JP2018186110A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2018186110A
JP2018186110A JP2017084987A JP2017084987A JP2018186110A JP 2018186110 A JP2018186110 A JP 2018186110A JP 2017084987 A JP2017084987 A JP 2017084987A JP 2017084987 A JP2017084987 A JP 2017084987A JP 2018186110 A JP2018186110 A JP 2018186110A
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emitting device
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017084987A
Other languages
Japanese (ja)
Inventor
有毅 河村
Yuuki Kawamura
有毅 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2017084987A priority Critical patent/JP2018186110A/en
Publication of JP2018186110A publication Critical patent/JP2018186110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device having a phosphor layer with a resin as a base material and having a high heat dissipation efficiency from the phosphor layer.SOLUTION: In a light emitting device including a light emitting element mounted on a substrate, a phosphor layer covering a light extraction surface of the light emitting element, and a reflective material covering a surface other than the light extraction surface of the light emitting element, the phosphor layer includes an inorganic filler and a phosphor using a resin as a base material. This increases the thermal conductivity of the phosphor layer, such that heat generated from the phosphor is more easily transferred to the light-emitting element and the substrate, and heat radiation efficiency from the phosphor can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

近年、発光ダイオード(Light Emitting Diode:LED)素子を用いた発光装置が広く用いられるようになっている。そのような発光装置の中には、LEDチップを基板やケースにフリップチップ実装し、LEDチップの光取出面側に、蛍光体を含む蛍光体層を配置したものがある。蛍光体層の蛍光体が、LEDチップからの発光光により励起されて発光光と波長の異なる蛍光(すなわち波長変換光)を発し、発光光と蛍光との合成色光、あるいは蛍光色主体の光が外部に取り出される。そのような発光装置の例が特許文献1(特開2007−19096号公報)に記載されている。特許文献1に記載の蛍光体層は樹脂を母材としている(引用文献1の明細書の段落[0015]参照)。   In recent years, light emitting devices using light emitting diode (LED) elements have been widely used. Among such light emitting devices, there is one in which an LED chip is flip-chip mounted on a substrate or a case, and a phosphor layer including a phosphor is disposed on the light extraction surface side of the LED chip. The phosphor in the phosphor layer is excited by the light emitted from the LED chip and emits fluorescence having a wavelength different from that of the emitted light (that is, wavelength-converted light). Take out to the outside. An example of such a light emitting device is described in Patent Document 1 (Japanese Patent Laid-Open No. 2007-19096). The phosphor layer described in Patent Document 1 uses a resin as a base material (see paragraph [0015] of the specification of Patent Document 1).

特開2007−19096号公報JP 2007-19096 A 特開2014−140014号公報Japanese Patent Application Laid-Open No. 2014-140014

このような発光装置に大電流を流して高輝度な光を得る場合、蛍光体が波長変換する際のエネルギーロスにより発熱し、蛍光体層からの発熱量が大きくなる。そこで、蛍光体層の信頼性を考慮し、特許文献1のような樹脂を母材とする蛍光体層に代えて、無機物(ガラス、アルミナ、蛍光体の焼結体等)を母材とする蛍光体板が使用される場合がある(例えば、特許文献2の段落[0020]参照)。
ただし、無機物を母材とする蛍光体板は比較的高価であり、しかも、蛍光体板とLEDチップの接合のために接着材を塗布し、蛍光体板をLEDチップに対して搭載し、接着材を硬化させるといった工程を必要とする。そのため、発光装置の製造コストが高くなる一因となっていた。
When a high current is passed through such a light-emitting device to obtain high-luminance light, the phosphor generates heat due to energy loss during wavelength conversion, and the amount of heat generated from the phosphor layer increases. Therefore, considering the reliability of the phosphor layer, an inorganic substance (glass, alumina, phosphor sintered body, etc.) is used as a base material instead of the phosphor layer using a resin as a base material as in Patent Document 1. A phosphor plate may be used (see, for example, paragraph [0020] of Patent Document 2).
However, a phosphor plate using an inorganic material as a base material is relatively expensive, and an adhesive is applied to join the phosphor plate and the LED chip, and the phosphor plate is mounted on the LED chip and bonded. A process of curing the material is required. For this reason, the manufacturing cost of the light emitting device has become a factor.

本発明は上記に鑑み、樹脂を母材とする蛍光体層を有する発光装置において、蛍光体からの放熱の効率を向上させ得る発光装置を提供することを一つの目的とし、そのような発光装置からの光の取り出し効率を向上させることを別の一つの目的とする。   In view of the above, it is an object of the present invention to provide a light-emitting device that can improve the efficiency of heat dissipation from a phosphor in a light-emitting device having a phosphor layer using a resin as a base material. Another object is to improve the light extraction efficiency from the light source.

本発明の発明者は上記課題を解決するために鋭意検討を重ねた結果、以下のように本発明の各局面に想到した。
すなわち、本発明の第1の局面に係る発光装置は、基板に実装される発光素子と、発光素子の光取出面を覆う蛍光体層と、発光素子の光取出面以外の面を覆う反射材と、を有する発光装置であって、蛍光体層は樹脂を母材として蛍光体と無機フィラーを含有する、発光装置である。
The inventor of the present invention has intensively studied to solve the above-mentioned problems, and as a result, has arrived at each aspect of the present invention as follows.
That is, the light emitting device according to the first aspect of the present invention includes a light emitting element mounted on a substrate, a phosphor layer that covers a light extraction surface of the light emitting element, and a reflective material that covers a surface other than the light extraction surface of the light emitting element. The phosphor layer is a light-emitting device containing a phosphor and an inorganic filler using a resin as a base material.

上記局面に係る発光装置においては、蛍光体層が樹脂を母材とし、熱伝導率の高い蛍光体に加えて、熱伝導率の高い無機フィラーを含有することで、蛍光体層の熱伝導率が高められている。これにより蛍光体からの発熱が発光素子および基板に伝わりやすくなり、蛍光体からの放熱の効率を向上させられる。特に、蛍光体層の温度上昇を、蛍光体層を形成する樹脂の耐熱温度より低く抑えることが容易となり、発光素子に長時間にわたり通電する際に蛍光体層にクラック等が発生することを抑制できるため信頼性が向上し、また、大電流を投入する際においても蛍光体層の信頼性が向上する。蛍光体層の母材を樹脂としたことで、蛍光体層を発光素子に接着するための接着材を省略でき、発光装置の製造コストの低減に貢献し得る。   In the light-emitting device according to the above aspect, the phosphor layer includes a resin as a base material and contains an inorganic filler having a high thermal conductivity in addition to the phosphor having a high thermal conductivity, so that the thermal conductivity of the phosphor layer is increased. Has been increased. Accordingly, heat generated from the phosphor is easily transmitted to the light emitting element and the substrate, and the efficiency of heat dissipation from the phosphor can be improved. In particular, it becomes easy to keep the temperature rise of the phosphor layer below the heat-resistant temperature of the resin that forms the phosphor layer, and it is possible to prevent cracks and the like from being generated in the phosphor layer when the light emitting element is energized for a long time. Therefore, the reliability is improved, and the reliability of the phosphor layer is improved even when a large current is supplied. Since the base material of the phosphor layer is a resin, an adhesive for adhering the phosphor layer to the light emitting element can be omitted, which can contribute to a reduction in manufacturing cost of the light emitting device.

また、本発明の第2の局面によれば、上記発光装置において、反射材は蛍光体を含有する。これにより、発光素子の光取出面以外の面から発光される光の一部を、反射材に含有される蛍光体により長波長光に変換し、発光素子への光の再吸収や基板への光の吸収を抑制することが可能である。結果として、高光束な発光装置を提供できる。   According to the second aspect of the present invention, in the light emitting device, the reflecting material contains a phosphor. Thereby, a part of the light emitted from the surface other than the light extraction surface of the light emitting element is converted into long wavelength light by the phosphor contained in the reflecting material, and the light is absorbed again into the light emitting element or applied to the substrate. Light absorption can be suppressed. As a result, a light emitting device having a high luminous flux can be provided.

また、本発明の第3の局面によれば、上記発光装置において、発光素子は接合部を介して基板に実装され、反射材に含有される蛍光体のメジアン径は、接合部の厚さより小さい。これにより、反射材に含有される蛍光体が発光素子と基板の間の隙間に入り込みやすくなる。もって、発光素子から基板へ向かって進む光の一部を蛍光体により長波長光に変換し、発光素子への光の再吸収や基板への光の吸収を抑制することが可能である。結果として、高光束な発光装置を提供できる。   According to the third aspect of the present invention, in the light emitting device, the light emitting element is mounted on the substrate via the joint, and the median diameter of the phosphor contained in the reflector is smaller than the thickness of the joint. . As a result, the phosphor contained in the reflective material easily enters the gap between the light emitting element and the substrate. Accordingly, part of the light traveling from the light emitting element toward the substrate can be converted into long wavelength light by the phosphor, and reabsorption of light into the light emitting element and absorption of light into the substrate can be suppressed. As a result, a light emitting device having a high luminous flux can be provided.

本発明の第4の局面によれば、上記発光装置において、蛍光体層に含有される蛍光体のメジアン径は反射材に含有される蛍光体のメジアン径より大きい。蛍光体は粒径が大きいほど波長変換効率および伝熱効率が高い傾向があるため、蛍光体層に含まれる蛍光体の粒径を反射材に含まれる蛍光体の粒径より大きく設定することが有利である。   According to the fourth aspect of the present invention, in the light emitting device, the median diameter of the phosphor contained in the phosphor layer is larger than the median diameter of the phosphor contained in the reflector. Since the phosphor tends to have higher wavelength conversion efficiency and heat transfer efficiency as the particle size increases, it is advantageous to set the particle size of the phosphor contained in the phosphor layer to be larger than the particle size of the phosphor contained in the reflector. It is.

図1は本発明の第1実施形態に係る発光装置の断面図である。FIG. 1 is a cross-sectional view of a light emitting device according to a first embodiment of the present invention. 図2は本発明の第2実施形態に係る発光装置の断面図である。FIG. 2 is a cross-sectional view of a light emitting device according to a second embodiment of the present invention. 図3は本発明の第3実施形態に係る発光装置の断面図である。FIG. 3 is a cross-sectional view of a light emitting device according to a third embodiment of the present invention. 図4は蛍光体層に占める蛍光体および無機フィラーの体積率と蛍光体層の熱伝導率との関係の例を表すグラフである。FIG. 4 is a graph showing an example of the relationship between the volume ratio of the phosphor and inorganic filler in the phosphor layer and the thermal conductivity of the phosphor layer.

以下、本発明の複数の実施形態に係る発光装置を、添付の図面を参照して説明する。
(第1実施形態)
図1に本発明の第1実施形態に係る発光装置1の断面図を示す。図1に示す発光装置1は、窒化アルミニウム(AlN)等の基板10と、基板10上に接合、実装されるLEDチップ(発光素子)20と、基板10とは反対側のLEDチップ20の上面(光取出面)を覆う蛍光体層30と、LEDチップ20の外面であって光取出面以外の面(側面と下面)を覆う反射材40とを有する。LEDチップ20は接合部50を介して基板10の表面の電極(図示せず)と電気的に接続される態様で基板10に実装される。発光装置1は更に、蛍光体層30や反射材40の外周を囲むダム等の部材を有していてもよい。
Hereinafter, light emitting devices according to a plurality of embodiments of the present invention will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 shows a cross-sectional view of a light emitting device 1 according to a first embodiment of the present invention. A light emitting device 1 shown in FIG. 1 includes a substrate 10 such as aluminum nitride (AlN), an LED chip (light emitting element) 20 bonded and mounted on the substrate 10, and an upper surface of the LED chip 20 opposite to the substrate 10. A phosphor layer 30 that covers (light extraction surface) and a reflector 40 that covers the outer surface of the LED chip 20 and other surfaces (side surfaces and lower surface) than the light extraction surface. The LED chip 20 is mounted on the substrate 10 in such a manner that the LED chip 20 is electrically connected to an electrode (not shown) on the surface of the substrate 10 through the joint portion 50. The light emitting device 1 may further include a member such as a dam surrounding the outer periphery of the phosphor layer 30 and the reflecting material 40.

(LEDチップ20)
LEDチップ20はフリップチップタイプのものが好ましく、窒化ガリウム(GaN)系の半導体層(エピタキシャル層)が、サファイア基板上に形成されているものを採用できる。ただし、本発明の実施態様はこれに限らず、LEDチップ20の半導体層として上記の他、酸化亜鉛(ZnO)系、セレン化亜鉛(ZnSe)系、炭化珪素(SiC)系等を用いることができ、基板としてそれぞれに適したものを用いることができる。LEDチップ20の発光色としては、蛍光体を励起して蛍光との合成により白色を取り出すことができる青色、紫色または紫外光が好ましいが、これらに限定されない。本実施形態の以下の記載においては青色光を発するLEDチップ20を例に取り説明する。
(LED chip 20)
The LED chip 20 is preferably a flip-chip type, and a gallium nitride (GaN) -based semiconductor layer (epitaxial layer) formed on a sapphire substrate can be employed. However, the embodiment of the present invention is not limited to this, and a zinc oxide (ZnO) -based, zinc selenide (ZnSe) -based, silicon carbide (SiC) -based, or the like may be used as the semiconductor layer of the LED chip 20 in addition to the above. In addition, a substrate suitable for each substrate can be used. The emission color of the LED chip 20 is preferably blue, purple, or ultraviolet light that can excite a phosphor and extract white color by synthesis with fluorescence, but is not limited thereto. In the following description of the present embodiment, the LED chip 20 that emits blue light will be described as an example.

(蛍光体層30)
蛍光体層30は、光取出側に露出する光出射面を有し、LEDチップ20の光取出面全体を覆うように構成されている。蛍光体層30は主として、高耐熱性のシリコーン樹脂等の樹脂からなる母材31と、母材31中に分散される粒子状の蛍光体32および無機フィラー33からなる。
蛍光体層30に含まれる蛍光体32としては任意の蛍光体を用いることができるが、青色光を発するLEDチップ20に対しては、LEDチップ20からの放射光(青色光)を受けて励起されることにより、波長変換光(黄色光)を放射するYAG、BOS等の黄色系蛍光体を用いることにより、発光装置1を、LEDチップ20の青色光と蛍光体32による波長変換光の混色により白色光を発する白色LEDパッケージとして構成できる。蛍光体32は母材31を構成する樹脂よりも熱伝導率が高い。
蛍光体層30に含まれる無機フィラー33としては、母材31よりも熱伝導率が高いアルミナ、窒化アルミニウム、酸化マグネシウム、窒化ホウ素、二酸化珪素、窒化珪素などを用いることができる。また、他の無機フィラー33として、ユーロピウムやセリウムなどの付活剤を含有しない蛍光体の母体結晶を用いることができる。母体結晶としては、YAG、α−サイアロン、β−サイアロン、CaAISiN、CaSiなどを使用できる。
(Phosphor layer 30)
The phosphor layer 30 has a light emission surface exposed to the light extraction side, and is configured to cover the entire light extraction surface of the LED chip 20. The phosphor layer 30 is mainly composed of a base material 31 made of a resin such as a high heat-resistant silicone resin, a particulate phosphor 32 and an inorganic filler 33 dispersed in the base material 31.
An arbitrary phosphor can be used as the phosphor 32 included in the phosphor layer 30. However, the LED chip 20 that emits blue light is excited by receiving emitted light (blue light) from the LED chip 20. Thus, by using a yellow phosphor such as YAG or BOS that emits wavelength-converted light (yellow light), the light emitting device 1 is mixed with the blue light of the LED chip 20 and the wavelength-converted light by the phosphor 32. Thus, it can be configured as a white LED package that emits white light. The phosphor 32 has a higher thermal conductivity than the resin constituting the base material 31.
As the inorganic filler 33 contained in the phosphor layer 30, alumina, aluminum nitride, magnesium oxide, boron nitride, silicon dioxide, silicon nitride, or the like having higher thermal conductivity than the base material 31 can be used. Further, as the other inorganic filler 33, a host crystal of a phosphor that does not contain an activator such as europium or cerium can be used. As the host crystal, YAG, α-sialon, β-sialon, CaASiN 3 , Ca 2 Si 5 N 8, or the like can be used.

(反射材40)
反射材40を形成する反射材料は樹脂に光反射粒子を含有させたものとすることができ、光反射粒子は、LEDチップ20の発光層の発光によってLEDチップ20の側面および下面から出射される漏洩光を受けてLEDチップ20内に反射する機能を有する。樹脂としてはシリコーン樹脂、エポキシ樹脂、アクリル樹脂等を用いることができる。光反射粒子としてはチタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、アルミニウム(Al)、珪素(Si)等の酸化物や、窒化アルミニウム、フッ化マグネシウム(MgF)等の粒子を用いることができる。特に、LEDチップ20で生じた熱に対する耐熱性、光の反射性の観点から、シリコーン樹脂と酸化チタン(TiO)の組み合わせが好ましい。
(Reflecting material 40)
The reflective material forming the reflective material 40 may be a resin in which light reflecting particles are contained, and the light reflecting particles are emitted from the side surface and the lower surface of the LED chip 20 by light emission of the light emitting layer of the LED chip 20. It has a function of receiving leaked light and reflecting it into the LED chip 20. As the resin, silicone resin, epoxy resin, acrylic resin, or the like can be used. As light reflecting particles, oxides such as titanium (Ti), zirconium (Zr), niobium (Nb), aluminum (Al), and silicon (Si), and particles such as aluminum nitride and magnesium fluoride (MgF) should be used. Can do. In particular, a combination of a silicone resin and titanium oxide (TiO 2 ) is preferable from the viewpoint of heat resistance to heat generated in the LED chip 20 and light reflectivity.

(発光装置1の動作)
電源からLEDチップ20に電圧が印加されると、発光層において発光し、この放射光がLEDチップ20の光取出面から蛍光体層30を介して第1放射光として光取出側に、またLEDチップ20から第2放射光(漏洩光)として反射材40中にそれぞれ出射される。これら放射光のうちLEDチップ20から反射材40中に出射される第2放射光はLEDチップ20近傍の光反射粒子で反射され、これら反射光のうち大部分の反射光がLEDチップ20内に戻り、第1放射光と共に光取出面から蛍光体層30を介して出射される。この場合、蛍光体層30においては、LEDチップ20から放射される第1放射光及び第2放射光(共に青色光)を受けて蛍光体32が励起されることにより黄色の波長変換光を放射する。このため、LEDチップ20から放射される青色の放射光と蛍光体層30から放射される黄色の波長変換光とが混合して白色光となる。
(Operation of the light emitting device 1)
When a voltage is applied from the power source to the LED chip 20, light is emitted from the light emitting layer, and this emitted light is emitted from the light extraction surface of the LED chip 20 through the phosphor layer 30 as first emitted light to the light extraction side, and also to the LED. The light is emitted from the chip 20 into the reflector 40 as second radiated light (leakage light). Of these radiated lights, the second radiated light emitted from the LED chip 20 into the reflector 40 is reflected by the light reflecting particles in the vicinity of the LED chip 20, and most of the reflected light is reflected in the LED chip 20. Returning, it is radiate | emitted via the fluorescent substance layer 30 from the light extraction surface with 1st emitted light. In this case, the phosphor layer 30 emits yellow wavelength-converted light by receiving the first radiated light and the second radiated light (both blue light) emitted from the LED chip 20 and exciting the phosphor 32. To do. For this reason, the blue radiation light radiated from the LED chip 20 and the yellow wavelength converted light radiated from the phosphor layer 30 are mixed to form white light.

本実施形態では、フリップチップ型のLEDチップ20を備えた発光装置1である場合について説明したが、本発明はこれに限定されず、フェイスアップ型のLEDチップを備えた発光装置であってもよい。ただし、フリップチップ型のLEDチップ20の方が、光取出面を蛍光体層30で覆う構成を形成し易い。   In the present embodiment, the case where the light emitting device 1 includes the flip chip type LED chip 20 has been described. However, the present invention is not limited thereto, and the light emitting device including the face up type LED chip may be used. Good. However, the flip chip type LED chip 20 is easier to form a configuration in which the light extraction surface is covered with the phosphor layer 30.

(発光装置の製造方法)
以下に、本実施形態の発光装置1の製造方法の一例について説明する。
まず、基板10の表面の電極と、LEDチップ20の電極とを、金(Au)と錫(Sn)の合金により接合(Au−Sn接合)して接合部50を形成し、フリップチップ実装する。例えば、基板10の表面のAu電極と、LEDチップ20のAuSn電極とを熱圧着により合金化し、もって接合する方法を採用することができる。
基板10の表面の電極とLEDチップ20の電極とを接合する方法としては、従来公知の接合方法から適宜かつ任意の方法を選択し得る。
(Method for manufacturing light emitting device)
Below, an example of the manufacturing method of the light-emitting device 1 of this embodiment is demonstrated.
First, the electrode on the surface of the substrate 10 and the electrode of the LED chip 20 are bonded (Au—Sn bonding) with an alloy of gold (Au) and tin (Sn) to form the bonding portion 50, and flip chip mounting is performed. . For example, the Au electrode on the surface of the substrate 10 and the AuSn electrode of the LED chip 20 can be alloyed by thermocompression bonding and can be employed.
As a method of bonding the electrode on the surface of the substrate 10 and the electrode of the LED chip 20, any appropriate and arbitrary method can be selected from conventionally known bonding methods.

次に、基板10上に設けられたダムの内側に、LEDチップ20の側面および下面を覆うように反射材40を形成する。反射材40は、ポッティング等により形成される。
反射材40の硬化後、LEDチップ20の光取出面を覆うように蛍光体層30を形成する。蛍光体層30は、蛍光体32および無機フィラー33を分散させた母材31をLEDチップ20および反射材40上にポッティング等により塗布することで形成される。
次に、ダイシング等により製品サイズに分割する。
Next, the reflective material 40 is formed inside the dam provided on the substrate 10 so as to cover the side surface and the lower surface of the LED chip 20. The reflective material 40 is formed by potting or the like.
After the reflecting material 40 is cured, the phosphor layer 30 is formed so as to cover the light extraction surface of the LED chip 20. The phosphor layer 30 is formed by applying a base material 31 in which a phosphor 32 and an inorganic filler 33 are dispersed onto the LED chip 20 and the reflector 40 by potting or the like.
Next, it is divided into product sizes by dicing or the like.

(第1実施形態の効果)
以上のような構成の発光装置1において、蛍光体層30に蛍光体32を含有させることに加えて無機フィラー33も含有させることで、蛍光体層30の熱伝導率が高くなり、蛍光体32からの発熱をLEDチップ20、基板10に伝えやすくなり、放熱に有利な発光装置1とすることができる。そのような効果を奏するための蛍光体32および無機フィラー33の含有量の例については、後に実施例を参照して説明する。なお、無機フィラー33として蛍光体32と同じ母体結晶のものを採用すれば、両者の比重が実質同一となるため、両者を母材31中に均一に分散させやすくなる。また、蛍光体層30の母材31を樹脂としたことで、蛍光体層30をLEDチップ20に接着するための接着材を省略でき、発光装置1の製造コストの低減に貢献し得る。
(Effect of 1st Embodiment)
In the light emitting device 1 having the above-described configuration, the phosphor layer 30 contains the inorganic filler 33 in addition to the phosphor 32, thereby increasing the thermal conductivity of the phosphor layer 30. The heat generated from the LED can be easily transmitted to the LED chip 20 and the substrate 10, and the light emitting device 1 that is advantageous for heat dissipation can be obtained. Examples of the contents of the phosphor 32 and the inorganic filler 33 for achieving such an effect will be described later with reference to examples. If an inorganic filler 33 having the same base crystal as that of the phosphor 32 is employed, the specific gravity of both is substantially the same, so that both are easily dispersed uniformly in the base material 31. Moreover, since the base material 31 of the phosphor layer 30 is made of resin, an adhesive for adhering the phosphor layer 30 to the LED chip 20 can be omitted, which can contribute to a reduction in manufacturing cost of the light emitting device 1.

(第2実施形態)
図2に本発明の第2実施形態に係る発光装置1Aの断面図を示す。第2実施形態に係る発光装置1Aは第1実施形態に係る発光装置1との比較においては、LEDチップ20の側面を覆う反射材40に蛍光体41の粒子が均一に分散されている点で異なる。これにより、LEDチップ20の側面から発光される青色光の一部を反射材40に含有される蛍光体41により長波長光に変換でき、これにより、LEDチップ20での光の再吸収を抑制できる。また、窒化アルミニウムからなる基板10での光の吸収も抑制できる。結果として、高光束な発光装置1Aを提供できる。
(Second Embodiment)
FIG. 2 shows a cross-sectional view of a light emitting device 1A according to the second embodiment of the present invention. In comparison with the light emitting device 1 according to the first embodiment, the light emitting device 1A according to the second embodiment is such that the particles of the phosphor 41 are uniformly dispersed in the reflector 40 that covers the side surface of the LED chip 20. Different. Thereby, a part of blue light emitted from the side surface of the LED chip 20 can be converted into long wavelength light by the phosphor 41 contained in the reflector 40, thereby suppressing reabsorption of light in the LED chip 20. it can. Further, light absorption by the substrate 10 made of aluminum nitride can also be suppressed. As a result, the light emitting device 1A having a high luminous flux can be provided.

(第3実施形態)
図3に本発明の第3実施形態に係る発光装置1Bの断面図を示す。第3実施形態に係る発光装置1Bは第1実施形態に係る発光装置1との比較においては、LEDチップ20の側面並びに下面を覆う反射材40中に蛍光体42が均一に分散されている点で異なる。LEDチップ20の下(すなわち、LEDチップ20と基板10の間)に蛍光体42を入れるために、蛍光体42の粒径は接合部50の厚さよりも小さいことが望ましい。これにより、LEDチップ20の下方に進む光の一部を蛍光体42により長波長光に変換することができ、LEDチップ20への再吸収や基板10による光吸収を抑制でき、高光束な発光装置1Bを提供できる。また、接合部50の厚さは薄いほうがLEDチップ20からの熱を基板10側に伝えやすく、放熱に有利な発光装置1Bとなる。なお、蛍光体は粒径が大きいほど波長変換効率および伝熱効率が高い傾向があるため、蛍光体層30に含まれる蛍光体32の粒径は反射材40に含まれる蛍光体42の粒径より大きく設定することが有利である。一例として、接合部50の厚さが約5μmのとき、反射材40に含まれる蛍光体42のメジアン径(d50)を3μm程度とし、蛍光体層30に含まれる蛍光体32のメジアン径を10μm程度とすることができる。例えば、蛍光体層30に含まれる蛍光体32のメジアン径を約6μm〜約20μm、反射材40に含まれる蛍光体42のメジアン径を約3μm〜約5μmの範囲内とすることが、発光装置1Bの高光束化の点で好ましい。
(Third embodiment)
FIG. 3 shows a cross-sectional view of a light emitting device 1B according to the third embodiment of the present invention. In the light emitting device 1B according to the third embodiment, in comparison with the light emitting device 1 according to the first embodiment, the phosphors 42 are uniformly dispersed in the reflector 40 that covers the side surface and the lower surface of the LED chip 20. It is different. In order to put the phosphor 42 under the LED chip 20 (that is, between the LED chip 20 and the substrate 10), it is desirable that the particle size of the phosphor 42 is smaller than the thickness of the bonding portion 50. Thereby, a part of the light traveling below the LED chip 20 can be converted into long-wavelength light by the phosphor 42, so that re-absorption to the LED chip 20 and light absorption by the substrate 10 can be suppressed, and light emission with high luminous flux can be achieved. The apparatus 1B can be provided. In addition, the thinner the joint portion 50 is, the easier it is to transmit the heat from the LED chip 20 to the substrate 10 side, and the light emitting device 1B is advantageous for heat dissipation. In addition, since the wavelength conversion efficiency and the heat transfer efficiency tend to be higher as the particle size of the phosphor is larger, the particle size of the phosphor 32 included in the phosphor layer 30 is larger than the particle size of the phosphor 42 included in the reflector 40. It is advantageous to set it large. As an example, when the thickness of the junction 50 is about 5 μm, the median diameter (d50) of the phosphor 42 included in the reflector 40 is about 3 μm, and the median diameter of the phosphor 32 included in the phosphor layer 30 is 10 μm. Can be about. For example, it is possible to set the median diameter of the phosphor 32 included in the phosphor layer 30 within a range of about 6 μm to about 20 μm and the median diameter of the phosphor 42 included in the reflector 40 within a range of about 3 μm to about 5 μm. It is preferable in terms of increasing the luminous flux of 1B.

(実施例)
次に、本発明の第1実施形態に係る発光装置1の実施例について説明する。以下に本実施例の諸条件を示す。

狙いの混合色(発光装置1の発光色):アンバー色
母材31の材料:高耐熱シリコーン樹脂、熱伝導率0.2W/m・K
蛍光体32の材料:α−サイアロン蛍光体、発光中心波長597〜603nm、熱伝導率10W/m・K
無機フィラー33の材料:二酸化珪素(SiO
無機フィラー33の含有量:蛍光体層30全体の1wt%
蛍光体層30の厚さ:60μm〜160μm
反射材40の材料:シリコーン樹脂+酸化チタン
(Example)
Next, examples of the light emitting device 1 according to the first embodiment of the present invention will be described. The conditions of this example are shown below.

Target mixed color (light emitting color of light emitting device 1): amber color Material of base material 31: high heat resistant silicone resin, thermal conductivity 0.2 W / m · K
Material of phosphor 32: α-sialon phosphor, emission center wavelength 597 to 603 nm, thermal conductivity 10 W / m · K
Material of the inorganic filler 33: silicon dioxide (SiO 2 )
Content of inorganic filler 33: 1 wt% of the entire phosphor layer 30
Thickness of phosphor layer 30: 60 μm to 160 μm
Reflective material 40: silicone resin + titanium oxide

図4は、本実施例の蛍光体層30に占める蛍光体32と無機フィラー33を合わせた体積率Φ(vol%)と蛍光体層30の熱伝導率λc(W/m・K)との関係を表すグラフである。このグラフは、次のBruggemanの式(1)により算出された値をプロットしたものである。

Figure 2018186110

上記式(1)における各記号の定義は次の通りである。
Φ:蛍光体32と無機フィラー33の体積充填率(体積率)
λc:蛍光体層30の熱伝導率
λf:蛍光体32と無機フィラー33の平均の熱伝導率
λm:母材31の熱伝導率 FIG. 4 shows the volume ratio Φ (vol%) of the phosphor 32 and the inorganic filler 33 occupying the phosphor layer 30 of this embodiment and the thermal conductivity λc (W / m · K) of the phosphor layer 30. It is a graph showing a relationship. This graph plots the values calculated by the following Bruggeman equation (1).
Figure 2018186110

The definition of each symbol in the above formula (1) is as follows.
Φ: Volume filling rate (volume ratio) of phosphor 32 and inorganic filler 33
λc: thermal conductivity of phosphor layer 30 λf: average thermal conductivity of phosphor 32 and inorganic filler 33 λm: thermal conductivity of base material 31

図4から、蛍光体32と無機フィラー33の含有量が多いほうが蛍光体層30の熱伝導率が高くなり、蛍光体32からの発熱をLEDチップ20、基板10に伝えやすくなり、放熱に有利となることが分かる。そこで、蛍光体32と無機フィラー33の含有量と蛍光体層30の温度の関係についてシミュレーションにより確認した。シミュレーションに用いたモデルは平板の熱伝導モデルであり、蛍光体層30の表面から蛍光体32の発熱が生じる場合を仮定した。蛍光体層30の厚さを100μm、蛍光体層30の発熱量を0.563W/mm、ジャンクション温度Tjを150℃とした。シミュレーションの結果を下表に示す(表中では、蛍光体32と無機フィラー33とを併せて「蛍光体等」と表す)。樹脂の耐熱温度が高温のもので250℃であることを考慮すると、蛍光体32と無機フィラー33の体積率を35vol%以上とすることが望ましいと考えられる。

Figure 2018186110
From FIG. 4, the higher the content of the phosphor 32 and the inorganic filler 33, the higher the thermal conductivity of the phosphor layer 30, and it becomes easier to transfer heat generated from the phosphor 32 to the LED chip 20 and the substrate 10, which is advantageous for heat dissipation. It turns out that it becomes. Therefore, the relationship between the content of the phosphor 32 and the inorganic filler 33 and the temperature of the phosphor layer 30 was confirmed by simulation. The model used for the simulation is a flat heat conduction model, and it is assumed that the phosphor 32 generates heat from the surface of the phosphor layer 30. The thickness of the phosphor layer 30 was 100 μm, the calorific value of the phosphor layer 30 was 0.563 W / mm 2 , and the junction temperature Tj was 150 ° C. The results of the simulation are shown in the following table (in the table, the phosphor 32 and the inorganic filler 33 are collectively referred to as “phosphor etc.”). Considering that the heat resistant temperature of the resin is 250 ° C., it is considered that the volume ratio of the phosphor 32 and the inorganic filler 33 is desirably 35 vol% or more.
Figure 2018186110

ただし、蛍光体32と無機フィラー33の体積率が50vol%以上となると蛍光体層30となる樹脂(母材31)と蛍光体32および無機フィラー33の混合物はスラリー状態とはならず、蛍光体層30を形成することができなかった。   However, when the volume ratio of the phosphor 32 and the inorganic filler 33 is 50 vol% or more, the mixture of the resin (base material 31), the phosphor 32, and the inorganic filler 33 that becomes the phosphor layer 30 is not in a slurry state. Layer 30 could not be formed.

なお、発光装置1の発光色として白色光を狙う場合に、蛍光体層30からの放熱性を向上させるために上記実施例に基づき蛍光体層30における蛍光体32と無機フィラー33の体積率を35vol%以上とすべく蛍光体32を多く含有させようとすると、混合色が黄色を帯び過ぎ、白色光が得られなくなることが考えられる。そのような場合には、蛍光体層30に含まれる蛍光体32の一部を更に無機フィラー33に置き換えることで色度を調節するという対応が考えられる。
第2実施形態、第3実施形態において、反射材40に含まれる蛍光体41、42の一部または全部を、第1実施形態の無機フィラー33の材料として説明したものからなる無機フィラーにより置き換えてもよい。
In addition, when aiming at white light as the luminescent color of the light-emitting device 1, in order to improve the heat dissipation from the fluorescent substance layer 30, the volume ratio of the fluorescent substance 32 and the inorganic filler 33 in the fluorescent substance layer 30 is set based on the said Example. If a large amount of the phosphor 32 is contained so as to be 35 vol% or more, it is considered that the mixed color is too yellow and white light cannot be obtained. In such a case, it can be considered that the chromaticity is adjusted by further replacing a part of the phosphor 32 included in the phosphor layer 30 with the inorganic filler 33.
In the second embodiment and the third embodiment, part or all of the phosphors 41 and 42 included in the reflector 40 are replaced with an inorganic filler made of the material described as the material of the inorganic filler 33 of the first embodiment. Also good.

以上において説明した本発明の異なる実施形態の要素を、実現不可能な場合を除き、互いに組み合わせて実施してもよく、そのような実施の態様も本発明の範囲に含まれる。
本発明は上記発明の各局面や実施形態やその変形例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
The elements of the different embodiments of the present invention described above may be implemented in combination with each other except where it is impossible to implement, and such embodiments are also included in the scope of the present invention.
The present invention is not limited to the description of each aspect and embodiment of the above-described invention and modifications thereof. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

1、1A、1B 発光装置
10 基板
20 LED素子
30 蛍光体層
31 母材
32 蛍光体
33 無機フィラー
40 反射材
41 蛍光体
42 蛍光体
50 接合部

DESCRIPTION OF SYMBOLS 1, 1A, 1B Light-emitting device 10 Board | substrate 20 LED element 30 Phosphor layer 31 Base material 32 Phosphor 33 Inorganic filler 40 Reflective material 41 Phosphor 42 Phosphor 50 Joint part

Claims (4)

基板に実装される発光素子と、
前記発光素子の光取出面を覆う蛍光体層と、
前記発光素子の前記光取出面以外の面を覆う反射材と、を有する発光装置であって、
前記蛍光体層は樹脂を母材として蛍光体と無機フィラーを含有する、発光装置。
A light emitting device mounted on a substrate;
A phosphor layer covering a light extraction surface of the light emitting element;
A reflective material that covers a surface other than the light extraction surface of the light emitting element, and a light emitting device comprising:
The phosphor layer is a light-emitting device containing a phosphor and an inorganic filler using a resin as a base material.
前記反射材は蛍光体を含有する、請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the reflecting material contains a phosphor. 前記発光素子は接合部を介して前記基板に実装され、
前記反射材に含有される前記蛍光体のメジアン径は、前記接合部の厚さより小さい、請求項2に記載の発光装置。
The light emitting element is mounted on the substrate via a joint,
The light-emitting device according to claim 2, wherein a median diameter of the phosphor contained in the reflecting material is smaller than a thickness of the joint portion.
前記蛍光体層に含有される前記蛍光体のメジアン径は前記反射材に含有される前記蛍光体のメジアン径より大きい、請求項2または請求項3に記載の発光装置。

4. The light-emitting device according to claim 2, wherein a median diameter of the phosphor contained in the phosphor layer is larger than a median diameter of the phosphor contained in the reflector.

JP2017084987A 2017-04-24 2017-04-24 Light-emitting device Pending JP2018186110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017084987A JP2018186110A (en) 2017-04-24 2017-04-24 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084987A JP2018186110A (en) 2017-04-24 2017-04-24 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2018186110A true JP2018186110A (en) 2018-11-22

Family

ID=64357120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084987A Pending JP2018186110A (en) 2017-04-24 2017-04-24 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2018186110A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123560A (en) * 2003-09-25 2005-05-12 Nichia Chem Ind Ltd Light emitting device and its forming method
JP2006086191A (en) * 2004-09-14 2006-03-30 Nichia Chem Ind Ltd Light-emitting device
JP2012083695A (en) * 2010-09-16 2012-04-26 Seiko Epson Corp Light source device and projector
WO2014068907A1 (en) * 2012-10-30 2014-05-08 パナソニック株式会社 Phosphor, wavelength conversion member, and fluorescence device
US20140239328A1 (en) * 2013-02-22 2014-08-28 Samsung Electronics Co., Ltd. Light emitting device package
JP2015023162A (en) * 2013-07-19 2015-02-02 日亜化学工業株式会社 Light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123560A (en) * 2003-09-25 2005-05-12 Nichia Chem Ind Ltd Light emitting device and its forming method
JP2006086191A (en) * 2004-09-14 2006-03-30 Nichia Chem Ind Ltd Light-emitting device
JP2012083695A (en) * 2010-09-16 2012-04-26 Seiko Epson Corp Light source device and projector
WO2014068907A1 (en) * 2012-10-30 2014-05-08 パナソニック株式会社 Phosphor, wavelength conversion member, and fluorescence device
US20140239328A1 (en) * 2013-02-22 2014-08-28 Samsung Electronics Co., Ltd. Light emitting device package
JP2015023162A (en) * 2013-07-19 2015-02-02 日亜化学工業株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
TWI481077B (en) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP6790416B2 (en) Light emitting device
JP6331389B2 (en) Light emitting device
JP6384508B2 (en) Light emitting device
JP5290670B2 (en) lamp
JP2020010063A (en) Light-emitting device
JP5558665B2 (en) Light emitting device
JP6065811B2 (en) Light emitting device and manufacturing method thereof
JP5895597B2 (en) Light emitting device
JP5895598B2 (en) Light emitting device
JP2017188592A (en) Light-emitting device
JPWO2007018039A1 (en) Semiconductor light emitting device
JP2017117858A (en) Light-emitting device
JP2018129424A (en) Light-emitting device
JP2014207349A (en) Light-emitting device and manufacturing method thereof
TW201218428A (en) Light emitting diode package structure
US20120043569A1 (en) Light emitting device and manufacturing method thereof
JP2018082027A (en) Light-emitting device and method for manufacturing the same
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
US20150280080A1 (en) Light emitting device
JP2018129434A (en) Light-emitting device
JP2011253846A (en) Light emitting device and method for manufacturing the same
JP6928244B2 (en) Light emitting device
JP5786278B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210804