JP2018186257A - Method for manufacturing optical component - Google Patents

Method for manufacturing optical component Download PDF

Info

Publication number
JP2018186257A
JP2018186257A JP2017138809A JP2017138809A JP2018186257A JP 2018186257 A JP2018186257 A JP 2018186257A JP 2017138809 A JP2017138809 A JP 2017138809A JP 2017138809 A JP2017138809 A JP 2017138809A JP 2018186257 A JP2018186257 A JP 2018186257A
Authority
JP
Japan
Prior art keywords
light
optical component
metal film
bonding
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017138809A
Other languages
Japanese (ja)
Other versions
JP6993563B2 (en
Inventor
将嗣 市川
Masatsugu Ichikawa
将嗣 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to EP18158757.7A priority Critical patent/EP3367446B1/en
Priority to CN201810163784.8A priority patent/CN108511575B/en
Priority to US15/906,870 priority patent/US10593843B2/en
Publication of JP2018186257A publication Critical patent/JP2018186257A/en
Application granted granted Critical
Publication of JP6993563B2 publication Critical patent/JP6993563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an optical component having reduced absorption of light from a light-emitting element or the like in a simple and convenient manner.SOLUTION: A method for manufacturing an optical component for an optical semiconductor according to an embodiment comprises the steps of: preparing an assembly in which a first member and a second member 2 are joined to each other through a metal connecting member 3 by directly bonding together a first metal film 3a formed on the translucent first member having at least one of oxygen, fluorine and nitrogen, and a second metal film 3b formed on the translucent or non-translucent second member 2; and applying a laser beam to the connecting member 3 or applying a microwave to the connecting member 3, thereby making a transmittance of the connecting member 3 for light of a predetermined wavelength higher than a transmittance in its original state.SELECTED DRAWING: Figure 2A

Description

本発明は、光半導体用の光学部品の製造方法に関する。   The present invention relates to a method for manufacturing an optical component for an optical semiconductor.

特許文献1に記載のLED素子のように、透光性の部材と発光素子とを接合することがある(例えば、図11参照。)。   As in the LED element described in Patent Document 1, a light-transmitting member and a light-emitting element may be joined (for example, see FIG. 11).

特開2011−233939JP2011-233939A

特許文献1では、透光性の部材と発光素子とは熱圧着により接合されている。この他に、透光性の部材と発光素子とを接合する方法としては、例えば、樹脂を介して両者を接合する方法又は表面活性化接合法により両者を直接接合する方法が考えられる。しかしながら、熱圧着により両者を接合する場合は、各部材にも比較的高温の熱を加えることになるため、各部材が損傷するおそれがある。また、樹脂を介して両者を接合する場合は、樹脂での光吸収や長時間の使用による樹脂の劣化が生じることにより光学部品として特性が低下するおそれがある。さらに、表面化活性化接合法により両者を接合する場合は、各部材の表面状態や各部材の材質によっては接合しにくい場合がある。   In Patent Document 1, the translucent member and the light emitting element are joined by thermocompression bonding. In addition, as a method of joining the light-transmitting member and the light emitting element, for example, a method of joining the two through a resin or a method of directly joining the two by a surface activated joining method can be considered. However, when both are joined by thermocompression bonding, since relatively high-temperature heat is applied to each member, each member may be damaged. Moreover, when joining both through resin, there exists a possibility that a characteristic may fall as an optical component by the deterioration of the resin by light absorption by resin and long-time use. Furthermore, when both are joined by the surface activated activation method, it may be difficult to join depending on the surface state of each member and the material of each member.

本発明の一形態に係る光半導体用の光学部品の製造方法は、酸素、フッ素、及び窒素の少なくともいずれか1つを有する透光性の第1部材に形成された第1金属膜と、透光性又は非透光性の第2部材に形成された第2金属膜と、を直接貼り合わせることにより、前記第1部材と前記第2部材とが金属からなる接合部材を介して接合された接合体を準備する工程と、前記接合部材にレーザ光を照射する又は前記接合部材にマイクロ波を照射することにより、所定の波長の光に対する前記接合部材の透過率を元の状態の透過率よりも高くする工程と、を含む。   According to one aspect of the present invention, there is provided a method for manufacturing an optical component for an optical semiconductor, comprising: a first metal film formed on a light-transmitting first member having at least one of oxygen, fluorine, and nitrogen; The first member and the second member are bonded via a bonding member made of metal by directly bonding the second metal film formed on the light-transmissive or non-light-transmissive second member. A step of preparing a joined body, and irradiating the joining member with laser light or irradiating the joining member with microwaves, thereby making the transmittance of the joining member with respect to light of a predetermined wavelength from the original transmittance. And a step of increasing the height.

これにより、発光素子等からの光が接合部材で吸収されることを低減した光学部品を簡便に製造することができる。   Thereby, the optical component which reduced that the light from a light emitting element etc. is absorbed by a joining member can be manufactured simply.

図1Aは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 1A is a diagram for explaining a method of manufacturing an optical component according to the first embodiment. 図1Bは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 1B is a view for explaining the method of manufacturing the optical component according to the first embodiment. 図1Cは、第1実施形態に係る光学部品の製造方法を説明するための図である。FIG. 1C is a view for explaining the method of manufacturing the optical component according to the first embodiment. 図2Aは、第1実施形態の光学部品の製造方法により得られる光学部品の断面図である。FIG. 2A is a cross-sectional view of an optical component obtained by the optical component manufacturing method of the first embodiment. 図2Bは、第1実施形態の光学部品に含まれる接合部材の上面図である。FIG. 2B is a top view of the joining member included in the optical component of the first embodiment. 図3Aは、第2実施形態に係る光学部品の製造方法を説明するための図である。FIG. 3A is a diagram for explaining a method of manufacturing an optical component according to the second embodiment. 図3Bは、第2実施形態に係る光学部品の製造方法を説明するための図である。FIG. 3B is a view for explaining the method of manufacturing the optical component according to the second embodiment. 図3Cは、第2実施形態に係る光学部品の製造方法を説明するための図である。FIG. 3C is a view for explaining the method of manufacturing the optical component according to the second embodiment. 図4Aは、第2実施形態の光学部品の製造方法により得られる光学部品の断面図である。FIG. 4A is a cross-sectional view of an optical component obtained by the optical component manufacturing method of the second embodiment. 図4Bは、第2実施形態の光学部品に含まれる接合部材の上面図である。FIG. 4B is a top view of the joining member included in the optical component of the second embodiment. 図5は、第2実施形態に係る光学部品と発光素子とを組み合わせた発光装置の図である。FIG. 5 is a diagram of a light emitting device in which an optical component and a light emitting element according to the second embodiment are combined. 図6Aは、第3実施形態に係る光学部品の製造方法により得られる光学部品の断面図である。FIG. 6A is a cross-sectional view of an optical component obtained by the method for manufacturing an optical component according to the third embodiment. 図6Bは、第3実施形態の光学部品に含まれる接合部材の上面図である。FIG. 6B is a top view of the joining member included in the optical component of the third embodiment. 図7は、第3実施形態に係る光学部品と発光素子とを組み合わせた発光装置の図である。FIG. 7 is a diagram of a light-emitting device that combines an optical component and a light-emitting element according to the third embodiment. 図8Aは、実施例に係る光学部品の製造方法を説明するための図である。FIG. 8A is a diagram for explaining the method of manufacturing the optical component according to the example. 図8Bは、実施例に係る光学部品の製造方法を説明するための図である。FIG. 8B is a diagram for explaining the method of manufacturing the optical component according to the example. 図8Cは、実施例に係る光学部品の製造方法を説明するための図である。FIG. 8C is a diagram for explaining the method of manufacturing the optical component according to the example. 図9Aは、実施例に係る光学部品の製造方法により得られた光学部品の断面図である。FIG. 9A is a cross-sectional view of an optical component obtained by the optical component manufacturing method according to the example. 図9Bは、実施例に係る光学部品に含まれる接合部材の上面図である。FIG. 9B is a top view of the joining member included in the optical component according to the example. 図10は、実施例に係る光学部品の製造方法により得られた光学部品を上面側から観察した写真である。FIG. 10 is a photograph of the optical component obtained by the optical component manufacturing method according to the example observed from the upper surface side. 図11は、実施例に係る接合体の分析結果である。FIG. 11 is an analysis result of the joined body according to the example. 図12は、実施例に係る光学部品の分析結果である。FIG. 12 is an analysis result of the optical component according to the example. 図13は、実施例に係る接合体の分析結果である。FIG. 13 is an analysis result of the joined body according to the example. 図14は、実施例に係る光学部品の分析結果である。FIG. 14 is an analysis result of the optical component according to the example. 図15Aは、他の例に係る接合体の接合部材近傍の走査型透過電子顕微鏡図である。FIG. 15A is a scanning transmission electron microscope view in the vicinity of a bonding member of a bonded body according to another example. 図15Bは、他の例における接合部材近傍の分析結果である。FIG. 15B is an analysis result in the vicinity of the joining member in another example. 図16Aは、他の例における接合部材の損失スペクトル図である。FIG. 16A is a loss spectrum diagram of a joining member in another example. 図16Bは、TiOの損失スペクトルを示す図である。FIG. 16B is a diagram showing a loss spectrum of TiO. 図16Cは、ルチル型のTiOの損失スペクトルを示す図である。FIG. 16C is a diagram showing a loss spectrum of rutile TiO 2 .

本発明を実施するための形態を、図面を参照しながら以下に説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するためのものであって、本発明を限定するものではない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。   A mode for carrying out the present invention will be described below with reference to the drawings. However, the form shown below is for embodying the technical idea of the present invention, and does not limit the present invention. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.

<第1実施形態>
図1A〜図1Cに第1実施形態に係る光学部品10の製造方法を示す。図2Aは本実施形態により得られる光学部品10の断面図であり、図2Bは光学部品10に含まれる接合部材3の上面図である。図2Bにおいて、ハッチングを施している領域Xが、所定の波長の光に対する透過率が高い領域である。
<First Embodiment>
1A to 1C show a method for manufacturing the optical component 10 according to the first embodiment. FIG. 2A is a cross-sectional view of the optical component 10 obtained by the present embodiment, and FIG. 2B is a top view of the joining member 3 included in the optical component 10. In FIG. 2B, a hatched region X is a region having a high transmittance for light of a predetermined wavelength.

光学部品10の製造方法は、酸素を有する透光性の第1部材1に形成された第1金属膜3aと、透光性の第2部材2に形成された第2金属膜3bと、を直接貼り合わせることにより、第1部材1と第2部材2とが金属からなる接合部材3を介して接合された接合体を準備する工程と、接合部材3にレーザ光を照射することにより、所定の波長の光に対する接合部材3の透過率を元の状態の透過率よりも高くする工程と、を含む。   The manufacturing method of the optical component 10 includes: a first metal film 3a formed on the light-transmissive first member 1 having oxygen; and a second metal film 3b formed on the light-transmissive second member 2. A step of preparing a joined body in which the first member 1 and the second member 2 are joined via the joining member 3 made of metal by directly bonding together, and by irradiating the joining member 3 with laser light, predetermined And a step of making the transmittance of the bonding member 3 with respect to the light of the wavelength higher than the transmittance of the original state.

光学部品10の製造方法によれば、発光素子等から出射される所定の波長の光が、接合部材3で吸収されることを低減した光学部品10を簡便に作製することができる。   According to the method for manufacturing the optical component 10, the optical component 10 in which light having a predetermined wavelength emitted from a light emitting element or the like is reduced from being absorbed by the bonding member 3 can be easily manufactured.

第1部材と第2部材とが金属からなる接合部材を介して接合された接合体においては、発光素子等からの光が接合部材で吸収されるため、光の取出し効率が低下してしまう。そこで、本実施形態では、接合体を準備した後に、接合体に含まれる金属からなる接合部材3にレーザ光を照射している。これにより、レーザ光を照射する前の所定の波長の光に対する接合部材3の透過率よりもレーザ光を照射した後の所定の波長の光に対する接合部材3の透過率を高くしている。これは、以下に説明する理由により起こると考えられる。レーザ光が接合部材3に照射されることにより接合部材3が加熱される。このとき、第1部材1に含まれる酸素が接合部材3の金属と結合する。これにより、レーザ光が照射された領域において、接合部材3が金属から酸素を含む化合物に変化するため、所定の波長の光に対する透過率が高くなっていると考えられる。   In a joined body in which the first member and the second member are joined via a joining member made of metal, light from the light emitting element or the like is absorbed by the joining member, so that the light extraction efficiency is lowered. Therefore, in this embodiment, after preparing the joined body, the joining member 3 made of metal contained in the joined body is irradiated with laser light. Thereby, the transmittance | permeability of the joining member 3 with respect to the light of the predetermined wavelength after irradiating a laser beam is made higher than the transmittance | permeability of the joining member 3 with respect to the light of the predetermined wavelength before irradiating a laser beam. This is considered to occur for the reason described below. The joining member 3 is heated by irradiating the joining member 3 with laser light. At this time, oxygen contained in the first member 1 is bonded to the metal of the bonding member 3. As a result, in the region irradiated with the laser light, the bonding member 3 changes from a metal to a compound containing oxygen, and thus it is considered that the transmittance for light of a predetermined wavelength is high.

本明細書において、「接合部材3の透過率」とは、発光素子等からの光を透過する割合を指す。例えば、光学部品の一部に半導体発光素子を含む(つまり、第1部材と発光素子に含まれる透光性の第2部材とを接合する)場合は、「接合部材3の透過率」とは、第2部材2を含む発光素子のピーク波長の光を透過する割合を指す。また、光学部品の一部に発光素子を含まない場合(つまり、光学部品と発光素子とを組み合わせて発光装置とする場合)は、「接合部材3の透過率」とは、光学部品と組み合わせる発光素子のピーク波長の光を透過する割合を指す。   In this specification, the “transmittance of the bonding member 3” refers to a ratio of transmitting light from a light emitting element or the like. For example, when a semiconductor light emitting element is included in a part of the optical component (that is, when the first member and the translucent second member included in the light emitting element are bonded), “the transmittance of the bonding member 3” The ratio which transmits the light of the peak wavelength of the light emitting element containing the 2nd member 2 is pointed out. Further, when a light emitting element is not included in a part of the optical component (that is, when the optical component and the light emitting element are combined to form a light emitting device), the “transmittance of the bonding member 3” is light emission combined with the optical component. The ratio of transmitting light of the peak wavelength of the element.

以下で、光学部品10の製造方法について詳述する。   Below, the manufacturing method of the optical component 10 is explained in full detail.

(接合体を準備する工程)
まず、図1Aに示すように、酸素を有する透光性の第1部材1に第1金属膜3aを形成し、透光性の第2部材2に第2金属膜3bを形成する。そして、図1Bに示すように、第1金属膜3aと第2金属膜3bとを直接貼り合わせることにより、第1部材1と第2部材2とが金属からなる接合部材3を介して接合された接合体を準備する。具体的には、本実施形態では、第1部材1としてサファイア基板を用い、第2部材2として発光素子6に含まれるサファイア基板を用いている。
(Step of preparing the joined body)
First, as shown in FIG. 1A, a first metal film 3a is formed on a light-transmissive first member 1 containing oxygen, and a second metal film 3b is formed on a light-transmissive second member 2. Then, as shown in FIG. 1B, the first member 1 and the second member 2 are bonded via the bonding member 3 made of metal by directly bonding the first metal film 3a and the second metal film 3b together. Prepare a bonded assembly. Specifically, in this embodiment, a sapphire substrate is used as the first member 1, and a sapphire substrate included in the light emitting element 6 is used as the second member 2.

本実施形態では、原子拡散接合法を用いて接合体を準備している。具体的には、超高真空中において、第1金属膜3aの形成、第2金属膜3bの形成、及び第1金属膜3aと第2金属膜3bとの接合を行っている。これにより、第1金属膜3a及び第2金属膜3bの接合時に第1部材1及び第2部材2を過度に加熱する必要がないため、接合時の熱による第1部材1及び第2部材2の劣化を防止することができる。また、第1金属膜3aの下面及び第2金属膜3bの上面に、大気中に含まれる物質が付着することを抑制することができる。つまり、第1金属膜3aと第2金属膜3bとの間に第1金属膜3a及び第2金属膜3b以外の物質が入ることを抑制することができる。これにより、第1金属膜3aと第2金属膜3bとの間の接合力を高くすることができる。また、第1金属膜3aと第2金属膜3bとの間に余計な材料が入らないため、光吸収を抑制しやすくすることができる。なお、第1金属膜3aと第2金属膜3bとをスパッタ法等の公知の方法により形成した後で、表面活性化接合法を用いて各金属膜の表面を活性化させることにより第1金属膜3a及び第2金属膜3bを貼り合わせてもよい。表面活性化接合法を用いる場合も、第1部材1及び第2部材2を過度に加熱することなく金属膜同士を接合することができるため、接合時の熱による第1部材1及び第2部材2の劣化を防止することができる。   In the present embodiment, a bonded body is prepared using an atomic diffusion bonding method. Specifically, the formation of the first metal film 3a, the formation of the second metal film 3b, and the bonding of the first metal film 3a and the second metal film 3b are performed in an ultra-high vacuum. Thereby, since it is not necessary to heat the 1st member 1 and the 2nd member 2 excessively at the time of joining of the 1st metal film 3a and the 2nd metal film 3b, the 1st member 1 and the 2nd member 2 by the heat at the time of joining are carried out. Can be prevented. Moreover, it can suppress that the substance contained in air | atmosphere adheres to the lower surface of the 1st metal film 3a, and the upper surface of the 2nd metal film 3b. That is, it is possible to prevent substances other than the first metal film 3a and the second metal film 3b from entering between the first metal film 3a and the second metal film 3b. Thereby, the joining force between the 1st metal film 3a and the 2nd metal film 3b can be made high. Further, since no extra material enters between the first metal film 3a and the second metal film 3b, light absorption can be easily suppressed. The first metal film 3a and the second metal film 3b are formed by a known method such as a sputtering method, and then the surface of each metal film is activated by using a surface activated bonding method to thereby form the first metal film. The film 3a and the second metal film 3b may be bonded together. Even when the surface activated bonding method is used, the first member 1 and the second member can be bonded to each other without excessively heating the first member 1 and the second member 2. 2 deterioration can be prevented.

ここでは、第1部材1として酸素を含む第1部材1を用いて説明しているが、第1部材1として、酸素、フッ素、及び窒素(以下「酸素等」ともいう。)の少なくとも1つを有する部材を用いることができる。これらの部材を用いる場合も、酸素を含む部材を用いる場合と同様に、レーザ光を照射することにより、所定の光の波長に対する透過率を高くすることができる。   Here, the first member 1 containing oxygen is used as the first member 1, but at least one of oxygen, fluorine, and nitrogen (hereinafter also referred to as “oxygen or the like”) is used as the first member 1. The member which has can be used. In the case of using these members, similarly to the case of using a member containing oxygen, the transmittance with respect to the wavelength of the predetermined light can be increased by irradiating the laser beam.

第1部材1としては、加熱源となるレーザ、マイクロ波を吸収しない材料を用いることができる。サファイア基板の他に、例えば、ガラス板、蛍光体を含む蛍光体含有板、レンズを用いることができる。蛍光体含有板としては、全体に蛍光体を含むものを用いてもよいし、図4A等に示すように、蛍光体を含む蛍光部1aと、蛍光部1aを取り囲むように蛍光部1aの側面に設けられた光反射部1bと、を含むものを用いてもよい。このように、第1部材1の一部に非透光性の領域(図4Aでは、光反射部1b)が含まれていても、第1部材の一部に透光性の領域(図4Aでは、蛍光部1a)が含まれていれば、本明細書の第1部材1に含まれることとする。蛍光体含有板に含まれる蛍光体としては、YAG蛍光体、LAG蛍光体等公知の蛍光体を含む材料を用いることができる。また、光反射部1bとしては、例えば、酸化アルミニウムを含むセラミックスを用いることができる。   As the first member 1, a laser that is a heating source and a material that does not absorb microwaves can be used. In addition to the sapphire substrate, for example, a glass plate, a phosphor-containing plate containing a phosphor, and a lens can be used. As a fluorescent substance containing board, you may use what contains a fluorescent substance as a whole, and as shown to FIG. 4A etc., the side surface of the fluorescent part 1a so that the fluorescent part 1a containing a fluorescent substance and the fluorescent part 1a may be surrounded It is also possible to use one including the light reflecting portion 1b provided in the. Thus, even if the non-translucent region (in FIG. 4A, the light reflecting portion 1b) is included in a part of the first member 1, the translucent region (FIG. 4A) is included in a part of the first member. Then, if the fluorescent portion 1a) is included, it is included in the first member 1 of the present specification. As the phosphor contained in the phosphor-containing plate, a material containing a known phosphor such as a YAG phosphor or a LAG phosphor can be used. Moreover, as the light reflection part 1b, ceramics containing aluminum oxide can be used, for example.

第2部材2としては、第2部材2の第2金属膜3bが形成される領域に、酸素、フッ素、及び窒素の少なくともいずれか1つを有する材料を含むものを用いることが好ましい。これにより、第1部材1だけでなく第2部材2に含まれる酸素等を接合部材3の金属に結合させることができるため、接合部材3の透過率を高くしやすくすることができる。   As the second member 2, it is preferable to use a material containing a material having at least one of oxygen, fluorine, and nitrogen in a region where the second metal film 3 b of the second member 2 is formed. Thereby, since oxygen etc. contained not only in the first member 1 but also in the second member 2 can be bonded to the metal of the bonding member 3, the transmittance of the bonding member 3 can be easily increased.

本実施形態では、発光素子6として基板と発光構造4とを含む発光ダイオード(Light emitting diode、LED)を用いている。そして、LEDの発光面側に位置するサファイア基板を第2部材2とし、サファイア基板の発光構造4が設けられている主面とは異なる主面に第2金属膜3bを形成している。これにより、サファイア基板に含まれる酸素を接合部材3に結合させることができる。また、電極5での光の吸収を低減することができるため、光学部品10としての光取出し効率の向上を期待できる。この点について、以下に詳述する。半導体ウエハを個片化してLEDにする際に、LEDの発光面側に位置する基板の厚みを大きくすると個片化することが難しい。しかしながら、基板の厚みを小さくすると、活性層からの光のうちの発光素子の上面で反射される光が電極に当たりやすくなるため、光が電極で吸収され、減衰するおそれがある。これに対し、LED6の発光面側に位置する基板に第1部材1を接合することにより、光が繰り返し反射される部分(発光構造4、第2部材2である基板、及び第1部材1を合わせた部分)の厚みを大きくすることができる。これにより、活性層4bからの光がn電極5a及びp電極5bに照射される回数を減らすことができ、電極5での光の吸収を低減することができると考えられる。   In the present embodiment, a light emitting diode (LED) including a substrate and the light emitting structure 4 is used as the light emitting element 6. And the sapphire substrate located in the light emission surface side of LED is made into the 2nd member 2, and the 2nd metal film 3b is formed in the main surface different from the main surface in which the light emission structure 4 of a sapphire substrate is provided. Thereby, oxygen contained in the sapphire substrate can be bonded to the bonding member 3. In addition, since the light absorption at the electrode 5 can be reduced, the light extraction efficiency as the optical component 10 can be expected to be improved. This point will be described in detail below. When the semiconductor wafer is separated into LEDs, it is difficult to divide the wafer if the thickness of the substrate located on the light emitting surface side of the LEDs is increased. However, when the thickness of the substrate is reduced, light reflected from the upper surface of the light emitting element among the light from the active layer is likely to hit the electrode, so that the light may be absorbed and attenuated by the electrode. On the other hand, by joining the first member 1 to the substrate located on the light emitting surface side of the LED 6, the light is repeatedly reflected (the light emitting structure 4, the substrate that is the second member 2, and the first member 1. The thickness of the combined portion) can be increased. Thereby, it is considered that the number of times the light from the active layer 4b is irradiated to the n-electrode 5a and the p-electrode 5b can be reduced, and the light absorption at the electrode 5 can be reduced.

なお、本実施形態では、LED6の光取出し面側に位置する基板を第2部材2としており、発光構造4を光半導体としているが、LEDの光取出し面側に基板を有さない(つまり、発光構造4の一部を第2部材として用いる)場合は、光取出し面側に位置する発光構造4の一部を第2部材としてもよい。例えば、図1Aにおいて、発光素子6の発光面側に基板2が位置していない場合は、n側半導体層4aの一部が第2部材2として機能し、n側半導体層4aの他の一部が発光構造4の一部として機能する。透光性の第2部材2としては、発光素子6に含まれる基板の他に、第1部材1で挙げたものと同様のものを用いることができる。   In this embodiment, the substrate located on the light extraction surface side of the LED 6 is the second member 2 and the light emitting structure 4 is an optical semiconductor, but does not have a substrate on the light extraction surface side of the LED (that is, When a part of the light emitting structure 4 is used as the second member), a part of the light emitting structure 4 located on the light extraction surface side may be used as the second member. For example, in FIG. 1A, when the substrate 2 is not located on the light emitting surface side of the light emitting element 6, a part of the n-side semiconductor layer 4a functions as the second member 2 and the other one of the n-side semiconductor layer 4a. The part functions as a part of the light emitting structure 4. As the translucent second member 2, in addition to the substrate included in the light emitting element 6, the same materials as those described for the first member 1 can be used.

本実施形態では、第2部材2として透光性の第2部材を用いているが、第2部材として非透光性の第2部材を用いてもよい。非透光性の第2部材としては、例えば、金属板、樹脂、Si等のエネルギーバンドギャップの小さな半導体ウエハを用いることができる。   In the present embodiment, a translucent second member is used as the second member 2, but a non-translucent second member may be used as the second member. As the non-light-transmitting second member, for example, a semiconductor wafer having a small energy band gap such as a metal plate, resin, or Si can be used.

第1金属膜3a及び第2金属膜3bとしては、第1部材1に含まれる酸素等と結合することにより、所定の波長の光に対する透過率が高くなる材料を用いることができる。第1部材1に酸素が含まれる場合は、例えば、Al、Ti、Ta等の標準生成自由エネルギーの大きな金属を用いることができる。また、第1部材1にフッ素が含まれる場合は、例えば、Mg、Li、Caを用いることができる。さらに、第1部材1に窒素が含まれる場合は、例えば、Si、Al、Znを用いることができる。第1金属膜3aと第2金属膜3bとは同じ材料により構成することが好ましい。これにより、第1金属膜3aと第2金属膜3bとの間に屈折率差ができることを抑制することができるため、光取出し効率の低下を低減することができる。   As the first metal film 3a and the second metal film 3b, a material that increases the transmittance for light of a predetermined wavelength by being combined with oxygen or the like contained in the first member 1 can be used. When oxygen is contained in the first member 1, for example, a metal having a large standard free energy for generation such as Al, Ti, Ta, or the like can be used. Moreover, when the 1st member 1 contains a fluorine, Mg, Li, and Ca can be used, for example. Further, when the first member 1 contains nitrogen, for example, Si, Al, Zn can be used. The first metal film 3a and the second metal film 3b are preferably made of the same material. Thereby, since it can suppress that a refractive index difference is made between the 1st metal film 3a and the 2nd metal film 3b, the fall of light extraction efficiency can be reduced.

接合部材3の膜厚は、材料により異なるが、0.2nm以上5nm以下とすることが好ましく、0.4nm以上2nm以下とすることがより好ましい。0.2nm以上の膜厚で形成することにより、接合部材3と第1部材1及び第2部材2との接合強度を高くすることができる。また、5nm以下の膜厚とすることにより、接合部材3にレーザ光を照射する又は接合部材3にマイクロ波を照射する工程において、接合部材3の透過率を高くしやすくすることができる。   The film thickness of the bonding member 3 varies depending on the material, but is preferably 0.2 nm or more and 5 nm or less, and more preferably 0.4 nm or more and 2 nm or less. By forming the film with a thickness of 0.2 nm or more, the bonding strength between the bonding member 3, the first member 1, and the second member 2 can be increased. Moreover, by setting the film thickness to 5 nm or less, the transmittance of the bonding member 3 can be easily increased in the step of irradiating the bonding member 3 with laser light or irradiating the bonding member 3 with microwaves.

第1部材1及び第2部材2としてサファイア又はガラスを用い且つ第1金属膜3a及び第2金属膜3bとしてAl又はTiを用いる場合は、第1金属膜3a及び第2金属膜3bを形成する前に、第1金属膜3aを形成する面及び第2金属膜3bを形成する面を親水性表面にすることが好ましい。例えば、第1部材1における第1金属膜3aを形成する面及び第2部材2における第2金属膜3bを形成する面を水で洗浄することにより、それぞれの面を親水性表面にすることができる。これにより、接合部材3に取り込むことができる酸素の量を多くすることができるため、接合体を準備する工程における接合部材3の透過率を高くすることができる。したがって、後述のレーザ光を照射した又はマイクロ波を照射した後の接合部材3の透過率をより高くすることができる。   When sapphire or glass is used as the first member 1 and the second member 2 and Al or Ti is used as the first metal film 3a and the second metal film 3b, the first metal film 3a and the second metal film 3b are formed. Before, it is preferable that the surface on which the first metal film 3a is formed and the surface on which the second metal film 3b is formed are hydrophilic surfaces. For example, the surface of the first member 1 on which the first metal film 3a is formed and the surface of the second member 2 on which the second metal film 3b is formed may be washed with water so that the surfaces become hydrophilic surfaces. it can. Thereby, since the quantity of the oxygen which can be taken in into the joining member 3 can be increased, the transmittance | permeability of the joining member 3 in the process of preparing a conjugate | zygote can be made high. Therefore, it is possible to further increase the transmittance of the bonding member 3 after irradiation with laser light described later or after irradiation with microwaves.

レーザ光又はマイクロ波を照射する前に、親水性表面にすることにより、接合部材3に取り込む酸素の量を多くすることができることは、図15A及びBに示す他の例に係る接合体の分析結果から確認することができる。図15Aに、接合部材3近傍を走査型透過電子顕微鏡(Scanning Transmission Electron Microscope、STEM)により観察した暗視野像を示す。ここでは、第1部材1及び第2部材2として石英ガラスを用い、それぞれの表面を酸と水で洗浄して親水性表面とした後に、それぞれが1nmのTiからなる第1金属膜3a及び第2金属膜3bを形成し、第1金属膜3a及び第2金属膜3bを接合した接合体を準備した。また、図15Bに、電子エネルギー損失分光法(Electron Energy Loss Spectroscopy、EELS)により、図15Aの枠線内におけるケイ素とチタンと酸素とをマッピング測定した結果を示す。図15Bの左図における白い領域はケイ素が強く検出されている領域であり、黒い領域は接合部材3の位置する領域である。図15Bの中央図において、左図の黒い領域に対応する白い領域でチタンが検出され、図15Bの右図において、左図の黒い領域に対応する領域で酸素が検出されていることから、接合部材3はチタンと酸素を含むことがわかる。このことは図16Aに示す、接合部材3(図15Bの中央図における破線の枠内)のエネルギー損失スペクトル(以下「EELSスペクトル」という。)からも明らかである。図16BはTiOのEELSスペクトルであり、図16Cはルチル型のTiOのEELSスペクトルである。また、図16A〜図16Cにおいて、460eV近傍のスペクトルはTiのL殻を示しており、530eV付近のスペクトルがOのK殻を示している。図16Aに示すEELSスペクトルにおけるTiのL殻及びOのK殻のスペクトル形状は、TiOのTiのL殻及びOのK殻のスペクトル形状と類似しており、図16Aに示すEELSスペクトルにおけるTiのL殻のピーク波長はルチル型のTiOのピーク波長に近い。このことからも、接合部材3はチタンと酸素を含むものと考えられる。 The analysis of the joined body according to another example shown in FIGS. 15A and 15B can increase the amount of oxygen taken into the joining member 3 by making the surface hydrophilic before irradiating the laser beam or the microwave. It can be confirmed from the result. FIG. 15A shows a dark field image obtained by observing the vicinity of the joining member 3 with a scanning transmission electron microscope (STEM). Here, quartz glass is used as the first member 1 and the second member 2, and each surface is washed with an acid and water to make a hydrophilic surface. A two-metal film 3b was formed, and a joined body in which the first metal film 3a and the second metal film 3b were joined was prepared. FIG. 15B shows the result of mapping measurement of silicon, titanium, and oxygen within the frame line of FIG. 15A by electron energy loss spectroscopy (EELS). The white area in the left figure of FIG. 15B is an area where silicon is strongly detected, and the black area is an area where the bonding member 3 is located. In the central view of FIG. 15B, titanium is detected in the white region corresponding to the black region in the left diagram, and in the right diagram in FIG. 15B, oxygen is detected in the region corresponding to the black region in the left diagram. It can be seen that the member 3 contains titanium and oxygen. This is also apparent from the energy loss spectrum (hereinafter referred to as “EELS spectrum”) of the bonding member 3 (within the broken line frame in the central view of FIG. 15B) shown in FIG. 16A. FIG. 16B is an EELS spectrum of TiO, and FIG. 16C is an EELS spectrum of rutile TiO 2 . 16A to 16C, the spectrum near 460 eV shows the L shell of Ti, and the spectrum near 530 eV shows the K shell of O. The spectral shapes of the Ti L shell and the O K shell in the EELS spectrum shown in FIG. 16A are similar to the spectral shapes of the Ti L shell and the O K shell in TiO, and Ti in the EELS spectrum shown in FIG. 16A. The peak wavelength of the L shell is close to the peak wavelength of rutile TiO 2 . Also from this, it is thought that the joining member 3 contains titanium and oxygen.

なお、第1金属膜3a及び第2金属膜3bを形成する前に、第1部材1及び第2部材2の表面を親水性表面とする場合は、接合部材3に金属原子と酸素原子とが含まれることがある。この場合であっても、主成分が金属である場合は本明細書における「金属からなる接合部材3」に含まれることとする。   In addition, before forming the 1st metal film 3a and the 2nd metal film 3b, when making the surface of the 1st member 1 and the 2nd member 2 into a hydrophilic surface, a metal atom and an oxygen atom are in the joining member 3. May be included. Even in this case, when the main component is a metal, it is included in the “joining member 3 made of metal” in this specification.

また、第1部材1及び第2部材2の表面を親水性表面とする場合に、例えば、第1金属膜3a及び第2金属膜3bのそれぞれの膜厚が比較的薄い場合は、接合体において、接合部材3にある程度の割合で酸素原子が含まれることがある。この場合であっても、接合体における接合部材3が金属原子を含んでいるという点では、接合部材の主成分が金属である場合と共通している。いずれにしても、本実施形態によれば、レーザ光を照射することにより、所定の波長の光に対する接合部材3の透過率を元の状態の透過率よりも高くすることができる。   Further, when the surfaces of the first member 1 and the second member 2 are hydrophilic surfaces, for example, when the thicknesses of the first metal film 3a and the second metal film 3b are relatively thin, The joining member 3 may contain oxygen atoms at a certain rate. Even in this case, it is common to the case where the main component of the bonding member is metal in that the bonding member 3 in the bonded body contains metal atoms. In any case, according to the present embodiment, by irradiating laser light, the transmittance of the bonding member 3 with respect to light of a predetermined wavelength can be made higher than the transmittance in the original state.

(接合部材3にレーザ光を照射する又は接合部材3にマイクロ波を照射する工程)
次に、図1C及び図2Aに示すように、接合部材3にレーザ光を照射することにより、所定の波長の光に対する接合部材3の透過率を元の透過率よりも高くする。これにより、発光素子6からの光が接合部材3で吸収されることを低減することができるため、所定の波長の光に対する透過率の高い光学部品10とすることができる。例えば、第1部材1及び第2部材2が石英ガラスからなり、接合部材3が0.8nmのAlからなる接合体においては400nmの光に対する透過率が約87%であった。これに対して、同条件で得られた接合体に130μmの幅の照射領域を20μmずつずらしながら複数行形成されるようにレーザ光が照射された光学部品においては400nmの光に対する透過率が約98%となったことを確認できた。本実施形態のようにレーザ光を照射することにより、接合部材3及びその近傍のみを加熱することができる。したがって、第1部材1及び第2部材2の劣化を低減することができる。例えば、本実施形態のように、第1部材1と発光素子6とを接合する場合に、発光素子6の全体を加熱すると、発光素子6に含まれる電極5が加熱されて電極としての機能を果たさなくなるおそれがあるが、これを回避することができる。なお、光学部品として、マイクロ波が照射されることにより劣化する材料を含まない光学部品を用いる場合は、レーザ光を照射する代わりにマイクロ波を照射してもよい。
(Step of irradiating the joining member 3 with laser light or irradiating the joining member 3 with microwaves)
Next, as shown in FIG. 1C and FIG. 2A, the joining member 3 is irradiated with laser light, so that the transmittance of the joining member 3 with respect to light of a predetermined wavelength is made higher than the original transmittance. Thereby, since it can reduce that the light from the light emitting element 6 is absorbed by the joining member 3, it can be set as the optical component 10 with the high transmittance | permeability with respect to the light of a predetermined wavelength. For example, in the joined body in which the first member 1 and the second member 2 are made of quartz glass and the joining member 3 is made of Al of 0.8 nm, the transmittance with respect to light of 400 nm was about 87%. In contrast, an optical component irradiated with laser light so that a plurality of rows are formed by shifting an irradiation region having a width of 130 μm by 20 μm on the joined body obtained under the same conditions has a transmittance of about 400 nm. It was confirmed that it was 98%. By irradiating laser light as in the present embodiment, only the bonding member 3 and the vicinity thereof can be heated. Therefore, the deterioration of the first member 1 and the second member 2 can be reduced. For example, when the first member 1 and the light emitting element 6 are bonded as in the present embodiment, when the entire light emitting element 6 is heated, the electrode 5 included in the light emitting element 6 is heated to function as an electrode. There is a risk that it will not be fulfilled, but this can be avoided. Note that when an optical component that does not include a material that deteriorates when irradiated with microwaves is used as the optical component, microwave irradiation may be performed instead of laser light irradiation.

レーザ光としては、例えば、YAGレーザ等の固体レーザ、KrFエキシマレーザ、COレーザ等のガスレーザ、半導体レーザ等を用いることができる。本実施形態では、レーザ光を集光させやすいため、第1部材1の側からレーザ光を照射している。これに限らず、第1部材1及び第2部材2の両者が透光性の材料からなる場合は、第2部材2側からレーザ光を照射してもよい。例えば、第1部材1として蛍光体含有板を用い、第2部材2としてサファイア基板を用いる場合は、第2部材2側からレーザ光を照射することが好ましい。これにより、レーザ光が散乱されることなく接合部材3に照射されるため、接合部材3に高密度のエネルギーを集中させて照射することができるためである。 As the laser beam, for example, a solid-state laser such as a YAG laser, a gas laser such as a KrF excimer laser or a CO 2 laser, a semiconductor laser, or the like can be used. In this embodiment, since it is easy to condense a laser beam, a laser beam is irradiated from the 1st member 1 side. Not only this but when both the 1st member 1 and the 2nd member 2 consist of a translucent material, you may irradiate a laser beam from the 2nd member 2 side. For example, when a phosphor-containing plate is used as the first member 1 and a sapphire substrate is used as the second member 2, it is preferable to irradiate laser light from the second member 2 side. Thereby, since the laser beam is irradiated to the bonding member 3 without being scattered, it is possible to concentrate and irradiate the bonding member 3 with high-density energy.

レーザ光を照射することにより所定の波長の光に対する透過率を高くする場合は、接合部材3における一部領域のみの透過率を元の状態の透過率よりも高くすることが好ましい。つまり、接合部材3において部分的に金属の領域を残しておくことが好ましい。仮に、第1部材1に含まれる酸素等が接合部材3と結合することにより、第1部材1と接合部材3との密着力が低下しても、レーザ光が照射されていない領域(金属の領域)で密着力を維持することができるためである。本実施形態では、図2Bに示すように、上方から見て縦縞状にレーザ光を照射しているが、これに限定されない。なお、1回のレーザ光照射で形成される照射領域の幅は、接合部材3の上面からレーザ光の焦点までの距離を変えることにより制御できる。   In the case where the transmittance for light of a predetermined wavelength is increased by irradiating laser light, it is preferable that the transmittance of only a partial region in the bonding member 3 is higher than the transmittance in the original state. That is, it is preferable to leave a metal region partially in the joining member 3. Even if the adhesion force between the first member 1 and the bonding member 3 is reduced due to bonding of oxygen or the like contained in the first member 1 with the bonding member 3, the region where the laser beam is not irradiated (metal This is because the adhesion can be maintained in the region. In this embodiment, as shown in FIG. 2B, the laser beam is irradiated in a vertical stripe shape when viewed from above, but the present invention is not limited to this. Note that the width of the irradiation region formed by one laser light irradiation can be controlled by changing the distance from the upper surface of the bonding member 3 to the focal point of the laser light.

マイクロ波としては、例えば、マイクロ波アニール装置を用いることができる。マイクロ波を照射する場合も、レーザ光を照射する場合と同様に、接合部材3が加熱され、第1部材1に含まれる酸素等が接合部材3と結合することにより透過率が高くなっていると推測される。   As the microwave, for example, a microwave annealing apparatus can be used. Also in the case of irradiating with microwaves, as in the case of irradiating with laser light, the bonding member 3 is heated, and oxygen or the like contained in the first member 1 is combined with the bonding member 3 to increase the transmittance. It is guessed.

<第2実施形態>
図3A〜図3Cに第2実施形態に係る光学部品20の製造方法を示す。図4Aは本実施形態により得られる光学部品20の断面図であり、図4Bは光学部品20に含まれる接合部材3の上面図である。図4Bにおいて、ハッチングが施されている領域Xが、所定の波長の光に対する透過率が高くなっている領域である。また、図5は光学部品20と光半導体として用いる発光素子9とを組み合わせた発光装置30の図である。光学部品20は、次に説明する事項以外は、光学部品10で説明した事項と実質的に同一である。
Second Embodiment
3A to 3C show a method for manufacturing the optical component 20 according to the second embodiment. FIG. 4A is a cross-sectional view of the optical component 20 obtained by the present embodiment, and FIG. 4B is a top view of the joining member 3 included in the optical component 20. In FIG. 4B, a hatched region X is a region where the transmittance for light of a predetermined wavelength is high. FIG. 5 is a diagram of a light emitting device 30 that combines the optical component 20 and the light emitting element 9 used as an optical semiconductor. The optical component 20 is substantially the same as the items described in the optical component 10 except the items described below.

本実施形態では、接合体を準備する工程において、下から順に、第2部材2、接合部材3、第1部材1、第2接合部材8、及び第3部材7を有する接合体を準備している。具体的には、まず、図3Aに示すように、第1部材1の下面に第1金属膜3a、第1部材1の上面に第3金属膜8a、第2部材2の上面に第2金属膜3b、及び第3部材7の下面に第4金属膜8b、をそれぞれ形成する。そして、第1金属膜3aの下面及び第2金属膜3bの上面、第3金属膜8aの上面及び第4金属膜8bの下面、をそれぞれ直接貼り合わせることにより、図3Bに示すような接合体を準備している。本実施形態では、第1部材1として蛍光体含有板、第2部材2としてサファイア基板、第3部材7としてサファイア基板を用いている。そして、接合部材3にレーザ光を照射する又は接合部材3にマイクロ波を照射する工程において、マイクロ波を照射している。このとき、図3Cに示すように、接合部材3だけでなく、第2接合部材8にもマイクロ波を照射しているため、図4Aの領域Yに示すように第2接合部材8においても透光率が高くなっている。   In this embodiment, in the step of preparing the joined body, a joined body having the second member 2, the joining member 3, the first member 1, the second joining member 8, and the third member 7 is prepared in order from the bottom. Yes. Specifically, first, as shown in FIG. 3A, the first metal film 3a is formed on the lower surface of the first member 1, the third metal film 8a is formed on the upper surface of the first member 1, and the second metal is formed on the upper surface of the second member 2. A fourth metal film 8b is formed on the lower surface of the film 3b and the third member 7, respectively. Then, the lower surface of the first metal film 3a, the upper surface of the second metal film 3b, the upper surface of the third metal film 8a, and the lower surface of the fourth metal film 8b are directly bonded to each other, whereby a joined body as shown in FIG. 3B. Are preparing. In the present embodiment, a phosphor-containing plate is used as the first member 1, a sapphire substrate is used as the second member 2, and a sapphire substrate is used as the third member 7. Then, in the step of irradiating the joining member 3 with laser light or irradiating the joining member 3 with microwaves, microwaves are emitted. At this time, as shown in FIG. 3C, not only the bonding member 3 but also the second bonding member 8 is irradiated with microwaves. Therefore, as shown in the region Y of FIG. The light rate is high.

光学部品20の製造方法においても、接合部材3での光吸収を低減した光学部品20を簡便に製造することができる。また、接合部材3にマイクロ波を照射することにより、比較的短い時間で広い範囲において、接合部材3の透過率を高くすることができる。さらに、第3部材7を第1部材1の上面側に接合しているため、蛍光体含有板に含まれる蛍光体で生じる熱を放熱しやすくすることができる。   Also in the manufacturing method of the optical component 20, the optical component 20 with reduced light absorption by the bonding member 3 can be easily manufactured. Further, by irradiating the bonding member 3 with microwaves, the transmittance of the bonding member 3 can be increased in a wide range in a relatively short time. Furthermore, since the 3rd member 7 is joined to the upper surface side of the 1st member 1, it can make it easy to radiate the heat which arises with the fluorescent substance contained in a fluorescent substance containing board.

本実施形態において、第1部材1である蛍光体含有板として、蛍光部1aと、蛍光部1aを取り囲むように蛍光部1aの側面に設けられた光反射部1bと、を含む。   In the present embodiment, the phosphor-containing plate that is the first member 1 includes a fluorescent part 1a and a light reflecting part 1b provided on a side surface of the fluorescent part 1a so as to surround the fluorescent part 1a.

本実施形態では、接合部材3及び第2接合部材8の全領域の透過率を高くしている。しかしながら、第1実施形態のように、レーザ光を照射して所定の波長の光に対する透過率を高くする場合は、接合部材3及び第2接合部材8において、光反射部1bの上方及び下方に位置する領域の光透過率は元の透過率のままにすることが好ましい。つまり、蛍光部1aの上方及び下方に位置する領域のみにレーザ光を照射することが好ましい。これにより、接合部材3及び第2接合部材8のうち、光の取出しに影響がない領域を金属の性質のままにすることができるため、蛍光体から光反射部1bに向かう熱を第2部材2及び第3部材7に排熱しやすくすることができる。   In this embodiment, the transmittance of the entire region of the joining member 3 and the second joining member 8 is increased. However, as in the first embodiment, when the laser beam is irradiated to increase the transmittance for light of a predetermined wavelength, the bonding member 3 and the second bonding member 8 are above and below the light reflecting portion 1b. It is preferable that the light transmittance of the located region remains the original transmittance. That is, it is preferable to irradiate only the region located above and below the fluorescent portion 1a with the laser beam. Thereby, in the joining member 3 and the second joining member 8, the region that does not affect the light extraction can be left as a metal, so that the heat from the phosphor toward the light reflecting portion 1 b is transferred to the second member. Heat can be easily exhausted to the second and third members 7.

発光装置30では、図5に示すように、発光素子9としてレーザダイオード(Laser Diode、LD)を用いている。発光素子9としてLDを用いる場合は、蛍光体の放熱性の向上の必要性が大きく、第2部材2を接合する必要性が増すためである。これに限らず、発光素子9としてLEDを用いることもできる。   In the light emitting device 30, as shown in FIG. 5, a laser diode (Laser Diode, LD) is used as the light emitting element 9. This is because when the LD is used as the light emitting element 9, the necessity for improving the heat dissipation of the phosphor is large, and the necessity for joining the second member 2 is increased. Not only this but LED can also be used as the light emitting element 9. FIG.

<第3実施形態>
図6Aは、第3実施形態に係る光学部品40の製造方法により得られる光学部品40の断面図である。また、図6Bは光学部品40に含まれる接合部材3の上面図である。図6Bにおいてハッチングを施している領域Xが、所定の波長の光に対する透過率が高くなっている領域である。さらに、図7は光学部品40と光半導体として用いる発光素子9とを組み合わせた発光装置50の模式図である。光学部品40は、次に説明する事項以外は、光学部品10で説明した事項と実質的に同一である。
<Third Embodiment>
FIG. 6A is a cross-sectional view of the optical component 40 obtained by the method for manufacturing the optical component 40 according to the third embodiment. FIG. 6B is a top view of the bonding member 3 included in the optical component 40. In FIG. 6B, the hatched region X is a region where the transmittance for light of a predetermined wavelength is high. Further, FIG. 7 is a schematic view of a light emitting device 50 in which an optical component 40 and a light emitting element 9 used as an optical semiconductor are combined. The optical component 40 is substantially the same as the items described in the optical component 10 except the items described below.

本実施形態では、第2部材2として非透光性の部材を用いている。具体的には、第1部材1として蛍光体含有板を用い、第2部材2として金属板を用いている。また、接合部材3にレーザ光を照射する又は接合部材3にマイクロ波を照射する工程において、上方から見て、中央近傍の領域にレーザ光を照射し、その周囲の領域は元の透過率のままにしている。   In the present embodiment, a non-translucent member is used as the second member 2. Specifically, a phosphor-containing plate is used as the first member 1 and a metal plate is used as the second member 2. Further, in the step of irradiating the joining member 3 with laser light or irradiating the joining member 3 with microwaves, the region near the center is irradiated with laser light as viewed from above, and the surrounding region has the original transmittance. Leave it.

本実施形態においても、発光素子等からの光が接合部材3で吸収されることを低減した光学部品40を簡便に製造することができる。また、第2部材2が金属板からなる場合は、第2部材2の上面で発光素子9からの光が吸収されやすくなるが、本実施形態のように、第1部材1と第2部材2との間に透過率を高くした接合部材3を介在させることにより、第2部材2で吸収される光を低減することができる。これは、第1部材1側から入射した光のうちの浅い角度で入射する光を、透過率を高くした接合部材3で全反射させて取り出すことができるためである。   Also in this embodiment, it is possible to easily manufacture the optical component 40 in which light from the light emitting element or the like is reduced from being absorbed by the bonding member 3. Further, when the second member 2 is made of a metal plate, the light from the light emitting element 9 is easily absorbed by the upper surface of the second member 2, but the first member 1 and the second member 2 as in this embodiment. The light absorbed by the second member 2 can be reduced by interposing the bonding member 3 having a high transmittance between the two. This is because light incident at a shallow angle out of light incident from the first member 1 side can be extracted by being totally reflected by the bonding member 3 having a high transmittance.

図6Aにおいては、蛍光体含有板として、全体に蛍光体を含むものを用いているが、蛍光部と光反射部とを含むものを用いてもよい。   In FIG. 6A, as the phosphor-containing plate, a plate containing a phosphor as a whole is used, but a plate containing a fluorescent portion and a light reflecting portion may be used.

光学部品40は、例えば、図7に示すように、発光素子9であるLDと組み合わせて発光装置50とすることができる。図7では、発光素子9からの光を第1部材1の上面に照射し、同一面(上面)側から蛍光等の光を取り出している。   For example, as shown in FIG. 7, the optical component 40 can be combined with an LD that is a light emitting element 9 to form a light emitting device 50. In FIG. 7, light from the light emitting element 9 is irradiated on the upper surface of the first member 1, and light such as fluorescence is extracted from the same surface (upper surface) side.

<実施例>
以下の製造方法により光学部品60を作製した。まず、2つのサファイア基板のそれぞれの両面を研磨して、厚みが100μmのサファイア基板からなる第1部材1と、厚みが550μmのサファイア基板からなる第2部材2と、を準備した。そして、原子拡散接合法を用いて、第1部材1と第2部材2とが接合部材3を介して貼り合わされた接合体を準備した。具体的には、まず、図8Aに示すように、Alからなる第1金属膜3aを0.5nmの膜厚で第1部材1の下面に形成し、Alからなる第2金属膜3bを0.5nmの膜厚で第2部材2の上面に形成した。そして、図8Bに示すように、第1金属膜3aの下面と、第2金属膜3bの上面と、を直接接合した。このとき、第1金属膜3aの形成、第2金属膜3bの形成、及び第1金属膜3a及び第2金属膜3bの接合は、超高真空中で行った。
<Example>
The optical component 60 was produced by the following manufacturing method. First, both surfaces of two sapphire substrates were polished to prepare a first member 1 made of a sapphire substrate having a thickness of 100 μm and a second member 2 made of a sapphire substrate having a thickness of 550 μm. And the joined body by which the 1st member 1 and the 2nd member 2 were bonded together through the joining member 3 was prepared using the atomic diffusion joining method. Specifically, first, as shown in FIG. 8A, a first metal film 3a made of Al is formed on the lower surface of the first member 1 with a film thickness of 0.5 nm, and a second metal film 3b made of Al is set to 0. It was formed on the upper surface of the second member 2 with a film thickness of 5 nm. Then, as shown in FIG. 8B, the lower surface of the first metal film 3a and the upper surface of the second metal film 3b were directly joined. At this time, the formation of the first metal film 3a, the formation of the second metal film 3b, and the bonding of the first metal film 3a and the second metal film 3b were performed in an ultrahigh vacuum.

次に、図8Cに示すように、第1部材1の上面側からレーザ光を照射して、接合部材3の透過率が元の透過率よりも高くなるようにした。レーザ光としては、波長355nmのパルスYAGレーザ光を用いた。このとき、パルスレーザ光の繰り返し周波数60kHz、パルス幅約25ナノ秒とした。また、レーザ光の出力は400mWで一定とし、接合体の送り速度は1mm/secとした。さらに、レーザ光の焦点位置は、接合体の上面から約100μmの位置とした。そして、上方から見て縦方向にレーザ光を走査した。この走査を、走査方向と垂直な方向に20μmずつずらしながら複数回行った。   Next, as shown in FIG. 8C, laser light was irradiated from the upper surface side of the first member 1 so that the transmittance of the bonding member 3 was higher than the original transmittance. As the laser beam, a pulse YAG laser beam having a wavelength of 355 nm was used. At this time, the repetition frequency of the pulse laser beam was 60 kHz, and the pulse width was about 25 nanoseconds. Further, the output of the laser beam was constant at 400 mW, and the feeding speed of the joined body was 1 mm / sec. Furthermore, the focal position of the laser beam was set to a position of about 100 μm from the upper surface of the joined body. Then, the laser beam was scanned in the vertical direction as viewed from above. This scanning was performed a plurality of times while shifting by 20 μm in the direction perpendicular to the scanning direction.

これにより得られた光学部品60の断面図を図9Aに示し、光学部品60に含まれる接合部材3の上面図を図9Bに示す。また、光学部品60の下面側から白色光を照射しながら上面側から観察した写真を図10に示す。図10において、明るい色の領域がレーザ光を照射した領域であり、暗い色の領域がレーザ光を照射していない(接合部材3の元の透過率の)領域である。この結果から、レーザ光を照射した部分における接合部材3の透過率が、レーザ光を照射しなかった部分における接合部材3の透過率よりも高くなったことを確認できた。   A cross-sectional view of the optical component 60 obtained in this manner is shown in FIG. 9A, and a top view of the joining member 3 included in the optical component 60 is shown in FIG. 9B. Moreover, the photograph observed from the upper surface side while irradiating white light from the lower surface side of the optical component 60 is shown in FIG. In FIG. 10, a bright color area is an area irradiated with laser light, and a dark color area is an area not irradiated with laser light (original transmittance of the bonding member 3). From this result, it was confirmed that the transmittance of the bonding member 3 in the portion irradiated with the laser light was higher than the transmittance of the bonding member 3 in the portion not irradiated with the laser light.

また、図11及び図12に、エネルギー分散型X線分析により、接合部材3近傍における酸素とアルミニウムとをマッピング測定した結果を示す。図11はレーザ光を照射する前のものであり、図12はレーザ光を照射した後のものである。また、図11及び図12において、中央近傍に接合部材3が位置している。図11では、第1部材1及び第2部材2に比較して、接合部材3におけるアルミニウムの量が多く酸素の量が少ない。これは、第1部材1及び第2部材2がそれぞれサファイアからなるのに対して、接合部材3は金属アルミニウムからなるためである。一方、図12では、アルミニウム及び酸素の分布が第1部材1、接合部材3、及び第2部材2において全体的に均一になっていることがわかる。つまり、図12から、レーザ光の照射により、金属アルミニウムが酸化アルミニウムになったため、透光性が増したことが合理的に理解できる。   11 and 12 show the results of mapping measurement of oxygen and aluminum in the vicinity of the joining member 3 by energy dispersive X-ray analysis. FIG. 11 shows a state before laser light irradiation, and FIG. 12 shows a state after laser light irradiation. Moreover, in FIG.11 and FIG.12, the joining member 3 is located in the center vicinity. In FIG. 11, compared with the first member 1 and the second member 2, the amount of aluminum in the joining member 3 is large and the amount of oxygen is small. This is because the first member 1 and the second member 2 are made of sapphire, whereas the bonding member 3 is made of metallic aluminum. On the other hand, in FIG. 12, it can be seen that the distribution of aluminum and oxygen is uniform throughout the first member 1, the joining member 3, and the second member 2. That is, from FIG. 12, it can be reasonably understood that the translucency is increased because the metal aluminum is changed to aluminum oxide by the laser light irradiation.

さらに、図13及び図14それぞれに、接合部材3近傍におけるTEM像(左図)と、左図A部分における電子回折像(中央図)と、左図B部分における電子回折像(右図)とを示す。図13はレーザ光を照射する前のものであり、図14はレーザ光を照射した後のものである。図13及び図14により、レーザ光の照射の前後に関係なく、接合部材3及びその近傍は単結晶の状態であることが確認できた。この結果から、レーザ光を照射しても、接合部材3はアモルファス状態に変わることなく結晶性を保っていることがわかった。   Further, in each of FIGS. 13 and 14, a TEM image (left figure) in the vicinity of the joining member 3, an electron diffraction image (center figure) in the left part A, and an electron diffraction image (right figure) in the left part B are shown. Indicates. FIG. 13 shows a state before irradiation with laser light, and FIG. 14 shows a state after irradiation with laser light. From FIG. 13 and FIG. 14, it was confirmed that the bonding member 3 and the vicinity thereof are in a single crystal state regardless of before and after the laser beam irradiation. From this result, it was found that the bonding member 3 maintained the crystallinity without being changed to the amorphous state even when the laser beam was irradiated.

各実施形態に記載の光学部品は、照明、車載等に使用することができる。   The optical component described in each embodiment can be used for illumination, in-vehicle use, and the like.

1…第1部材
1a…蛍光部
1b…光反射部
2…第2部材
3…接合部材
3a…第1金属膜
3b…第2金属膜
4…発光構造
4a…n側半導体層
4b…活性層
4c…p側半導体層
5…電極
5a…n電極
5b…p電極
6…発光素子
7…第3部材
8…第2接合部材
8a…第3金属膜
8b…第4金属膜
9…発光素子
10、20、40、60…光学部品
30、50…発光装置
X、Y…透過率が高い領域
DESCRIPTION OF SYMBOLS 1 ... 1st member 1a ... Fluorescence part 1b ... Light reflection part 2 ... 2nd member 3 ... Joining member 3a ... 1st metal film 3b ... 2nd metal film 4 ... Light-emitting structure 4a ... N side semiconductor layer 4b ... Active layer 4c ... p-side semiconductor layer 5 ... electrode 5a ... n electrode 5b ... p electrode 6 ... light emitting element 7 ... third member 8 ... second bonding member 8a ... third metal film 8b ... fourth metal film 9 ... light emitting element 10, 20 , 40, 60... Optical parts 30, 50... Light emitting device X, Y.

Claims (8)

酸素、フッ素、及び窒素の少なくともいずれか1つを有する透光性の第1部材に形成された第1金属膜と、透光性又は非透光性の第2部材に形成された第2金属膜と、を直接貼り合わせることにより、前記第1部材と前記第2部材とが金属からなる接合部材を介して接合された接合体を準備する工程と、
前記接合部材にレーザ光を照射する又は前記接合部材にマイクロ波を照射することにより、所定の波長の光に対する前記接合部材の透過率を元の状態の透過率よりも高くする工程と、を含むことを特徴とする光半導体用の光学部品の製造方法。
A first metal film formed on a translucent first member having at least one of oxygen, fluorine, and nitrogen; and a second metal formed on a translucent or non-translucent second member. A step of preparing a joined body in which the first member and the second member are joined via a joining member made of metal by directly laminating a film;
Irradiating the bonding member with laser light or irradiating the bonding member with microwaves to increase the transmittance of the bonding member with respect to light of a predetermined wavelength from the original transmittance. A method for producing an optical component for an optical semiconductor.
前記接合部材にレーザ光を照射する又は前記接合部材にマイクロ波を照射する工程において、前記接合部材にレーザ光を照射することを特徴とする請求項1に記載の光学部品の製造方法。   The method of manufacturing an optical component according to claim 1, wherein in the step of irradiating the bonding member with laser light or irradiating the bonding member with microwaves, the bonding member is irradiated with laser light. 前記接合体を準備する工程において、前記第2部材として透光性の第2部材を用いることを特徴とする請求項1又は2に記載の光学部品の製造方法。   3. The method of manufacturing an optical component according to claim 1, wherein a translucent second member is used as the second member in the step of preparing the joined body. 前記接合体を準備する工程において、前記第2部材として酸素、フッ素、及び窒素の少なくともいずれか1つを有する第2部材を用いることを特徴とする請求項1〜3のいずれか1項に記載の光学部品の製造方法。   The step of preparing the joined body uses a second member having at least one of oxygen, fluorine, and nitrogen as the second member. Of manufacturing optical parts. 前記接合体を準備する工程において、前記第1部材として蛍光体を含む第1部材を用いることを特徴とする請求項1〜4のいずれか1項に記載の光学部品の製造方法。   5. The method of manufacturing an optical component according to claim 1, wherein in the step of preparing the joined body, a first member including a phosphor is used as the first member. 前記接合部材にレーザ光を照射する又は前記接合部材にマイクロ波を照射する工程において、前記接合部材における一部領域のみの透過率を元の状態の透過率よりも高くすることを特徴とする請求項2又は請求項2を引用する請求項3から5のいずれか1項に記載の光学部品の製造方法。   In the step of irradiating the joining member with laser light or irradiating the joining member with microwaves, the transmittance of only a partial region of the joining member is made higher than the transmittance in the original state. The method for manufacturing an optical component according to any one of claims 3 to 5, wherein Item 2 or Claim 2 is cited. 透光性の前記第2部材と、前記透光性の第2部材の一方の主面に前記光半導体として設けられた発光構造と、を含む半導体発光素子を準備する工程をさらに含み、
前記接合体を準備する工程において、
前記第1部材に前記第1金属膜を形成し、前記第2部材の他方の主面に前記第2金属膜を形成し、
前記第1金属膜と前記第2金属膜とを直接貼り合わせることを特徴とする請求項2、請求項2を引用する請求項3から5のいずれか1項、又は請求項6のいずれか1項に記載の光学部品の製造方法。
A step of preparing a semiconductor light emitting element including the light transmissive second member and a light emitting structure provided as the optical semiconductor on one main surface of the light transmissive second member;
In the step of preparing the joined body,
Forming the first metal film on the first member, forming the second metal film on the other main surface of the second member;
The first metal film and the second metal film are directly bonded to each other, and any one of claims 3 to 5 or any one of claims 6 to 6 is cited. The manufacturing method of the optical component of description.
前記接合体を準備する工程において、原子拡散接合法を用いて接合体を準備することを特徴とする請求項1〜7のいずれか1項に記載の光学部品の製造方法。   In the process of preparing the said conjugate | zygote, a conjugate | zygote is prepared using an atomic diffusion bonding method, The manufacturing method of the optical component of any one of Claims 1-7 characterized by the above-mentioned.
JP2017138809A 2017-02-28 2017-07-18 Manufacturing method of optical parts Active JP6993563B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18158757.7A EP3367446B1 (en) 2017-02-28 2018-02-27 Method of manufacturing optical component
CN201810163784.8A CN108511575B (en) 2017-02-28 2018-02-27 Method for manufacturing optical component
US15/906,870 US10593843B2 (en) 2017-02-28 2018-02-27 Method of manufacturing optical component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017035761 2017-02-28
JP2017035761 2017-02-28
JP2017095202 2017-05-12
JP2017095202 2017-05-12

Publications (2)

Publication Number Publication Date
JP2018186257A true JP2018186257A (en) 2018-11-22
JP6993563B2 JP6993563B2 (en) 2022-02-03

Family

ID=64355085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138809A Active JP6993563B2 (en) 2017-02-28 2017-07-18 Manufacturing method of optical parts

Country Status (1)

Country Link
JP (1) JP6993563B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111683A1 (en) * 2014-10-17 2016-04-21 Samsung Display Co., Ltd. Flexible display and method of manufacturing the same
JP2016207924A (en) * 2015-04-27 2016-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111683A1 (en) * 2014-10-17 2016-04-21 Samsung Display Co., Ltd. Flexible display and method of manufacturing the same
JP2016207924A (en) * 2015-04-27 2016-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. DE PABLOS-MARTIN ET AL.: "Structural Characterization of Laser Bonded Sapphire Wafers Using a Titanium Absorber Thin Film", JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, JPN6021019693, 2015, pages 484 - 488, XP029590338, ISSN: 0004513119, DOI: 10.1016/j.jmst.2014.12.007 *

Also Published As

Publication number Publication date
JP6993563B2 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN105423238B (en) Wavelength conversion member, light emitting device, projector, and method of manufacturing wavelength conversion member
CN113237032B (en) Light source device and lighting device
JP6785458B2 (en) Light source device
US20120224378A1 (en) Wavelength converting member and light source device
WO2012014360A1 (en) Light-emitting module
JP5152502B2 (en) Lamp
JP2005268323A (en) Semiconductor light emitting device
JP6102696B2 (en) LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING OPTICAL COMPONENT USED FOR THE SAME
US9810402B2 (en) Light conversion substrate and light emitting package and automobile lamp including the same
TW200946836A (en) Optical element and manufacturing method therefor
US20200271282A1 (en) Light-emitting element and illumination device
CN107579144B (en) Sintered body and light-emitting device
JP6780377B2 (en) Light emitting device
US10593843B2 (en) Method of manufacturing optical component
JP2011258657A (en) Semiconductor light-emitting device and method for producing the same
JP6648660B2 (en) Phosphor-containing member and light emitting device including phosphor-containing member
JP7028863B2 (en) Wavelength conversion element, light emitting device and lighting device
WO2010140419A1 (en) Light emitting device
US20210091270A1 (en) Light-emitting devices having an anti reflective silicon carbide or sapphire substrate and methods of forming the same
JP2018186257A (en) Method for manufacturing optical component
JP2018107064A (en) Fluorescent light source device and manufacturing method of the same
JP5559108B2 (en) Semiconductor light emitting device
JP7343749B2 (en) Light emitting device and its manufacturing method
WO2021037225A1 (en) Light source system and illumination apparatus
JP2018163828A (en) Phosphor element and illumination device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6993563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150