JP2018186584A - Recycling method for motor - Google Patents

Recycling method for motor Download PDF

Info

Publication number
JP2018186584A
JP2018186584A JP2015181338A JP2015181338A JP2018186584A JP 2018186584 A JP2018186584 A JP 2018186584A JP 2015181338 A JP2015181338 A JP 2015181338A JP 2015181338 A JP2015181338 A JP 2015181338A JP 2018186584 A JP2018186584 A JP 2018186584A
Authority
JP
Japan
Prior art keywords
motor
rotor
magnet
stator
recycling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015181338A
Other languages
Japanese (ja)
Inventor
一喜 村澤
Kazuyoshi Murasawa
一喜 村澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015181338A priority Critical patent/JP2018186584A/en
Priority to PCT/JP2016/076919 priority patent/WO2017047568A1/en
Publication of JP2018186584A publication Critical patent/JP2018186584A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recycling method for a motor which can easily separate a rotor part and a stator part of the motor, and improve efficiency of demolition and recovery work.SOLUTION: A recycling method for a motor comprises a heating process where a servomotor 10 with a rotor part 11 and a stator part 12 is fed into a dry distillation gas incinerator 50 and then the servomotor 10 is heated up to a temperature above a Curie temperature of a neodymium magnet 14 included in the servomotor 10, and a separation process where the servomotor 10 is separated into the rotor part 11 and the stator part 12.SELECTED DRAWING: Figure 2

Description

この発明は、使用済みのモータから素材を個別に回収するためのモータのリサイクル方法に関するものである。   The present invention relates to a motor recycling method for individually collecting materials from a used motor.

従来のモータのリサイクル方法では、回収した単一種類または複数種類のモータをロータとステータに分離した後に、ロータに使用されている磁石の種類に応じたキュリー温度までロータコアを段階的に昇温して磁石を脱磁することにより、ロータコアと磁石を分離して磁石素材を回収していた(例えば、特許文献1参照)。   In the conventional motor recycling method, the recovered single or multiple types of motors are separated into a rotor and a stator, and then the rotor core is heated stepwise up to the Curie temperature corresponding to the type of magnet used in the rotor. By demagnetizing the magnet, the rotor core and the magnet are separated and the magnet material is collected (see, for example, Patent Document 1).

特開2012−147608号公報(図1)JP 2012-147608 A (FIG. 1)

しかしながら、上記のようなモータのリサイクル方法においては、脱磁前の磁石が内蔵されたロータとステータを分離する必要があるため、専用の治具や磁界発生装置等の減磁装置を用いて、機種やメーカに応じた方法でロータとステータを分離しなければならず、解体・回収作業の効率向上の妨げになっているという問題点があった。   However, in the motor recycling method as described above, since it is necessary to separate the rotor and the stator containing the magnet before demagnetization, using a demagnetizing device such as a dedicated jig or a magnetic field generator, There was a problem that the rotor and the stator had to be separated by a method according to the model and manufacturer, which hindered the improvement of the efficiency of the dismantling / recovery work.

この発明は、上記のような問題点を解決するためになされたもので、ロータ部とステータ部とを容易に分離することができ、解体・回収作業の効率を向上できるモータのリサイクル方法を提供するものである。   The present invention has been made to solve the above-described problems, and provides a motor recycling method that can easily separate the rotor portion and the stator portion, and can improve the efficiency of the dismantling / recovering operation. To do.

この発明に係るモータのリサイクル方法は、ロータ部とステータ部とを有するモータを加熱装置に投入し、モータに内蔵された永久磁石のキュリー温度以上の温度までモータを昇温させる加熱工程と、モータをロータ部とステータ部とに分離する分離工程とを備えたものである。   The motor recycling method according to the present invention includes a heating step in which a motor having a rotor portion and a stator portion is put into a heating device, and the motor is heated to a temperature equal to or higher than a Curie temperature of a permanent magnet built in the motor, and the motor And a separation step of separating the rotor portion and the stator portion.

この発明によれば、モータに内蔵された永久磁石のキュリー温度以上の温度までモータを昇温させ、永久磁石が脱磁された状態でロータ部とステータ部とを分離するため、ロータ部とステータ部との分離を容易に行うことが可能となり、解体・回収作業の効率を向上させることができる。   According to this invention, the temperature of the motor is raised to a temperature equal to or higher than the Curie temperature of the permanent magnet built in the motor, and the rotor portion and the stator portion are separated while the permanent magnet is demagnetized. It is possible to easily separate from the part, and it is possible to improve the efficiency of the dismantling / collecting work.

この発明の実施の形態1におけるモータのリサイクル方法が適用されるサーボモータを示す断面図である。It is sectional drawing which shows the servomotor to which the motor recycling method in Embodiment 1 of this invention is applied. この発明の実施の形態1におけるモータのリサイクル方法を示すフロー図である。It is a flowchart which shows the recycling method of the motor in Embodiment 1 of this invention. この発明の実施の形態1におけるモータのリサイクル方法の加熱工程を示す図である。It is a figure which shows the heating process of the recycling method of the motor in Embodiment 1 of this invention. この発明の実施の形態1におけるモータのリサイクル方法の破砕工程を示す図である。It is a figure which shows the crushing process of the recycling method of the motor in Embodiment 1 of this invention. この発明の実施の形態1におけるモータのリサイクル方法の磁力選別工程を示す図である。It is a figure which shows the magnetic force selection process of the recycling method of the motor in Embodiment 1 of this invention. この発明の実施の形態1におけるモータのリサイクル方法が適用されるサーボモータの他の例を示す断面図である。It is sectional drawing which shows the other example of the servomotor to which the motor recycling method in Embodiment 1 of this invention is applied.

実施の形態1.
以下に、本発明の実施の形態1におけるモータのリサイクル方法を、図を用いて説明する。
図1は、実施の形態1におけるモータのリサイクル方法が適用されるサーボモータを示す断面図である。SPM(Surface Permanent Magnet)型のサーボモータ10は、図に示すようにロータ部11、ステータ部12及びエンコーダ部19を備えている。ロータ部11は、ベアリング22を介してステータ部12に回転可能に支持されたSUS製のシャフト13と、シャフト13の外表面に塗布された接着剤15によって接着されたネオジム磁石14、すなわち永久磁石とを有している。ステータ部12は、その内周面に積層された電磁鋼板16と、電磁鋼板16に巻きつけられた銅線コイル17とが設けられており、ロータ部11を覆っている。また、ステータ部12の周囲は、樹脂からなるモールド部18に覆われている。エンコーダ部19は、シャフト13の一端に設けられたエンコーダ板20と、エンコーダ板20を収納する樹脂ケース21を有し、ステータ部12に固定されている。
なお、ここではシャフト13の材質はSUSとしているが、これに限定されるものではない。また、接着剤15の種類は特に限定されるものではなく、例えば、エポキシ系接着剤やアクリル系接着剤を用いることができる。また、ネオジム磁石14の形状は、特に限られるものではなく、リング型でもセグメント型でもよい。
Embodiment 1 FIG.
The motor recycling method in Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a servo motor to which the motor recycling method according to the first embodiment is applied. The SPM (Surface Permanent Magnet) type servo motor 10 includes a rotor part 11, a stator part 12, and an encoder part 19, as shown in the figure. The rotor unit 11 includes a shaft 13 made of SUS rotatably supported on the stator unit 12 via a bearing 22, and a neodymium magnet 14 bonded by an adhesive 15 applied to the outer surface of the shaft 13, that is, a permanent magnet. And have. The stator portion 12 is provided with an electromagnetic steel plate 16 laminated on its inner peripheral surface and a copper wire coil 17 wound around the electromagnetic steel plate 16 and covers the rotor portion 11. The periphery of the stator portion 12 is covered with a mold portion 18 made of resin. The encoder unit 19 includes an encoder plate 20 provided at one end of the shaft 13 and a resin case 21 that houses the encoder plate 20, and is fixed to the stator unit 12.
Here, the material of the shaft 13 is SUS, but is not limited thereto. Moreover, the kind of the adhesive 15 is not specifically limited, For example, an epoxy adhesive and an acrylic adhesive can be used. The shape of the neodymium magnet 14 is not particularly limited, and may be a ring type or a segment type.

図2は、本実施の形態1におけるモータのリサイクル方法を示すフロー図である。本実施の形態では、まず、図3に示す乾留ガス化焼却炉50、すなわち加熱装置の乾留ガス化炉51にサーボモータ10を投入し、サーボモータ10を1000℃以上に昇温させ(加熱工程、ST01)、乾留ガス化炉51から取り出したサーボモータ10をロータ部11とステータ部12とに分離する(分離工程、ST02)。次に、ロータ部11は、ネオジム磁石14とシャフト13に分離して(磁石分離工程、ST03)、それぞれ回収・リサイクルする。また、ステータ部12は、図4に示すハンマー破砕機60によって破砕し、鉄素材16a及び銅素材17aを含む破砕物12aとする(破砕工程、ST04)。この破砕物12aを図5に示す磁力選別機70によって鉄素材16aと銅素材17aとに選別して(磁力選別工程、ST05)、それぞれ回収・リサイクルする。   FIG. 2 is a flowchart showing a motor recycling method according to the first embodiment. In the present embodiment, first, the servo motor 10 is put into the dry distillation gasification incinerator 50 shown in FIG. 3, that is, the dry distillation gasification furnace 51 of the heating apparatus, and the servo motor 10 is heated to 1000 ° C. or more (heating process). , ST01), the servo motor 10 taken out from the dry distillation gasification furnace 51 is separated into the rotor part 11 and the stator part 12 (separation process, ST02). Next, the rotor portion 11 is separated into a neodymium magnet 14 and a shaft 13 (magnet separation step, ST03), and each is collected and recycled. Moreover, the stator part 12 is crushed with the hammer crusher 60 shown in FIG. 4, and it is set as the crushed material 12a containing the iron raw material 16a and the copper raw material 17a (crushing process, ST04). The crushed material 12a is sorted into an iron material 16a and a copper material 17a by a magnetic sorter 70 shown in FIG. 5 (magnetic force sorting step, ST05), and collected and recycled.

本実施の形態で用いる乾留ガス化焼却炉50は、図3に示すように底面に空気孔(図示なし)が設けられた乾留ガス化炉51と、乾留ガス化炉51の上部に設置された燃焼炉52の2つの炉を有している。本実施の形態において、乾留ガス化炉51の収納スペースは、例えば、縦1.0m、横1.0m、高さ1.5mであり、複数の小型・中型のサーボモータを一括して処理することができる。   The dry distillation gasification incinerator 50 used in the present embodiment is installed at the top of the dry distillation gasification furnace 51, as shown in FIG. Two combustion furnaces 52 are provided. In the present embodiment, the storage space of the dry distillation gasification furnace 51 is, for example, 1.0 m in length, 1.0 m in width, and 1.5 m in height, and a plurality of small and medium servo motors are collectively processed. be able to.

加熱工程では、まず、木屑や新聞紙などからなり、サーボモータ10とともに乾留ガス化炉51に投入した助燃材55に着火する。助燃材55に着火した後は、上記空気孔から乾留ガス化炉51内に供給する空気の量を調整することにより炉内温度を制御しながら、乾留ガス化炉51内を蒸し焼き状態にし、サーボモータ10の温度が1000℃以上に達するまでサーボモータ10を加熱する(ST01)。サーボモータ10の温度を1000℃以上に昇温させることにより、キュリー温度が350℃であるネオジム磁石14は脱磁される。また、サーボモータ10を1000℃以上に昇温させるため、モールド部18、エンコーダ部19、及びステータ部12とエンコーダ部19の固定接続部分(図示なし)は熱分解され、灰化される。これにより、また、エポキシ系接着剤は300℃以上、アクリル系接着剤は450℃以上で炭化することから、接着剤15は炭化され、その接着力は無力化される。
なお、乾留ガス化炉51内を蒸し焼き状態にすることで発生する可燃性ガスは、連通口53を通って燃焼炉52に流入する。燃焼炉52に流入した可燃性ガスは空気と混合され、1000℃以上で完全燃焼され、ダイオキシン類を除去された後、排ガスとして排気筒54から排出される。
In the heating step, first, the auxiliary combustor 55 made of wood chips, newspaper, etc., and put into the dry distillation gasification furnace 51 together with the servo motor 10 is ignited. After the auxiliary combustion material 55 is ignited, the inside of the dry distillation gasification furnace 51 is steamed and controlled while controlling the temperature in the furnace by adjusting the amount of air supplied into the dry distillation gasification furnace 51 through the air holes. The servo motor 10 is heated until the temperature of the motor 10 reaches 1000 ° C. or higher (ST01). By raising the temperature of the servo motor 10 to 1000 ° C. or higher, the neodymium magnet 14 having a Curie temperature of 350 ° C. is demagnetized. Further, in order to raise the temperature of the servo motor 10 to 1000 ° C. or higher, the mold part 18, the encoder part 19, and the fixed connection part (not shown) of the stator part 12 and the encoder part 19 are thermally decomposed and ashed. Accordingly, since the epoxy adhesive is carbonized at 300 ° C. or higher and the acrylic adhesive is carbonized at 450 ° C. or higher, the adhesive 15 is carbonized and its adhesive force is neutralized.
Note that combustible gas generated by bringing the inside of the dry distillation gasification furnace 51 into a steamed state flows into the combustion furnace 52 through the communication port 53. The combustible gas flowing into the combustion furnace 52 is mixed with air, completely burned at 1000 ° C. or higher, and after dioxins are removed, it is discharged from the exhaust tube 54 as exhaust gas.

サーボモータ10を1000℃以上に昇温させたら、乾留ガス化炉51への空気の供給を止め、加熱を停止する。その後、1〜5時間空冷することで乾留ガス化炉51内のサーボモータ10を冷却する。   When the temperature of the servo motor 10 is raised to 1000 ° C. or higher, the supply of air to the dry distillation gasification furnace 51 is stopped and heating is stopped. Thereafter, the servo motor 10 in the dry distillation gasification furnace 51 is cooled by air cooling for 1 to 5 hours.

分離工程では、冷却されたサーボモータ10を乾留ガス化炉51から取り出し、ロータ部11をステータ部12から引き抜くことで、サーボモータ10をロータ部11とステータ部12とに分離する(ST02)。ここで、ネオジム磁石14は既に脱磁されているため、専用の工具や磁界発生装置等の減磁機器を用いる必要はない。なお、ここではサーボモータ10を乾留ガス化炉51から取り出してから、サーボモータ10をロータ部11とステータ部12とに分離しているが、例えば、ロボットアーム(図示なし)を用いるなどして、サーボモータ10を乾留ガス化炉51内に入れたまま分離を行ってもよい。   In the separation step, the cooled servo motor 10 is taken out from the dry distillation gasification furnace 51, and the rotor part 11 is pulled out from the stator part 12, thereby separating the servo motor 10 into the rotor part 11 and the stator part 12 (ST02). Here, since the neodymium magnet 14 has already been demagnetized, it is not necessary to use a demagnetizing device such as a dedicated tool or a magnetic field generator. Here, the servomotor 10 is separated into the rotor portion 11 and the stator portion 12 after the servomotor 10 is taken out from the dry distillation gasification furnace 51. For example, a robot arm (not shown) is used. The separation may be performed while the servo motor 10 is placed in the dry distillation gasification furnace 51.

ここでは永久磁石としてネオジム磁石を用いているが、これに限られるものではなく、例えば、フェライト磁石、サマリウムコバルト磁石を用いることができる。これらの永久磁石を用いる場合も、加熱工程において、サーボモータ10をそれぞれのキュリー温度以上の温度まで昇温させることにより、永久磁石が脱磁するため、分離工程において、専用の工具や磁界発生装置等の減磁機器を用いることなく、ロータ部とステータ部とを容易に分離することができる。また、それぞれの永久磁石のキュリー温度は、フェライト磁石が600℃、サマリウムコバルト磁石が750℃〜800℃であるため、上記のようにサーボモータ10を1000℃以上に昇温させることにより、いずれの永久磁石を用いた場合でも、サーボモータ10に内蔵されている永久磁石をキュリー温度以上に昇温させて脱磁することができる。
なお、サーボモータ10を昇温させる際の温度の上限は、鉄素材16aの融点を考慮し、1500℃とすることが考えられる。
Here, a neodymium magnet is used as the permanent magnet, but the present invention is not limited to this. For example, a ferrite magnet or a samarium cobalt magnet can be used. Even in the case of using these permanent magnets, in the heating process, the permanent magnet is demagnetized by raising the temperature of the servo motor 10 to a temperature equal to or higher than each Curie temperature. The rotor portion and the stator portion can be easily separated without using a demagnetizing device such as the above. Further, the Curie temperature of each permanent magnet is 600 ° C. for the ferrite magnet and 750 ° C. to 800 ° C. for the samarium cobalt magnet. Therefore, by raising the temperature of the servo motor 10 to 1000 ° C. or higher as described above, Even when a permanent magnet is used, the permanent magnet built in the servo motor 10 can be demagnetized by raising the temperature to the Curie temperature or higher.
Note that it is conceivable that the upper limit of the temperature when the servo motor 10 is raised is 1500 ° C. in consideration of the melting point of the iron material 16a.

磁石分離工程では、分離工程で得られたロータ部11のシャフト13の外表面からネオジム磁石14を外すことにより、ロータ部11をシャフト13とネオジム磁石14とに分離し(ST03)、シャフト13及びネオジム磁石14を、それぞれ回収・リサイクルする。上述したように、接着剤15は加熱工程で炭化され、その接着力が無力化されているため、接着剤15の種類に応じた溶媒を用いたり、ロータ部11に衝撃を与えて破壊したりする必要はない。   In the magnet separation step, the rotor portion 11 is separated into the shaft 13 and the neodymium magnet 14 by removing the neodymium magnet 14 from the outer surface of the shaft 13 of the rotor portion 11 obtained in the separation step (ST03). Each neodymium magnet 14 is collected and recycled. As described above, since the adhesive 15 is carbonized in the heating process and its adhesive strength is neutralized, a solvent corresponding to the type of the adhesive 15 is used, or the rotor portion 11 is shocked and destroyed. do not have to.

ハンマー破砕機60は、図4に示すように筐体内部で回転する回転ハンマー61の打撃によって投入物を破砕するものである。
破砕工程では、分離工程で得られたステータ部12をハンマー破砕機60に投入し、回転ハンマー61による打撃で破砕して破砕物12aを生成する(ST04)。このとき、電磁鋼板16及び銅線コイル17も破砕され、それぞれ鉄素材16a、銅素材17aとなる。破砕が完了したら、鉄素材16a及び銅素材17aを含む破砕物12aをハンマー破砕機60から取り出す。
As shown in FIG. 4, the hammer crusher 60 crushes the input by hitting a rotary hammer 61 that rotates inside the housing.
In the crushing step, the stator portion 12 obtained in the separation step is put into a hammer crusher 60 and crushed by striking with a rotary hammer 61 to generate a crushed material 12a (ST04). At this time, the electromagnetic steel plate 16 and the copper wire coil 17 are also crushed to become an iron material 16a and a copper material 17a, respectively. When the crushing is completed, the crushed material 12a including the iron material 16a and the copper material 17a is taken out from the hammer crusher 60.

磁力選別機70は、図5に示すように投入方向をロータ磁石71の回転方向と同じ方向にするガイド72が取り付けられ、投入物のうち、ロータ磁石71に吸着しない非鉄系金属はロータ磁石71の表面を滑らせて一方の収納部74Aに落下させ、ロータ磁石71に吸着する鉄系金属は、スクレーパー73によってそぎ落とすことで他方の収納部74Bに落下させるものである。
磁力選別工程では、破砕工程で得られた破砕物12aを磁力選別機70に投入し、ロータ磁石71に吸着しない銅素材17aはロータ磁石71の表面を滑らせて一方の収納部74Aに落下させ、ロータ磁石71に吸着する鉄素材16aは、スクレーパー73によってそぎ落とすことで他方の収納部74Bに落下させる(ST05)。このように、鉄素材16a及び銅素材17aをそれぞれ異なる収納部に落下させることで、2つの素材を選別し、それぞれの素材を回収・リサイクルする。ここで、上述のように、ステータ部12のモールド部18は加熱工程で消失しているため、モールド樹脂と銅素材17aを分離するための、渦電流選別や比重選別を実施する必要はない。
As shown in FIG. 5, the magnetic separator 70 is provided with a guide 72 that makes the charging direction the same as the rotation direction of the rotor magnet 71, and the nonferrous metal that is not adsorbed to the rotor magnet 71 is the rotor magnet 71. The iron-based metal adhering to the rotor magnet 71 is caused to fall into the other storage portion 74B by being scraped off by the scraper 73.
In the magnetic sorting process, the crushed material 12a obtained in the crushing process is put into the magnetic sorting machine 70, and the copper material 17a that is not adsorbed to the rotor magnet 71 is slid on the surface of the rotor magnet 71 and dropped into one storage portion 74A. Then, the iron material 16a adsorbed to the rotor magnet 71 is dropped by the scraper 73 into the other storage part 74B (ST05). In this way, by dropping the iron material 16a and the copper material 17a into different storage units, the two materials are selected, and the respective materials are collected and recycled. Here, as described above, since the mold portion 18 of the stator portion 12 has disappeared in the heating process, it is not necessary to perform eddy current sorting or specific gravity sorting for separating the mold resin and the copper material 17a.

次に、本発明の実施の形態におけるモータのリサイクル方法が適用されるサーボモータの他の例について、図6に基づいて説明する。
サーボモータ101は、図に示すようにステータ部121と、エンコーダ部191とが、樹脂ケース211及びモールド部181を貫通するネジ23によって固定されている点が、サーボモータ10と異なる。サーボモータ101についても、サーボモータ10の場合と同様に、加熱工程で1000℃以上に昇温させることにより、ネオジム磁石14をキュリー温度以上の温度まで昇温させ、脱磁させるとともに、モールド部181及びエンコーダ部191を灰化させることにより、ネジ23はステータ部121から分離するため、以降の工程はサーボモータ10の場合と同様に処理することができる。このため、回収した複数のサーボモータの中に、サーボモータ10とサーボモータ101がそれぞれ単数または複数含まれている場合でも、一括して処理することができる。
Next, another example of the servo motor to which the motor recycling method according to the embodiment of the present invention is applied will be described with reference to FIG.
The servo motor 101 is different from the servo motor 10 in that a stator part 121 and an encoder part 191 are fixed by screws 23 penetrating the resin case 211 and the mold part 181 as shown in the figure. Similarly to the servo motor 10, the servo motor 101 is also heated to 1000 ° C. or higher in the heating step, thereby raising the temperature of the neodymium magnet 14 to a temperature equal to or higher than the Curie temperature and demagnetizing the mold unit 181. Since the screw 23 is separated from the stator part 121 by ashing the encoder part 191, the subsequent processes can be processed in the same manner as the servo motor 10. For this reason, even if one or a plurality of servo motors 10 and 101 are included in the collected plurality of servo motors, they can be collectively processed.

実施の形態1によれば、サーボモータに内蔵されたネオジム磁石のキュリー温度以上の温度までサーボモータを昇温させ、ネオジム磁石が脱磁された状態でロータ部とステータ部とを分離するため、専用の工具や磁界発生装置等の減磁機器を用いることなく、ロータ部とステータ部との分離を容易に行うことが可能となる。このため、解体・回収作業の効率を向上させることができる。   According to the first embodiment, the servo motor is heated to a temperature equal to or higher than the Curie temperature of the neodymium magnet built in the servo motor, and the rotor part and the stator part are separated in a state where the neodymium magnet is demagnetized. The rotor portion and the stator portion can be easily separated without using a demagnetizing device such as a dedicated tool or a magnetic field generator. For this reason, the efficiency of the dismantling / collecting work can be improved.

また、加熱工程において、ステータ部の周囲のモールド部を灰化させるため、磁力選別工程の後に、銅素材からモールド樹脂を分離・除去するための渦電流選別や比重選別を実施する必要がないため、解体・回収作業の効率をさらに向上させることができるとともに、純度の高い銅素材を回収することができる。   In addition, since the mold part around the stator part is incinerated in the heating process, it is not necessary to perform eddy current selection or specific gravity selection for separating and removing the mold resin from the copper material after the magnetic force selection process. The efficiency of the dismantling / recovery operation can be further improved, and a high-purity copper material can be recovered.

また、加熱工程において、シャフトとネオジム磁石とを接着する接着剤を炭化させて、その接着力を無力化するため、シャフトとネオジム磁石を容易に分離することが可能となり、解体・回収作業の効率をさらに向上させることができる。   In addition, in the heating process, the adhesive that bonds the shaft and the neodymium magnet is carbonized to neutralize the adhesive force, so that the shaft and the neodymium magnet can be easily separated, and the efficiency of disassembly and recovery work Can be further improved.

また、加熱工程において、エンコーダ部と、ステータ部とエンコーダ部の固定接続部分を灰化させることにより、ロータ部は支えを失うため、ステータ部から容易に引き抜くことが可能となり、解体・回収作業の効率をさらに向上させることができる。   Also, in the heating process, the rotor part loses its support by ashing the encoder part and the fixed connection part of the stator part and the encoder part. Efficiency can be further improved.

以上では、主に小型・中型のサーボモータに多く用いられる、SPM型のサーボモータについて説明したが、大型のサーボモータに多く用いられるIPM(Interior Permanent Magnet)型のサーボモータについても、本発明のモータのリサイクル方法を適用することができる。IPM型のサーボモータの場合、ロータ部の永久磁石がシャフト内部に組み込まれているため、分離工程において、シャフト内部からネオジム磁石を引き抜いて分離するという点がSPM型の場合と異なるが、その他の点はSPM型の場合と同様である。   In the above, the SPM type servo motor which is mainly used for small and medium servo motors has been described. However, the IPM (Interior Permanent Magnet) type servo motor which is often used for large servo motors is also described in the present invention. A motor recycling method can be applied. In the case of an IPM type servo motor, since the permanent magnet of the rotor part is incorporated inside the shaft, the point that the neodymium magnet is pulled out and separated from the inside of the shaft in the separation step is different from the case of the SPM type. The point is the same as in the case of the SPM type.

また、本発明は、サーボモータ以外にも、例えばエアコンの室外機に利用されているファンモータのように、ロータ部に永久磁石が接着されたモータであれば適用可能である。この場合でも、加熱工程でロータ部に接着された永久磁石を脱磁することにより、ロータ部とステータ部の分離が容易になり、解体・回収作業の効率を向上させることができる。   In addition to the servo motor, the present invention can be applied to any motor in which a permanent magnet is bonded to the rotor portion, such as a fan motor used in an outdoor unit of an air conditioner. Even in this case, by demagnetizing the permanent magnet adhered to the rotor part in the heating process, the rotor part and the stator part can be easily separated, and the efficiency of the dismantling / recovery operation can be improved.

10、101 サーボモータ、11 ロータ部、 12、121 ステータ部、13 シャフト、14 ネオジム磁石、15 接着剤、18、181 モールド部、19、191 エンコーダ部、50 乾留ガス化焼却炉、51 乾留ガス化炉。   10, 101 Servo motor, 11 Rotor part, 12, 121 Stator part, 13 Shaft, 14 Neodymium magnet, 15 Adhesive, 18, 181 Mold part, 19, 191 Encoder part, 50 Distillation gasification incinerator, 51 Distillation gasification Furnace.

Claims (5)

ロータ部とステータ部とを有するモータを加熱装置に投入し、前記モータに内蔵された永久磁石のキュリー温度以上の温度まで前記モータを昇温させる加熱工程と、
前記モータを前記ロータ部と前記ステータ部とに分離する分離工程と
を備えたことを特徴とするモータのリサイクル方法。
A heating step of putting a motor having a rotor portion and a stator portion into a heating device and raising the temperature of the motor to a temperature equal to or higher than the Curie temperature of a permanent magnet built in the motor,
A motor recycling method comprising: a separation step of separating the motor into the rotor portion and the stator portion.
前記分離工程の後に、前記ロータ部をシャフトと前記永久磁石とに分離する磁石分離工程を備えたことを特徴とする請求項1に記載のモータのリサイクル方法。   The motor recycling method according to claim 1, further comprising a magnet separation step of separating the rotor portion into a shaft and the permanent magnet after the separation step. 前記ステータ部は樹脂でモールドされ、前記加熱工程において、前記ステータ部をモールドする樹脂を灰化させることを特徴とする請求項1または2に記載のモータのリサイクル方法。   The method for recycling a motor according to claim 1, wherein the stator portion is molded with a resin, and the resin for molding the stator portion is ashed in the heating step. 前記加熱工程において、前記シャフトと前記永久磁石とを接着する接着剤を炭化させることを特徴とする請求項2に記載のモータのリサイクル方法。   The method for recycling a motor according to claim 2, wherein, in the heating step, an adhesive that bonds the shaft and the permanent magnet is carbonized. 前記モータはエンコーダ部を備え、前記加熱工程において、前記エンコーダ部を灰化させることを特徴とする請求項1から4いずれか1項に記載のモータのリサイクル方法。   5. The motor recycling method according to claim 1, wherein the motor includes an encoder unit, and the encoder unit is ashed in the heating step. 6.
JP2015181338A 2015-09-15 2015-09-15 Recycling method for motor Pending JP2018186584A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015181338A JP2018186584A (en) 2015-09-15 2015-09-15 Recycling method for motor
PCT/JP2016/076919 WO2017047568A1 (en) 2015-09-15 2016-09-13 Motor recycling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181338A JP2018186584A (en) 2015-09-15 2015-09-15 Recycling method for motor

Publications (1)

Publication Number Publication Date
JP2018186584A true JP2018186584A (en) 2018-11-22

Family

ID=58288665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181338A Pending JP2018186584A (en) 2015-09-15 2015-09-15 Recycling method for motor

Country Status (2)

Country Link
JP (1) JP2018186584A (en)
WO (1) WO2017047568A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056959B2 (en) * 2011-01-13 2012-10-24 三菱マテリアル株式会社 Recycling method of motor
JP5842838B2 (en) * 2013-02-01 2016-01-13 三菱電機株式会社 Magnet collection method
JP2014181843A (en) * 2013-03-19 2014-09-29 Dowa Eco-System Co Ltd Powdery waste supply apparatus, and method for supplying powdery waste

Also Published As

Publication number Publication date
WO2017047568A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5110181B2 (en) Rare earth magnet material recovery system
JP5056959B2 (en) Recycling method of motor
JP4820423B2 (en) Method of recovering neodymium magnet from used equipment and neodymium magnet recovered or recycled by the method
CN101417284A (en) Recovery method of waste circuit board value resource
WO2017047568A1 (en) Motor recycling method
CN105880011A (en) Method for clearing away obstinate impurities in high-intensity magnetic separator medium box
JP2012115815A (en) Method for recycling compressor and method for recycling motor
JP5797603B2 (en) Apparatus and method for recycling used electrical and electronic equipment
JP5842838B2 (en) Magnet collection method
CN103008102A (en) Permanent magnetic expansion cylinder magnetic extractor
JP2009171764A (en) Method of manufacturing motor rotor, and magnetizing apparatus
Heim et al. An Approach for the Disassembly of Permanent Magnet Synchronous Rotors to Recover Rare Earth Materials
JP6303789B2 (en) Magnet recovery method and magnet recovery equipment from rotor
KR101466887B1 (en) Apparatus for Metal Liberation in Printed Circuit Boards(PCBs)
CN104888922A (en) Ore drying and separating system
JP2011046983A (en) Method for recovering valuable metal from portable or small-sized electronic equipment
CN104722399A (en) Magnetic separator for separating impurities from rare earth permanent magnetic material
JPH114564A (en) Method for treating waste motor
JP5845028B2 (en) Permanent magnet recovery method and recovery device
JP2001110636A (en) Method and device for treating waste
JP2019025395A (en) Valuable metal recovery method and recovery system
KR20190007302A (en) Recycling processing system for wastehousehold electrical appliances
JP2013046465A (en) Rare earth magnet raw material recovery system
JP2012062532A (en) Collection method of rare earth alloy powder from used product
JP5971648B2 (en) Rare earth magnet recovery method and rare earth magnet recovery apparatus