. The result
1 し / ο 1 si / ο
(実施例 5) (Example 5)
金属ナトリゥムとしてシリカの 0. 05質量%に相当する量の酢酸ナトリウム および金属マグネシウムとしてシリカの 0. 05質量0 /0に相当する量の硝酸マグ ネシゥムを含む水溶液を用いることによりアル力リ金属およびアル力リ土類金属 の含有量が 0. 10質量%のシリカ系担体を得たこと以外は、 実施例 1と同様の 操作を行い、 CO転化率、 メタン選択率と連鎖成長確率 αを求めた。 その結果を ¾ 1に した。 Al force Li metal and by using an aqueous solution containing an amount of nitric mug Neshiumu corresponding to 0.05 mass 0/0 of silica as sodium acetate and magnesium metal in an amount corresponding to 0.05 weight% of silica as the metal Natoriumu The same operation as in Example 1 was performed to obtain the CO conversion rate, methane selectivity, and chain growth probability α, except that a silica-based carrier containing 0.1% by mass of alkaline earth metal was obtained. Was. The result was ¾1.
(実施例 6 ) (Example 6)
金属ナトリゥムとしてシリカの 0. 1 2質量%に相当する量の酢酸ナトリウム および金属マグネシウムとしてシリカの 0. 1 2質量%に相当する量の硝酸マグ ネシゥムを含む水溶液を用レ、ることによりアル力リ金属およびアル力リ土類金属 の含有量が 0. 24質量%のシリカ系担体を得たこと以外は、 実施例 1と同様の 操作を行い、 CO転化率、 メタン選択率と連鎖成長確率 αを求めた。 その結果を 表 1に示した。 By using an aqueous solution containing sodium acetate in an amount equivalent to 0.12% by mass of silica as metallic sodium and magnesium nitrate in an amount equivalent to 0.12% by mass of silica as metallic magnesium, The same operation as in Example 1 was carried out except that a silica-based carrier containing 0.24% by mass of lithium metal and alkaline earth metal was obtained, and the CO conversion, methane selectivity, and chain growth probability were obtained. α was determined. Table 1 shows the results.
(比較例 1 ) (Comparative Example 1)
平均細孔径 1 5. 2 nm、 比表面積 320m2Zg、 アルカリ金属およびアル カリ土類金属の総含有量が 0. 02質量%であるシリカ系担体に、 金属コバルト として 1 0. 0質量%に相当する量の硝酸コバルトと、 金属コバルトとして 1 0. 0質量%に相当する量の酢酸コバルトを含む水溶液を I n c i p i e n t We t n e s s法により含浸させた。 含浸後、 水分を 120°Cで一晩乾燥除去した。 乾燥後、 450°Cで 2時間焼成することにより触媒を得た。 この触媒を固定床流 通式反応装置に充填し、 反応に先立ち、 水素気流下において 400°Cで 2時間還 元した。 次に水素 一酸化炭素が 2/1 (モル比) の原料混合ガスをガス空間速 度 2000 h 1で供給し、 温度 250°C、 圧力 IMP aにおいて反応を開始し た。 反応部出口のガス組成をガスクロマトグラフィーで経時的に分析し、 この分 析データを用い、 常法に従い、 CO転化率、 メタン選択率と連鎖成長確率 ctを算 出した。 その結果を表 1に示した。 Silica-based support with an average pore diameter of 15.2 nm, specific surface area of 320 m 2 Zg, and a total content of alkali metal and alkaline earth metal of 0.02% by mass, and 10.0% by mass as metallic cobalt An aqueous solution containing an equivalent amount of cobalt nitrate and an amount of cobalt acetate equivalent to 10.0% by mass as metal cobalt was impregnated by the Incipient Wetness method. After impregnation, water was removed by drying at 120 ° C overnight. After drying, the catalyst was obtained by calcining at 450 ° C for 2 hours. The catalyst is passed through a fixed bed flow. Prior to the reaction, the mixture was reduced in a stream of hydrogen at 400 ° C for 2 hours. Then the raw material mixed gas of hydrogen carbon monoxide 2/1 (molar ratio) was supplied at a gas hourly space velocity 2000 h 1, temperature 250 ° C, the reaction was started at a pressure IMP a. The gas composition at the outlet of the reaction section was analyzed over time by gas chromatography, and the CO conversion rate, methane selectivity, and chain growth probability ct were calculated in accordance with ordinary methods using the analysis data. The results are shown in Table 1.
(比較例 2) (Comparative Example 2)
平均細孔径 1 2. 8 nm、 比表面積 347 m2/ g、 アルカリ金属およびアル カリ土類金属の総含有量が 0. 02質量%であるシリカ系担体を用いたこと以外 は比較例 1と同様の操作を行い、 CO転化率、 メタン選択率と連鎖成長確率 αを 求めた。 その結果を表 1に示した。 Comparative Example 1 except that a silica-based carrier having an average pore diameter of 12.8 nm, a specific surface area of 347 m 2 / g, and a total content of alkali metals and alkaline earth metals of 0.02% by mass was used. The same operation was performed to determine the CO conversion rate, methane selectivity, and chain growth probability α . The results are shown in Table 1.
(比較例 3) (Comparative Example 3)
金属ナトリゥムとしてシリカの 0. 1 6質量%に相当する量の酢酸ナトリウム および金属マグネシウムとしてシリカの 0. 1 6質量%に相当する量の硝酸マグ ネシゥムを含む水溶液を用いることによりアルカリ金属おょぴアルカリ土類金属 の含有量が 0. 32質量%のシリカ系担体を得たこと以外は、 実施例 1と同様の 操作を行い、 CO転化率、 メタン選択率と連鎖成長確率 aを求めた。 その結果を 表 1に示した。  By using an aqueous solution containing sodium acetate in an amount equivalent to 0.16% by mass of silica as the metal sodium and magnesium nitrate in an amount equivalent to 0.16% by mass of the silica as the magnesium metal, the alkali metal is used. The same operation as in Example 1 was carried out except that a silica-based carrier having an alkaline earth metal content of 0.32% by mass was obtained, and the CO conversion, methane selectivity, and chain growth probability a were obtained. Table 1 shows the results.
(比較例 4) (Comparative Example 4)
金属コバルトとして修飾前シリカの 20. 0質量%に相当する量の硝酸コパル トのみをシリカ系担体に担持したこと以外は、 実施例 1と同様の操作を行い、 C Ο転化率、 メタン選択率と連鎖成長確率 αを求めた。 その結果を表 1に示した。 表 1から明らかなようにアルカリ金属および Ζまたはアルカリ土類金属を 0. 03質量%以上 0. 30質量%以下含むシリカ系担体にコバルト、 ニッケルおよ ぴルテユウムから選択される金属を含む前駆体化合物の 2種以上を担持すること により得られる触媒は、 高 CO転化率と低メタン選択率、 高連鎖成長確率 αを同 時に満足することがわかる。 The same operation as in Example 1 was carried out, except that only the cobalt nitrate in an amount equivalent to 20.0% by mass of the silica before modification was supported on the silica-based carrier as metallic cobalt, and the CΟ conversion rate and the methane selectivity were changed. And the chain growth probability α. The results are shown in Table 1. As is evident from Table 1, a precursor containing a metal selected from cobalt, nickel and platinum in a silica-based carrier containing 0.03% by mass or more and 0.30% by mass or less of an alkali metal and / or an alkaline earth metal. Carrying two or more compounds It can be seen that the catalyst obtained by (1) simultaneously satisfies high CO conversion, low methane selectivity, and high chain growth probability α.
触媒 CO転化率, % メタン選択率, % 連鎖成長確率 α 実施例 1 89. 3 1 3. 6 0. 89 実施例 2 90. 0 14. 0 0. 87 実施例 3 84. 0 1 3. 7 0. 88 実施例 4 85. 0 13. 6 0. 89 実施例 5 90. 0 9. 0 0. 91 実施例 6 83. 3 14. 0 0. 89 比較例 1 85. 2 1 7. 2 0. 86 比較例 2 90. 0 20. 0 0. 81 比較例 3 78. 0 1 1. 0 0. 89 比較例 4 64. 0 1 3. 5 0. 88 Catalytic CO conversion,% methane selectivity,% chain growth probability α Example 1 89. 3 1 3.6. 89 Example 2 90. 0 14. 0 0.87 Example 3 84. 0 1 3.7 0.88 Example 4 85.0 13.6 0.98 Example 5 90.0 9.0 0.91 Example 6 83.3 14.0 0.89 Comparative Example 1 85.2 1 7.20 . 86 Comparative Example 2 90. 0 20. 0 0.81 Comparative Example 3 78. 0 1 1. 0 0.89 Comparative Example 4 64. 0 1 3.5 0.88

Claims

請 求 の 範 囲 The scope of the claims
1 . アルカリ金属および Zまたはアルカリ土類金属を 0 . 0 3質量%以 上 0 . 3 0質量。/。以下含むシリカ系担体にコバルト、 ニッケルおよびルテニウム から選択される金属を含む前駆体化合物の 2種以上を担持することにより得られ るフィッシャー ' トロプシュ合成用触媒。 1. Alkali metal and Z or alkaline earth metal are not less than 0.03% by mass and 0.30% by mass. /. A Fischer-Tropsch synthesis catalyst obtained by supporting two or more precursor compounds containing a metal selected from cobalt, nickel and ruthenium on a silica-based support containing:
2 . アルカリ金属および Zまたはアルカリ土類金属を 0 . 0 3質量%以 上◦. 3 0質量%以下含むシリカ系担体にコバルト、 ニッケルおよびルテニウム から選択される金属を含む前駆体化合物の 2種以上を担持したのち、 乾燥およぴ 焼成処理して製造されることを特徴とする請求の範囲第 1項に記載の触媒。 2. Two types of precursor compounds containing a metal selected from cobalt, nickel and ruthenium in a silica-based support containing at least 0.3% by mass and not more than 0.3% by mass of alkali metal and Z or alkaline earth metal. 2. The catalyst according to claim 1, wherein the catalyst is manufactured by carrying out drying and calcining after carrying the above.
3 . アルカリ金属および/またはアルカリ土類金属が、 リチウム、 ナト リゥムおよぴカリゥムから選択される 1種または 2種以上のアルカリ金属おょぴ またはマグネシウムおよびカルシウムから選択される 1種または 2種のアル力 リ土類金属であることを特徴とする請求の範囲第 1項または第 2項に記載の触媒。 3. The alkali metal and / or alkaline earth metal is at least one selected from lithium, sodium, and potassium, or at least one selected from magnesium and calcium. 3. The catalyst according to claim 1, wherein the catalyst is an alkaline earth metal.
4 . コバルト、 ニッケルおよびルテニウムから選択される金属を含む前 駆体化合物が、 当該金属の硝酸塩、 塩酸塩、 硫酸塩、 ギ酸塩、 酢酸塩、 プロピオ ン酸塩、 シユウ酸塩、 およびァセチルァセトナートから選択される化合物である ことを特徴とする請求の範囲第 1項〜第 3項のいずれかに記載の触媒。 4. The precursor compound containing a metal selected from cobalt, nickel and ruthenium is a nitrate, hydrochloride, sulfate, formate, acetate, propionate, oxalate, and acetyla of the metal. The catalyst according to any one of claims 1 to 3, wherein the catalyst is a compound selected from settonate.
5 . シリカ系担体に対するコバルト、 ニッケルおよびルテニウムの担持 量が、 金属あたりの質量で 3〜 5 0 %であることを特徴とする請求の範囲第 1項 〜第 4項のいずれかに記載の触媒。 5. The catalyst according to any one of claims 1 to 4, wherein the amount of cobalt, nickel and ruthenium supported on the silica-based support is 3 to 50% by mass per metal. .
6 . シリ力系担体の平均粒子径が 1 0 μ π!〜 1 0 mm、 比表面積が 1 0 0〜5 0 O ra2 / gであることを特徴とする請求の範囲第 1項〜第 5項のいずれ かに記載の触媒。 6. The average particle size of the carrier is 10 μπ! ~ 1 0 mm, a specific surface area of 1 0 0~5 0 O ra 2 / g in the claims the items 1 to 5 wherein the catalyst of any crab description, characterized in that.
7 . 請求の範囲第 1項〜第 6項のいずれかに記載の触媒を用いて、 水素 と一酸化炭素を反応させて炭化水素を合成することを特徴とする炭化水素の製造 法。 7. A method for producing a hydrocarbon, comprising reacting hydrogen with carbon monoxide using the catalyst according to any one of claims 1 to 6 to synthesize a hydrocarbon.
PCT/JP2004/003750 2003-03-26 2004-03-19 Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon WO2004085055A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2004224536A AU2004224536B2 (en) 2003-03-26 2004-03-19 Catalyst for Fischer-Tropsch synthesis and process for producing hydrocarbon
CN200480008020.8A CN1764499B (en) 2003-03-26 2004-03-19 Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon
JP2005504025A JP4911974B2 (en) 2003-03-26 2004-03-19 Fischer-Tropsch synthesis catalyst and hydrocarbon production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003086024 2003-03-26
JP2003-086024 2003-03-26

Publications (1)

Publication Number Publication Date
WO2004085055A1 true WO2004085055A1 (en) 2004-10-07

Family

ID=33095048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003750 WO2004085055A1 (en) 2003-03-26 2004-03-19 Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon

Country Status (5)

Country Link
JP (1) JP4911974B2 (en)
CN (1) CN1764499B (en)
AU (1) AU2004224536B2 (en)
MY (1) MY141118A (en)
WO (1) WO2004085055A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178589B2 (en) 2003-04-07 2012-05-15 Nippon Steel Corporation Catalyst for producing hydrocarbon from syngas and producing method of catalyst
JP2018187556A (en) * 2017-05-01 2018-11-29 新日鉄住金エンジニアリング株式会社 Manufacturing method of catalyst for manufacturing hydrocarbon from synthetic gas and manufacturing method of hydrocarbon for manufacturing hydrocarbon from synthetic gas
JP2019209304A (en) * 2018-06-08 2019-12-12 日鉄エンジニアリング株式会社 Production method of catalyst for producing hydrocarbon from syngas, and production method of hydrocarbon from syngas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195553B (en) * 2006-12-07 2011-08-10 中国石油化工股份有限公司 Hydrocarbon synthesizing method
CN101462079B (en) * 2007-12-20 2011-07-20 中国石油化工股份有限公司 Method for preparing catalyst with lamella distribution
CN102039133B (en) * 2009-10-13 2012-11-14 中国石油化工股份有限公司 Fischer-Tropsch synthesized Co-based fluidized bed catalyst and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584444A (en) * 1991-02-19 1993-04-06 Shell Internatl Res Maatschappij Bv Cleaning process for catalyst and/or catalyst precorsor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117814A (en) * 1998-02-10 2000-09-12 Exxon Research And Engineering Co. Titania catalysts their preparation and use in fischer-tropsch synthesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584444A (en) * 1991-02-19 1993-04-06 Shell Internatl Res Maatschappij Bv Cleaning process for catalyst and/or catalyst precorsor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178589B2 (en) 2003-04-07 2012-05-15 Nippon Steel Corporation Catalyst for producing hydrocarbon from syngas and producing method of catalyst
US8524788B2 (en) 2003-04-07 2013-09-03 Nippon Steel & Sumitomo Metal Corporation Catalyst for producing hydrocarbon from syngas and producing method of catalyst
JP2018187556A (en) * 2017-05-01 2018-11-29 新日鉄住金エンジニアリング株式会社 Manufacturing method of catalyst for manufacturing hydrocarbon from synthetic gas and manufacturing method of hydrocarbon for manufacturing hydrocarbon from synthetic gas
JP2019209304A (en) * 2018-06-08 2019-12-12 日鉄エンジニアリング株式会社 Production method of catalyst for producing hydrocarbon from syngas, and production method of hydrocarbon from syngas
JP7145653B2 (en) 2018-06-08 2022-10-03 日鉄エンジニアリング株式会社 Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas

Also Published As

Publication number Publication date
JP4911974B2 (en) 2012-04-04
AU2004224536B2 (en) 2009-07-30
CN1764499B (en) 2010-04-28
CN1764499A (en) 2006-04-26
AU2004224536A1 (en) 2004-10-07
JPWO2004085055A1 (en) 2006-06-29
MY141118A (en) 2010-03-15

Similar Documents

Publication Publication Date Title
WO2005099897A1 (en) Catalyst for fisher-tropsh synthesis and method for producing hydrocarbon
US7067562B2 (en) Iron-based Fischer-Tropsch catalysts and methods of making and using
RU2259988C2 (en) Catalyst and method for preparing hydrocarbons
JP5065255B2 (en) Catalyst production method
EP0319625B1 (en) Cobalt-ruthenium catalytists for fischer-tropsch synthesis
US4822824A (en) Cobalt-ruthenium catalysts for Fischer-Tropsch synthesis
US6337353B1 (en) Activation of hydrocarbon synthesis catalysts with hydrogen and ammonia
EP1289654A2 (en) Cobalt catalysts
CA2833079A1 (en) Catalysts
AU2002216754B2 (en) Fischer-tropsch processes and catalysts using aluminum borate supports
JP2003024786A (en) Catalyst for fischer-tropsch synthesis and method for producing hydrocarbon
AU2002216754A1 (en) Fischer-tropsch processes and catalysts using aluminum borate supports
WO2004085055A1 (en) Catalyst for fischer-tropsch synthesis and process for producing hydrocarbon
EP1246886A1 (en) Hydrocarbon synthesis catalyst enhancement with hydrogen and ammonia
EP2193842A1 (en) Preparation of a hydrocarbon synthesis catalyst
US6096790A (en) Process for the preparation of a catalyst based on cobalt and scandium
WO2015010939A1 (en) Method for starting up a fischer tropsch process
JP4291590B2 (en) Fischer-Tropsch synthesis catalyst and hydrocarbon production process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504025

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004224536

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20048080208

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004224536

Country of ref document: AU

Date of ref document: 20040319

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004224536

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1200501550

Country of ref document: VN

122 Ep: pct application non-entry in european phase