JP2018185170A - Method for manufacturing inspection jig - Google Patents

Method for manufacturing inspection jig Download PDF

Info

Publication number
JP2018185170A
JP2018185170A JP2017085499A JP2017085499A JP2018185170A JP 2018185170 A JP2018185170 A JP 2018185170A JP 2017085499 A JP2017085499 A JP 2017085499A JP 2017085499 A JP2017085499 A JP 2017085499A JP 2018185170 A JP2018185170 A JP 2018185170A
Authority
JP
Japan
Prior art keywords
inspection jig
flexible sheet
hole
inspection
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017085499A
Other languages
Japanese (ja)
Inventor
浩二 小木曽
Koji Ogiso
浩二 小木曽
博之 熊倉
Hiroyuki Kumakura
博之 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017085499A priority Critical patent/JP2018185170A/en
Priority to TW106145254A priority patent/TW201840077A/en
Priority to KR1020180006092A priority patent/KR20180119095A/en
Publication of JP2018185170A publication Critical patent/JP2018185170A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an inspection jig that can respond to a fine pitch without damaging an inspection object when inspecting the electric characteristics.SOLUTION: A photosensitive resin film 12 is exposed to light, using a photomask 13 and is developed, a through-hole is formed in a thickness direction of the flexible sheet 15, and a conductive material 17 containing conductive particles is filled into the through-hole of the flexible sheet 15, using a fine amount dispenser 16.SELECTED DRAWING: Figure 1

Description

本技術は、ウェハ、チップ、パッケージ等の電子部品の検査冶具の製造方法に関する。   The present technology relates to a method of manufacturing an inspection jig for electronic components such as wafers, chips, and packages.

現在、ウェハレベルでの半導体装置の電気特性評価は、プローブカードを用いて、ウェハの表面や裏面に形成された導電パッドやバンプに、直接プローブを接触させて実施している(例えば、特許文献1参照。)。   Currently, electrical characteristics evaluation of a semiconductor device at a wafer level is performed by directly contacting a probe with conductive pads and bumps formed on the front surface and the back surface of the wafer using a probe card (for example, Patent Documents). 1).

この方法によれば、パッケージ前や三次元実装前の検査が可能となる。   According to this method, it is possible to inspect before packaging and before three-dimensional mounting.

しかしながら、ウェハのパッド表面の酸化膜を除去するために、表面に傷を付けてプローブ検査を実施するため、検査合格品を実装した後になって、検査に起因する損傷により不合格品を発生させる場合がある。またパッドサイズが小さくなるにつれて、バンプ形成や実装時の不具合の原因となる検査時の傷の影響が大きくなる。特に近年では、半導体チップのファインピッチ化がますます進行していることから、検査時の傷はますます大きな問題となる。   However, in order to remove the oxide film on the pad surface of the wafer, the surface is scratched and the probe inspection is performed, so that after the inspection-accepted product is mounted, a reject product is generated due to the damage caused by the inspection. There is a case. Further, as the pad size is reduced, the effect of scratches at the time of inspection, which causes defects during bump formation and mounting, increases. Particularly in recent years, the fine pitch of semiconductor chips has been increasingly advanced, so that scratches at the time of inspection become an increasingly serious problem.

ベアチップやパッケージについては、ラバーコネクターを用いたハンドラーテストが行われている。検査プローブシートとなるラバーコネクターとしては、例えば、磁場配向させた導電性粒子を、エラストマーシートの厚み方向に貫通するよう配置した異方導電性シートが提案されている(例えば、特許文献2参照。)。   For bare chips and packages, handler tests using rubber connectors are being conducted. As a rubber connector serving as an inspection probe sheet, for example, an anisotropic conductive sheet has been proposed in which conductive particles oriented in a magnetic field are arranged to penetrate in the thickness direction of the elastomer sheet (see, for example, Patent Document 2). ).

特許文献2に記載された検査プローブシートは、ゴム弾性エラストマー樹脂中に導電性粒子を磁場配向させる際に面内方向に導電性粒子が連結してしまうため、ファインピッチへの対応が困難である。また、耐久性を向上させる目的で周囲を取り囲むようにフレームが付いているものの、フレーム内側のエラストマー樹脂は熱膨張により伸縮しやすい物質であるため、耐久性の低下の問題や、接点ズレに(位置ズレ)よる検査不具合の原因となる。特に、ヒートサイクル試験などにおける位置ズレは致命的であり、今後のさらなるファインピッチ化においては、対応が困難となる。   The inspection probe sheet described in Patent Document 2 is difficult to cope with fine pitch because the conductive particles are connected in the in-plane direction when the conductive particles are magnetically oriented in the rubber elastic elastomer resin. . In addition, although the frame is attached to surround the periphery for the purpose of improving durability, the elastomer resin inside the frame is a substance that easily expands and contracts due to thermal expansion. This may cause inspection failures due to misalignment. In particular, misalignment in a heat cycle test or the like is fatal, and it becomes difficult to cope with further fine pitches in the future.

また、一般にエラストマー樹脂中に導電性物質を配置するラバーコネクターは、ファインピッチとなるコネクターの製造は困難であり、例えば、200μmP以下レベルの検査用コネクターは製造困難な状況にある。このため、組立て後のパッケージに対して検査を実施しているのが実情であり、結果として歩留まりが極端に悪化し、価格を低減できない要因ともなっている。   In general, a rubber connector in which a conductive substance is disposed in an elastomer resin is difficult to manufacture a connector having a fine pitch. For example, a test connector having a level of 200 μm P or less is difficult to manufacture. For this reason, the actual situation is that inspection is performed on the assembled package, and as a result, the yield is extremely deteriorated, and the price cannot be reduced.

特開2009−042008号公報JP 2009-042008 A 特開2006−024580号公報JP 2006-024580 A

本技術は、前述した課題を解決するものであり、電気特性の検査時に検査対象物を傷つけることがなく、ファインピッチへの対応が可能な検査冶具の製造方法を提供する。   The present technology solves the above-described problems, and provides a manufacturing method of an inspection jig that can cope with a fine pitch without damaging an inspection object during an inspection of electrical characteristics.

本技術の発明者らは、鋭意検討を行った結果、フレキシブルシートの厚み方向に貫通孔を形成し、貫通孔に導電粒子を含む導電材料を充填することにより、電気特性の検査時に検査対象物を傷つけることがなく、ファインピッチへの対応が可能な検査冶具を製造可能であることを見出した。   As a result of intensive studies, the inventors of the present technology formed a through-hole in the thickness direction of the flexible sheet, and filled the through-hole with a conductive material containing conductive particles, thereby inspecting an object at the time of inspecting electrical characteristics. It has been found that it is possible to manufacture an inspection jig that can handle fine pitch without damaging the surface.

すなわち、本技術に係る検査冶具の製造方法は、フレキシブルシートの厚み方向に貫通する貫通孔を形成する貫通孔形成工程と、前記フレキシブルシートの貫通孔に導電粒子を含む導電材料を充填する導電粒子充填工程とを有する。   That is, the manufacturing method of the inspection jig according to the present technology includes a through hole forming step of forming a through hole penetrating in the thickness direction of the flexible sheet, and a conductive particle that fills the through hole of the flexible sheet with a conductive material containing conductive particles. Filling step.

また、本技術に係る検査冶具は、所望のパターンで配列された複数の貫通孔を有するフレキシブルシートと、前記貫通孔に充填され、導電粒子を含有する導電材料とを備える。   Moreover, the inspection jig according to the present technology includes a flexible sheet having a plurality of through holes arranged in a desired pattern, and a conductive material filled in the through holes and containing conductive particles.

本技術によれば、フレキシブルシートの貫通孔に導電粒子を含む導電材料を充填することにより、電気特性の検査時に検査対象物を傷つけることがなく、ファインピッチへの対応が可能な検査冶具を製造することができる。   According to this technology, by filling conductive material containing conductive particles into the through-holes of flexible sheets, manufacture inspection jigs that can handle fine pitch without damaging inspection objects during electrical property inspections can do.

図1は、検査冶具の製造方法の一例を模式的に示す断面図であり、図1(A)は。樹脂塗布工程を示し、図1(B)は、露光工程を示し、図1(C)は、現像工程を示し、図1(D)は、導電粒子充填工程を示し、図1(E)は、乾燥工程を示し、図1(F)は、ベース材剥離工程を示す。FIG. 1 is a cross-sectional view schematically showing an example of a method for manufacturing an inspection jig, and FIG. FIG. 1B shows an exposure process, FIG. 1C shows a development process, FIG. 1D shows a conductive particle filling process, and FIG. FIG. 1 (F) shows a base material peeling step. 図2は、検査冶具の構成例を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration example of the inspection jig.

以下、本技術の実施の形態について、下記順序にて詳細に説明する。
1.検査冶具の製造方法
2.検査冶具
Hereinafter, embodiments of the present technology will be described in detail in the following order.
1. 1. Manufacturing method of inspection jig Inspection jig

<1.検査冶具の製造方法>
本技術に係る検査冶具の製造方法は、フレキシブルシートの厚み方向に貫通する貫通孔を形成する貫通孔形成工程と、フレキシブルシートの貫通孔に導電粒子を含む導電性樹脂を充填する導電粒子充填工程とを有する。これにより、電気特性の検査時に検査対象物を傷つけることがなく、ファインピッチへの対応が可能な検査冶具を製造することができる。
<1. Inspection jig manufacturing method>
The manufacturing method of the inspection jig according to the present technology includes a through-hole forming step of forming a through-hole penetrating in the thickness direction of the flexible sheet, and a conductive particle filling step of filling the through-hole of the flexible sheet with a conductive resin containing conductive particles. And have. Thereby, it is possible to manufacture an inspection jig capable of dealing with a fine pitch without damaging an inspection object during inspection of electrical characteristics.

図1は、検査冶具の製造方法の一例を模式的に示す断面図であり、図1(A)は。樹脂塗布工程を示し、図1(B)は、露光工程を示し、図1(C)は、現像工程を示し、図1(D)は、導電粒子充填工程を示し、図1(E)は、乾燥工程を示し、図1(F)は、ベース材剥離工程を示す。以下、図1を参照して、貫通孔形成工程及び導電粒子充填工程について説明する。   FIG. 1 is a cross-sectional view schematically showing an example of a method for manufacturing an inspection jig, and FIG. FIG. 1B shows an exposure process, FIG. 1C shows a development process, FIG. 1D shows a conductive particle filling process, and FIG. FIG. 1 (F) shows a base material peeling step. Hereinafter, the through hole forming step and the conductive particle filling step will be described with reference to FIG.

[貫通孔形成工程]
先ず、図1(A)に示すように、ベース材11上に感光性樹脂組成物を塗布し、フレキシブルシートとなる感光性樹脂膜12を形成する。
[Through hole forming step]
First, as shown to FIG. 1 (A), the photosensitive resin composition is apply | coated on the base material 11, and the photosensitive resin film 12 used as a flexible sheet is formed.

ベース材11は、耐熱性、耐薬品性に優れるものであればよく、例えば、ポリエチレンテレフタラート(PET:polyethylene terephthalate)を用いることができる。また、ベース材11は、検査冶具使用時には不要となるため、剥離処理がなされていることが好ましい。   The base material 11 only needs to be excellent in heat resistance and chemical resistance. For example, polyethylene terephthalate (PET) can be used. Moreover, since the base material 11 becomes unnecessary when using the inspection jig, it is preferable that the base material 11 has been subjected to a peeling treatment.

感光性樹脂膜12は、パターン加工後も絶縁材料として用いられる、いわゆる永久レジスト膜であり、耐熱性の観点からポリイミド前駆体を含有することが好ましい。   The photosensitive resin film 12 is a so-called permanent resist film that is used as an insulating material even after pattern processing, and preferably contains a polyimide precursor from the viewpoint of heat resistance.

次に、図1(B)に示すように、フォトマスク13などを用いて感光性樹脂膜12を露光し、現像して、貫通孔が配列されたパターンを形成し、図1(C)に示すように、貫通孔が形成されたフレキシブルシート15を作製する。   Next, as shown in FIG. 1B, the photosensitive resin film 12 is exposed and developed using a photomask 13 or the like to form a pattern in which through holes are arranged. As shown, a flexible sheet 15 having a through hole is produced.

貫通孔は、検査対象物のパッドやバンプの形状に合わせてパターン形成され、貫通孔の口径は、1〜100μmであることが好ましく、貫通孔間の距離は、10〜100μmであることが好ましい。   The through holes are formed in a pattern according to the shape of the pad or bump of the inspection object, the diameter of the through holes is preferably 1 to 100 μm, and the distance between the through holes is preferably 10 to 100 μm. .

フレキシブルシート15は、可撓性及び絶縁性を有し、熱膨張係数が低く、耐熱性が高いことが好ましい。フレキシブルシート15としては、耐熱性の観点からポリイミドを含むことが好ましい。   The flexible sheet 15 preferably has flexibility and insulation, has a low coefficient of thermal expansion, and high heat resistance. The flexible sheet 15 preferably contains polyimide from the viewpoint of heat resistance.

フレキシブルシート15の厚みは、薄過ぎると耐久性が劣るため、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上である。また、フレキシブルシート15の厚みは、厚過ぎると貫通孔の形成が困難となるため、好ましくは500μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下である。   Since the durability of the flexible sheet 15 is inferior when it is too thin, it is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more. Moreover, since formation of a through-hole will become difficult if the thickness of the flexible sheet 15 is too thick, Preferably it is 500 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 50 micrometers or less.

このように感光性樹脂膜の露光によるパターンニングにより貫通孔を形成することにより、高解像度の所望のパターンを形成することができる。   Thus, by forming the through holes by patterning by exposure of the photosensitive resin film, a desired pattern with high resolution can be formed.

[導電粒子充填工程]
次に、図1(D)、(E)に示すように、微量ディスペンサー16を用いて、フレキシブルシート15の貫通孔に導電粒子を含む導電材料17を充填し、乾燥させる。
[Conductive particle filling process]
Next, as shown in FIGS. 1D and 1E, the through hole of the flexible sheet 15 is filled with a conductive material 17 containing conductive particles using a small amount of dispenser 16, and dried.

導電材料17は、乾燥後にある程度の剛性を有し、変形しにくいものであることが好ましく、エポキシ樹脂、又はシリコーン樹脂を含むことが好ましい。これにより、熱硬化や紫外線硬化により、ある程度の剛性を付与することができ、検査時においてプローブピンを何度も押し当てることができる。   The conductive material 17 preferably has a certain degree of rigidity after drying and is not easily deformed, and preferably contains an epoxy resin or a silicone resin. Thereby, a certain degree of rigidity can be imparted by thermal curing or ultraviolet curing, and the probe pin can be pressed many times during inspection.

フレキシブルシート15に平面視で配置される導電材料17の位置は、特定の形状を有して規則性を持っていることが好ましく、格子状、千鳥状等の規則的な配列とすることが好ましい。格子状としては、斜方格子、六方格子、正方格子、矩形格子、平行体格子等が挙げられる。また、フィルムの長手方向に対して所定の配列形状で規則性を持っていてもよい。   The positions of the conductive materials 17 arranged in a plan view on the flexible sheet 15 preferably have a specific shape and regularity, and are preferably arranged in a regular arrangement such as a lattice shape or a staggered shape. . Examples of the lattice shape include an orthorhombic lattice, a hexagonal lattice, a tetragonal lattice, a rectangular lattice, and a parallel lattice. Moreover, you may have regularity with the predetermined arrangement | sequence shape with respect to the longitudinal direction of a film.

導電粒子は、異方性導電フィルムで使用される一般的なものを用いることができる。例えば、ニッケル、コバルト、鉄などの金属粒子、樹脂コア粒子や無機コア粒子の表面に導電性金属がメッキされた粒子を用いることができる。また、導電性金属メッキとしては、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキなどが挙げられる。これら中でも、検査対象へのダメージ軽減やシートの耐久性の観点から、樹脂コア粒子の表面に導電性金属がメッキされた粒子を用いることが好ましい。   As the conductive particles, common particles used in anisotropic conductive films can be used. For example, metal particles such as nickel, cobalt, iron, etc., or particles obtained by plating a conductive metal on the surface of resin core particles or inorganic core particles can be used. Examples of conductive metal plating include Ni / Au plating, Ni / Pd plating, and Ni / Pd / Au plating. Among these, from the viewpoint of reducing damage to the inspection object and durability of the sheet, it is preferable to use particles in which a conductive metal is plated on the surface of the resin core particles.

また、導電粒子の平均粒子径は、貫通孔の平均径の1/4以下であることが好ましい。これにより、貫通孔に導電粒子を高充填させることができ、抵抗値を低下させることができる。導電粒子の平均粒子径は、小さいほど微小なパッドやバンプに対応することができるため、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。   Moreover, it is preferable that the average particle diameter of electroconductive particle is 1/4 or less of the average diameter of a through-hole. As a result, the through holes can be filled with the conductive particles at a high level, and the resistance value can be reduced. The smaller the average particle diameter of the conductive particles is, the smaller the size that can correspond to a fine pad or bump, so that it is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less.

検査冶具の使用時には、図1(F)に示すように、ベース材11をフレキシブルシート15から剥離し、フレキシブルシート15の一方の面をウェハ、チップ、パッケージ等の電子部品に貼り付け、導電材料17と電子部品の電極と接触させ、フレキシブルシート15の他方の面から導電材料17にプローブを押し当て、電気特性を検査する。   When the inspection jig is used, as shown in FIG. 1 (F), the base material 11 is peeled off from the flexible sheet 15, and one surface of the flexible sheet 15 is attached to an electronic component such as a wafer, a chip, or a package. The probe is pressed against the conductive material 17 from the other surface of the flexible sheet 15, and the electrical characteristics are inspected.

このような検査冶具の製造方法によれば、電気特性の検査時に検査対象物を傷つけることがなく、ファインピッチへの対応が可能な検査冶具を得ることができる。   According to such an inspection jig manufacturing method, it is possible to obtain an inspection jig capable of adapting to a fine pitch without damaging an inspection object during inspection of electrical characteristics.

<2.検査冶具>
図2は、検査冶具の構成例を示す断面図である。図2に示すように、検査冶具は、所望のパターンで配列された複数の貫通孔を有するフレキシブルシート21と、貫通孔に充填され、導電粒子を含有する導電材料22とを備える。このような検査冶具は、例えば前述した検査冶具の製造方法により得ることができる。
<2. Inspection jig>
FIG. 2 is a cross-sectional view illustrating a configuration example of the inspection jig. As shown in FIG. 2, the inspection jig includes a flexible sheet 21 having a plurality of through holes arranged in a desired pattern, and a conductive material 22 filled in the through holes and containing conductive particles. Such an inspection jig can be obtained, for example, by the above-described method for manufacturing an inspection jig.

フレキシブルシート21は、前述のフレキシブルシート15と同様、可撓性及び絶縁性を有し、熱膨張係数が低く、耐熱性が高いことが好ましい。フレキシブルシート21としては、耐熱性の観点からポリイミドを含むことが好ましい。また、フレキシブルシート21の厚みは、薄過ぎると耐久性が劣るため、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上である。また、フレキシブルシート21の厚みは、厚過ぎると貫通孔の形成が困難となるため、好ましくは500μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下である。   Like the flexible sheet 15, the flexible sheet 21 is preferably flexible and insulating, has a low thermal expansion coefficient, and high heat resistance. The flexible sheet 21 preferably contains polyimide from the viewpoint of heat resistance. Moreover, since durability will be inferior if the thickness of the flexible sheet 21 is too thin, Preferably it is 5 micrometers or more, More preferably, it is 10 micrometers or more, More preferably, it is 20 micrometers or more. Moreover, since formation of a through-hole will become difficult if the thickness of the flexible sheet 21 is too thick, Preferably it is 500 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 50 micrometers or less.

導電材料22は、前述の導電材料17と同様、ある程度の剛性を有し、変形しにくいものであることが好ましく、エポキシ樹脂、又はシリコーン樹脂を含むことが好ましい。これにより、熱硬化や紫外線硬化により、ある程度の剛性を付与することができ、検査時においてプローブピンを何度も押し当てることができる。   Like the conductive material 17, the conductive material 22 preferably has a certain degree of rigidity and is not easily deformed, and preferably contains an epoxy resin or a silicone resin. Thereby, a certain degree of rigidity can be imparted by thermal curing or ultraviolet curing, and the probe pin can be pressed many times during inspection.

貫通孔に充填された導電材料22は、フレキシブルシート21の厚み方向に導通しており、フレキシブルシート21の少なくとも一方の面から突出していてもよい。   The conductive material 22 filled in the through hole is conductive in the thickness direction of the flexible sheet 21 and may protrude from at least one surface of the flexible sheet 21.

導電粒子は、前述の導電粒子と同様、異方性導電フィルムで使用される一般的なものを用いることができる。また、導電粒子の平均粒子径は、貫通孔の平均径の1/4以下であることが好ましい。これにより、貫通孔に導電粒子を高充填させることができ、抵抗値を低下させることができる。   As the conductive particles, common particles used in anisotropic conductive films can be used in the same manner as the conductive particles described above. Moreover, it is preferable that the average particle diameter of electroconductive particle is 1/4 or less of the average diameter of a through-hole. As a result, the through holes can be filled with the conductive particles at a high level, and the resistance value can be reduced.

このような検査冶具によれば、電気特性の検査時に半導体ウェハのパッドやバンプを傷つけることがなく、ファインピッチ化に対応することができる。   According to such an inspection jig, it is possible to cope with the fine pitch without damaging the pads and bumps of the semiconductor wafer during the inspection of the electrical characteristics.

11 ベース材、12 感光性樹脂膜、13 フォトマスク、14 微量ディスペンサー、15 フレキシブルシート、16 微量ディスペンサー、17 導電材料、21 フレキシブルシート、22 導電材料
11 Base material, 12 Photosensitive resin film, 13 Photomask, 14 Trace dispenser, 15 Flexible sheet, 16 Trace dispenser, 17 Conductive material, 21 Flexible sheet, 22 Conductive material

Claims (7)

フレキシブルシートの厚み方向に貫通する貫通孔を形成する貫通孔形成工程と、
前記フレキシブルシートの貫通孔に導電粒子を含む導電材料を充填する導電粒子充填工程と
を有する検査冶具の製造方法。
A through hole forming step for forming a through hole penetrating in the thickness direction of the flexible sheet;
A conductive particle filling step of filling a through hole of the flexible sheet with a conductive material containing conductive particles.
前記貫通孔形成工程では、感光性樹脂膜の露光によるパターンニングにより貫通孔を形成する請求項1記載の検査冶具の製造方法。   The manufacturing method of the inspection jig according to claim 1, wherein in the through hole forming step, the through hole is formed by patterning by exposure of the photosensitive resin film. 前記導電粒子の平均粒子径が、前記貫通孔の平均径の1/4以下である請求項1又は2記載の検査冶具の製造方法。   The method for manufacturing an inspection jig according to claim 1 or 2, wherein an average particle diameter of the conductive particles is ¼ or less of an average diameter of the through holes. 前記感光性樹脂膜が、ポリイミド前駆体を含有し、
前記導電材料が、エポキシ樹脂、又はシリコーン樹脂を含む請求項2又は3記載の検査冶具の製造方法。
The photosensitive resin film contains a polyimide precursor,
The manufacturing method of the inspection jig according to claim 2 or 3, wherein the conductive material includes an epoxy resin or a silicone resin.
所望のパターンで配列された複数の貫通孔を有するフレキシブルシートと、
前記貫通孔に充填され、導電粒子を含有する導電材料と
を備える検査冶具。
A flexible sheet having a plurality of through holes arranged in a desired pattern;
An inspection jig comprising: a conductive material filled in the through hole and containing conductive particles.
前記導電粒子の平均粒子径が、前記貫通孔の平均径の1/4以下である請求項5記載の検査冶具。   The inspection jig according to claim 5, wherein an average particle diameter of the conductive particles is ¼ or less of an average diameter of the through holes. 前記フレキシブルシートが、ポリイミドを含み、
前記導電材料が、エポキシ樹脂、又はシリコーン樹脂を含む請求項5又は6記載の検査冶具。

The flexible sheet contains polyimide,
The inspection jig according to claim 5 or 6, wherein the conductive material includes an epoxy resin or a silicone resin.

JP2017085499A 2017-04-24 2017-04-24 Method for manufacturing inspection jig Pending JP2018185170A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017085499A JP2018185170A (en) 2017-04-24 2017-04-24 Method for manufacturing inspection jig
TW106145254A TW201840077A (en) 2017-04-24 2017-12-22 Method for manufacturing inspection device capable of coping with micro pitches without damaging an object to be inspected
KR1020180006092A KR20180119095A (en) 2017-04-24 2018-01-17 Method for manufacturing inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085499A JP2018185170A (en) 2017-04-24 2017-04-24 Method for manufacturing inspection jig

Publications (1)

Publication Number Publication Date
JP2018185170A true JP2018185170A (en) 2018-11-22

Family

ID=64355894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085499A Pending JP2018185170A (en) 2017-04-24 2017-04-24 Method for manufacturing inspection jig

Country Status (3)

Country Link
JP (1) JP2018185170A (en)
KR (1) KR20180119095A (en)
TW (1) TW201840077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012041A (en) * 2019-07-03 2021-02-04 デクセリアルズ株式会社 Inspection tool for inspecting electrical characteristics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174920A (en) * 2003-11-17 2005-06-30 Jsr Corp Anisotropic conductive sheet, its manufacturing method, and application product of same
JP2007266165A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Manufacturing method of multilayer wiring board
JP2009030060A (en) * 2001-04-27 2009-02-12 Asahi Kasei Corp Electroconductive adhesive sheet having anisotropy and method for production thereof
WO2015016169A1 (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US20160109480A1 (en) * 2014-10-21 2016-04-21 Jong-Won Han Test socket for testing semiconductor chip package and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030060A (en) * 2001-04-27 2009-02-12 Asahi Kasei Corp Electroconductive adhesive sheet having anisotropy and method for production thereof
JP2005174920A (en) * 2003-11-17 2005-06-30 Jsr Corp Anisotropic conductive sheet, its manufacturing method, and application product of same
JP2007266165A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Manufacturing method of multilayer wiring board
WO2015016169A1 (en) * 2013-07-29 2015-02-05 デクセリアルズ株式会社 Method for producing conductive adhesive film, conductive adhesive film, and method for producing connection body
US20160109480A1 (en) * 2014-10-21 2016-04-21 Jong-Won Han Test socket for testing semiconductor chip package and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012041A (en) * 2019-07-03 2021-02-04 デクセリアルズ株式会社 Inspection tool for inspecting electrical characteristics

Also Published As

Publication number Publication date
TW201840077A (en) 2018-11-01
KR20180119095A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6918518B2 (en) Electrical property inspection jig
US9891273B2 (en) Test structures and testing methods for semiconductor devices
US20110043238A1 (en) Method of manufacturing needle for probe card using fine processing technology, needle manufactured by the method and probe card comprising the needle
KR101708487B1 (en) Test socket having double wire in silicon rubber and method for manufacturing thereof
JP2018185170A (en) Method for manufacturing inspection jig
JP7042037B2 (en) Manufacturing method of inspection jig
KR102124550B1 (en) Method of inspection of electrical properties
KR102270275B1 (en) Test socket
KR102187881B1 (en) Method for manufacturing probe socket device for micro LED inspection
KR100743587B1 (en) Probe unit for testing substrate to be mounted semiconductor chip
WO2020095656A1 (en) Method for manufacturing conductive member
KR102336112B1 (en) Method of multilayer polymer films including magnetically dispersed and vertically stacked conductive particles
JP2009129609A (en) Composite conductive sheet, anisotropic conductive connector, adapter device, and electrical inspection device for circuit device
WO2018079655A1 (en) Anisotropic conductive sheet and method for producing same
KR101347875B1 (en) Method for manufacturing touching structure for testing semiconductor package, touching structure for testing semiconductor package and socket for testing semiconductor package including the same
KR102104725B1 (en) Polymer monolayer film including conductive particles, method for manufacturing the polymer monolayer film, and method socket interposer connecting method for semiconductor package test using polymer monolayer film including conductive particles
JP4877465B2 (en) Semiconductor device, semiconductor device inspection method, semiconductor wafer
JP2021012040A (en) Inspection tool for inspecting electrical characteristics
JP2021004887A (en) Inspection method of electrical characteristics
JP2003121470A (en) Probe manufacturing method and probe
KR20200118342A (en) Test jig manufacturing method and its inspection device
TWM517412U (en) Semiconductor probing device
JP2012039091A (en) Substrate coining electrical inspection device
WO2012014905A1 (en) Contact and method for manufacturing contact
Fu et al. Film type solder mask evaluation for flip chip BGA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831